linux/lib/zlib_deflate/deftree.c
<<
>>
Prefs
   1/* +++ trees.c */
   2/* trees.c -- output deflated data using Huffman coding
   3 * Copyright (C) 1995-1996 Jean-loup Gailly
   4 * For conditions of distribution and use, see copyright notice in zlib.h 
   5 */
   6
   7/*
   8 *  ALGORITHM
   9 *
  10 *      The "deflation" process uses several Huffman trees. The more
  11 *      common source values are represented by shorter bit sequences.
  12 *
  13 *      Each code tree is stored in a compressed form which is itself
  14 * a Huffman encoding of the lengths of all the code strings (in
  15 * ascending order by source values).  The actual code strings are
  16 * reconstructed from the lengths in the inflate process, as described
  17 * in the deflate specification.
  18 *
  19 *  REFERENCES
  20 *
  21 *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
  22 *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
  23 *
  24 *      Storer, James A.
  25 *          Data Compression:  Methods and Theory, pp. 49-50.
  26 *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
  27 *
  28 *      Sedgewick, R.
  29 *          Algorithms, p290.
  30 *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
  31 */
  32
  33/* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */
  34
  35/* #include "deflate.h" */
  36
  37#include <linux/zutil.h>
  38#include <linux/bitrev.h>
  39#include "defutil.h"
  40
  41#ifdef DEBUG_ZLIB
  42#  include <ctype.h>
  43#endif
  44
  45/* ===========================================================================
  46 * Constants
  47 */
  48
  49#define MAX_BL_BITS 7
  50/* Bit length codes must not exceed MAX_BL_BITS bits */
  51
  52#define END_BLOCK 256
  53/* end of block literal code */
  54
  55#define REP_3_6      16
  56/* repeat previous bit length 3-6 times (2 bits of repeat count) */
  57
  58#define REPZ_3_10    17
  59/* repeat a zero length 3-10 times  (3 bits of repeat count) */
  60
  61#define REPZ_11_138  18
  62/* repeat a zero length 11-138 times  (7 bits of repeat count) */
  63
  64static const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
  65   = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
  66
  67static const int extra_dbits[D_CODES] /* extra bits for each distance code */
  68   = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
  69
  70static const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
  71   = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
  72
  73static const uch bl_order[BL_CODES]
  74   = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
  75/* The lengths of the bit length codes are sent in order of decreasing
  76 * probability, to avoid transmitting the lengths for unused bit length codes.
  77 */
  78
  79/* ===========================================================================
  80 * Local data. These are initialized only once.
  81 */
  82
  83static ct_data static_ltree[L_CODES+2];
  84/* The static literal tree. Since the bit lengths are imposed, there is no
  85 * need for the L_CODES extra codes used during heap construction. However
  86 * The codes 286 and 287 are needed to build a canonical tree (see zlib_tr_init
  87 * below).
  88 */
  89
  90static ct_data static_dtree[D_CODES];
  91/* The static distance tree. (Actually a trivial tree since all codes use
  92 * 5 bits.)
  93 */
  94
  95static uch dist_code[512];
  96/* distance codes. The first 256 values correspond to the distances
  97 * 3 .. 258, the last 256 values correspond to the top 8 bits of
  98 * the 15 bit distances.
  99 */
 100
 101static uch length_code[MAX_MATCH-MIN_MATCH+1];
 102/* length code for each normalized match length (0 == MIN_MATCH) */
 103
 104static int base_length[LENGTH_CODES];
 105/* First normalized length for each code (0 = MIN_MATCH) */
 106
 107static int base_dist[D_CODES];
 108/* First normalized distance for each code (0 = distance of 1) */
 109
 110struct static_tree_desc_s {
 111    const ct_data *static_tree;  /* static tree or NULL */
 112    const int *extra_bits;       /* extra bits for each code or NULL */
 113    int     extra_base;          /* base index for extra_bits */
 114    int     elems;               /* max number of elements in the tree */
 115    int     max_length;          /* max bit length for the codes */
 116};
 117
 118static static_tree_desc  static_l_desc =
 119{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
 120
 121static static_tree_desc  static_d_desc =
 122{static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
 123
 124static static_tree_desc  static_bl_desc =
 125{(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
 126
 127/* ===========================================================================
 128 * Local (static) routines in this file.
 129 */
 130
 131static void tr_static_init (void);
 132static void init_block     (deflate_state *s);
 133static void pqdownheap     (deflate_state *s, ct_data *tree, int k);
 134static void gen_bitlen     (deflate_state *s, tree_desc *desc);
 135static void gen_codes      (ct_data *tree, int max_code, ush *bl_count);
 136static void build_tree     (deflate_state *s, tree_desc *desc);
 137static void scan_tree      (deflate_state *s, ct_data *tree, int max_code);
 138static void send_tree      (deflate_state *s, ct_data *tree, int max_code);
 139static int  build_bl_tree  (deflate_state *s);
 140static void send_all_trees (deflate_state *s, int lcodes, int dcodes,
 141                           int blcodes);
 142static void compress_block (deflate_state *s, ct_data *ltree,
 143                           ct_data *dtree);
 144static void set_data_type  (deflate_state *s);
 145static void bi_flush       (deflate_state *s);
 146static void copy_block     (deflate_state *s, char *buf, unsigned len,
 147                           int header);
 148
 149#ifndef DEBUG_ZLIB
 150#  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
 151   /* Send a code of the given tree. c and tree must not have side effects */
 152
 153#else /* DEBUG_ZLIB */
 154#  define send_code(s, c, tree) \
 155     { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
 156       send_bits(s, tree[c].Code, tree[c].Len); }
 157#endif
 158
 159#define d_code(dist) \
 160   ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
 161/* Mapping from a distance to a distance code. dist is the distance - 1 and
 162 * must not have side effects. dist_code[256] and dist_code[257] are never
 163 * used.
 164 */
 165
 166/* ===========================================================================
 167 * Initialize the various 'constant' tables. In a multi-threaded environment,
 168 * this function may be called by two threads concurrently, but this is
 169 * harmless since both invocations do exactly the same thing.
 170 */
 171static void tr_static_init(void)
 172{
 173    static int static_init_done;
 174    int n;        /* iterates over tree elements */
 175    int bits;     /* bit counter */
 176    int length;   /* length value */
 177    int code;     /* code value */
 178    int dist;     /* distance index */
 179    ush bl_count[MAX_BITS+1];
 180    /* number of codes at each bit length for an optimal tree */
 181
 182    if (static_init_done) return;
 183
 184    /* Initialize the mapping length (0..255) -> length code (0..28) */
 185    length = 0;
 186    for (code = 0; code < LENGTH_CODES-1; code++) {
 187        base_length[code] = length;
 188        for (n = 0; n < (1<<extra_lbits[code]); n++) {
 189            length_code[length++] = (uch)code;
 190        }
 191    }
 192    Assert (length == 256, "tr_static_init: length != 256");
 193    /* Note that the length 255 (match length 258) can be represented
 194     * in two different ways: code 284 + 5 bits or code 285, so we
 195     * overwrite length_code[255] to use the best encoding:
 196     */
 197    length_code[length-1] = (uch)code;
 198
 199    /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
 200    dist = 0;
 201    for (code = 0 ; code < 16; code++) {
 202        base_dist[code] = dist;
 203        for (n = 0; n < (1<<extra_dbits[code]); n++) {
 204            dist_code[dist++] = (uch)code;
 205        }
 206    }
 207    Assert (dist == 256, "tr_static_init: dist != 256");
 208    dist >>= 7; /* from now on, all distances are divided by 128 */
 209    for ( ; code < D_CODES; code++) {
 210        base_dist[code] = dist << 7;
 211        for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
 212            dist_code[256 + dist++] = (uch)code;
 213        }
 214    }
 215    Assert (dist == 256, "tr_static_init: 256+dist != 512");
 216
 217    /* Construct the codes of the static literal tree */
 218    for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
 219    n = 0;
 220    while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
 221    while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
 222    while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
 223    while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
 224    /* Codes 286 and 287 do not exist, but we must include them in the
 225     * tree construction to get a canonical Huffman tree (longest code
 226     * all ones)
 227     */
 228    gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
 229
 230    /* The static distance tree is trivial: */
 231    for (n = 0; n < D_CODES; n++) {
 232        static_dtree[n].Len = 5;
 233        static_dtree[n].Code = bitrev32((u32)n) >> (32 - 5);
 234    }
 235    static_init_done = 1;
 236}
 237
 238/* ===========================================================================
 239 * Initialize the tree data structures for a new zlib stream.
 240 */
 241void zlib_tr_init(
 242        deflate_state *s
 243)
 244{
 245    tr_static_init();
 246
 247    s->compressed_len = 0L;
 248
 249    s->l_desc.dyn_tree = s->dyn_ltree;
 250    s->l_desc.stat_desc = &static_l_desc;
 251
 252    s->d_desc.dyn_tree = s->dyn_dtree;
 253    s->d_desc.stat_desc = &static_d_desc;
 254
 255    s->bl_desc.dyn_tree = s->bl_tree;
 256    s->bl_desc.stat_desc = &static_bl_desc;
 257
 258    s->bi_buf = 0;
 259    s->bi_valid = 0;
 260    s->last_eob_len = 8; /* enough lookahead for inflate */
 261#ifdef DEBUG_ZLIB
 262    s->bits_sent = 0L;
 263#endif
 264
 265    /* Initialize the first block of the first file: */
 266    init_block(s);
 267}
 268
 269/* ===========================================================================
 270 * Initialize a new block.
 271 */
 272static void init_block(
 273        deflate_state *s
 274)
 275{
 276    int n; /* iterates over tree elements */
 277
 278    /* Initialize the trees. */
 279    for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
 280    for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
 281    for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
 282
 283    s->dyn_ltree[END_BLOCK].Freq = 1;
 284    s->opt_len = s->static_len = 0L;
 285    s->last_lit = s->matches = 0;
 286}
 287
 288#define SMALLEST 1
 289/* Index within the heap array of least frequent node in the Huffman tree */
 290
 291
 292/* ===========================================================================
 293 * Remove the smallest element from the heap and recreate the heap with
 294 * one less element. Updates heap and heap_len.
 295 */
 296#define pqremove(s, tree, top) \
 297{\
 298    top = s->heap[SMALLEST]; \
 299    s->heap[SMALLEST] = s->heap[s->heap_len--]; \
 300    pqdownheap(s, tree, SMALLEST); \
 301}
 302
 303/* ===========================================================================
 304 * Compares to subtrees, using the tree depth as tie breaker when
 305 * the subtrees have equal frequency. This minimizes the worst case length.
 306 */
 307#define smaller(tree, n, m, depth) \
 308   (tree[n].Freq < tree[m].Freq || \
 309   (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
 310
 311/* ===========================================================================
 312 * Restore the heap property by moving down the tree starting at node k,
 313 * exchanging a node with the smallest of its two sons if necessary, stopping
 314 * when the heap property is re-established (each father smaller than its
 315 * two sons).
 316 */
 317static void pqdownheap(
 318        deflate_state *s,
 319        ct_data *tree,  /* the tree to restore */
 320        int k           /* node to move down */
 321)
 322{
 323    int v = s->heap[k];
 324    int j = k << 1;  /* left son of k */
 325    while (j <= s->heap_len) {
 326        /* Set j to the smallest of the two sons: */
 327        if (j < s->heap_len &&
 328            smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
 329            j++;
 330        }
 331        /* Exit if v is smaller than both sons */
 332        if (smaller(tree, v, s->heap[j], s->depth)) break;
 333
 334        /* Exchange v with the smallest son */
 335        s->heap[k] = s->heap[j];  k = j;
 336
 337        /* And continue down the tree, setting j to the left son of k */
 338        j <<= 1;
 339    }
 340    s->heap[k] = v;
 341}
 342
 343/* ===========================================================================
 344 * Compute the optimal bit lengths for a tree and update the total bit length
 345 * for the current block.
 346 * IN assertion: the fields freq and dad are set, heap[heap_max] and
 347 *    above are the tree nodes sorted by increasing frequency.
 348 * OUT assertions: the field len is set to the optimal bit length, the
 349 *     array bl_count contains the frequencies for each bit length.
 350 *     The length opt_len is updated; static_len is also updated if stree is
 351 *     not null.
 352 */
 353static void gen_bitlen(
 354        deflate_state *s,
 355        tree_desc *desc    /* the tree descriptor */
 356)
 357{
 358    ct_data *tree        = desc->dyn_tree;
 359    int max_code         = desc->max_code;
 360    const ct_data *stree = desc->stat_desc->static_tree;
 361    const int *extra     = desc->stat_desc->extra_bits;
 362    int base             = desc->stat_desc->extra_base;
 363    int max_length       = desc->stat_desc->max_length;
 364    int h;              /* heap index */
 365    int n, m;           /* iterate over the tree elements */
 366    int bits;           /* bit length */
 367    int xbits;          /* extra bits */
 368    ush f;              /* frequency */
 369    int overflow = 0;   /* number of elements with bit length too large */
 370
 371    for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
 372
 373    /* In a first pass, compute the optimal bit lengths (which may
 374     * overflow in the case of the bit length tree).
 375     */
 376    tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
 377
 378    for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
 379        n = s->heap[h];
 380        bits = tree[tree[n].Dad].Len + 1;
 381        if (bits > max_length) bits = max_length, overflow++;
 382        tree[n].Len = (ush)bits;
 383        /* We overwrite tree[n].Dad which is no longer needed */
 384
 385        if (n > max_code) continue; /* not a leaf node */
 386
 387        s->bl_count[bits]++;
 388        xbits = 0;
 389        if (n >= base) xbits = extra[n-base];
 390        f = tree[n].Freq;
 391        s->opt_len += (ulg)f * (bits + xbits);
 392        if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
 393    }
 394    if (overflow == 0) return;
 395
 396    Trace((stderr,"\nbit length overflow\n"));
 397    /* This happens for example on obj2 and pic of the Calgary corpus */
 398
 399    /* Find the first bit length which could increase: */
 400    do {
 401        bits = max_length-1;
 402        while (s->bl_count[bits] == 0) bits--;
 403        s->bl_count[bits]--;      /* move one leaf down the tree */
 404        s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
 405        s->bl_count[max_length]--;
 406        /* The brother of the overflow item also moves one step up,
 407         * but this does not affect bl_count[max_length]
 408         */
 409        overflow -= 2;
 410    } while (overflow > 0);
 411
 412    /* Now recompute all bit lengths, scanning in increasing frequency.
 413     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
 414     * lengths instead of fixing only the wrong ones. This idea is taken
 415     * from 'ar' written by Haruhiko Okumura.)
 416     */
 417    for (bits = max_length; bits != 0; bits--) {
 418        n = s->bl_count[bits];
 419        while (n != 0) {
 420            m = s->heap[--h];
 421            if (m > max_code) continue;
 422            if (tree[m].Len != (unsigned) bits) {
 423                Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
 424                s->opt_len += ((long)bits - (long)tree[m].Len)
 425                              *(long)tree[m].Freq;
 426                tree[m].Len = (ush)bits;
 427            }
 428            n--;
 429        }
 430    }
 431}
 432
 433/* ===========================================================================
 434 * Generate the codes for a given tree and bit counts (which need not be
 435 * optimal).
 436 * IN assertion: the array bl_count contains the bit length statistics for
 437 * the given tree and the field len is set for all tree elements.
 438 * OUT assertion: the field code is set for all tree elements of non
 439 *     zero code length.
 440 */
 441static void gen_codes(
 442        ct_data *tree,             /* the tree to decorate */
 443        int max_code,              /* largest code with non zero frequency */
 444        ush *bl_count             /* number of codes at each bit length */
 445)
 446{
 447    ush next_code[MAX_BITS+1]; /* next code value for each bit length */
 448    ush code = 0;              /* running code value */
 449    int bits;                  /* bit index */
 450    int n;                     /* code index */
 451
 452    /* The distribution counts are first used to generate the code values
 453     * without bit reversal.
 454     */
 455    for (bits = 1; bits <= MAX_BITS; bits++) {
 456        next_code[bits] = code = (code + bl_count[bits-1]) << 1;
 457    }
 458    /* Check that the bit counts in bl_count are consistent. The last code
 459     * must be all ones.
 460     */
 461    Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
 462            "inconsistent bit counts");
 463    Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
 464
 465    for (n = 0;  n <= max_code; n++) {
 466        int len = tree[n].Len;
 467        if (len == 0) continue;
 468        /* Now reverse the bits */
 469        tree[n].Code = bitrev32((u32)(next_code[len]++)) >> (32 - len);
 470
 471        Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
 472             n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
 473    }
 474}
 475
 476/* ===========================================================================
 477 * Construct one Huffman tree and assigns the code bit strings and lengths.
 478 * Update the total bit length for the current block.
 479 * IN assertion: the field freq is set for all tree elements.
 480 * OUT assertions: the fields len and code are set to the optimal bit length
 481 *     and corresponding code. The length opt_len is updated; static_len is
 482 *     also updated if stree is not null. The field max_code is set.
 483 */
 484static void build_tree(
 485        deflate_state *s,
 486        tree_desc *desc  /* the tree descriptor */
 487)
 488{
 489    ct_data *tree         = desc->dyn_tree;
 490    const ct_data *stree  = desc->stat_desc->static_tree;
 491    int elems             = desc->stat_desc->elems;
 492    int n, m;          /* iterate over heap elements */
 493    int max_code = -1; /* largest code with non zero frequency */
 494    int node;          /* new node being created */
 495
 496    /* Construct the initial heap, with least frequent element in
 497     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
 498     * heap[0] is not used.
 499     */
 500    s->heap_len = 0, s->heap_max = HEAP_SIZE;
 501
 502    for (n = 0; n < elems; n++) {
 503        if (tree[n].Freq != 0) {
 504            s->heap[++(s->heap_len)] = max_code = n;
 505            s->depth[n] = 0;
 506        } else {
 507            tree[n].Len = 0;
 508        }
 509    }
 510
 511    /* The pkzip format requires that at least one distance code exists,
 512     * and that at least one bit should be sent even if there is only one
 513     * possible code. So to avoid special checks later on we force at least
 514     * two codes of non zero frequency.
 515     */
 516    while (s->heap_len < 2) {
 517        node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
 518        tree[node].Freq = 1;
 519        s->depth[node] = 0;
 520        s->opt_len--; if (stree) s->static_len -= stree[node].Len;
 521        /* node is 0 or 1 so it does not have extra bits */
 522    }
 523    desc->max_code = max_code;
 524
 525    /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
 526     * establish sub-heaps of increasing lengths:
 527     */
 528    for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
 529
 530    /* Construct the Huffman tree by repeatedly combining the least two
 531     * frequent nodes.
 532     */
 533    node = elems;              /* next internal node of the tree */
 534    do {
 535        pqremove(s, tree, n);  /* n = node of least frequency */
 536        m = s->heap[SMALLEST]; /* m = node of next least frequency */
 537
 538        s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
 539        s->heap[--(s->heap_max)] = m;
 540
 541        /* Create a new node father of n and m */
 542        tree[node].Freq = tree[n].Freq + tree[m].Freq;
 543        s->depth[node] = (uch) (max(s->depth[n], s->depth[m]) + 1);
 544        tree[n].Dad = tree[m].Dad = (ush)node;
 545#ifdef DUMP_BL_TREE
 546        if (tree == s->bl_tree) {
 547            fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
 548                    node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
 549        }
 550#endif
 551        /* and insert the new node in the heap */
 552        s->heap[SMALLEST] = node++;
 553        pqdownheap(s, tree, SMALLEST);
 554
 555    } while (s->heap_len >= 2);
 556
 557    s->heap[--(s->heap_max)] = s->heap[SMALLEST];
 558
 559    /* At this point, the fields freq and dad are set. We can now
 560     * generate the bit lengths.
 561     */
 562    gen_bitlen(s, (tree_desc *)desc);
 563
 564    /* The field len is now set, we can generate the bit codes */
 565    gen_codes ((ct_data *)tree, max_code, s->bl_count);
 566}
 567
 568/* ===========================================================================
 569 * Scan a literal or distance tree to determine the frequencies of the codes
 570 * in the bit length tree.
 571 */
 572static void scan_tree(
 573        deflate_state *s,
 574        ct_data *tree,   /* the tree to be scanned */
 575        int max_code     /* and its largest code of non zero frequency */
 576)
 577{
 578    int n;                     /* iterates over all tree elements */
 579    int prevlen = -1;          /* last emitted length */
 580    int curlen;                /* length of current code */
 581    int nextlen = tree[0].Len; /* length of next code */
 582    int count = 0;             /* repeat count of the current code */
 583    int max_count = 7;         /* max repeat count */
 584    int min_count = 4;         /* min repeat count */
 585
 586    if (nextlen == 0) max_count = 138, min_count = 3;
 587    tree[max_code+1].Len = (ush)0xffff; /* guard */
 588
 589    for (n = 0; n <= max_code; n++) {
 590        curlen = nextlen; nextlen = tree[n+1].Len;
 591        if (++count < max_count && curlen == nextlen) {
 592            continue;
 593        } else if (count < min_count) {
 594            s->bl_tree[curlen].Freq += count;
 595        } else if (curlen != 0) {
 596            if (curlen != prevlen) s->bl_tree[curlen].Freq++;
 597            s->bl_tree[REP_3_6].Freq++;
 598        } else if (count <= 10) {
 599            s->bl_tree[REPZ_3_10].Freq++;
 600        } else {
 601            s->bl_tree[REPZ_11_138].Freq++;
 602        }
 603        count = 0; prevlen = curlen;
 604        if (nextlen == 0) {
 605            max_count = 138, min_count = 3;
 606        } else if (curlen == nextlen) {
 607            max_count = 6, min_count = 3;
 608        } else {
 609            max_count = 7, min_count = 4;
 610        }
 611    }
 612}
 613
 614/* ===========================================================================
 615 * Send a literal or distance tree in compressed form, using the codes in
 616 * bl_tree.
 617 */
 618static void send_tree(
 619        deflate_state *s,
 620        ct_data *tree, /* the tree to be scanned */
 621        int max_code   /* and its largest code of non zero frequency */
 622)
 623{
 624    int n;                     /* iterates over all tree elements */
 625    int prevlen = -1;          /* last emitted length */
 626    int curlen;                /* length of current code */
 627    int nextlen = tree[0].Len; /* length of next code */
 628    int count = 0;             /* repeat count of the current code */
 629    int max_count = 7;         /* max repeat count */
 630    int min_count = 4;         /* min repeat count */
 631
 632    /* tree[max_code+1].Len = -1; */  /* guard already set */
 633    if (nextlen == 0) max_count = 138, min_count = 3;
 634
 635    for (n = 0; n <= max_code; n++) {
 636        curlen = nextlen; nextlen = tree[n+1].Len;
 637        if (++count < max_count && curlen == nextlen) {
 638            continue;
 639        } else if (count < min_count) {
 640            do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
 641
 642        } else if (curlen != 0) {
 643            if (curlen != prevlen) {
 644                send_code(s, curlen, s->bl_tree); count--;
 645            }
 646            Assert(count >= 3 && count <= 6, " 3_6?");
 647            send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
 648
 649        } else if (count <= 10) {
 650            send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
 651
 652        } else {
 653            send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
 654        }
 655        count = 0; prevlen = curlen;
 656        if (nextlen == 0) {
 657            max_count = 138, min_count = 3;
 658        } else if (curlen == nextlen) {
 659            max_count = 6, min_count = 3;
 660        } else {
 661            max_count = 7, min_count = 4;
 662        }
 663    }
 664}
 665
 666/* ===========================================================================
 667 * Construct the Huffman tree for the bit lengths and return the index in
 668 * bl_order of the last bit length code to send.
 669 */
 670static int build_bl_tree(
 671        deflate_state *s
 672)
 673{
 674    int max_blindex;  /* index of last bit length code of non zero freq */
 675
 676    /* Determine the bit length frequencies for literal and distance trees */
 677    scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
 678    scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
 679
 680    /* Build the bit length tree: */
 681    build_tree(s, (tree_desc *)(&(s->bl_desc)));
 682    /* opt_len now includes the length of the tree representations, except
 683     * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
 684     */
 685
 686    /* Determine the number of bit length codes to send. The pkzip format
 687     * requires that at least 4 bit length codes be sent. (appnote.txt says
 688     * 3 but the actual value used is 4.)
 689     */
 690    for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
 691        if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
 692    }
 693    /* Update opt_len to include the bit length tree and counts */
 694    s->opt_len += 3*(max_blindex+1) + 5+5+4;
 695    Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
 696            s->opt_len, s->static_len));
 697
 698    return max_blindex;
 699}
 700
 701/* ===========================================================================
 702 * Send the header for a block using dynamic Huffman trees: the counts, the
 703 * lengths of the bit length codes, the literal tree and the distance tree.
 704 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
 705 */
 706static void send_all_trees(
 707        deflate_state *s,
 708        int lcodes,  /* number of codes for each tree */
 709        int dcodes,  /* number of codes for each tree */
 710        int blcodes  /* number of codes for each tree */
 711)
 712{
 713    int rank;                    /* index in bl_order */
 714
 715    Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
 716    Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
 717            "too many codes");
 718    Tracev((stderr, "\nbl counts: "));
 719    send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
 720    send_bits(s, dcodes-1,   5);
 721    send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
 722    for (rank = 0; rank < blcodes; rank++) {
 723        Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
 724        send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
 725    }
 726    Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
 727
 728    send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
 729    Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
 730
 731    send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
 732    Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
 733}
 734
 735/* ===========================================================================
 736 * Send a stored block
 737 */
 738void zlib_tr_stored_block(
 739        deflate_state *s,
 740        char *buf,        /* input block */
 741        ulg stored_len,   /* length of input block */
 742        int eof           /* true if this is the last block for a file */
 743)
 744{
 745    send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
 746    s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
 747    s->compressed_len += (stored_len + 4) << 3;
 748
 749    copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
 750}
 751
 752/* Send just the `stored block' type code without any length bytes or data.
 753 */
 754void zlib_tr_stored_type_only(
 755        deflate_state *s
 756)
 757{
 758    send_bits(s, (STORED_BLOCK << 1), 3);
 759    bi_windup(s);
 760    s->compressed_len = (s->compressed_len + 3) & ~7L;
 761}
 762
 763
 764/* ===========================================================================
 765 * Send one empty static block to give enough lookahead for inflate.
 766 * This takes 10 bits, of which 7 may remain in the bit buffer.
 767 * The current inflate code requires 9 bits of lookahead. If the
 768 * last two codes for the previous block (real code plus EOB) were coded
 769 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
 770 * the last real code. In this case we send two empty static blocks instead
 771 * of one. (There are no problems if the previous block is stored or fixed.)
 772 * To simplify the code, we assume the worst case of last real code encoded
 773 * on one bit only.
 774 */
 775void zlib_tr_align(
 776        deflate_state *s
 777)
 778{
 779    send_bits(s, STATIC_TREES<<1, 3);
 780    send_code(s, END_BLOCK, static_ltree);
 781    s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
 782    bi_flush(s);
 783    /* Of the 10 bits for the empty block, we have already sent
 784     * (10 - bi_valid) bits. The lookahead for the last real code (before
 785     * the EOB of the previous block) was thus at least one plus the length
 786     * of the EOB plus what we have just sent of the empty static block.
 787     */
 788    if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
 789        send_bits(s, STATIC_TREES<<1, 3);
 790        send_code(s, END_BLOCK, static_ltree);
 791        s->compressed_len += 10L;
 792        bi_flush(s);
 793    }
 794    s->last_eob_len = 7;
 795}
 796
 797/* ===========================================================================
 798 * Determine the best encoding for the current block: dynamic trees, static
 799 * trees or store, and output the encoded block to the zip file. This function
 800 * returns the total compressed length for the file so far.
 801 */
 802ulg zlib_tr_flush_block(
 803        deflate_state *s,
 804        char *buf,        /* input block, or NULL if too old */
 805        ulg stored_len,   /* length of input block */
 806        int eof           /* true if this is the last block for a file */
 807)
 808{
 809    ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
 810    int max_blindex = 0;  /* index of last bit length code of non zero freq */
 811
 812    /* Build the Huffman trees unless a stored block is forced */
 813    if (s->level > 0) {
 814
 815         /* Check if the file is ascii or binary */
 816        if (s->data_type == Z_UNKNOWN) set_data_type(s);
 817
 818        /* Construct the literal and distance trees */
 819        build_tree(s, (tree_desc *)(&(s->l_desc)));
 820        Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
 821                s->static_len));
 822
 823        build_tree(s, (tree_desc *)(&(s->d_desc)));
 824        Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
 825                s->static_len));
 826        /* At this point, opt_len and static_len are the total bit lengths of
 827         * the compressed block data, excluding the tree representations.
 828         */
 829
 830        /* Build the bit length tree for the above two trees, and get the index
 831         * in bl_order of the last bit length code to send.
 832         */
 833        max_blindex = build_bl_tree(s);
 834
 835        /* Determine the best encoding. Compute first the block length in bytes*/
 836        opt_lenb = (s->opt_len+3+7)>>3;
 837        static_lenb = (s->static_len+3+7)>>3;
 838
 839        Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
 840                opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
 841                s->last_lit));
 842
 843        if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
 844
 845    } else {
 846        Assert(buf != (char*)0, "lost buf");
 847        opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
 848    }
 849
 850    /* If compression failed and this is the first and last block,
 851     * and if the .zip file can be seeked (to rewrite the local header),
 852     * the whole file is transformed into a stored file:
 853     */
 854#ifdef STORED_FILE_OK
 855#  ifdef FORCE_STORED_FILE
 856    if (eof && s->compressed_len == 0L) { /* force stored file */
 857#  else
 858    if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) {
 859#  endif
 860        /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
 861        if (buf == (char*)0) error ("block vanished");
 862
 863        copy_block(s, buf, (unsigned)stored_len, 0); /* without header */
 864        s->compressed_len = stored_len << 3;
 865        s->method = STORED;
 866    } else
 867#endif /* STORED_FILE_OK */
 868
 869#ifdef FORCE_STORED
 870    if (buf != (char*)0) { /* force stored block */
 871#else
 872    if (stored_len+4 <= opt_lenb && buf != (char*)0) {
 873                       /* 4: two words for the lengths */
 874#endif
 875        /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
 876         * Otherwise we can't have processed more than WSIZE input bytes since
 877         * the last block flush, because compression would have been
 878         * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
 879         * transform a block into a stored block.
 880         */
 881        zlib_tr_stored_block(s, buf, stored_len, eof);
 882
 883#ifdef FORCE_STATIC
 884    } else if (static_lenb >= 0) { /* force static trees */
 885#else
 886    } else if (static_lenb == opt_lenb) {
 887#endif
 888        send_bits(s, (STATIC_TREES<<1)+eof, 3);
 889        compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
 890        s->compressed_len += 3 + s->static_len;
 891    } else {
 892        send_bits(s, (DYN_TREES<<1)+eof, 3);
 893        send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
 894                       max_blindex+1);
 895        compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
 896        s->compressed_len += 3 + s->opt_len;
 897    }
 898    Assert (s->compressed_len == s->bits_sent, "bad compressed size");
 899    init_block(s);
 900
 901    if (eof) {
 902        bi_windup(s);
 903        s->compressed_len += 7;  /* align on byte boundary */
 904    }
 905    Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
 906           s->compressed_len-7*eof));
 907
 908    return s->compressed_len >> 3;
 909}
 910
 911/* ===========================================================================
 912 * Save the match info and tally the frequency counts. Return true if
 913 * the current block must be flushed.
 914 */
 915int zlib_tr_tally(
 916        deflate_state *s,
 917        unsigned dist,  /* distance of matched string */
 918        unsigned lc     /* match length-MIN_MATCH or unmatched char (if dist==0) */
 919)
 920{
 921    s->d_buf[s->last_lit] = (ush)dist;
 922    s->l_buf[s->last_lit++] = (uch)lc;
 923    if (dist == 0) {
 924        /* lc is the unmatched char */
 925        s->dyn_ltree[lc].Freq++;
 926    } else {
 927        s->matches++;
 928        /* Here, lc is the match length - MIN_MATCH */
 929        dist--;             /* dist = match distance - 1 */
 930        Assert((ush)dist < (ush)MAX_DIST(s) &&
 931               (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
 932               (ush)d_code(dist) < (ush)D_CODES,  "zlib_tr_tally: bad match");
 933
 934        s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
 935        s->dyn_dtree[d_code(dist)].Freq++;
 936    }
 937
 938    /* Try to guess if it is profitable to stop the current block here */
 939    if ((s->last_lit & 0xfff) == 0 && s->level > 2) {
 940        /* Compute an upper bound for the compressed length */
 941        ulg out_length = (ulg)s->last_lit*8L;
 942        ulg in_length = (ulg)((long)s->strstart - s->block_start);
 943        int dcode;
 944        for (dcode = 0; dcode < D_CODES; dcode++) {
 945            out_length += (ulg)s->dyn_dtree[dcode].Freq *
 946                (5L+extra_dbits[dcode]);
 947        }
 948        out_length >>= 3;
 949        Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
 950               s->last_lit, in_length, out_length,
 951               100L - out_length*100L/in_length));
 952        if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
 953    }
 954    return (s->last_lit == s->lit_bufsize-1);
 955    /* We avoid equality with lit_bufsize because of wraparound at 64K
 956     * on 16 bit machines and because stored blocks are restricted to
 957     * 64K-1 bytes.
 958     */
 959}
 960
 961/* ===========================================================================
 962 * Send the block data compressed using the given Huffman trees
 963 */
 964static void compress_block(
 965        deflate_state *s,
 966        ct_data *ltree, /* literal tree */
 967        ct_data *dtree  /* distance tree */
 968)
 969{
 970    unsigned dist;      /* distance of matched string */
 971    int lc;             /* match length or unmatched char (if dist == 0) */
 972    unsigned lx = 0;    /* running index in l_buf */
 973    unsigned code;      /* the code to send */
 974    int extra;          /* number of extra bits to send */
 975
 976    if (s->last_lit != 0) do {
 977        dist = s->d_buf[lx];
 978        lc = s->l_buf[lx++];
 979        if (dist == 0) {
 980            send_code(s, lc, ltree); /* send a literal byte */
 981            Tracecv(isgraph(lc), (stderr," '%c' ", lc));
 982        } else {
 983            /* Here, lc is the match length - MIN_MATCH */
 984            code = length_code[lc];
 985            send_code(s, code+LITERALS+1, ltree); /* send the length code */
 986            extra = extra_lbits[code];
 987            if (extra != 0) {
 988                lc -= base_length[code];
 989                send_bits(s, lc, extra);       /* send the extra length bits */
 990            }
 991            dist--; /* dist is now the match distance - 1 */
 992            code = d_code(dist);
 993            Assert (code < D_CODES, "bad d_code");
 994
 995            send_code(s, code, dtree);       /* send the distance code */
 996            extra = extra_dbits[code];
 997            if (extra != 0) {
 998                dist -= base_dist[code];
 999                send_bits(s, dist, extra);   /* send the extra distance bits */
1000            }
1001        } /* literal or match pair ? */
1002
1003        /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1004        Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
1005
1006    } while (lx < s->last_lit);
1007
1008    send_code(s, END_BLOCK, ltree);
1009    s->last_eob_len = ltree[END_BLOCK].Len;
1010}
1011
1012/* ===========================================================================
1013 * Set the data type to ASCII or BINARY, using a crude approximation:
1014 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
1015 * IN assertion: the fields freq of dyn_ltree are set and the total of all
1016 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
1017 */
1018static void set_data_type(
1019        deflate_state *s
1020)
1021{
1022    int n = 0;
1023    unsigned ascii_freq = 0;
1024    unsigned bin_freq = 0;
1025    while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
1026    while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
1027    while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
1028    s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
1029}
1030
1031/* ===========================================================================
1032 * Copy a stored block, storing first the length and its
1033 * one's complement if requested.
1034 */
1035static void copy_block(
1036        deflate_state *s,
1037        char    *buf,     /* the input data */
1038        unsigned len,     /* its length */
1039        int      header   /* true if block header must be written */
1040)
1041{
1042    bi_windup(s);        /* align on byte boundary */
1043    s->last_eob_len = 8; /* enough lookahead for inflate */
1044
1045    if (header) {
1046        put_short(s, (ush)len);   
1047        put_short(s, (ush)~len);
1048#ifdef DEBUG_ZLIB
1049        s->bits_sent += 2*16;
1050#endif
1051    }
1052#ifdef DEBUG_ZLIB
1053    s->bits_sent += (ulg)len<<3;
1054#endif
1055    /* bundle up the put_byte(s, *buf++) calls */
1056    memcpy(&s->pending_buf[s->pending], buf, len);
1057    s->pending += len;
1058}
1059
1060