linux/mm/compaction.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/mm/compaction.c
   4 *
   5 * Memory compaction for the reduction of external fragmentation. Note that
   6 * this heavily depends upon page migration to do all the real heavy
   7 * lifting
   8 *
   9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
  10 */
  11#include <linux/cpu.h>
  12#include <linux/swap.h>
  13#include <linux/migrate.h>
  14#include <linux/compaction.h>
  15#include <linux/mm_inline.h>
  16#include <linux/sched/signal.h>
  17#include <linux/backing-dev.h>
  18#include <linux/sysctl.h>
  19#include <linux/sysfs.h>
  20#include <linux/page-isolation.h>
  21#include <linux/kasan.h>
  22#include <linux/kthread.h>
  23#include <linux/freezer.h>
  24#include <linux/page_owner.h>
  25#include <linux/psi.h>
  26#include "internal.h"
  27
  28#ifdef CONFIG_COMPACTION
  29static inline void count_compact_event(enum vm_event_item item)
  30{
  31        count_vm_event(item);
  32}
  33
  34static inline void count_compact_events(enum vm_event_item item, long delta)
  35{
  36        count_vm_events(item, delta);
  37}
  38#else
  39#define count_compact_event(item) do { } while (0)
  40#define count_compact_events(item, delta) do { } while (0)
  41#endif
  42
  43#if defined CONFIG_COMPACTION || defined CONFIG_CMA
  44
  45#define CREATE_TRACE_POINTS
  46#include <trace/events/compaction.h>
  47
  48#define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
  49#define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
  50#define pageblock_start_pfn(pfn)        block_start_pfn(pfn, pageblock_order)
  51#define pageblock_end_pfn(pfn)          block_end_pfn(pfn, pageblock_order)
  52
  53/*
  54 * Fragmentation score check interval for proactive compaction purposes.
  55 */
  56static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
  57
  58/*
  59 * Page order with-respect-to which proactive compaction
  60 * calculates external fragmentation, which is used as
  61 * the "fragmentation score" of a node/zone.
  62 */
  63#if defined CONFIG_TRANSPARENT_HUGEPAGE
  64#define COMPACTION_HPAGE_ORDER  HPAGE_PMD_ORDER
  65#elif defined CONFIG_HUGETLBFS
  66#define COMPACTION_HPAGE_ORDER  HUGETLB_PAGE_ORDER
  67#else
  68#define COMPACTION_HPAGE_ORDER  (PMD_SHIFT - PAGE_SHIFT)
  69#endif
  70
  71static unsigned long release_freepages(struct list_head *freelist)
  72{
  73        struct page *page, *next;
  74        unsigned long high_pfn = 0;
  75
  76        list_for_each_entry_safe(page, next, freelist, lru) {
  77                unsigned long pfn = page_to_pfn(page);
  78                list_del(&page->lru);
  79                __free_page(page);
  80                if (pfn > high_pfn)
  81                        high_pfn = pfn;
  82        }
  83
  84        return high_pfn;
  85}
  86
  87static void split_map_pages(struct list_head *list)
  88{
  89        unsigned int i, order, nr_pages;
  90        struct page *page, *next;
  91        LIST_HEAD(tmp_list);
  92
  93        list_for_each_entry_safe(page, next, list, lru) {
  94                list_del(&page->lru);
  95
  96                order = page_private(page);
  97                nr_pages = 1 << order;
  98
  99                post_alloc_hook(page, order, __GFP_MOVABLE);
 100                if (order)
 101                        split_page(page, order);
 102
 103                for (i = 0; i < nr_pages; i++) {
 104                        list_add(&page->lru, &tmp_list);
 105                        page++;
 106                }
 107        }
 108
 109        list_splice(&tmp_list, list);
 110}
 111
 112#ifdef CONFIG_COMPACTION
 113
 114int PageMovable(struct page *page)
 115{
 116        struct address_space *mapping;
 117
 118        VM_BUG_ON_PAGE(!PageLocked(page), page);
 119        if (!__PageMovable(page))
 120                return 0;
 121
 122        mapping = page_mapping(page);
 123        if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
 124                return 1;
 125
 126        return 0;
 127}
 128EXPORT_SYMBOL(PageMovable);
 129
 130void __SetPageMovable(struct page *page, struct address_space *mapping)
 131{
 132        VM_BUG_ON_PAGE(!PageLocked(page), page);
 133        VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
 134        page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
 135}
 136EXPORT_SYMBOL(__SetPageMovable);
 137
 138void __ClearPageMovable(struct page *page)
 139{
 140        VM_BUG_ON_PAGE(!PageMovable(page), page);
 141        /*
 142         * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
 143         * flag so that VM can catch up released page by driver after isolation.
 144         * With it, VM migration doesn't try to put it back.
 145         */
 146        page->mapping = (void *)((unsigned long)page->mapping &
 147                                PAGE_MAPPING_MOVABLE);
 148}
 149EXPORT_SYMBOL(__ClearPageMovable);
 150
 151/* Do not skip compaction more than 64 times */
 152#define COMPACT_MAX_DEFER_SHIFT 6
 153
 154/*
 155 * Compaction is deferred when compaction fails to result in a page
 156 * allocation success. 1 << compact_defer_shift, compactions are skipped up
 157 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 158 */
 159static void defer_compaction(struct zone *zone, int order)
 160{
 161        zone->compact_considered = 0;
 162        zone->compact_defer_shift++;
 163
 164        if (order < zone->compact_order_failed)
 165                zone->compact_order_failed = order;
 166
 167        if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
 168                zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
 169
 170        trace_mm_compaction_defer_compaction(zone, order);
 171}
 172
 173/* Returns true if compaction should be skipped this time */
 174static bool compaction_deferred(struct zone *zone, int order)
 175{
 176        unsigned long defer_limit = 1UL << zone->compact_defer_shift;
 177
 178        if (order < zone->compact_order_failed)
 179                return false;
 180
 181        /* Avoid possible overflow */
 182        if (++zone->compact_considered >= defer_limit) {
 183                zone->compact_considered = defer_limit;
 184                return false;
 185        }
 186
 187        trace_mm_compaction_deferred(zone, order);
 188
 189        return true;
 190}
 191
 192/*
 193 * Update defer tracking counters after successful compaction of given order,
 194 * which means an allocation either succeeded (alloc_success == true) or is
 195 * expected to succeed.
 196 */
 197void compaction_defer_reset(struct zone *zone, int order,
 198                bool alloc_success)
 199{
 200        if (alloc_success) {
 201                zone->compact_considered = 0;
 202                zone->compact_defer_shift = 0;
 203        }
 204        if (order >= zone->compact_order_failed)
 205                zone->compact_order_failed = order + 1;
 206
 207        trace_mm_compaction_defer_reset(zone, order);
 208}
 209
 210/* Returns true if restarting compaction after many failures */
 211static bool compaction_restarting(struct zone *zone, int order)
 212{
 213        if (order < zone->compact_order_failed)
 214                return false;
 215
 216        return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
 217                zone->compact_considered >= 1UL << zone->compact_defer_shift;
 218}
 219
 220/* Returns true if the pageblock should be scanned for pages to isolate. */
 221static inline bool isolation_suitable(struct compact_control *cc,
 222                                        struct page *page)
 223{
 224        if (cc->ignore_skip_hint)
 225                return true;
 226
 227        return !get_pageblock_skip(page);
 228}
 229
 230static void reset_cached_positions(struct zone *zone)
 231{
 232        zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
 233        zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
 234        zone->compact_cached_free_pfn =
 235                                pageblock_start_pfn(zone_end_pfn(zone) - 1);
 236}
 237
 238/*
 239 * Compound pages of >= pageblock_order should consistently be skipped until
 240 * released. It is always pointless to compact pages of such order (if they are
 241 * migratable), and the pageblocks they occupy cannot contain any free pages.
 242 */
 243static bool pageblock_skip_persistent(struct page *page)
 244{
 245        if (!PageCompound(page))
 246                return false;
 247
 248        page = compound_head(page);
 249
 250        if (compound_order(page) >= pageblock_order)
 251                return true;
 252
 253        return false;
 254}
 255
 256static bool
 257__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
 258                                                        bool check_target)
 259{
 260        struct page *page = pfn_to_online_page(pfn);
 261        struct page *block_page;
 262        struct page *end_page;
 263        unsigned long block_pfn;
 264
 265        if (!page)
 266                return false;
 267        if (zone != page_zone(page))
 268                return false;
 269        if (pageblock_skip_persistent(page))
 270                return false;
 271
 272        /*
 273         * If skip is already cleared do no further checking once the
 274         * restart points have been set.
 275         */
 276        if (check_source && check_target && !get_pageblock_skip(page))
 277                return true;
 278
 279        /*
 280         * If clearing skip for the target scanner, do not select a
 281         * non-movable pageblock as the starting point.
 282         */
 283        if (!check_source && check_target &&
 284            get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
 285                return false;
 286
 287        /* Ensure the start of the pageblock or zone is online and valid */
 288        block_pfn = pageblock_start_pfn(pfn);
 289        block_pfn = max(block_pfn, zone->zone_start_pfn);
 290        block_page = pfn_to_online_page(block_pfn);
 291        if (block_page) {
 292                page = block_page;
 293                pfn = block_pfn;
 294        }
 295
 296        /* Ensure the end of the pageblock or zone is online and valid */
 297        block_pfn = pageblock_end_pfn(pfn) - 1;
 298        block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
 299        end_page = pfn_to_online_page(block_pfn);
 300        if (!end_page)
 301                return false;
 302
 303        /*
 304         * Only clear the hint if a sample indicates there is either a
 305         * free page or an LRU page in the block. One or other condition
 306         * is necessary for the block to be a migration source/target.
 307         */
 308        do {
 309                if (check_source && PageLRU(page)) {
 310                        clear_pageblock_skip(page);
 311                        return true;
 312                }
 313
 314                if (check_target && PageBuddy(page)) {
 315                        clear_pageblock_skip(page);
 316                        return true;
 317                }
 318
 319                page += (1 << PAGE_ALLOC_COSTLY_ORDER);
 320                pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
 321        } while (page <= end_page);
 322
 323        return false;
 324}
 325
 326/*
 327 * This function is called to clear all cached information on pageblocks that
 328 * should be skipped for page isolation when the migrate and free page scanner
 329 * meet.
 330 */
 331static void __reset_isolation_suitable(struct zone *zone)
 332{
 333        unsigned long migrate_pfn = zone->zone_start_pfn;
 334        unsigned long free_pfn = zone_end_pfn(zone) - 1;
 335        unsigned long reset_migrate = free_pfn;
 336        unsigned long reset_free = migrate_pfn;
 337        bool source_set = false;
 338        bool free_set = false;
 339
 340        if (!zone->compact_blockskip_flush)
 341                return;
 342
 343        zone->compact_blockskip_flush = false;
 344
 345        /*
 346         * Walk the zone and update pageblock skip information. Source looks
 347         * for PageLRU while target looks for PageBuddy. When the scanner
 348         * is found, both PageBuddy and PageLRU are checked as the pageblock
 349         * is suitable as both source and target.
 350         */
 351        for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
 352                                        free_pfn -= pageblock_nr_pages) {
 353                cond_resched();
 354
 355                /* Update the migrate PFN */
 356                if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
 357                    migrate_pfn < reset_migrate) {
 358                        source_set = true;
 359                        reset_migrate = migrate_pfn;
 360                        zone->compact_init_migrate_pfn = reset_migrate;
 361                        zone->compact_cached_migrate_pfn[0] = reset_migrate;
 362                        zone->compact_cached_migrate_pfn[1] = reset_migrate;
 363                }
 364
 365                /* Update the free PFN */
 366                if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
 367                    free_pfn > reset_free) {
 368                        free_set = true;
 369                        reset_free = free_pfn;
 370                        zone->compact_init_free_pfn = reset_free;
 371                        zone->compact_cached_free_pfn = reset_free;
 372                }
 373        }
 374
 375        /* Leave no distance if no suitable block was reset */
 376        if (reset_migrate >= reset_free) {
 377                zone->compact_cached_migrate_pfn[0] = migrate_pfn;
 378                zone->compact_cached_migrate_pfn[1] = migrate_pfn;
 379                zone->compact_cached_free_pfn = free_pfn;
 380        }
 381}
 382
 383void reset_isolation_suitable(pg_data_t *pgdat)
 384{
 385        int zoneid;
 386
 387        for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 388                struct zone *zone = &pgdat->node_zones[zoneid];
 389                if (!populated_zone(zone))
 390                        continue;
 391
 392                /* Only flush if a full compaction finished recently */
 393                if (zone->compact_blockskip_flush)
 394                        __reset_isolation_suitable(zone);
 395        }
 396}
 397
 398/*
 399 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
 400 * locks are not required for read/writers. Returns true if it was already set.
 401 */
 402static bool test_and_set_skip(struct compact_control *cc, struct page *page,
 403                                                        unsigned long pfn)
 404{
 405        bool skip;
 406
 407        /* Do no update if skip hint is being ignored */
 408        if (cc->ignore_skip_hint)
 409                return false;
 410
 411        if (!IS_ALIGNED(pfn, pageblock_nr_pages))
 412                return false;
 413
 414        skip = get_pageblock_skip(page);
 415        if (!skip && !cc->no_set_skip_hint)
 416                set_pageblock_skip(page);
 417
 418        return skip;
 419}
 420
 421static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 422{
 423        struct zone *zone = cc->zone;
 424
 425        pfn = pageblock_end_pfn(pfn);
 426
 427        /* Set for isolation rather than compaction */
 428        if (cc->no_set_skip_hint)
 429                return;
 430
 431        if (pfn > zone->compact_cached_migrate_pfn[0])
 432                zone->compact_cached_migrate_pfn[0] = pfn;
 433        if (cc->mode != MIGRATE_ASYNC &&
 434            pfn > zone->compact_cached_migrate_pfn[1])
 435                zone->compact_cached_migrate_pfn[1] = pfn;
 436}
 437
 438/*
 439 * If no pages were isolated then mark this pageblock to be skipped in the
 440 * future. The information is later cleared by __reset_isolation_suitable().
 441 */
 442static void update_pageblock_skip(struct compact_control *cc,
 443                        struct page *page, unsigned long pfn)
 444{
 445        struct zone *zone = cc->zone;
 446
 447        if (cc->no_set_skip_hint)
 448                return;
 449
 450        if (!page)
 451                return;
 452
 453        set_pageblock_skip(page);
 454
 455        /* Update where async and sync compaction should restart */
 456        if (pfn < zone->compact_cached_free_pfn)
 457                zone->compact_cached_free_pfn = pfn;
 458}
 459#else
 460static inline bool isolation_suitable(struct compact_control *cc,
 461                                        struct page *page)
 462{
 463        return true;
 464}
 465
 466static inline bool pageblock_skip_persistent(struct page *page)
 467{
 468        return false;
 469}
 470
 471static inline void update_pageblock_skip(struct compact_control *cc,
 472                        struct page *page, unsigned long pfn)
 473{
 474}
 475
 476static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 477{
 478}
 479
 480static bool test_and_set_skip(struct compact_control *cc, struct page *page,
 481                                                        unsigned long pfn)
 482{
 483        return false;
 484}
 485#endif /* CONFIG_COMPACTION */
 486
 487/*
 488 * Compaction requires the taking of some coarse locks that are potentially
 489 * very heavily contended. For async compaction, trylock and record if the
 490 * lock is contended. The lock will still be acquired but compaction will
 491 * abort when the current block is finished regardless of success rate.
 492 * Sync compaction acquires the lock.
 493 *
 494 * Always returns true which makes it easier to track lock state in callers.
 495 */
 496static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
 497                                                struct compact_control *cc)
 498        __acquires(lock)
 499{
 500        /* Track if the lock is contended in async mode */
 501        if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
 502                if (spin_trylock_irqsave(lock, *flags))
 503                        return true;
 504
 505                cc->contended = true;
 506        }
 507
 508        spin_lock_irqsave(lock, *flags);
 509        return true;
 510}
 511
 512/*
 513 * Compaction requires the taking of some coarse locks that are potentially
 514 * very heavily contended. The lock should be periodically unlocked to avoid
 515 * having disabled IRQs for a long time, even when there is nobody waiting on
 516 * the lock. It might also be that allowing the IRQs will result in
 517 * need_resched() becoming true. If scheduling is needed, async compaction
 518 * aborts. Sync compaction schedules.
 519 * Either compaction type will also abort if a fatal signal is pending.
 520 * In either case if the lock was locked, it is dropped and not regained.
 521 *
 522 * Returns true if compaction should abort due to fatal signal pending, or
 523 *              async compaction due to need_resched()
 524 * Returns false when compaction can continue (sync compaction might have
 525 *              scheduled)
 526 */
 527static bool compact_unlock_should_abort(spinlock_t *lock,
 528                unsigned long flags, bool *locked, struct compact_control *cc)
 529{
 530        if (*locked) {
 531                spin_unlock_irqrestore(lock, flags);
 532                *locked = false;
 533        }
 534
 535        if (fatal_signal_pending(current)) {
 536                cc->contended = true;
 537                return true;
 538        }
 539
 540        cond_resched();
 541
 542        return false;
 543}
 544
 545/*
 546 * Isolate free pages onto a private freelist. If @strict is true, will abort
 547 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 548 * (even though it may still end up isolating some pages).
 549 */
 550static unsigned long isolate_freepages_block(struct compact_control *cc,
 551                                unsigned long *start_pfn,
 552                                unsigned long end_pfn,
 553                                struct list_head *freelist,
 554                                unsigned int stride,
 555                                bool strict)
 556{
 557        int nr_scanned = 0, total_isolated = 0;
 558        struct page *cursor;
 559        unsigned long flags = 0;
 560        bool locked = false;
 561        unsigned long blockpfn = *start_pfn;
 562        unsigned int order;
 563
 564        /* Strict mode is for isolation, speed is secondary */
 565        if (strict)
 566                stride = 1;
 567
 568        cursor = pfn_to_page(blockpfn);
 569
 570        /* Isolate free pages. */
 571        for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
 572                int isolated;
 573                struct page *page = cursor;
 574
 575                /*
 576                 * Periodically drop the lock (if held) regardless of its
 577                 * contention, to give chance to IRQs. Abort if fatal signal
 578                 * pending or async compaction detects need_resched()
 579                 */
 580                if (!(blockpfn % SWAP_CLUSTER_MAX)
 581                    && compact_unlock_should_abort(&cc->zone->lock, flags,
 582                                                                &locked, cc))
 583                        break;
 584
 585                nr_scanned++;
 586
 587                /*
 588                 * For compound pages such as THP and hugetlbfs, we can save
 589                 * potentially a lot of iterations if we skip them at once.
 590                 * The check is racy, but we can consider only valid values
 591                 * and the only danger is skipping too much.
 592                 */
 593                if (PageCompound(page)) {
 594                        const unsigned int order = compound_order(page);
 595
 596                        if (likely(order < MAX_ORDER)) {
 597                                blockpfn += (1UL << order) - 1;
 598                                cursor += (1UL << order) - 1;
 599                        }
 600                        goto isolate_fail;
 601                }
 602
 603                if (!PageBuddy(page))
 604                        goto isolate_fail;
 605
 606                /*
 607                 * If we already hold the lock, we can skip some rechecking.
 608                 * Note that if we hold the lock now, checked_pageblock was
 609                 * already set in some previous iteration (or strict is true),
 610                 * so it is correct to skip the suitable migration target
 611                 * recheck as well.
 612                 */
 613                if (!locked) {
 614                        locked = compact_lock_irqsave(&cc->zone->lock,
 615                                                                &flags, cc);
 616
 617                        /* Recheck this is a buddy page under lock */
 618                        if (!PageBuddy(page))
 619                                goto isolate_fail;
 620                }
 621
 622                /* Found a free page, will break it into order-0 pages */
 623                order = buddy_order(page);
 624                isolated = __isolate_free_page(page, order);
 625                if (!isolated)
 626                        break;
 627                set_page_private(page, order);
 628
 629                total_isolated += isolated;
 630                cc->nr_freepages += isolated;
 631                list_add_tail(&page->lru, freelist);
 632
 633                if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
 634                        blockpfn += isolated;
 635                        break;
 636                }
 637                /* Advance to the end of split page */
 638                blockpfn += isolated - 1;
 639                cursor += isolated - 1;
 640                continue;
 641
 642isolate_fail:
 643                if (strict)
 644                        break;
 645                else
 646                        continue;
 647
 648        }
 649
 650        if (locked)
 651                spin_unlock_irqrestore(&cc->zone->lock, flags);
 652
 653        /*
 654         * There is a tiny chance that we have read bogus compound_order(),
 655         * so be careful to not go outside of the pageblock.
 656         */
 657        if (unlikely(blockpfn > end_pfn))
 658                blockpfn = end_pfn;
 659
 660        trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
 661                                        nr_scanned, total_isolated);
 662
 663        /* Record how far we have got within the block */
 664        *start_pfn = blockpfn;
 665
 666        /*
 667         * If strict isolation is requested by CMA then check that all the
 668         * pages requested were isolated. If there were any failures, 0 is
 669         * returned and CMA will fail.
 670         */
 671        if (strict && blockpfn < end_pfn)
 672                total_isolated = 0;
 673
 674        cc->total_free_scanned += nr_scanned;
 675        if (total_isolated)
 676                count_compact_events(COMPACTISOLATED, total_isolated);
 677        return total_isolated;
 678}
 679
 680/**
 681 * isolate_freepages_range() - isolate free pages.
 682 * @cc:        Compaction control structure.
 683 * @start_pfn: The first PFN to start isolating.
 684 * @end_pfn:   The one-past-last PFN.
 685 *
 686 * Non-free pages, invalid PFNs, or zone boundaries within the
 687 * [start_pfn, end_pfn) range are considered errors, cause function to
 688 * undo its actions and return zero.
 689 *
 690 * Otherwise, function returns one-past-the-last PFN of isolated page
 691 * (which may be greater then end_pfn if end fell in a middle of
 692 * a free page).
 693 */
 694unsigned long
 695isolate_freepages_range(struct compact_control *cc,
 696                        unsigned long start_pfn, unsigned long end_pfn)
 697{
 698        unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
 699        LIST_HEAD(freelist);
 700
 701        pfn = start_pfn;
 702        block_start_pfn = pageblock_start_pfn(pfn);
 703        if (block_start_pfn < cc->zone->zone_start_pfn)
 704                block_start_pfn = cc->zone->zone_start_pfn;
 705        block_end_pfn = pageblock_end_pfn(pfn);
 706
 707        for (; pfn < end_pfn; pfn += isolated,
 708                                block_start_pfn = block_end_pfn,
 709                                block_end_pfn += pageblock_nr_pages) {
 710                /* Protect pfn from changing by isolate_freepages_block */
 711                unsigned long isolate_start_pfn = pfn;
 712
 713                block_end_pfn = min(block_end_pfn, end_pfn);
 714
 715                /*
 716                 * pfn could pass the block_end_pfn if isolated freepage
 717                 * is more than pageblock order. In this case, we adjust
 718                 * scanning range to right one.
 719                 */
 720                if (pfn >= block_end_pfn) {
 721                        block_start_pfn = pageblock_start_pfn(pfn);
 722                        block_end_pfn = pageblock_end_pfn(pfn);
 723                        block_end_pfn = min(block_end_pfn, end_pfn);
 724                }
 725
 726                if (!pageblock_pfn_to_page(block_start_pfn,
 727                                        block_end_pfn, cc->zone))
 728                        break;
 729
 730                isolated = isolate_freepages_block(cc, &isolate_start_pfn,
 731                                        block_end_pfn, &freelist, 0, true);
 732
 733                /*
 734                 * In strict mode, isolate_freepages_block() returns 0 if
 735                 * there are any holes in the block (ie. invalid PFNs or
 736                 * non-free pages).
 737                 */
 738                if (!isolated)
 739                        break;
 740
 741                /*
 742                 * If we managed to isolate pages, it is always (1 << n) *
 743                 * pageblock_nr_pages for some non-negative n.  (Max order
 744                 * page may span two pageblocks).
 745                 */
 746        }
 747
 748        /* __isolate_free_page() does not map the pages */
 749        split_map_pages(&freelist);
 750
 751        if (pfn < end_pfn) {
 752                /* Loop terminated early, cleanup. */
 753                release_freepages(&freelist);
 754                return 0;
 755        }
 756
 757        /* We don't use freelists for anything. */
 758        return pfn;
 759}
 760
 761/* Similar to reclaim, but different enough that they don't share logic */
 762static bool too_many_isolated(pg_data_t *pgdat)
 763{
 764        unsigned long active, inactive, isolated;
 765
 766        inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
 767                        node_page_state(pgdat, NR_INACTIVE_ANON);
 768        active = node_page_state(pgdat, NR_ACTIVE_FILE) +
 769                        node_page_state(pgdat, NR_ACTIVE_ANON);
 770        isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
 771                        node_page_state(pgdat, NR_ISOLATED_ANON);
 772
 773        return isolated > (inactive + active) / 2;
 774}
 775
 776/**
 777 * isolate_migratepages_block() - isolate all migrate-able pages within
 778 *                                a single pageblock
 779 * @cc:         Compaction control structure.
 780 * @low_pfn:    The first PFN to isolate
 781 * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
 782 * @isolate_mode: Isolation mode to be used.
 783 *
 784 * Isolate all pages that can be migrated from the range specified by
 785 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 786 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
 787 * -ENOMEM in case we could not allocate a page, or 0.
 788 * cc->migrate_pfn will contain the next pfn to scan.
 789 *
 790 * The pages are isolated on cc->migratepages list (not required to be empty),
 791 * and cc->nr_migratepages is updated accordingly.
 792 */
 793static int
 794isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
 795                        unsigned long end_pfn, isolate_mode_t isolate_mode)
 796{
 797        pg_data_t *pgdat = cc->zone->zone_pgdat;
 798        unsigned long nr_scanned = 0, nr_isolated = 0;
 799        struct lruvec *lruvec;
 800        unsigned long flags = 0;
 801        struct lruvec *locked = NULL;
 802        struct page *page = NULL, *valid_page = NULL;
 803        unsigned long start_pfn = low_pfn;
 804        bool skip_on_failure = false;
 805        unsigned long next_skip_pfn = 0;
 806        bool skip_updated = false;
 807        int ret = 0;
 808
 809        cc->migrate_pfn = low_pfn;
 810
 811        /*
 812         * Ensure that there are not too many pages isolated from the LRU
 813         * list by either parallel reclaimers or compaction. If there are,
 814         * delay for some time until fewer pages are isolated
 815         */
 816        while (unlikely(too_many_isolated(pgdat))) {
 817                /* stop isolation if there are still pages not migrated */
 818                if (cc->nr_migratepages)
 819                        return -EAGAIN;
 820
 821                /* async migration should just abort */
 822                if (cc->mode == MIGRATE_ASYNC)
 823                        return -EAGAIN;
 824
 825                congestion_wait(BLK_RW_ASYNC, HZ/10);
 826
 827                if (fatal_signal_pending(current))
 828                        return -EINTR;
 829        }
 830
 831        cond_resched();
 832
 833        if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
 834                skip_on_failure = true;
 835                next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 836        }
 837
 838        /* Time to isolate some pages for migration */
 839        for (; low_pfn < end_pfn; low_pfn++) {
 840
 841                if (skip_on_failure && low_pfn >= next_skip_pfn) {
 842                        /*
 843                         * We have isolated all migration candidates in the
 844                         * previous order-aligned block, and did not skip it due
 845                         * to failure. We should migrate the pages now and
 846                         * hopefully succeed compaction.
 847                         */
 848                        if (nr_isolated)
 849                                break;
 850
 851                        /*
 852                         * We failed to isolate in the previous order-aligned
 853                         * block. Set the new boundary to the end of the
 854                         * current block. Note we can't simply increase
 855                         * next_skip_pfn by 1 << order, as low_pfn might have
 856                         * been incremented by a higher number due to skipping
 857                         * a compound or a high-order buddy page in the
 858                         * previous loop iteration.
 859                         */
 860                        next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 861                }
 862
 863                /*
 864                 * Periodically drop the lock (if held) regardless of its
 865                 * contention, to give chance to IRQs. Abort completely if
 866                 * a fatal signal is pending.
 867                 */
 868                if (!(low_pfn % SWAP_CLUSTER_MAX)) {
 869                        if (locked) {
 870                                unlock_page_lruvec_irqrestore(locked, flags);
 871                                locked = NULL;
 872                        }
 873
 874                        if (fatal_signal_pending(current)) {
 875                                cc->contended = true;
 876                                ret = -EINTR;
 877
 878                                goto fatal_pending;
 879                        }
 880
 881                        cond_resched();
 882                }
 883
 884                nr_scanned++;
 885
 886                page = pfn_to_page(low_pfn);
 887
 888                /*
 889                 * Check if the pageblock has already been marked skipped.
 890                 * Only the aligned PFN is checked as the caller isolates
 891                 * COMPACT_CLUSTER_MAX at a time so the second call must
 892                 * not falsely conclude that the block should be skipped.
 893                 */
 894                if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
 895                        if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
 896                                low_pfn = end_pfn;
 897                                page = NULL;
 898                                goto isolate_abort;
 899                        }
 900                        valid_page = page;
 901                }
 902
 903                if (PageHuge(page) && cc->alloc_contig) {
 904                        ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
 905
 906                        /*
 907                         * Fail isolation in case isolate_or_dissolve_huge_page()
 908                         * reports an error. In case of -ENOMEM, abort right away.
 909                         */
 910                        if (ret < 0) {
 911                                 /* Do not report -EBUSY down the chain */
 912                                if (ret == -EBUSY)
 913                                        ret = 0;
 914                                low_pfn += (1UL << compound_order(page)) - 1;
 915                                goto isolate_fail;
 916                        }
 917
 918                        if (PageHuge(page)) {
 919                                /*
 920                                 * Hugepage was successfully isolated and placed
 921                                 * on the cc->migratepages list.
 922                                 */
 923                                low_pfn += compound_nr(page) - 1;
 924                                goto isolate_success_no_list;
 925                        }
 926
 927                        /*
 928                         * Ok, the hugepage was dissolved. Now these pages are
 929                         * Buddy and cannot be re-allocated because they are
 930                         * isolated. Fall-through as the check below handles
 931                         * Buddy pages.
 932                         */
 933                }
 934
 935                /*
 936                 * Skip if free. We read page order here without zone lock
 937                 * which is generally unsafe, but the race window is small and
 938                 * the worst thing that can happen is that we skip some
 939                 * potential isolation targets.
 940                 */
 941                if (PageBuddy(page)) {
 942                        unsigned long freepage_order = buddy_order_unsafe(page);
 943
 944                        /*
 945                         * Without lock, we cannot be sure that what we got is
 946                         * a valid page order. Consider only values in the
 947                         * valid order range to prevent low_pfn overflow.
 948                         */
 949                        if (freepage_order > 0 && freepage_order < MAX_ORDER)
 950                                low_pfn += (1UL << freepage_order) - 1;
 951                        continue;
 952                }
 953
 954                /*
 955                 * Regardless of being on LRU, compound pages such as THP and
 956                 * hugetlbfs are not to be compacted unless we are attempting
 957                 * an allocation much larger than the huge page size (eg CMA).
 958                 * We can potentially save a lot of iterations if we skip them
 959                 * at once. The check is racy, but we can consider only valid
 960                 * values and the only danger is skipping too much.
 961                 */
 962                if (PageCompound(page) && !cc->alloc_contig) {
 963                        const unsigned int order = compound_order(page);
 964
 965                        if (likely(order < MAX_ORDER))
 966                                low_pfn += (1UL << order) - 1;
 967                        goto isolate_fail;
 968                }
 969
 970                /*
 971                 * Check may be lockless but that's ok as we recheck later.
 972                 * It's possible to migrate LRU and non-lru movable pages.
 973                 * Skip any other type of page
 974                 */
 975                if (!PageLRU(page)) {
 976                        /*
 977                         * __PageMovable can return false positive so we need
 978                         * to verify it under page_lock.
 979                         */
 980                        if (unlikely(__PageMovable(page)) &&
 981                                        !PageIsolated(page)) {
 982                                if (locked) {
 983                                        unlock_page_lruvec_irqrestore(locked, flags);
 984                                        locked = NULL;
 985                                }
 986
 987                                if (!isolate_movable_page(page, isolate_mode))
 988                                        goto isolate_success;
 989                        }
 990
 991                        goto isolate_fail;
 992                }
 993
 994                /*
 995                 * Migration will fail if an anonymous page is pinned in memory,
 996                 * so avoid taking lru_lock and isolating it unnecessarily in an
 997                 * admittedly racy check.
 998                 */
 999                if (!page_mapping(page) &&
1000                    page_count(page) > page_mapcount(page))
1001                        goto isolate_fail;
1002
1003                /*
1004                 * Only allow to migrate anonymous pages in GFP_NOFS context
1005                 * because those do not depend on fs locks.
1006                 */
1007                if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
1008                        goto isolate_fail;
1009
1010                /*
1011                 * Be careful not to clear PageLRU until after we're
1012                 * sure the page is not being freed elsewhere -- the
1013                 * page release code relies on it.
1014                 */
1015                if (unlikely(!get_page_unless_zero(page)))
1016                        goto isolate_fail;
1017
1018                if (!__isolate_lru_page_prepare(page, isolate_mode))
1019                        goto isolate_fail_put;
1020
1021                /* Try isolate the page */
1022                if (!TestClearPageLRU(page))
1023                        goto isolate_fail_put;
1024
1025                lruvec = mem_cgroup_page_lruvec(page);
1026
1027                /* If we already hold the lock, we can skip some rechecking */
1028                if (lruvec != locked) {
1029                        if (locked)
1030                                unlock_page_lruvec_irqrestore(locked, flags);
1031
1032                        compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1033                        locked = lruvec;
1034
1035                        lruvec_memcg_debug(lruvec, page);
1036
1037                        /* Try get exclusive access under lock */
1038                        if (!skip_updated) {
1039                                skip_updated = true;
1040                                if (test_and_set_skip(cc, page, low_pfn))
1041                                        goto isolate_abort;
1042                        }
1043
1044                        /*
1045                         * Page become compound since the non-locked check,
1046                         * and it's on LRU. It can only be a THP so the order
1047                         * is safe to read and it's 0 for tail pages.
1048                         */
1049                        if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1050                                low_pfn += compound_nr(page) - 1;
1051                                SetPageLRU(page);
1052                                goto isolate_fail_put;
1053                        }
1054                }
1055
1056                /* The whole page is taken off the LRU; skip the tail pages. */
1057                if (PageCompound(page))
1058                        low_pfn += compound_nr(page) - 1;
1059
1060                /* Successfully isolated */
1061                del_page_from_lru_list(page, lruvec);
1062                mod_node_page_state(page_pgdat(page),
1063                                NR_ISOLATED_ANON + page_is_file_lru(page),
1064                                thp_nr_pages(page));
1065
1066isolate_success:
1067                list_add(&page->lru, &cc->migratepages);
1068isolate_success_no_list:
1069                cc->nr_migratepages += compound_nr(page);
1070                nr_isolated += compound_nr(page);
1071
1072                /*
1073                 * Avoid isolating too much unless this block is being
1074                 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1075                 * or a lock is contended. For contention, isolate quickly to
1076                 * potentially remove one source of contention.
1077                 */
1078                if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1079                    !cc->rescan && !cc->contended) {
1080                        ++low_pfn;
1081                        break;
1082                }
1083
1084                continue;
1085
1086isolate_fail_put:
1087                /* Avoid potential deadlock in freeing page under lru_lock */
1088                if (locked) {
1089                        unlock_page_lruvec_irqrestore(locked, flags);
1090                        locked = NULL;
1091                }
1092                put_page(page);
1093
1094isolate_fail:
1095                if (!skip_on_failure && ret != -ENOMEM)
1096                        continue;
1097
1098                /*
1099                 * We have isolated some pages, but then failed. Release them
1100                 * instead of migrating, as we cannot form the cc->order buddy
1101                 * page anyway.
1102                 */
1103                if (nr_isolated) {
1104                        if (locked) {
1105                                unlock_page_lruvec_irqrestore(locked, flags);
1106                                locked = NULL;
1107                        }
1108                        putback_movable_pages(&cc->migratepages);
1109                        cc->nr_migratepages = 0;
1110                        nr_isolated = 0;
1111                }
1112
1113                if (low_pfn < next_skip_pfn) {
1114                        low_pfn = next_skip_pfn - 1;
1115                        /*
1116                         * The check near the loop beginning would have updated
1117                         * next_skip_pfn too, but this is a bit simpler.
1118                         */
1119                        next_skip_pfn += 1UL << cc->order;
1120                }
1121
1122                if (ret == -ENOMEM)
1123                        break;
1124        }
1125
1126        /*
1127         * The PageBuddy() check could have potentially brought us outside
1128         * the range to be scanned.
1129         */
1130        if (unlikely(low_pfn > end_pfn))
1131                low_pfn = end_pfn;
1132
1133        page = NULL;
1134
1135isolate_abort:
1136        if (locked)
1137                unlock_page_lruvec_irqrestore(locked, flags);
1138        if (page) {
1139                SetPageLRU(page);
1140                put_page(page);
1141        }
1142
1143        /*
1144         * Updated the cached scanner pfn once the pageblock has been scanned
1145         * Pages will either be migrated in which case there is no point
1146         * scanning in the near future or migration failed in which case the
1147         * failure reason may persist. The block is marked for skipping if
1148         * there were no pages isolated in the block or if the block is
1149         * rescanned twice in a row.
1150         */
1151        if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1152                if (valid_page && !skip_updated)
1153                        set_pageblock_skip(valid_page);
1154                update_cached_migrate(cc, low_pfn);
1155        }
1156
1157        trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1158                                                nr_scanned, nr_isolated);
1159
1160fatal_pending:
1161        cc->total_migrate_scanned += nr_scanned;
1162        if (nr_isolated)
1163                count_compact_events(COMPACTISOLATED, nr_isolated);
1164
1165        cc->migrate_pfn = low_pfn;
1166
1167        return ret;
1168}
1169
1170/**
1171 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1172 * @cc:        Compaction control structure.
1173 * @start_pfn: The first PFN to start isolating.
1174 * @end_pfn:   The one-past-last PFN.
1175 *
1176 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1177 * in case we could not allocate a page, or 0.
1178 */
1179int
1180isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1181                                                        unsigned long end_pfn)
1182{
1183        unsigned long pfn, block_start_pfn, block_end_pfn;
1184        int ret = 0;
1185
1186        /* Scan block by block. First and last block may be incomplete */
1187        pfn = start_pfn;
1188        block_start_pfn = pageblock_start_pfn(pfn);
1189        if (block_start_pfn < cc->zone->zone_start_pfn)
1190                block_start_pfn = cc->zone->zone_start_pfn;
1191        block_end_pfn = pageblock_end_pfn(pfn);
1192
1193        for (; pfn < end_pfn; pfn = block_end_pfn,
1194                                block_start_pfn = block_end_pfn,
1195                                block_end_pfn += pageblock_nr_pages) {
1196
1197                block_end_pfn = min(block_end_pfn, end_pfn);
1198
1199                if (!pageblock_pfn_to_page(block_start_pfn,
1200                                        block_end_pfn, cc->zone))
1201                        continue;
1202
1203                ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1204                                                 ISOLATE_UNEVICTABLE);
1205
1206                if (ret)
1207                        break;
1208
1209                if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1210                        break;
1211        }
1212
1213        return ret;
1214}
1215
1216#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1217#ifdef CONFIG_COMPACTION
1218
1219static bool suitable_migration_source(struct compact_control *cc,
1220                                                        struct page *page)
1221{
1222        int block_mt;
1223
1224        if (pageblock_skip_persistent(page))
1225                return false;
1226
1227        if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1228                return true;
1229
1230        block_mt = get_pageblock_migratetype(page);
1231
1232        if (cc->migratetype == MIGRATE_MOVABLE)
1233                return is_migrate_movable(block_mt);
1234        else
1235                return block_mt == cc->migratetype;
1236}
1237
1238/* Returns true if the page is within a block suitable for migration to */
1239static bool suitable_migration_target(struct compact_control *cc,
1240                                                        struct page *page)
1241{
1242        /* If the page is a large free page, then disallow migration */
1243        if (PageBuddy(page)) {
1244                /*
1245                 * We are checking page_order without zone->lock taken. But
1246                 * the only small danger is that we skip a potentially suitable
1247                 * pageblock, so it's not worth to check order for valid range.
1248                 */
1249                if (buddy_order_unsafe(page) >= pageblock_order)
1250                        return false;
1251        }
1252
1253        if (cc->ignore_block_suitable)
1254                return true;
1255
1256        /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1257        if (is_migrate_movable(get_pageblock_migratetype(page)))
1258                return true;
1259
1260        /* Otherwise skip the block */
1261        return false;
1262}
1263
1264static inline unsigned int
1265freelist_scan_limit(struct compact_control *cc)
1266{
1267        unsigned short shift = BITS_PER_LONG - 1;
1268
1269        return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1270}
1271
1272/*
1273 * Test whether the free scanner has reached the same or lower pageblock than
1274 * the migration scanner, and compaction should thus terminate.
1275 */
1276static inline bool compact_scanners_met(struct compact_control *cc)
1277{
1278        return (cc->free_pfn >> pageblock_order)
1279                <= (cc->migrate_pfn >> pageblock_order);
1280}
1281
1282/*
1283 * Used when scanning for a suitable migration target which scans freelists
1284 * in reverse. Reorders the list such as the unscanned pages are scanned
1285 * first on the next iteration of the free scanner
1286 */
1287static void
1288move_freelist_head(struct list_head *freelist, struct page *freepage)
1289{
1290        LIST_HEAD(sublist);
1291
1292        if (!list_is_last(freelist, &freepage->lru)) {
1293                list_cut_before(&sublist, freelist, &freepage->lru);
1294                list_splice_tail(&sublist, freelist);
1295        }
1296}
1297
1298/*
1299 * Similar to move_freelist_head except used by the migration scanner
1300 * when scanning forward. It's possible for these list operations to
1301 * move against each other if they search the free list exactly in
1302 * lockstep.
1303 */
1304static void
1305move_freelist_tail(struct list_head *freelist, struct page *freepage)
1306{
1307        LIST_HEAD(sublist);
1308
1309        if (!list_is_first(freelist, &freepage->lru)) {
1310                list_cut_position(&sublist, freelist, &freepage->lru);
1311                list_splice_tail(&sublist, freelist);
1312        }
1313}
1314
1315static void
1316fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1317{
1318        unsigned long start_pfn, end_pfn;
1319        struct page *page;
1320
1321        /* Do not search around if there are enough pages already */
1322        if (cc->nr_freepages >= cc->nr_migratepages)
1323                return;
1324
1325        /* Minimise scanning during async compaction */
1326        if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1327                return;
1328
1329        /* Pageblock boundaries */
1330        start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1331        end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1332
1333        page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1334        if (!page)
1335                return;
1336
1337        /* Scan before */
1338        if (start_pfn != pfn) {
1339                isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1340                if (cc->nr_freepages >= cc->nr_migratepages)
1341                        return;
1342        }
1343
1344        /* Scan after */
1345        start_pfn = pfn + nr_isolated;
1346        if (start_pfn < end_pfn)
1347                isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1348
1349        /* Skip this pageblock in the future as it's full or nearly full */
1350        if (cc->nr_freepages < cc->nr_migratepages)
1351                set_pageblock_skip(page);
1352}
1353
1354/* Search orders in round-robin fashion */
1355static int next_search_order(struct compact_control *cc, int order)
1356{
1357        order--;
1358        if (order < 0)
1359                order = cc->order - 1;
1360
1361        /* Search wrapped around? */
1362        if (order == cc->search_order) {
1363                cc->search_order--;
1364                if (cc->search_order < 0)
1365                        cc->search_order = cc->order - 1;
1366                return -1;
1367        }
1368
1369        return order;
1370}
1371
1372static unsigned long
1373fast_isolate_freepages(struct compact_control *cc)
1374{
1375        unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1376        unsigned int nr_scanned = 0;
1377        unsigned long low_pfn, min_pfn, highest = 0;
1378        unsigned long nr_isolated = 0;
1379        unsigned long distance;
1380        struct page *page = NULL;
1381        bool scan_start = false;
1382        int order;
1383
1384        /* Full compaction passes in a negative order */
1385        if (cc->order <= 0)
1386                return cc->free_pfn;
1387
1388        /*
1389         * If starting the scan, use a deeper search and use the highest
1390         * PFN found if a suitable one is not found.
1391         */
1392        if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1393                limit = pageblock_nr_pages >> 1;
1394                scan_start = true;
1395        }
1396
1397        /*
1398         * Preferred point is in the top quarter of the scan space but take
1399         * a pfn from the top half if the search is problematic.
1400         */
1401        distance = (cc->free_pfn - cc->migrate_pfn);
1402        low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1403        min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1404
1405        if (WARN_ON_ONCE(min_pfn > low_pfn))
1406                low_pfn = min_pfn;
1407
1408        /*
1409         * Search starts from the last successful isolation order or the next
1410         * order to search after a previous failure
1411         */
1412        cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1413
1414        for (order = cc->search_order;
1415             !page && order >= 0;
1416             order = next_search_order(cc, order)) {
1417                struct free_area *area = &cc->zone->free_area[order];
1418                struct list_head *freelist;
1419                struct page *freepage;
1420                unsigned long flags;
1421                unsigned int order_scanned = 0;
1422                unsigned long high_pfn = 0;
1423
1424                if (!area->nr_free)
1425                        continue;
1426
1427                spin_lock_irqsave(&cc->zone->lock, flags);
1428                freelist = &area->free_list[MIGRATE_MOVABLE];
1429                list_for_each_entry_reverse(freepage, freelist, lru) {
1430                        unsigned long pfn;
1431
1432                        order_scanned++;
1433                        nr_scanned++;
1434                        pfn = page_to_pfn(freepage);
1435
1436                        if (pfn >= highest)
1437                                highest = max(pageblock_start_pfn(pfn),
1438                                              cc->zone->zone_start_pfn);
1439
1440                        if (pfn >= low_pfn) {
1441                                cc->fast_search_fail = 0;
1442                                cc->search_order = order;
1443                                page = freepage;
1444                                break;
1445                        }
1446
1447                        if (pfn >= min_pfn && pfn > high_pfn) {
1448                                high_pfn = pfn;
1449
1450                                /* Shorten the scan if a candidate is found */
1451                                limit >>= 1;
1452                        }
1453
1454                        if (order_scanned >= limit)
1455                                break;
1456                }
1457
1458                /* Use a minimum pfn if a preferred one was not found */
1459                if (!page && high_pfn) {
1460                        page = pfn_to_page(high_pfn);
1461
1462                        /* Update freepage for the list reorder below */
1463                        freepage = page;
1464                }
1465
1466                /* Reorder to so a future search skips recent pages */
1467                move_freelist_head(freelist, freepage);
1468
1469                /* Isolate the page if available */
1470                if (page) {
1471                        if (__isolate_free_page(page, order)) {
1472                                set_page_private(page, order);
1473                                nr_isolated = 1 << order;
1474                                cc->nr_freepages += nr_isolated;
1475                                list_add_tail(&page->lru, &cc->freepages);
1476                                count_compact_events(COMPACTISOLATED, nr_isolated);
1477                        } else {
1478                                /* If isolation fails, abort the search */
1479                                order = cc->search_order + 1;
1480                                page = NULL;
1481                        }
1482                }
1483
1484                spin_unlock_irqrestore(&cc->zone->lock, flags);
1485
1486                /*
1487                 * Smaller scan on next order so the total scan is related
1488                 * to freelist_scan_limit.
1489                 */
1490                if (order_scanned >= limit)
1491                        limit = max(1U, limit >> 1);
1492        }
1493
1494        if (!page) {
1495                cc->fast_search_fail++;
1496                if (scan_start) {
1497                        /*
1498                         * Use the highest PFN found above min. If one was
1499                         * not found, be pessimistic for direct compaction
1500                         * and use the min mark.
1501                         */
1502                        if (highest) {
1503                                page = pfn_to_page(highest);
1504                                cc->free_pfn = highest;
1505                        } else {
1506                                if (cc->direct_compaction && pfn_valid(min_pfn)) {
1507                                        page = pageblock_pfn_to_page(min_pfn,
1508                                                min(pageblock_end_pfn(min_pfn),
1509                                                    zone_end_pfn(cc->zone)),
1510                                                cc->zone);
1511                                        cc->free_pfn = min_pfn;
1512                                }
1513                        }
1514                }
1515        }
1516
1517        if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1518                highest -= pageblock_nr_pages;
1519                cc->zone->compact_cached_free_pfn = highest;
1520        }
1521
1522        cc->total_free_scanned += nr_scanned;
1523        if (!page)
1524                return cc->free_pfn;
1525
1526        low_pfn = page_to_pfn(page);
1527        fast_isolate_around(cc, low_pfn, nr_isolated);
1528        return low_pfn;
1529}
1530
1531/*
1532 * Based on information in the current compact_control, find blocks
1533 * suitable for isolating free pages from and then isolate them.
1534 */
1535static void isolate_freepages(struct compact_control *cc)
1536{
1537        struct zone *zone = cc->zone;
1538        struct page *page;
1539        unsigned long block_start_pfn;  /* start of current pageblock */
1540        unsigned long isolate_start_pfn; /* exact pfn we start at */
1541        unsigned long block_end_pfn;    /* end of current pageblock */
1542        unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1543        struct list_head *freelist = &cc->freepages;
1544        unsigned int stride;
1545
1546        /* Try a small search of the free lists for a candidate */
1547        isolate_start_pfn = fast_isolate_freepages(cc);
1548        if (cc->nr_freepages)
1549                goto splitmap;
1550
1551        /*
1552         * Initialise the free scanner. The starting point is where we last
1553         * successfully isolated from, zone-cached value, or the end of the
1554         * zone when isolating for the first time. For looping we also need
1555         * this pfn aligned down to the pageblock boundary, because we do
1556         * block_start_pfn -= pageblock_nr_pages in the for loop.
1557         * For ending point, take care when isolating in last pageblock of a
1558         * zone which ends in the middle of a pageblock.
1559         * The low boundary is the end of the pageblock the migration scanner
1560         * is using.
1561         */
1562        isolate_start_pfn = cc->free_pfn;
1563        block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1564        block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1565                                                zone_end_pfn(zone));
1566        low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1567        stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1568
1569        /*
1570         * Isolate free pages until enough are available to migrate the
1571         * pages on cc->migratepages. We stop searching if the migrate
1572         * and free page scanners meet or enough free pages are isolated.
1573         */
1574        for (; block_start_pfn >= low_pfn;
1575                                block_end_pfn = block_start_pfn,
1576                                block_start_pfn -= pageblock_nr_pages,
1577                                isolate_start_pfn = block_start_pfn) {
1578                unsigned long nr_isolated;
1579
1580                /*
1581                 * This can iterate a massively long zone without finding any
1582                 * suitable migration targets, so periodically check resched.
1583                 */
1584                if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1585                        cond_resched();
1586
1587                page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1588                                                                        zone);
1589                if (!page)
1590                        continue;
1591
1592                /* Check the block is suitable for migration */
1593                if (!suitable_migration_target(cc, page))
1594                        continue;
1595
1596                /* If isolation recently failed, do not retry */
1597                if (!isolation_suitable(cc, page))
1598                        continue;
1599
1600                /* Found a block suitable for isolating free pages from. */
1601                nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1602                                        block_end_pfn, freelist, stride, false);
1603
1604                /* Update the skip hint if the full pageblock was scanned */
1605                if (isolate_start_pfn == block_end_pfn)
1606                        update_pageblock_skip(cc, page, block_start_pfn);
1607
1608                /* Are enough freepages isolated? */
1609                if (cc->nr_freepages >= cc->nr_migratepages) {
1610                        if (isolate_start_pfn >= block_end_pfn) {
1611                                /*
1612                                 * Restart at previous pageblock if more
1613                                 * freepages can be isolated next time.
1614                                 */
1615                                isolate_start_pfn =
1616                                        block_start_pfn - pageblock_nr_pages;
1617                        }
1618                        break;
1619                } else if (isolate_start_pfn < block_end_pfn) {
1620                        /*
1621                         * If isolation failed early, do not continue
1622                         * needlessly.
1623                         */
1624                        break;
1625                }
1626
1627                /* Adjust stride depending on isolation */
1628                if (nr_isolated) {
1629                        stride = 1;
1630                        continue;
1631                }
1632                stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1633        }
1634
1635        /*
1636         * Record where the free scanner will restart next time. Either we
1637         * broke from the loop and set isolate_start_pfn based on the last
1638         * call to isolate_freepages_block(), or we met the migration scanner
1639         * and the loop terminated due to isolate_start_pfn < low_pfn
1640         */
1641        cc->free_pfn = isolate_start_pfn;
1642
1643splitmap:
1644        /* __isolate_free_page() does not map the pages */
1645        split_map_pages(freelist);
1646}
1647
1648/*
1649 * This is a migrate-callback that "allocates" freepages by taking pages
1650 * from the isolated freelists in the block we are migrating to.
1651 */
1652static struct page *compaction_alloc(struct page *migratepage,
1653                                        unsigned long data)
1654{
1655        struct compact_control *cc = (struct compact_control *)data;
1656        struct page *freepage;
1657
1658        if (list_empty(&cc->freepages)) {
1659                isolate_freepages(cc);
1660
1661                if (list_empty(&cc->freepages))
1662                        return NULL;
1663        }
1664
1665        freepage = list_entry(cc->freepages.next, struct page, lru);
1666        list_del(&freepage->lru);
1667        cc->nr_freepages--;
1668
1669        return freepage;
1670}
1671
1672/*
1673 * This is a migrate-callback that "frees" freepages back to the isolated
1674 * freelist.  All pages on the freelist are from the same zone, so there is no
1675 * special handling needed for NUMA.
1676 */
1677static void compaction_free(struct page *page, unsigned long data)
1678{
1679        struct compact_control *cc = (struct compact_control *)data;
1680
1681        list_add(&page->lru, &cc->freepages);
1682        cc->nr_freepages++;
1683}
1684
1685/* possible outcome of isolate_migratepages */
1686typedef enum {
1687        ISOLATE_ABORT,          /* Abort compaction now */
1688        ISOLATE_NONE,           /* No pages isolated, continue scanning */
1689        ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1690} isolate_migrate_t;
1691
1692/*
1693 * Allow userspace to control policy on scanning the unevictable LRU for
1694 * compactable pages.
1695 */
1696#ifdef CONFIG_PREEMPT_RT
1697int sysctl_compact_unevictable_allowed __read_mostly = 0;
1698#else
1699int sysctl_compact_unevictable_allowed __read_mostly = 1;
1700#endif
1701
1702static inline void
1703update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1704{
1705        if (cc->fast_start_pfn == ULONG_MAX)
1706                return;
1707
1708        if (!cc->fast_start_pfn)
1709                cc->fast_start_pfn = pfn;
1710
1711        cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1712}
1713
1714static inline unsigned long
1715reinit_migrate_pfn(struct compact_control *cc)
1716{
1717        if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1718                return cc->migrate_pfn;
1719
1720        cc->migrate_pfn = cc->fast_start_pfn;
1721        cc->fast_start_pfn = ULONG_MAX;
1722
1723        return cc->migrate_pfn;
1724}
1725
1726/*
1727 * Briefly search the free lists for a migration source that already has
1728 * some free pages to reduce the number of pages that need migration
1729 * before a pageblock is free.
1730 */
1731static unsigned long fast_find_migrateblock(struct compact_control *cc)
1732{
1733        unsigned int limit = freelist_scan_limit(cc);
1734        unsigned int nr_scanned = 0;
1735        unsigned long distance;
1736        unsigned long pfn = cc->migrate_pfn;
1737        unsigned long high_pfn;
1738        int order;
1739        bool found_block = false;
1740
1741        /* Skip hints are relied on to avoid repeats on the fast search */
1742        if (cc->ignore_skip_hint)
1743                return pfn;
1744
1745        /*
1746         * If the migrate_pfn is not at the start of a zone or the start
1747         * of a pageblock then assume this is a continuation of a previous
1748         * scan restarted due to COMPACT_CLUSTER_MAX.
1749         */
1750        if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1751                return pfn;
1752
1753        /*
1754         * For smaller orders, just linearly scan as the number of pages
1755         * to migrate should be relatively small and does not necessarily
1756         * justify freeing up a large block for a small allocation.
1757         */
1758        if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1759                return pfn;
1760
1761        /*
1762         * Only allow kcompactd and direct requests for movable pages to
1763         * quickly clear out a MOVABLE pageblock for allocation. This
1764         * reduces the risk that a large movable pageblock is freed for
1765         * an unmovable/reclaimable small allocation.
1766         */
1767        if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1768                return pfn;
1769
1770        /*
1771         * When starting the migration scanner, pick any pageblock within the
1772         * first half of the search space. Otherwise try and pick a pageblock
1773         * within the first eighth to reduce the chances that a migration
1774         * target later becomes a source.
1775         */
1776        distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1777        if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1778                distance >>= 2;
1779        high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1780
1781        for (order = cc->order - 1;
1782             order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1783             order--) {
1784                struct free_area *area = &cc->zone->free_area[order];
1785                struct list_head *freelist;
1786                unsigned long flags;
1787                struct page *freepage;
1788
1789                if (!area->nr_free)
1790                        continue;
1791
1792                spin_lock_irqsave(&cc->zone->lock, flags);
1793                freelist = &area->free_list[MIGRATE_MOVABLE];
1794                list_for_each_entry(freepage, freelist, lru) {
1795                        unsigned long free_pfn;
1796
1797                        if (nr_scanned++ >= limit) {
1798                                move_freelist_tail(freelist, freepage);
1799                                break;
1800                        }
1801
1802                        free_pfn = page_to_pfn(freepage);
1803                        if (free_pfn < high_pfn) {
1804                                /*
1805                                 * Avoid if skipped recently. Ideally it would
1806                                 * move to the tail but even safe iteration of
1807                                 * the list assumes an entry is deleted, not
1808                                 * reordered.
1809                                 */
1810                                if (get_pageblock_skip(freepage))
1811                                        continue;
1812
1813                                /* Reorder to so a future search skips recent pages */
1814                                move_freelist_tail(freelist, freepage);
1815
1816                                update_fast_start_pfn(cc, free_pfn);
1817                                pfn = pageblock_start_pfn(free_pfn);
1818                                cc->fast_search_fail = 0;
1819                                found_block = true;
1820                                set_pageblock_skip(freepage);
1821                                break;
1822                        }
1823                }
1824                spin_unlock_irqrestore(&cc->zone->lock, flags);
1825        }
1826
1827        cc->total_migrate_scanned += nr_scanned;
1828
1829        /*
1830         * If fast scanning failed then use a cached entry for a page block
1831         * that had free pages as the basis for starting a linear scan.
1832         */
1833        if (!found_block) {
1834                cc->fast_search_fail++;
1835                pfn = reinit_migrate_pfn(cc);
1836        }
1837        return pfn;
1838}
1839
1840/*
1841 * Isolate all pages that can be migrated from the first suitable block,
1842 * starting at the block pointed to by the migrate scanner pfn within
1843 * compact_control.
1844 */
1845static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1846{
1847        unsigned long block_start_pfn;
1848        unsigned long block_end_pfn;
1849        unsigned long low_pfn;
1850        struct page *page;
1851        const isolate_mode_t isolate_mode =
1852                (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1853                (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1854        bool fast_find_block;
1855
1856        /*
1857         * Start at where we last stopped, or beginning of the zone as
1858         * initialized by compact_zone(). The first failure will use
1859         * the lowest PFN as the starting point for linear scanning.
1860         */
1861        low_pfn = fast_find_migrateblock(cc);
1862        block_start_pfn = pageblock_start_pfn(low_pfn);
1863        if (block_start_pfn < cc->zone->zone_start_pfn)
1864                block_start_pfn = cc->zone->zone_start_pfn;
1865
1866        /*
1867         * fast_find_migrateblock marks a pageblock skipped so to avoid
1868         * the isolation_suitable check below, check whether the fast
1869         * search was successful.
1870         */
1871        fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1872
1873        /* Only scan within a pageblock boundary */
1874        block_end_pfn = pageblock_end_pfn(low_pfn);
1875
1876        /*
1877         * Iterate over whole pageblocks until we find the first suitable.
1878         * Do not cross the free scanner.
1879         */
1880        for (; block_end_pfn <= cc->free_pfn;
1881                        fast_find_block = false,
1882                        cc->migrate_pfn = low_pfn = block_end_pfn,
1883                        block_start_pfn = block_end_pfn,
1884                        block_end_pfn += pageblock_nr_pages) {
1885
1886                /*
1887                 * This can potentially iterate a massively long zone with
1888                 * many pageblocks unsuitable, so periodically check if we
1889                 * need to schedule.
1890                 */
1891                if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1892                        cond_resched();
1893
1894                page = pageblock_pfn_to_page(block_start_pfn,
1895                                                block_end_pfn, cc->zone);
1896                if (!page)
1897                        continue;
1898
1899                /*
1900                 * If isolation recently failed, do not retry. Only check the
1901                 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1902                 * to be visited multiple times. Assume skip was checked
1903                 * before making it "skip" so other compaction instances do
1904                 * not scan the same block.
1905                 */
1906                if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1907                    !fast_find_block && !isolation_suitable(cc, page))
1908                        continue;
1909
1910                /*
1911                 * For async compaction, also only scan in MOVABLE blocks
1912                 * without huge pages. Async compaction is optimistic to see
1913                 * if the minimum amount of work satisfies the allocation.
1914                 * The cached PFN is updated as it's possible that all
1915                 * remaining blocks between source and target are unsuitable
1916                 * and the compaction scanners fail to meet.
1917                 */
1918                if (!suitable_migration_source(cc, page)) {
1919                        update_cached_migrate(cc, block_end_pfn);
1920                        continue;
1921                }
1922
1923                /* Perform the isolation */
1924                if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1925                                                isolate_mode))
1926                        return ISOLATE_ABORT;
1927
1928                /*
1929                 * Either we isolated something and proceed with migration. Or
1930                 * we failed and compact_zone should decide if we should
1931                 * continue or not.
1932                 */
1933                break;
1934        }
1935
1936        return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1937}
1938
1939/*
1940 * order == -1 is expected when compacting via
1941 * /proc/sys/vm/compact_memory
1942 */
1943static inline bool is_via_compact_memory(int order)
1944{
1945        return order == -1;
1946}
1947
1948static bool kswapd_is_running(pg_data_t *pgdat)
1949{
1950        return pgdat->kswapd && task_is_running(pgdat->kswapd);
1951}
1952
1953/*
1954 * A zone's fragmentation score is the external fragmentation wrt to the
1955 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1956 */
1957static unsigned int fragmentation_score_zone(struct zone *zone)
1958{
1959        return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1960}
1961
1962/*
1963 * A weighted zone's fragmentation score is the external fragmentation
1964 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
1965 * returns a value in the range [0, 100].
1966 *
1967 * The scaling factor ensures that proactive compaction focuses on larger
1968 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1969 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1970 * and thus never exceeds the high threshold for proactive compaction.
1971 */
1972static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
1973{
1974        unsigned long score;
1975
1976        score = zone->present_pages * fragmentation_score_zone(zone);
1977        return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1978}
1979
1980/*
1981 * The per-node proactive (background) compaction process is started by its
1982 * corresponding kcompactd thread when the node's fragmentation score
1983 * exceeds the high threshold. The compaction process remains active till
1984 * the node's score falls below the low threshold, or one of the back-off
1985 * conditions is met.
1986 */
1987static unsigned int fragmentation_score_node(pg_data_t *pgdat)
1988{
1989        unsigned int score = 0;
1990        int zoneid;
1991
1992        for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1993                struct zone *zone;
1994
1995                zone = &pgdat->node_zones[zoneid];
1996                score += fragmentation_score_zone_weighted(zone);
1997        }
1998
1999        return score;
2000}
2001
2002static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2003{
2004        unsigned int wmark_low;
2005
2006        /*
2007         * Cap the low watermark to avoid excessive compaction
2008         * activity in case a user sets the proactiveness tunable
2009         * close to 100 (maximum).
2010         */
2011        wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2012        return low ? wmark_low : min(wmark_low + 10, 100U);
2013}
2014
2015static bool should_proactive_compact_node(pg_data_t *pgdat)
2016{
2017        int wmark_high;
2018
2019        if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2020                return false;
2021
2022        wmark_high = fragmentation_score_wmark(pgdat, false);
2023        return fragmentation_score_node(pgdat) > wmark_high;
2024}
2025
2026static enum compact_result __compact_finished(struct compact_control *cc)
2027{
2028        unsigned int order;
2029        const int migratetype = cc->migratetype;
2030        int ret;
2031
2032        /* Compaction run completes if the migrate and free scanner meet */
2033        if (compact_scanners_met(cc)) {
2034                /* Let the next compaction start anew. */
2035                reset_cached_positions(cc->zone);
2036
2037                /*
2038                 * Mark that the PG_migrate_skip information should be cleared
2039                 * by kswapd when it goes to sleep. kcompactd does not set the
2040                 * flag itself as the decision to be clear should be directly
2041                 * based on an allocation request.
2042                 */
2043                if (cc->direct_compaction)
2044                        cc->zone->compact_blockskip_flush = true;
2045
2046                if (cc->whole_zone)
2047                        return COMPACT_COMPLETE;
2048                else
2049                        return COMPACT_PARTIAL_SKIPPED;
2050        }
2051
2052        if (cc->proactive_compaction) {
2053                int score, wmark_low;
2054                pg_data_t *pgdat;
2055
2056                pgdat = cc->zone->zone_pgdat;
2057                if (kswapd_is_running(pgdat))
2058                        return COMPACT_PARTIAL_SKIPPED;
2059
2060                score = fragmentation_score_zone(cc->zone);
2061                wmark_low = fragmentation_score_wmark(pgdat, true);
2062
2063                if (score > wmark_low)
2064                        ret = COMPACT_CONTINUE;
2065                else
2066                        ret = COMPACT_SUCCESS;
2067
2068                goto out;
2069        }
2070
2071        if (is_via_compact_memory(cc->order))
2072                return COMPACT_CONTINUE;
2073
2074        /*
2075         * Always finish scanning a pageblock to reduce the possibility of
2076         * fallbacks in the future. This is particularly important when
2077         * migration source is unmovable/reclaimable but it's not worth
2078         * special casing.
2079         */
2080        if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2081                return COMPACT_CONTINUE;
2082
2083        /* Direct compactor: Is a suitable page free? */
2084        ret = COMPACT_NO_SUITABLE_PAGE;
2085        for (order = cc->order; order < MAX_ORDER; order++) {
2086                struct free_area *area = &cc->zone->free_area[order];
2087                bool can_steal;
2088
2089                /* Job done if page is free of the right migratetype */
2090                if (!free_area_empty(area, migratetype))
2091                        return COMPACT_SUCCESS;
2092
2093#ifdef CONFIG_CMA
2094                /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2095                if (migratetype == MIGRATE_MOVABLE &&
2096                        !free_area_empty(area, MIGRATE_CMA))
2097                        return COMPACT_SUCCESS;
2098#endif
2099                /*
2100                 * Job done if allocation would steal freepages from
2101                 * other migratetype buddy lists.
2102                 */
2103                if (find_suitable_fallback(area, order, migratetype,
2104                                                true, &can_steal) != -1) {
2105
2106                        /* movable pages are OK in any pageblock */
2107                        if (migratetype == MIGRATE_MOVABLE)
2108                                return COMPACT_SUCCESS;
2109
2110                        /*
2111                         * We are stealing for a non-movable allocation. Make
2112                         * sure we finish compacting the current pageblock
2113                         * first so it is as free as possible and we won't
2114                         * have to steal another one soon. This only applies
2115                         * to sync compaction, as async compaction operates
2116                         * on pageblocks of the same migratetype.
2117                         */
2118                        if (cc->mode == MIGRATE_ASYNC ||
2119                                        IS_ALIGNED(cc->migrate_pfn,
2120                                                        pageblock_nr_pages)) {
2121                                return COMPACT_SUCCESS;
2122                        }
2123
2124                        ret = COMPACT_CONTINUE;
2125                        break;
2126                }
2127        }
2128
2129out:
2130        if (cc->contended || fatal_signal_pending(current))
2131                ret = COMPACT_CONTENDED;
2132
2133        return ret;
2134}
2135
2136static enum compact_result compact_finished(struct compact_control *cc)
2137{
2138        int ret;
2139
2140        ret = __compact_finished(cc);
2141        trace_mm_compaction_finished(cc->zone, cc->order, ret);
2142        if (ret == COMPACT_NO_SUITABLE_PAGE)
2143                ret = COMPACT_CONTINUE;
2144
2145        return ret;
2146}
2147
2148static enum compact_result __compaction_suitable(struct zone *zone, int order,
2149                                        unsigned int alloc_flags,
2150                                        int highest_zoneidx,
2151                                        unsigned long wmark_target)
2152{
2153        unsigned long watermark;
2154
2155        if (is_via_compact_memory(order))
2156                return COMPACT_CONTINUE;
2157
2158        watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2159        /*
2160         * If watermarks for high-order allocation are already met, there
2161         * should be no need for compaction at all.
2162         */
2163        if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2164                                                                alloc_flags))
2165                return COMPACT_SUCCESS;
2166
2167        /*
2168         * Watermarks for order-0 must be met for compaction to be able to
2169         * isolate free pages for migration targets. This means that the
2170         * watermark and alloc_flags have to match, or be more pessimistic than
2171         * the check in __isolate_free_page(). We don't use the direct
2172         * compactor's alloc_flags, as they are not relevant for freepage
2173         * isolation. We however do use the direct compactor's highest_zoneidx
2174         * to skip over zones where lowmem reserves would prevent allocation
2175         * even if compaction succeeds.
2176         * For costly orders, we require low watermark instead of min for
2177         * compaction to proceed to increase its chances.
2178         * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2179         * suitable migration targets
2180         */
2181        watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2182                                low_wmark_pages(zone) : min_wmark_pages(zone);
2183        watermark += compact_gap(order);
2184        if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2185                                                ALLOC_CMA, wmark_target))
2186                return COMPACT_SKIPPED;
2187
2188        return COMPACT_CONTINUE;
2189}
2190
2191/*
2192 * compaction_suitable: Is this suitable to run compaction on this zone now?
2193 * Returns
2194 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2195 *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2196 *   COMPACT_CONTINUE - If compaction should run now
2197 */
2198enum compact_result compaction_suitable(struct zone *zone, int order,
2199                                        unsigned int alloc_flags,
2200                                        int highest_zoneidx)
2201{
2202        enum compact_result ret;
2203        int fragindex;
2204
2205        ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2206                                    zone_page_state(zone, NR_FREE_PAGES));
2207        /*
2208         * fragmentation index determines if allocation failures are due to
2209         * low memory or external fragmentation
2210         *
2211         * index of -1000 would imply allocations might succeed depending on
2212         * watermarks, but we already failed the high-order watermark check
2213         * index towards 0 implies failure is due to lack of memory
2214         * index towards 1000 implies failure is due to fragmentation
2215         *
2216         * Only compact if a failure would be due to fragmentation. Also
2217         * ignore fragindex for non-costly orders where the alternative to
2218         * a successful reclaim/compaction is OOM. Fragindex and the
2219         * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2220         * excessive compaction for costly orders, but it should not be at the
2221         * expense of system stability.
2222         */
2223        if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2224                fragindex = fragmentation_index(zone, order);
2225                if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2226                        ret = COMPACT_NOT_SUITABLE_ZONE;
2227        }
2228
2229        trace_mm_compaction_suitable(zone, order, ret);
2230        if (ret == COMPACT_NOT_SUITABLE_ZONE)
2231                ret = COMPACT_SKIPPED;
2232
2233        return ret;
2234}
2235
2236bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2237                int alloc_flags)
2238{
2239        struct zone *zone;
2240        struct zoneref *z;
2241
2242        /*
2243         * Make sure at least one zone would pass __compaction_suitable if we continue
2244         * retrying the reclaim.
2245         */
2246        for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2247                                ac->highest_zoneidx, ac->nodemask) {
2248                unsigned long available;
2249                enum compact_result compact_result;
2250
2251                /*
2252                 * Do not consider all the reclaimable memory because we do not
2253                 * want to trash just for a single high order allocation which
2254                 * is even not guaranteed to appear even if __compaction_suitable
2255                 * is happy about the watermark check.
2256                 */
2257                available = zone_reclaimable_pages(zone) / order;
2258                available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2259                compact_result = __compaction_suitable(zone, order, alloc_flags,
2260                                ac->highest_zoneidx, available);
2261                if (compact_result != COMPACT_SKIPPED)
2262                        return true;
2263        }
2264
2265        return false;
2266}
2267
2268static enum compact_result
2269compact_zone(struct compact_control *cc, struct capture_control *capc)
2270{
2271        enum compact_result ret;
2272        unsigned long start_pfn = cc->zone->zone_start_pfn;
2273        unsigned long end_pfn = zone_end_pfn(cc->zone);
2274        unsigned long last_migrated_pfn;
2275        const bool sync = cc->mode != MIGRATE_ASYNC;
2276        bool update_cached;
2277
2278        /*
2279         * These counters track activities during zone compaction.  Initialize
2280         * them before compacting a new zone.
2281         */
2282        cc->total_migrate_scanned = 0;
2283        cc->total_free_scanned = 0;
2284        cc->nr_migratepages = 0;
2285        cc->nr_freepages = 0;
2286        INIT_LIST_HEAD(&cc->freepages);
2287        INIT_LIST_HEAD(&cc->migratepages);
2288
2289        cc->migratetype = gfp_migratetype(cc->gfp_mask);
2290        ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2291                                                        cc->highest_zoneidx);
2292        /* Compaction is likely to fail */
2293        if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2294                return ret;
2295
2296        /* huh, compaction_suitable is returning something unexpected */
2297        VM_BUG_ON(ret != COMPACT_CONTINUE);
2298
2299        /*
2300         * Clear pageblock skip if there were failures recently and compaction
2301         * is about to be retried after being deferred.
2302         */
2303        if (compaction_restarting(cc->zone, cc->order))
2304                __reset_isolation_suitable(cc->zone);
2305
2306        /*
2307         * Setup to move all movable pages to the end of the zone. Used cached
2308         * information on where the scanners should start (unless we explicitly
2309         * want to compact the whole zone), but check that it is initialised
2310         * by ensuring the values are within zone boundaries.
2311         */
2312        cc->fast_start_pfn = 0;
2313        if (cc->whole_zone) {
2314                cc->migrate_pfn = start_pfn;
2315                cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2316        } else {
2317                cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2318                cc->free_pfn = cc->zone->compact_cached_free_pfn;
2319                if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2320                        cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2321                        cc->zone->compact_cached_free_pfn = cc->free_pfn;
2322                }
2323                if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2324                        cc->migrate_pfn = start_pfn;
2325                        cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2326                        cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2327                }
2328
2329                if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2330                        cc->whole_zone = true;
2331        }
2332
2333        last_migrated_pfn = 0;
2334
2335        /*
2336         * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2337         * the basis that some migrations will fail in ASYNC mode. However,
2338         * if the cached PFNs match and pageblocks are skipped due to having
2339         * no isolation candidates, then the sync state does not matter.
2340         * Until a pageblock with isolation candidates is found, keep the
2341         * cached PFNs in sync to avoid revisiting the same blocks.
2342         */
2343        update_cached = !sync &&
2344                cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2345
2346        trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2347                                cc->free_pfn, end_pfn, sync);
2348
2349        /* lru_add_drain_all could be expensive with involving other CPUs */
2350        lru_add_drain();
2351
2352        while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2353                int err;
2354                unsigned long iteration_start_pfn = cc->migrate_pfn;
2355
2356                /*
2357                 * Avoid multiple rescans which can happen if a page cannot be
2358                 * isolated (dirty/writeback in async mode) or if the migrated
2359                 * pages are being allocated before the pageblock is cleared.
2360                 * The first rescan will capture the entire pageblock for
2361                 * migration. If it fails, it'll be marked skip and scanning
2362                 * will proceed as normal.
2363                 */
2364                cc->rescan = false;
2365                if (pageblock_start_pfn(last_migrated_pfn) ==
2366                    pageblock_start_pfn(iteration_start_pfn)) {
2367                        cc->rescan = true;
2368                }
2369
2370                switch (isolate_migratepages(cc)) {
2371                case ISOLATE_ABORT:
2372                        ret = COMPACT_CONTENDED;
2373                        putback_movable_pages(&cc->migratepages);
2374                        cc->nr_migratepages = 0;
2375                        goto out;
2376                case ISOLATE_NONE:
2377                        if (update_cached) {
2378                                cc->zone->compact_cached_migrate_pfn[1] =
2379                                        cc->zone->compact_cached_migrate_pfn[0];
2380                        }
2381
2382                        /*
2383                         * We haven't isolated and migrated anything, but
2384                         * there might still be unflushed migrations from
2385                         * previous cc->order aligned block.
2386                         */
2387                        goto check_drain;
2388                case ISOLATE_SUCCESS:
2389                        update_cached = false;
2390                        last_migrated_pfn = iteration_start_pfn;
2391                }
2392
2393                err = migrate_pages(&cc->migratepages, compaction_alloc,
2394                                compaction_free, (unsigned long)cc, cc->mode,
2395                                MR_COMPACTION, NULL);
2396
2397                trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2398                                                        &cc->migratepages);
2399
2400                /* All pages were either migrated or will be released */
2401                cc->nr_migratepages = 0;
2402                if (err) {
2403                        putback_movable_pages(&cc->migratepages);
2404                        /*
2405                         * migrate_pages() may return -ENOMEM when scanners meet
2406                         * and we want compact_finished() to detect it
2407                         */
2408                        if (err == -ENOMEM && !compact_scanners_met(cc)) {
2409                                ret = COMPACT_CONTENDED;
2410                                goto out;
2411                        }
2412                        /*
2413                         * We failed to migrate at least one page in the current
2414                         * order-aligned block, so skip the rest of it.
2415                         */
2416                        if (cc->direct_compaction &&
2417                                                (cc->mode == MIGRATE_ASYNC)) {
2418                                cc->migrate_pfn = block_end_pfn(
2419                                                cc->migrate_pfn - 1, cc->order);
2420                                /* Draining pcplists is useless in this case */
2421                                last_migrated_pfn = 0;
2422                        }
2423                }
2424
2425check_drain:
2426                /*
2427                 * Has the migration scanner moved away from the previous
2428                 * cc->order aligned block where we migrated from? If yes,
2429                 * flush the pages that were freed, so that they can merge and
2430                 * compact_finished() can detect immediately if allocation
2431                 * would succeed.
2432                 */
2433                if (cc->order > 0 && last_migrated_pfn) {
2434                        unsigned long current_block_start =
2435                                block_start_pfn(cc->migrate_pfn, cc->order);
2436
2437                        if (last_migrated_pfn < current_block_start) {
2438                                lru_add_drain_cpu_zone(cc->zone);
2439                                /* No more flushing until we migrate again */
2440                                last_migrated_pfn = 0;
2441                        }
2442                }
2443
2444                /* Stop if a page has been captured */
2445                if (capc && capc->page) {
2446                        ret = COMPACT_SUCCESS;
2447                        break;
2448                }
2449        }
2450
2451out:
2452        /*
2453         * Release free pages and update where the free scanner should restart,
2454         * so we don't leave any returned pages behind in the next attempt.
2455         */
2456        if (cc->nr_freepages > 0) {
2457                unsigned long free_pfn = release_freepages(&cc->freepages);
2458
2459                cc->nr_freepages = 0;
2460                VM_BUG_ON(free_pfn == 0);
2461                /* The cached pfn is always the first in a pageblock */
2462                free_pfn = pageblock_start_pfn(free_pfn);
2463                /*
2464                 * Only go back, not forward. The cached pfn might have been
2465                 * already reset to zone end in compact_finished()
2466                 */
2467                if (free_pfn > cc->zone->compact_cached_free_pfn)
2468                        cc->zone->compact_cached_free_pfn = free_pfn;
2469        }
2470
2471        count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2472        count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2473
2474        trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2475                                cc->free_pfn, end_pfn, sync, ret);
2476
2477        return ret;
2478}
2479
2480static enum compact_result compact_zone_order(struct zone *zone, int order,
2481                gfp_t gfp_mask, enum compact_priority prio,
2482                unsigned int alloc_flags, int highest_zoneidx,
2483                struct page **capture)
2484{
2485        enum compact_result ret;
2486        struct compact_control cc = {
2487                .order = order,
2488                .search_order = order,
2489                .gfp_mask = gfp_mask,
2490                .zone = zone,
2491                .mode = (prio == COMPACT_PRIO_ASYNC) ?
2492                                        MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2493                .alloc_flags = alloc_flags,
2494                .highest_zoneidx = highest_zoneidx,
2495                .direct_compaction = true,
2496                .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2497                .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2498                .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2499        };
2500        struct capture_control capc = {
2501                .cc = &cc,
2502                .page = NULL,
2503        };
2504
2505        /*
2506         * Make sure the structs are really initialized before we expose the
2507         * capture control, in case we are interrupted and the interrupt handler
2508         * frees a page.
2509         */
2510        barrier();
2511        WRITE_ONCE(current->capture_control, &capc);
2512
2513        ret = compact_zone(&cc, &capc);
2514
2515        VM_BUG_ON(!list_empty(&cc.freepages));
2516        VM_BUG_ON(!list_empty(&cc.migratepages));
2517
2518        /*
2519         * Make sure we hide capture control first before we read the captured
2520         * page pointer, otherwise an interrupt could free and capture a page
2521         * and we would leak it.
2522         */
2523        WRITE_ONCE(current->capture_control, NULL);
2524        *capture = READ_ONCE(capc.page);
2525        /*
2526         * Technically, it is also possible that compaction is skipped but
2527         * the page is still captured out of luck(IRQ came and freed the page).
2528         * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2529         * the COMPACT[STALL|FAIL] when compaction is skipped.
2530         */
2531        if (*capture)
2532                ret = COMPACT_SUCCESS;
2533
2534        return ret;
2535}
2536
2537int sysctl_extfrag_threshold = 500;
2538
2539/**
2540 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2541 * @gfp_mask: The GFP mask of the current allocation
2542 * @order: The order of the current allocation
2543 * @alloc_flags: The allocation flags of the current allocation
2544 * @ac: The context of current allocation
2545 * @prio: Determines how hard direct compaction should try to succeed
2546 * @capture: Pointer to free page created by compaction will be stored here
2547 *
2548 * This is the main entry point for direct page compaction.
2549 */
2550enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2551                unsigned int alloc_flags, const struct alloc_context *ac,
2552                enum compact_priority prio, struct page **capture)
2553{
2554        int may_perform_io = gfp_mask & __GFP_IO;
2555        struct zoneref *z;
2556        struct zone *zone;
2557        enum compact_result rc = COMPACT_SKIPPED;
2558
2559        /*
2560         * Check if the GFP flags allow compaction - GFP_NOIO is really
2561         * tricky context because the migration might require IO
2562         */
2563        if (!may_perform_io)
2564                return COMPACT_SKIPPED;
2565
2566        trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2567
2568        /* Compact each zone in the list */
2569        for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2570                                        ac->highest_zoneidx, ac->nodemask) {
2571                enum compact_result status;
2572
2573                if (prio > MIN_COMPACT_PRIORITY
2574                                        && compaction_deferred(zone, order)) {
2575                        rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2576                        continue;
2577                }
2578
2579                status = compact_zone_order(zone, order, gfp_mask, prio,
2580                                alloc_flags, ac->highest_zoneidx, capture);
2581                rc = max(status, rc);
2582
2583                /* The allocation should succeed, stop compacting */
2584                if (status == COMPACT_SUCCESS) {
2585                        /*
2586                         * We think the allocation will succeed in this zone,
2587                         * but it is not certain, hence the false. The caller
2588                         * will repeat this with true if allocation indeed
2589                         * succeeds in this zone.
2590                         */
2591                        compaction_defer_reset(zone, order, false);
2592
2593                        break;
2594                }
2595
2596                if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2597                                        status == COMPACT_PARTIAL_SKIPPED))
2598                        /*
2599                         * We think that allocation won't succeed in this zone
2600                         * so we defer compaction there. If it ends up
2601                         * succeeding after all, it will be reset.
2602                         */
2603                        defer_compaction(zone, order);
2604
2605                /*
2606                 * We might have stopped compacting due to need_resched() in
2607                 * async compaction, or due to a fatal signal detected. In that
2608                 * case do not try further zones
2609                 */
2610                if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2611                                        || fatal_signal_pending(current))
2612                        break;
2613        }
2614
2615        return rc;
2616}
2617
2618/*
2619 * Compact all zones within a node till each zone's fragmentation score
2620 * reaches within proactive compaction thresholds (as determined by the
2621 * proactiveness tunable).
2622 *
2623 * It is possible that the function returns before reaching score targets
2624 * due to various back-off conditions, such as, contention on per-node or
2625 * per-zone locks.
2626 */
2627static void proactive_compact_node(pg_data_t *pgdat)
2628{
2629        int zoneid;
2630        struct zone *zone;
2631        struct compact_control cc = {
2632                .order = -1,
2633                .mode = MIGRATE_SYNC_LIGHT,
2634                .ignore_skip_hint = true,
2635                .whole_zone = true,
2636                .gfp_mask = GFP_KERNEL,
2637                .proactive_compaction = true,
2638        };
2639
2640        for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2641                zone = &pgdat->node_zones[zoneid];
2642                if (!populated_zone(zone))
2643                        continue;
2644
2645                cc.zone = zone;
2646
2647                compact_zone(&cc, NULL);
2648
2649                VM_BUG_ON(!list_empty(&cc.freepages));
2650                VM_BUG_ON(!list_empty(&cc.migratepages));
2651        }
2652}
2653
2654/* Compact all zones within a node */
2655static void compact_node(int nid)
2656{
2657        pg_data_t *pgdat = NODE_DATA(nid);
2658        int zoneid;
2659        struct zone *zone;
2660        struct compact_control cc = {
2661                .order = -1,
2662                .mode = MIGRATE_SYNC,
2663                .ignore_skip_hint = true,
2664                .whole_zone = true,
2665                .gfp_mask = GFP_KERNEL,
2666        };
2667
2668
2669        for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2670
2671                zone = &pgdat->node_zones[zoneid];
2672                if (!populated_zone(zone))
2673                        continue;
2674
2675                cc.zone = zone;
2676
2677                compact_zone(&cc, NULL);
2678
2679                VM_BUG_ON(!list_empty(&cc.freepages));
2680                VM_BUG_ON(!list_empty(&cc.migratepages));
2681        }
2682}
2683
2684/* Compact all nodes in the system */
2685static void compact_nodes(void)
2686{
2687        int nid;
2688
2689        /* Flush pending updates to the LRU lists */
2690        lru_add_drain_all();
2691
2692        for_each_online_node(nid)
2693                compact_node(nid);
2694}
2695
2696/*
2697 * Tunable for proactive compaction. It determines how
2698 * aggressively the kernel should compact memory in the
2699 * background. It takes values in the range [0, 100].
2700 */
2701unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2702
2703int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2704                void *buffer, size_t *length, loff_t *ppos)
2705{
2706        int rc, nid;
2707
2708        rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2709        if (rc)
2710                return rc;
2711
2712        if (write && sysctl_compaction_proactiveness) {
2713                for_each_online_node(nid) {
2714                        pg_data_t *pgdat = NODE_DATA(nid);
2715
2716                        if (pgdat->proactive_compact_trigger)
2717                                continue;
2718
2719                        pgdat->proactive_compact_trigger = true;
2720                        wake_up_interruptible(&pgdat->kcompactd_wait);
2721                }
2722        }
2723
2724        return 0;
2725}
2726
2727/*
2728 * This is the entry point for compacting all nodes via
2729 * /proc/sys/vm/compact_memory
2730 */
2731int sysctl_compaction_handler(struct ctl_table *table, int write,
2732                        void *buffer, size_t *length, loff_t *ppos)
2733{
2734        if (write)
2735                compact_nodes();
2736
2737        return 0;
2738}
2739
2740#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2741static ssize_t compact_store(struct device *dev,
2742                             struct device_attribute *attr,
2743                             const char *buf, size_t count)
2744{
2745        int nid = dev->id;
2746
2747        if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2748                /* Flush pending updates to the LRU lists */
2749                lru_add_drain_all();
2750
2751                compact_node(nid);
2752        }
2753
2754        return count;
2755}
2756static DEVICE_ATTR_WO(compact);
2757
2758int compaction_register_node(struct node *node)
2759{
2760        return device_create_file(&node->dev, &dev_attr_compact);
2761}
2762
2763void compaction_unregister_node(struct node *node)
2764{
2765        return device_remove_file(&node->dev, &dev_attr_compact);
2766}
2767#endif /* CONFIG_SYSFS && CONFIG_NUMA */
2768
2769static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2770{
2771        return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2772                pgdat->proactive_compact_trigger;
2773}
2774
2775static bool kcompactd_node_suitable(pg_data_t *pgdat)
2776{
2777        int zoneid;
2778        struct zone *zone;
2779        enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2780
2781        for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2782                zone = &pgdat->node_zones[zoneid];
2783
2784                if (!populated_zone(zone))
2785                        continue;
2786
2787                if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2788                                        highest_zoneidx) == COMPACT_CONTINUE)
2789                        return true;
2790        }
2791
2792        return false;
2793}
2794
2795static void kcompactd_do_work(pg_data_t *pgdat)
2796{
2797        /*
2798         * With no special task, compact all zones so that a page of requested
2799         * order is allocatable.
2800         */
2801        int zoneid;
2802        struct zone *zone;
2803        struct compact_control cc = {
2804                .order = pgdat->kcompactd_max_order,
2805                .search_order = pgdat->kcompactd_max_order,
2806                .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2807                .mode = MIGRATE_SYNC_LIGHT,
2808                .ignore_skip_hint = false,
2809                .gfp_mask = GFP_KERNEL,
2810        };
2811        trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2812                                                        cc.highest_zoneidx);
2813        count_compact_event(KCOMPACTD_WAKE);
2814
2815        for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2816                int status;
2817
2818                zone = &pgdat->node_zones[zoneid];
2819                if (!populated_zone(zone))
2820                        continue;
2821
2822                if (compaction_deferred(zone, cc.order))
2823                        continue;
2824
2825                if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2826                                                        COMPACT_CONTINUE)
2827                        continue;
2828
2829                if (kthread_should_stop())
2830                        return;
2831
2832                cc.zone = zone;
2833                status = compact_zone(&cc, NULL);
2834
2835                if (status == COMPACT_SUCCESS) {
2836                        compaction_defer_reset(zone, cc.order, false);
2837                } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2838                        /*
2839                         * Buddy pages may become stranded on pcps that could
2840                         * otherwise coalesce on the zone's free area for
2841                         * order >= cc.order.  This is ratelimited by the
2842                         * upcoming deferral.
2843                         */
2844                        drain_all_pages(zone);
2845
2846                        /*
2847                         * We use sync migration mode here, so we defer like
2848                         * sync direct compaction does.
2849                         */
2850                        defer_compaction(zone, cc.order);
2851                }
2852
2853                count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2854                                     cc.total_migrate_scanned);
2855                count_compact_events(KCOMPACTD_FREE_SCANNED,
2856                                     cc.total_free_scanned);
2857
2858                VM_BUG_ON(!list_empty(&cc.freepages));
2859                VM_BUG_ON(!list_empty(&cc.migratepages));
2860        }
2861
2862        /*
2863         * Regardless of success, we are done until woken up next. But remember
2864         * the requested order/highest_zoneidx in case it was higher/tighter
2865         * than our current ones
2866         */
2867        if (pgdat->kcompactd_max_order <= cc.order)
2868                pgdat->kcompactd_max_order = 0;
2869        if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2870                pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2871}
2872
2873void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2874{
2875        if (!order)
2876                return;
2877
2878        if (pgdat->kcompactd_max_order < order)
2879                pgdat->kcompactd_max_order = order;
2880
2881        if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2882                pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2883
2884        /*
2885         * Pairs with implicit barrier in wait_event_freezable()
2886         * such that wakeups are not missed.
2887         */
2888        if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2889                return;
2890
2891        if (!kcompactd_node_suitable(pgdat))
2892                return;
2893
2894        trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2895                                                        highest_zoneidx);
2896        wake_up_interruptible(&pgdat->kcompactd_wait);
2897}
2898
2899/*
2900 * The background compaction daemon, started as a kernel thread
2901 * from the init process.
2902 */
2903static int kcompactd(void *p)
2904{
2905        pg_data_t *pgdat = (pg_data_t *)p;
2906        struct task_struct *tsk = current;
2907        long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2908        long timeout = default_timeout;
2909
2910        const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2911
2912        if (!cpumask_empty(cpumask))
2913                set_cpus_allowed_ptr(tsk, cpumask);
2914
2915        set_freezable();
2916
2917        pgdat->kcompactd_max_order = 0;
2918        pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2919
2920        while (!kthread_should_stop()) {
2921                unsigned long pflags;
2922
2923                /*
2924                 * Avoid the unnecessary wakeup for proactive compaction
2925                 * when it is disabled.
2926                 */
2927                if (!sysctl_compaction_proactiveness)
2928                        timeout = MAX_SCHEDULE_TIMEOUT;
2929                trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2930                if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2931                        kcompactd_work_requested(pgdat), timeout) &&
2932                        !pgdat->proactive_compact_trigger) {
2933
2934                        psi_memstall_enter(&pflags);
2935                        kcompactd_do_work(pgdat);
2936                        psi_memstall_leave(&pflags);
2937                        /*
2938                         * Reset the timeout value. The defer timeout from
2939                         * proactive compaction is lost here but that is fine
2940                         * as the condition of the zone changing substantionally
2941                         * then carrying on with the previous defer interval is
2942                         * not useful.
2943                         */
2944                        timeout = default_timeout;
2945                        continue;
2946                }
2947
2948                /*
2949                 * Start the proactive work with default timeout. Based
2950                 * on the fragmentation score, this timeout is updated.
2951                 */
2952                timeout = default_timeout;
2953                if (should_proactive_compact_node(pgdat)) {
2954                        unsigned int prev_score, score;
2955
2956                        prev_score = fragmentation_score_node(pgdat);
2957                        proactive_compact_node(pgdat);
2958                        score = fragmentation_score_node(pgdat);
2959                        /*
2960                         * Defer proactive compaction if the fragmentation
2961                         * score did not go down i.e. no progress made.
2962                         */
2963                        if (unlikely(score >= prev_score))
2964                                timeout =
2965                                   default_timeout << COMPACT_MAX_DEFER_SHIFT;
2966                }
2967                if (unlikely(pgdat->proactive_compact_trigger))
2968                        pgdat->proactive_compact_trigger = false;
2969        }
2970
2971        return 0;
2972}
2973
2974/*
2975 * This kcompactd start function will be called by init and node-hot-add.
2976 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2977 */
2978int kcompactd_run(int nid)
2979{
2980        pg_data_t *pgdat = NODE_DATA(nid);
2981        int ret = 0;
2982
2983        if (pgdat->kcompactd)
2984                return 0;
2985
2986        pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2987        if (IS_ERR(pgdat->kcompactd)) {
2988                pr_err("Failed to start kcompactd on node %d\n", nid);
2989                ret = PTR_ERR(pgdat->kcompactd);
2990                pgdat->kcompactd = NULL;
2991        }
2992        return ret;
2993}
2994
2995/*
2996 * Called by memory hotplug when all memory in a node is offlined. Caller must
2997 * hold mem_hotplug_begin/end().
2998 */
2999void kcompactd_stop(int nid)
3000{
3001        struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3002
3003        if (kcompactd) {
3004                kthread_stop(kcompactd);
3005                NODE_DATA(nid)->kcompactd = NULL;
3006        }
3007}
3008
3009/*
3010 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3011 * not required for correctness. So if the last cpu in a node goes
3012 * away, we get changed to run anywhere: as the first one comes back,
3013 * restore their cpu bindings.
3014 */
3015static int kcompactd_cpu_online(unsigned int cpu)
3016{
3017        int nid;
3018
3019        for_each_node_state(nid, N_MEMORY) {
3020                pg_data_t *pgdat = NODE_DATA(nid);
3021                const struct cpumask *mask;
3022
3023                mask = cpumask_of_node(pgdat->node_id);
3024
3025                if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3026                        /* One of our CPUs online: restore mask */
3027                        set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3028        }
3029        return 0;
3030}
3031
3032static int __init kcompactd_init(void)
3033{
3034        int nid;
3035        int ret;
3036
3037        ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3038                                        "mm/compaction:online",
3039                                        kcompactd_cpu_online, NULL);
3040        if (ret < 0) {
3041                pr_err("kcompactd: failed to register hotplug callbacks.\n");
3042                return ret;
3043        }
3044
3045        for_each_node_state(nid, N_MEMORY)
3046                kcompactd_run(nid);
3047        return 0;
3048}
3049subsys_initcall(kcompactd_init)
3050
3051#endif /* CONFIG_COMPACTION */
3052