linux/mm/filemap.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *      linux/mm/filemap.c
   4 *
   5 * Copyright (C) 1994-1999  Linus Torvalds
   6 */
   7
   8/*
   9 * This file handles the generic file mmap semantics used by
  10 * most "normal" filesystems (but you don't /have/ to use this:
  11 * the NFS filesystem used to do this differently, for example)
  12 */
  13#include <linux/export.h>
  14#include <linux/compiler.h>
  15#include <linux/dax.h>
  16#include <linux/fs.h>
  17#include <linux/sched/signal.h>
  18#include <linux/uaccess.h>
  19#include <linux/capability.h>
  20#include <linux/kernel_stat.h>
  21#include <linux/gfp.h>
  22#include <linux/mm.h>
  23#include <linux/swap.h>
  24#include <linux/mman.h>
  25#include <linux/pagemap.h>
  26#include <linux/file.h>
  27#include <linux/uio.h>
  28#include <linux/error-injection.h>
  29#include <linux/hash.h>
  30#include <linux/writeback.h>
  31#include <linux/backing-dev.h>
  32#include <linux/pagevec.h>
  33#include <linux/blkdev.h>
  34#include <linux/security.h>
  35#include <linux/cpuset.h>
  36#include <linux/hugetlb.h>
  37#include <linux/memcontrol.h>
  38#include <linux/cleancache.h>
  39#include <linux/shmem_fs.h>
  40#include <linux/rmap.h>
  41#include <linux/delayacct.h>
  42#include <linux/psi.h>
  43#include <linux/ramfs.h>
  44#include <linux/page_idle.h>
  45#include <asm/pgalloc.h>
  46#include <asm/tlbflush.h>
  47#include "internal.h"
  48
  49#define CREATE_TRACE_POINTS
  50#include <trace/events/filemap.h>
  51
  52/*
  53 * FIXME: remove all knowledge of the buffer layer from the core VM
  54 */
  55#include <linux/buffer_head.h> /* for try_to_free_buffers */
  56
  57#include <asm/mman.h>
  58
  59/*
  60 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  61 * though.
  62 *
  63 * Shared mappings now work. 15.8.1995  Bruno.
  64 *
  65 * finished 'unifying' the page and buffer cache and SMP-threaded the
  66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  67 *
  68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  69 */
  70
  71/*
  72 * Lock ordering:
  73 *
  74 *  ->i_mmap_rwsem              (truncate_pagecache)
  75 *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
  76 *      ->swap_lock             (exclusive_swap_page, others)
  77 *        ->i_pages lock
  78 *
  79 *  ->i_rwsem
  80 *    ->invalidate_lock         (acquired by fs in truncate path)
  81 *      ->i_mmap_rwsem          (truncate->unmap_mapping_range)
  82 *
  83 *  ->mmap_lock
  84 *    ->i_mmap_rwsem
  85 *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
  86 *        ->i_pages lock        (arch-dependent flush_dcache_mmap_lock)
  87 *
  88 *  ->mmap_lock
  89 *    ->invalidate_lock         (filemap_fault)
  90 *      ->lock_page             (filemap_fault, access_process_vm)
  91 *
  92 *  ->i_rwsem                   (generic_perform_write)
  93 *    ->mmap_lock               (fault_in_pages_readable->do_page_fault)
  94 *
  95 *  bdi->wb.list_lock
  96 *    sb_lock                   (fs/fs-writeback.c)
  97 *    ->i_pages lock            (__sync_single_inode)
  98 *
  99 *  ->i_mmap_rwsem
 100 *    ->anon_vma.lock           (vma_adjust)
 101 *
 102 *  ->anon_vma.lock
 103 *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
 104 *
 105 *  ->page_table_lock or pte_lock
 106 *    ->swap_lock               (try_to_unmap_one)
 107 *    ->private_lock            (try_to_unmap_one)
 108 *    ->i_pages lock            (try_to_unmap_one)
 109 *    ->lruvec->lru_lock        (follow_page->mark_page_accessed)
 110 *    ->lruvec->lru_lock        (check_pte_range->isolate_lru_page)
 111 *    ->private_lock            (page_remove_rmap->set_page_dirty)
 112 *    ->i_pages lock            (page_remove_rmap->set_page_dirty)
 113 *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
 114 *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
 115 *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
 116 *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
 117 *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
 118 *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
 119 *
 120 * ->i_mmap_rwsem
 121 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 122 */
 123
 124static void page_cache_delete(struct address_space *mapping,
 125                                   struct page *page, void *shadow)
 126{
 127        XA_STATE(xas, &mapping->i_pages, page->index);
 128        unsigned int nr = 1;
 129
 130        mapping_set_update(&xas, mapping);
 131
 132        /* hugetlb pages are represented by a single entry in the xarray */
 133        if (!PageHuge(page)) {
 134                xas_set_order(&xas, page->index, compound_order(page));
 135                nr = compound_nr(page);
 136        }
 137
 138        VM_BUG_ON_PAGE(!PageLocked(page), page);
 139        VM_BUG_ON_PAGE(PageTail(page), page);
 140        VM_BUG_ON_PAGE(nr != 1 && shadow, page);
 141
 142        xas_store(&xas, shadow);
 143        xas_init_marks(&xas);
 144
 145        page->mapping = NULL;
 146        /* Leave page->index set: truncation lookup relies upon it */
 147        mapping->nrpages -= nr;
 148}
 149
 150static void unaccount_page_cache_page(struct address_space *mapping,
 151                                      struct page *page)
 152{
 153        int nr;
 154
 155        /*
 156         * if we're uptodate, flush out into the cleancache, otherwise
 157         * invalidate any existing cleancache entries.  We can't leave
 158         * stale data around in the cleancache once our page is gone
 159         */
 160        if (PageUptodate(page) && PageMappedToDisk(page))
 161                cleancache_put_page(page);
 162        else
 163                cleancache_invalidate_page(mapping, page);
 164
 165        VM_BUG_ON_PAGE(PageTail(page), page);
 166        VM_BUG_ON_PAGE(page_mapped(page), page);
 167        if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
 168                int mapcount;
 169
 170                pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 171                         current->comm, page_to_pfn(page));
 172                dump_page(page, "still mapped when deleted");
 173                dump_stack();
 174                add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 175
 176                mapcount = page_mapcount(page);
 177                if (mapping_exiting(mapping) &&
 178                    page_count(page) >= mapcount + 2) {
 179                        /*
 180                         * All vmas have already been torn down, so it's
 181                         * a good bet that actually the page is unmapped,
 182                         * and we'd prefer not to leak it: if we're wrong,
 183                         * some other bad page check should catch it later.
 184                         */
 185                        page_mapcount_reset(page);
 186                        page_ref_sub(page, mapcount);
 187                }
 188        }
 189
 190        /* hugetlb pages do not participate in page cache accounting. */
 191        if (PageHuge(page))
 192                return;
 193
 194        nr = thp_nr_pages(page);
 195
 196        __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
 197        if (PageSwapBacked(page)) {
 198                __mod_lruvec_page_state(page, NR_SHMEM, -nr);
 199                if (PageTransHuge(page))
 200                        __mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr);
 201        } else if (PageTransHuge(page)) {
 202                __mod_lruvec_page_state(page, NR_FILE_THPS, -nr);
 203                filemap_nr_thps_dec(mapping);
 204        }
 205
 206        /*
 207         * At this point page must be either written or cleaned by
 208         * truncate.  Dirty page here signals a bug and loss of
 209         * unwritten data.
 210         *
 211         * This fixes dirty accounting after removing the page entirely
 212         * but leaves PageDirty set: it has no effect for truncated
 213         * page and anyway will be cleared before returning page into
 214         * buddy allocator.
 215         */
 216        if (WARN_ON_ONCE(PageDirty(page)))
 217                account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
 218}
 219
 220/*
 221 * Delete a page from the page cache and free it. Caller has to make
 222 * sure the page is locked and that nobody else uses it - or that usage
 223 * is safe.  The caller must hold the i_pages lock.
 224 */
 225void __delete_from_page_cache(struct page *page, void *shadow)
 226{
 227        struct address_space *mapping = page->mapping;
 228
 229        trace_mm_filemap_delete_from_page_cache(page);
 230
 231        unaccount_page_cache_page(mapping, page);
 232        page_cache_delete(mapping, page, shadow);
 233}
 234
 235static void page_cache_free_page(struct address_space *mapping,
 236                                struct page *page)
 237{
 238        void (*freepage)(struct page *);
 239
 240        freepage = mapping->a_ops->freepage;
 241        if (freepage)
 242                freepage(page);
 243
 244        if (PageTransHuge(page) && !PageHuge(page)) {
 245                page_ref_sub(page, thp_nr_pages(page));
 246                VM_BUG_ON_PAGE(page_count(page) <= 0, page);
 247        } else {
 248                put_page(page);
 249        }
 250}
 251
 252/**
 253 * delete_from_page_cache - delete page from page cache
 254 * @page: the page which the kernel is trying to remove from page cache
 255 *
 256 * This must be called only on pages that have been verified to be in the page
 257 * cache and locked.  It will never put the page into the free list, the caller
 258 * has a reference on the page.
 259 */
 260void delete_from_page_cache(struct page *page)
 261{
 262        struct address_space *mapping = page_mapping(page);
 263
 264        BUG_ON(!PageLocked(page));
 265        xa_lock_irq(&mapping->i_pages);
 266        __delete_from_page_cache(page, NULL);
 267        xa_unlock_irq(&mapping->i_pages);
 268
 269        page_cache_free_page(mapping, page);
 270}
 271EXPORT_SYMBOL(delete_from_page_cache);
 272
 273/*
 274 * page_cache_delete_batch - delete several pages from page cache
 275 * @mapping: the mapping to which pages belong
 276 * @pvec: pagevec with pages to delete
 277 *
 278 * The function walks over mapping->i_pages and removes pages passed in @pvec
 279 * from the mapping. The function expects @pvec to be sorted by page index
 280 * and is optimised for it to be dense.
 281 * It tolerates holes in @pvec (mapping entries at those indices are not
 282 * modified). The function expects only THP head pages to be present in the
 283 * @pvec.
 284 *
 285 * The function expects the i_pages lock to be held.
 286 */
 287static void page_cache_delete_batch(struct address_space *mapping,
 288                             struct pagevec *pvec)
 289{
 290        XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
 291        int total_pages = 0;
 292        int i = 0;
 293        struct page *page;
 294
 295        mapping_set_update(&xas, mapping);
 296        xas_for_each(&xas, page, ULONG_MAX) {
 297                if (i >= pagevec_count(pvec))
 298                        break;
 299
 300                /* A swap/dax/shadow entry got inserted? Skip it. */
 301                if (xa_is_value(page))
 302                        continue;
 303                /*
 304                 * A page got inserted in our range? Skip it. We have our
 305                 * pages locked so they are protected from being removed.
 306                 * If we see a page whose index is higher than ours, it
 307                 * means our page has been removed, which shouldn't be
 308                 * possible because we're holding the PageLock.
 309                 */
 310                if (page != pvec->pages[i]) {
 311                        VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
 312                                        page);
 313                        continue;
 314                }
 315
 316                WARN_ON_ONCE(!PageLocked(page));
 317
 318                if (page->index == xas.xa_index)
 319                        page->mapping = NULL;
 320                /* Leave page->index set: truncation lookup relies on it */
 321
 322                /*
 323                 * Move to the next page in the vector if this is a regular
 324                 * page or the index is of the last sub-page of this compound
 325                 * page.
 326                 */
 327                if (page->index + compound_nr(page) - 1 == xas.xa_index)
 328                        i++;
 329                xas_store(&xas, NULL);
 330                total_pages++;
 331        }
 332        mapping->nrpages -= total_pages;
 333}
 334
 335void delete_from_page_cache_batch(struct address_space *mapping,
 336                                  struct pagevec *pvec)
 337{
 338        int i;
 339
 340        if (!pagevec_count(pvec))
 341                return;
 342
 343        xa_lock_irq(&mapping->i_pages);
 344        for (i = 0; i < pagevec_count(pvec); i++) {
 345                trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
 346
 347                unaccount_page_cache_page(mapping, pvec->pages[i]);
 348        }
 349        page_cache_delete_batch(mapping, pvec);
 350        xa_unlock_irq(&mapping->i_pages);
 351
 352        for (i = 0; i < pagevec_count(pvec); i++)
 353                page_cache_free_page(mapping, pvec->pages[i]);
 354}
 355
 356int filemap_check_errors(struct address_space *mapping)
 357{
 358        int ret = 0;
 359        /* Check for outstanding write errors */
 360        if (test_bit(AS_ENOSPC, &mapping->flags) &&
 361            test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 362                ret = -ENOSPC;
 363        if (test_bit(AS_EIO, &mapping->flags) &&
 364            test_and_clear_bit(AS_EIO, &mapping->flags))
 365                ret = -EIO;
 366        return ret;
 367}
 368EXPORT_SYMBOL(filemap_check_errors);
 369
 370static int filemap_check_and_keep_errors(struct address_space *mapping)
 371{
 372        /* Check for outstanding write errors */
 373        if (test_bit(AS_EIO, &mapping->flags))
 374                return -EIO;
 375        if (test_bit(AS_ENOSPC, &mapping->flags))
 376                return -ENOSPC;
 377        return 0;
 378}
 379
 380/**
 381 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
 382 * @mapping:    address space structure to write
 383 * @wbc:        the writeback_control controlling the writeout
 384 *
 385 * Call writepages on the mapping using the provided wbc to control the
 386 * writeout.
 387 *
 388 * Return: %0 on success, negative error code otherwise.
 389 */
 390int filemap_fdatawrite_wbc(struct address_space *mapping,
 391                           struct writeback_control *wbc)
 392{
 393        int ret;
 394
 395        if (!mapping_can_writeback(mapping) ||
 396            !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
 397                return 0;
 398
 399        wbc_attach_fdatawrite_inode(wbc, mapping->host);
 400        ret = do_writepages(mapping, wbc);
 401        wbc_detach_inode(wbc);
 402        return ret;
 403}
 404EXPORT_SYMBOL(filemap_fdatawrite_wbc);
 405
 406/**
 407 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 408 * @mapping:    address space structure to write
 409 * @start:      offset in bytes where the range starts
 410 * @end:        offset in bytes where the range ends (inclusive)
 411 * @sync_mode:  enable synchronous operation
 412 *
 413 * Start writeback against all of a mapping's dirty pages that lie
 414 * within the byte offsets <start, end> inclusive.
 415 *
 416 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 417 * opposed to a regular memory cleansing writeback.  The difference between
 418 * these two operations is that if a dirty page/buffer is encountered, it must
 419 * be waited upon, and not just skipped over.
 420 *
 421 * Return: %0 on success, negative error code otherwise.
 422 */
 423int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 424                                loff_t end, int sync_mode)
 425{
 426        struct writeback_control wbc = {
 427                .sync_mode = sync_mode,
 428                .nr_to_write = LONG_MAX,
 429                .range_start = start,
 430                .range_end = end,
 431        };
 432
 433        return filemap_fdatawrite_wbc(mapping, &wbc);
 434}
 435
 436static inline int __filemap_fdatawrite(struct address_space *mapping,
 437        int sync_mode)
 438{
 439        return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 440}
 441
 442int filemap_fdatawrite(struct address_space *mapping)
 443{
 444        return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 445}
 446EXPORT_SYMBOL(filemap_fdatawrite);
 447
 448int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 449                                loff_t end)
 450{
 451        return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 452}
 453EXPORT_SYMBOL(filemap_fdatawrite_range);
 454
 455/**
 456 * filemap_flush - mostly a non-blocking flush
 457 * @mapping:    target address_space
 458 *
 459 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 460 * purposes - I/O may not be started against all dirty pages.
 461 *
 462 * Return: %0 on success, negative error code otherwise.
 463 */
 464int filemap_flush(struct address_space *mapping)
 465{
 466        return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 467}
 468EXPORT_SYMBOL(filemap_flush);
 469
 470/**
 471 * filemap_range_has_page - check if a page exists in range.
 472 * @mapping:           address space within which to check
 473 * @start_byte:        offset in bytes where the range starts
 474 * @end_byte:          offset in bytes where the range ends (inclusive)
 475 *
 476 * Find at least one page in the range supplied, usually used to check if
 477 * direct writing in this range will trigger a writeback.
 478 *
 479 * Return: %true if at least one page exists in the specified range,
 480 * %false otherwise.
 481 */
 482bool filemap_range_has_page(struct address_space *mapping,
 483                           loff_t start_byte, loff_t end_byte)
 484{
 485        struct page *page;
 486        XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 487        pgoff_t max = end_byte >> PAGE_SHIFT;
 488
 489        if (end_byte < start_byte)
 490                return false;
 491
 492        rcu_read_lock();
 493        for (;;) {
 494                page = xas_find(&xas, max);
 495                if (xas_retry(&xas, page))
 496                        continue;
 497                /* Shadow entries don't count */
 498                if (xa_is_value(page))
 499                        continue;
 500                /*
 501                 * We don't need to try to pin this page; we're about to
 502                 * release the RCU lock anyway.  It is enough to know that
 503                 * there was a page here recently.
 504                 */
 505                break;
 506        }
 507        rcu_read_unlock();
 508
 509        return page != NULL;
 510}
 511EXPORT_SYMBOL(filemap_range_has_page);
 512
 513static void __filemap_fdatawait_range(struct address_space *mapping,
 514                                     loff_t start_byte, loff_t end_byte)
 515{
 516        pgoff_t index = start_byte >> PAGE_SHIFT;
 517        pgoff_t end = end_byte >> PAGE_SHIFT;
 518        struct pagevec pvec;
 519        int nr_pages;
 520
 521        if (end_byte < start_byte)
 522                return;
 523
 524        pagevec_init(&pvec);
 525        while (index <= end) {
 526                unsigned i;
 527
 528                nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
 529                                end, PAGECACHE_TAG_WRITEBACK);
 530                if (!nr_pages)
 531                        break;
 532
 533                for (i = 0; i < nr_pages; i++) {
 534                        struct page *page = pvec.pages[i];
 535
 536                        wait_on_page_writeback(page);
 537                        ClearPageError(page);
 538                }
 539                pagevec_release(&pvec);
 540                cond_resched();
 541        }
 542}
 543
 544/**
 545 * filemap_fdatawait_range - wait for writeback to complete
 546 * @mapping:            address space structure to wait for
 547 * @start_byte:         offset in bytes where the range starts
 548 * @end_byte:           offset in bytes where the range ends (inclusive)
 549 *
 550 * Walk the list of under-writeback pages of the given address space
 551 * in the given range and wait for all of them.  Check error status of
 552 * the address space and return it.
 553 *
 554 * Since the error status of the address space is cleared by this function,
 555 * callers are responsible for checking the return value and handling and/or
 556 * reporting the error.
 557 *
 558 * Return: error status of the address space.
 559 */
 560int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 561                            loff_t end_byte)
 562{
 563        __filemap_fdatawait_range(mapping, start_byte, end_byte);
 564        return filemap_check_errors(mapping);
 565}
 566EXPORT_SYMBOL(filemap_fdatawait_range);
 567
 568/**
 569 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
 570 * @mapping:            address space structure to wait for
 571 * @start_byte:         offset in bytes where the range starts
 572 * @end_byte:           offset in bytes where the range ends (inclusive)
 573 *
 574 * Walk the list of under-writeback pages of the given address space in the
 575 * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
 576 * this function does not clear error status of the address space.
 577 *
 578 * Use this function if callers don't handle errors themselves.  Expected
 579 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 580 * fsfreeze(8)
 581 */
 582int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
 583                loff_t start_byte, loff_t end_byte)
 584{
 585        __filemap_fdatawait_range(mapping, start_byte, end_byte);
 586        return filemap_check_and_keep_errors(mapping);
 587}
 588EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
 589
 590/**
 591 * file_fdatawait_range - wait for writeback to complete
 592 * @file:               file pointing to address space structure to wait for
 593 * @start_byte:         offset in bytes where the range starts
 594 * @end_byte:           offset in bytes where the range ends (inclusive)
 595 *
 596 * Walk the list of under-writeback pages of the address space that file
 597 * refers to, in the given range and wait for all of them.  Check error
 598 * status of the address space vs. the file->f_wb_err cursor and return it.
 599 *
 600 * Since the error status of the file is advanced by this function,
 601 * callers are responsible for checking the return value and handling and/or
 602 * reporting the error.
 603 *
 604 * Return: error status of the address space vs. the file->f_wb_err cursor.
 605 */
 606int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
 607{
 608        struct address_space *mapping = file->f_mapping;
 609
 610        __filemap_fdatawait_range(mapping, start_byte, end_byte);
 611        return file_check_and_advance_wb_err(file);
 612}
 613EXPORT_SYMBOL(file_fdatawait_range);
 614
 615/**
 616 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 617 * @mapping: address space structure to wait for
 618 *
 619 * Walk the list of under-writeback pages of the given address space
 620 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 621 * does not clear error status of the address space.
 622 *
 623 * Use this function if callers don't handle errors themselves.  Expected
 624 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 625 * fsfreeze(8)
 626 *
 627 * Return: error status of the address space.
 628 */
 629int filemap_fdatawait_keep_errors(struct address_space *mapping)
 630{
 631        __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
 632        return filemap_check_and_keep_errors(mapping);
 633}
 634EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
 635
 636/* Returns true if writeback might be needed or already in progress. */
 637static bool mapping_needs_writeback(struct address_space *mapping)
 638{
 639        return mapping->nrpages;
 640}
 641
 642/**
 643 * filemap_range_needs_writeback - check if range potentially needs writeback
 644 * @mapping:           address space within which to check
 645 * @start_byte:        offset in bytes where the range starts
 646 * @end_byte:          offset in bytes where the range ends (inclusive)
 647 *
 648 * Find at least one page in the range supplied, usually used to check if
 649 * direct writing in this range will trigger a writeback. Used by O_DIRECT
 650 * read/write with IOCB_NOWAIT, to see if the caller needs to do
 651 * filemap_write_and_wait_range() before proceeding.
 652 *
 653 * Return: %true if the caller should do filemap_write_and_wait_range() before
 654 * doing O_DIRECT to a page in this range, %false otherwise.
 655 */
 656bool filemap_range_needs_writeback(struct address_space *mapping,
 657                                   loff_t start_byte, loff_t end_byte)
 658{
 659        XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 660        pgoff_t max = end_byte >> PAGE_SHIFT;
 661        struct page *page;
 662
 663        if (!mapping_needs_writeback(mapping))
 664                return false;
 665        if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
 666            !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
 667                return false;
 668        if (end_byte < start_byte)
 669                return false;
 670
 671        rcu_read_lock();
 672        xas_for_each(&xas, page, max) {
 673                if (xas_retry(&xas, page))
 674                        continue;
 675                if (xa_is_value(page))
 676                        continue;
 677                if (PageDirty(page) || PageLocked(page) || PageWriteback(page))
 678                        break;
 679        }
 680        rcu_read_unlock();
 681        return page != NULL;
 682}
 683EXPORT_SYMBOL_GPL(filemap_range_needs_writeback);
 684
 685/**
 686 * filemap_write_and_wait_range - write out & wait on a file range
 687 * @mapping:    the address_space for the pages
 688 * @lstart:     offset in bytes where the range starts
 689 * @lend:       offset in bytes where the range ends (inclusive)
 690 *
 691 * Write out and wait upon file offsets lstart->lend, inclusive.
 692 *
 693 * Note that @lend is inclusive (describes the last byte to be written) so
 694 * that this function can be used to write to the very end-of-file (end = -1).
 695 *
 696 * Return: error status of the address space.
 697 */
 698int filemap_write_and_wait_range(struct address_space *mapping,
 699                                 loff_t lstart, loff_t lend)
 700{
 701        int err = 0;
 702
 703        if (mapping_needs_writeback(mapping)) {
 704                err = __filemap_fdatawrite_range(mapping, lstart, lend,
 705                                                 WB_SYNC_ALL);
 706                /*
 707                 * Even if the above returned error, the pages may be
 708                 * written partially (e.g. -ENOSPC), so we wait for it.
 709                 * But the -EIO is special case, it may indicate the worst
 710                 * thing (e.g. bug) happened, so we avoid waiting for it.
 711                 */
 712                if (err != -EIO) {
 713                        int err2 = filemap_fdatawait_range(mapping,
 714                                                lstart, lend);
 715                        if (!err)
 716                                err = err2;
 717                } else {
 718                        /* Clear any previously stored errors */
 719                        filemap_check_errors(mapping);
 720                }
 721        } else {
 722                err = filemap_check_errors(mapping);
 723        }
 724        return err;
 725}
 726EXPORT_SYMBOL(filemap_write_and_wait_range);
 727
 728void __filemap_set_wb_err(struct address_space *mapping, int err)
 729{
 730        errseq_t eseq = errseq_set(&mapping->wb_err, err);
 731
 732        trace_filemap_set_wb_err(mapping, eseq);
 733}
 734EXPORT_SYMBOL(__filemap_set_wb_err);
 735
 736/**
 737 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 738 *                                 and advance wb_err to current one
 739 * @file: struct file on which the error is being reported
 740 *
 741 * When userland calls fsync (or something like nfsd does the equivalent), we
 742 * want to report any writeback errors that occurred since the last fsync (or
 743 * since the file was opened if there haven't been any).
 744 *
 745 * Grab the wb_err from the mapping. If it matches what we have in the file,
 746 * then just quickly return 0. The file is all caught up.
 747 *
 748 * If it doesn't match, then take the mapping value, set the "seen" flag in
 749 * it and try to swap it into place. If it works, or another task beat us
 750 * to it with the new value, then update the f_wb_err and return the error
 751 * portion. The error at this point must be reported via proper channels
 752 * (a'la fsync, or NFS COMMIT operation, etc.).
 753 *
 754 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 755 * value is protected by the f_lock since we must ensure that it reflects
 756 * the latest value swapped in for this file descriptor.
 757 *
 758 * Return: %0 on success, negative error code otherwise.
 759 */
 760int file_check_and_advance_wb_err(struct file *file)
 761{
 762        int err = 0;
 763        errseq_t old = READ_ONCE(file->f_wb_err);
 764        struct address_space *mapping = file->f_mapping;
 765
 766        /* Locklessly handle the common case where nothing has changed */
 767        if (errseq_check(&mapping->wb_err, old)) {
 768                /* Something changed, must use slow path */
 769                spin_lock(&file->f_lock);
 770                old = file->f_wb_err;
 771                err = errseq_check_and_advance(&mapping->wb_err,
 772                                                &file->f_wb_err);
 773                trace_file_check_and_advance_wb_err(file, old);
 774                spin_unlock(&file->f_lock);
 775        }
 776
 777        /*
 778         * We're mostly using this function as a drop in replacement for
 779         * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
 780         * that the legacy code would have had on these flags.
 781         */
 782        clear_bit(AS_EIO, &mapping->flags);
 783        clear_bit(AS_ENOSPC, &mapping->flags);
 784        return err;
 785}
 786EXPORT_SYMBOL(file_check_and_advance_wb_err);
 787
 788/**
 789 * file_write_and_wait_range - write out & wait on a file range
 790 * @file:       file pointing to address_space with pages
 791 * @lstart:     offset in bytes where the range starts
 792 * @lend:       offset in bytes where the range ends (inclusive)
 793 *
 794 * Write out and wait upon file offsets lstart->lend, inclusive.
 795 *
 796 * Note that @lend is inclusive (describes the last byte to be written) so
 797 * that this function can be used to write to the very end-of-file (end = -1).
 798 *
 799 * After writing out and waiting on the data, we check and advance the
 800 * f_wb_err cursor to the latest value, and return any errors detected there.
 801 *
 802 * Return: %0 on success, negative error code otherwise.
 803 */
 804int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
 805{
 806        int err = 0, err2;
 807        struct address_space *mapping = file->f_mapping;
 808
 809        if (mapping_needs_writeback(mapping)) {
 810                err = __filemap_fdatawrite_range(mapping, lstart, lend,
 811                                                 WB_SYNC_ALL);
 812                /* See comment of filemap_write_and_wait() */
 813                if (err != -EIO)
 814                        __filemap_fdatawait_range(mapping, lstart, lend);
 815        }
 816        err2 = file_check_and_advance_wb_err(file);
 817        if (!err)
 818                err = err2;
 819        return err;
 820}
 821EXPORT_SYMBOL(file_write_and_wait_range);
 822
 823/**
 824 * replace_page_cache_page - replace a pagecache page with a new one
 825 * @old:        page to be replaced
 826 * @new:        page to replace with
 827 *
 828 * This function replaces a page in the pagecache with a new one.  On
 829 * success it acquires the pagecache reference for the new page and
 830 * drops it for the old page.  Both the old and new pages must be
 831 * locked.  This function does not add the new page to the LRU, the
 832 * caller must do that.
 833 *
 834 * The remove + add is atomic.  This function cannot fail.
 835 */
 836void replace_page_cache_page(struct page *old, struct page *new)
 837{
 838        struct address_space *mapping = old->mapping;
 839        void (*freepage)(struct page *) = mapping->a_ops->freepage;
 840        pgoff_t offset = old->index;
 841        XA_STATE(xas, &mapping->i_pages, offset);
 842
 843        VM_BUG_ON_PAGE(!PageLocked(old), old);
 844        VM_BUG_ON_PAGE(!PageLocked(new), new);
 845        VM_BUG_ON_PAGE(new->mapping, new);
 846
 847        get_page(new);
 848        new->mapping = mapping;
 849        new->index = offset;
 850
 851        mem_cgroup_migrate(old, new);
 852
 853        xas_lock_irq(&xas);
 854        xas_store(&xas, new);
 855
 856        old->mapping = NULL;
 857        /* hugetlb pages do not participate in page cache accounting. */
 858        if (!PageHuge(old))
 859                __dec_lruvec_page_state(old, NR_FILE_PAGES);
 860        if (!PageHuge(new))
 861                __inc_lruvec_page_state(new, NR_FILE_PAGES);
 862        if (PageSwapBacked(old))
 863                __dec_lruvec_page_state(old, NR_SHMEM);
 864        if (PageSwapBacked(new))
 865                __inc_lruvec_page_state(new, NR_SHMEM);
 866        xas_unlock_irq(&xas);
 867        if (freepage)
 868                freepage(old);
 869        put_page(old);
 870}
 871EXPORT_SYMBOL_GPL(replace_page_cache_page);
 872
 873noinline int __add_to_page_cache_locked(struct page *page,
 874                                        struct address_space *mapping,
 875                                        pgoff_t offset, gfp_t gfp,
 876                                        void **shadowp)
 877{
 878        XA_STATE(xas, &mapping->i_pages, offset);
 879        int huge = PageHuge(page);
 880        int error;
 881        bool charged = false;
 882
 883        VM_BUG_ON_PAGE(!PageLocked(page), page);
 884        VM_BUG_ON_PAGE(PageSwapBacked(page), page);
 885        mapping_set_update(&xas, mapping);
 886
 887        get_page(page);
 888        page->mapping = mapping;
 889        page->index = offset;
 890
 891        if (!huge) {
 892                error = mem_cgroup_charge(page, NULL, gfp);
 893                if (error)
 894                        goto error;
 895                charged = true;
 896        }
 897
 898        gfp &= GFP_RECLAIM_MASK;
 899
 900        do {
 901                unsigned int order = xa_get_order(xas.xa, xas.xa_index);
 902                void *entry, *old = NULL;
 903
 904                if (order > thp_order(page))
 905                        xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
 906                                        order, gfp);
 907                xas_lock_irq(&xas);
 908                xas_for_each_conflict(&xas, entry) {
 909                        old = entry;
 910                        if (!xa_is_value(entry)) {
 911                                xas_set_err(&xas, -EEXIST);
 912                                goto unlock;
 913                        }
 914                }
 915
 916                if (old) {
 917                        if (shadowp)
 918                                *shadowp = old;
 919                        /* entry may have been split before we acquired lock */
 920                        order = xa_get_order(xas.xa, xas.xa_index);
 921                        if (order > thp_order(page)) {
 922                                xas_split(&xas, old, order);
 923                                xas_reset(&xas);
 924                        }
 925                }
 926
 927                xas_store(&xas, page);
 928                if (xas_error(&xas))
 929                        goto unlock;
 930
 931                mapping->nrpages++;
 932
 933                /* hugetlb pages do not participate in page cache accounting */
 934                if (!huge)
 935                        __inc_lruvec_page_state(page, NR_FILE_PAGES);
 936unlock:
 937                xas_unlock_irq(&xas);
 938        } while (xas_nomem(&xas, gfp));
 939
 940        if (xas_error(&xas)) {
 941                error = xas_error(&xas);
 942                if (charged)
 943                        mem_cgroup_uncharge(page);
 944                goto error;
 945        }
 946
 947        trace_mm_filemap_add_to_page_cache(page);
 948        return 0;
 949error:
 950        page->mapping = NULL;
 951        /* Leave page->index set: truncation relies upon it */
 952        put_page(page);
 953        return error;
 954}
 955ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
 956
 957/**
 958 * add_to_page_cache_locked - add a locked page to the pagecache
 959 * @page:       page to add
 960 * @mapping:    the page's address_space
 961 * @offset:     page index
 962 * @gfp_mask:   page allocation mode
 963 *
 964 * This function is used to add a page to the pagecache. It must be locked.
 965 * This function does not add the page to the LRU.  The caller must do that.
 966 *
 967 * Return: %0 on success, negative error code otherwise.
 968 */
 969int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 970                pgoff_t offset, gfp_t gfp_mask)
 971{
 972        return __add_to_page_cache_locked(page, mapping, offset,
 973                                          gfp_mask, NULL);
 974}
 975EXPORT_SYMBOL(add_to_page_cache_locked);
 976
 977int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 978                                pgoff_t offset, gfp_t gfp_mask)
 979{
 980        void *shadow = NULL;
 981        int ret;
 982
 983        __SetPageLocked(page);
 984        ret = __add_to_page_cache_locked(page, mapping, offset,
 985                                         gfp_mask, &shadow);
 986        if (unlikely(ret))
 987                __ClearPageLocked(page);
 988        else {
 989                /*
 990                 * The page might have been evicted from cache only
 991                 * recently, in which case it should be activated like
 992                 * any other repeatedly accessed page.
 993                 * The exception is pages getting rewritten; evicting other
 994                 * data from the working set, only to cache data that will
 995                 * get overwritten with something else, is a waste of memory.
 996                 */
 997                WARN_ON_ONCE(PageActive(page));
 998                if (!(gfp_mask & __GFP_WRITE) && shadow)
 999                        workingset_refault(page, shadow);
1000                lru_cache_add(page);
1001        }
1002        return ret;
1003}
1004EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1005
1006#ifdef CONFIG_NUMA
1007struct page *__page_cache_alloc(gfp_t gfp)
1008{
1009        int n;
1010        struct page *page;
1011
1012        if (cpuset_do_page_mem_spread()) {
1013                unsigned int cpuset_mems_cookie;
1014                do {
1015                        cpuset_mems_cookie = read_mems_allowed_begin();
1016                        n = cpuset_mem_spread_node();
1017                        page = __alloc_pages_node(n, gfp, 0);
1018                } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
1019
1020                return page;
1021        }
1022        return alloc_pages(gfp, 0);
1023}
1024EXPORT_SYMBOL(__page_cache_alloc);
1025#endif
1026
1027/*
1028 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1029 *
1030 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1031 *
1032 * @mapping1: the first mapping to lock
1033 * @mapping2: the second mapping to lock
1034 */
1035void filemap_invalidate_lock_two(struct address_space *mapping1,
1036                                 struct address_space *mapping2)
1037{
1038        if (mapping1 > mapping2)
1039                swap(mapping1, mapping2);
1040        if (mapping1)
1041                down_write(&mapping1->invalidate_lock);
1042        if (mapping2 && mapping1 != mapping2)
1043                down_write_nested(&mapping2->invalidate_lock, 1);
1044}
1045EXPORT_SYMBOL(filemap_invalidate_lock_two);
1046
1047/*
1048 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1049 *
1050 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1051 *
1052 * @mapping1: the first mapping to unlock
1053 * @mapping2: the second mapping to unlock
1054 */
1055void filemap_invalidate_unlock_two(struct address_space *mapping1,
1056                                   struct address_space *mapping2)
1057{
1058        if (mapping1)
1059                up_write(&mapping1->invalidate_lock);
1060        if (mapping2 && mapping1 != mapping2)
1061                up_write(&mapping2->invalidate_lock);
1062}
1063EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1064
1065/*
1066 * In order to wait for pages to become available there must be
1067 * waitqueues associated with pages. By using a hash table of
1068 * waitqueues where the bucket discipline is to maintain all
1069 * waiters on the same queue and wake all when any of the pages
1070 * become available, and for the woken contexts to check to be
1071 * sure the appropriate page became available, this saves space
1072 * at a cost of "thundering herd" phenomena during rare hash
1073 * collisions.
1074 */
1075#define PAGE_WAIT_TABLE_BITS 8
1076#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1077static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1078
1079static wait_queue_head_t *page_waitqueue(struct page *page)
1080{
1081        return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1082}
1083
1084void __init pagecache_init(void)
1085{
1086        int i;
1087
1088        for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1089                init_waitqueue_head(&page_wait_table[i]);
1090
1091        page_writeback_init();
1092}
1093
1094/*
1095 * The page wait code treats the "wait->flags" somewhat unusually, because
1096 * we have multiple different kinds of waits, not just the usual "exclusive"
1097 * one.
1098 *
1099 * We have:
1100 *
1101 *  (a) no special bits set:
1102 *
1103 *      We're just waiting for the bit to be released, and when a waker
1104 *      calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1105 *      and remove it from the wait queue.
1106 *
1107 *      Simple and straightforward.
1108 *
1109 *  (b) WQ_FLAG_EXCLUSIVE:
1110 *
1111 *      The waiter is waiting to get the lock, and only one waiter should
1112 *      be woken up to avoid any thundering herd behavior. We'll set the
1113 *      WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1114 *
1115 *      This is the traditional exclusive wait.
1116 *
1117 *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1118 *
1119 *      The waiter is waiting to get the bit, and additionally wants the
1120 *      lock to be transferred to it for fair lock behavior. If the lock
1121 *      cannot be taken, we stop walking the wait queue without waking
1122 *      the waiter.
1123 *
1124 *      This is the "fair lock handoff" case, and in addition to setting
1125 *      WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1126 *      that it now has the lock.
1127 */
1128static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1129{
1130        unsigned int flags;
1131        struct wait_page_key *key = arg;
1132        struct wait_page_queue *wait_page
1133                = container_of(wait, struct wait_page_queue, wait);
1134
1135        if (!wake_page_match(wait_page, key))
1136                return 0;
1137
1138        /*
1139         * If it's a lock handoff wait, we get the bit for it, and
1140         * stop walking (and do not wake it up) if we can't.
1141         */
1142        flags = wait->flags;
1143        if (flags & WQ_FLAG_EXCLUSIVE) {
1144                if (test_bit(key->bit_nr, &key->page->flags))
1145                        return -1;
1146                if (flags & WQ_FLAG_CUSTOM) {
1147                        if (test_and_set_bit(key->bit_nr, &key->page->flags))
1148                                return -1;
1149                        flags |= WQ_FLAG_DONE;
1150                }
1151        }
1152
1153        /*
1154         * We are holding the wait-queue lock, but the waiter that
1155         * is waiting for this will be checking the flags without
1156         * any locking.
1157         *
1158         * So update the flags atomically, and wake up the waiter
1159         * afterwards to avoid any races. This store-release pairs
1160         * with the load-acquire in wait_on_page_bit_common().
1161         */
1162        smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1163        wake_up_state(wait->private, mode);
1164
1165        /*
1166         * Ok, we have successfully done what we're waiting for,
1167         * and we can unconditionally remove the wait entry.
1168         *
1169         * Note that this pairs with the "finish_wait()" in the
1170         * waiter, and has to be the absolute last thing we do.
1171         * After this list_del_init(&wait->entry) the wait entry
1172         * might be de-allocated and the process might even have
1173         * exited.
1174         */
1175        list_del_init_careful(&wait->entry);
1176        return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1177}
1178
1179static void wake_up_page_bit(struct page *page, int bit_nr)
1180{
1181        wait_queue_head_t *q = page_waitqueue(page);
1182        struct wait_page_key key;
1183        unsigned long flags;
1184        wait_queue_entry_t bookmark;
1185
1186        key.page = page;
1187        key.bit_nr = bit_nr;
1188        key.page_match = 0;
1189
1190        bookmark.flags = 0;
1191        bookmark.private = NULL;
1192        bookmark.func = NULL;
1193        INIT_LIST_HEAD(&bookmark.entry);
1194
1195        spin_lock_irqsave(&q->lock, flags);
1196        __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1197
1198        while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1199                /*
1200                 * Take a breather from holding the lock,
1201                 * allow pages that finish wake up asynchronously
1202                 * to acquire the lock and remove themselves
1203                 * from wait queue
1204                 */
1205                spin_unlock_irqrestore(&q->lock, flags);
1206                cpu_relax();
1207                spin_lock_irqsave(&q->lock, flags);
1208                __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1209        }
1210
1211        /*
1212         * It is possible for other pages to have collided on the waitqueue
1213         * hash, so in that case check for a page match. That prevents a long-
1214         * term waiter
1215         *
1216         * It is still possible to miss a case here, when we woke page waiters
1217         * and removed them from the waitqueue, but there are still other
1218         * page waiters.
1219         */
1220        if (!waitqueue_active(q) || !key.page_match) {
1221                ClearPageWaiters(page);
1222                /*
1223                 * It's possible to miss clearing Waiters here, when we woke
1224                 * our page waiters, but the hashed waitqueue has waiters for
1225                 * other pages on it.
1226                 *
1227                 * That's okay, it's a rare case. The next waker will clear it.
1228                 */
1229        }
1230        spin_unlock_irqrestore(&q->lock, flags);
1231}
1232
1233static void wake_up_page(struct page *page, int bit)
1234{
1235        if (!PageWaiters(page))
1236                return;
1237        wake_up_page_bit(page, bit);
1238}
1239
1240/*
1241 * A choice of three behaviors for wait_on_page_bit_common():
1242 */
1243enum behavior {
1244        EXCLUSIVE,      /* Hold ref to page and take the bit when woken, like
1245                         * __lock_page() waiting on then setting PG_locked.
1246                         */
1247        SHARED,         /* Hold ref to page and check the bit when woken, like
1248                         * wait_on_page_writeback() waiting on PG_writeback.
1249                         */
1250        DROP,           /* Drop ref to page before wait, no check when woken,
1251                         * like put_and_wait_on_page_locked() on PG_locked.
1252                         */
1253};
1254
1255/*
1256 * Attempt to check (or get) the page bit, and mark us done
1257 * if successful.
1258 */
1259static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1260                                        struct wait_queue_entry *wait)
1261{
1262        if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1263                if (test_and_set_bit(bit_nr, &page->flags))
1264                        return false;
1265        } else if (test_bit(bit_nr, &page->flags))
1266                return false;
1267
1268        wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1269        return true;
1270}
1271
1272/* How many times do we accept lock stealing from under a waiter? */
1273int sysctl_page_lock_unfairness = 5;
1274
1275static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1276        struct page *page, int bit_nr, int state, enum behavior behavior)
1277{
1278        int unfairness = sysctl_page_lock_unfairness;
1279        struct wait_page_queue wait_page;
1280        wait_queue_entry_t *wait = &wait_page.wait;
1281        bool thrashing = false;
1282        bool delayacct = false;
1283        unsigned long pflags;
1284
1285        if (bit_nr == PG_locked &&
1286            !PageUptodate(page) && PageWorkingset(page)) {
1287                if (!PageSwapBacked(page)) {
1288                        delayacct_thrashing_start();
1289                        delayacct = true;
1290                }
1291                psi_memstall_enter(&pflags);
1292                thrashing = true;
1293        }
1294
1295        init_wait(wait);
1296        wait->func = wake_page_function;
1297        wait_page.page = page;
1298        wait_page.bit_nr = bit_nr;
1299
1300repeat:
1301        wait->flags = 0;
1302        if (behavior == EXCLUSIVE) {
1303                wait->flags = WQ_FLAG_EXCLUSIVE;
1304                if (--unfairness < 0)
1305                        wait->flags |= WQ_FLAG_CUSTOM;
1306        }
1307
1308        /*
1309         * Do one last check whether we can get the
1310         * page bit synchronously.
1311         *
1312         * Do the SetPageWaiters() marking before that
1313         * to let any waker we _just_ missed know they
1314         * need to wake us up (otherwise they'll never
1315         * even go to the slow case that looks at the
1316         * page queue), and add ourselves to the wait
1317         * queue if we need to sleep.
1318         *
1319         * This part needs to be done under the queue
1320         * lock to avoid races.
1321         */
1322        spin_lock_irq(&q->lock);
1323        SetPageWaiters(page);
1324        if (!trylock_page_bit_common(page, bit_nr, wait))
1325                __add_wait_queue_entry_tail(q, wait);
1326        spin_unlock_irq(&q->lock);
1327
1328        /*
1329         * From now on, all the logic will be based on
1330         * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1331         * see whether the page bit testing has already
1332         * been done by the wake function.
1333         *
1334         * We can drop our reference to the page.
1335         */
1336        if (behavior == DROP)
1337                put_page(page);
1338
1339        /*
1340         * Note that until the "finish_wait()", or until
1341         * we see the WQ_FLAG_WOKEN flag, we need to
1342         * be very careful with the 'wait->flags', because
1343         * we may race with a waker that sets them.
1344         */
1345        for (;;) {
1346                unsigned int flags;
1347
1348                set_current_state(state);
1349
1350                /* Loop until we've been woken or interrupted */
1351                flags = smp_load_acquire(&wait->flags);
1352                if (!(flags & WQ_FLAG_WOKEN)) {
1353                        if (signal_pending_state(state, current))
1354                                break;
1355
1356                        io_schedule();
1357                        continue;
1358                }
1359
1360                /* If we were non-exclusive, we're done */
1361                if (behavior != EXCLUSIVE)
1362                        break;
1363
1364                /* If the waker got the lock for us, we're done */
1365                if (flags & WQ_FLAG_DONE)
1366                        break;
1367
1368                /*
1369                 * Otherwise, if we're getting the lock, we need to
1370                 * try to get it ourselves.
1371                 *
1372                 * And if that fails, we'll have to retry this all.
1373                 */
1374                if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
1375                        goto repeat;
1376
1377                wait->flags |= WQ_FLAG_DONE;
1378                break;
1379        }
1380
1381        /*
1382         * If a signal happened, this 'finish_wait()' may remove the last
1383         * waiter from the wait-queues, but the PageWaiters bit will remain
1384         * set. That's ok. The next wakeup will take care of it, and trying
1385         * to do it here would be difficult and prone to races.
1386         */
1387        finish_wait(q, wait);
1388
1389        if (thrashing) {
1390                if (delayacct)
1391                        delayacct_thrashing_end();
1392                psi_memstall_leave(&pflags);
1393        }
1394
1395        /*
1396         * NOTE! The wait->flags weren't stable until we've done the
1397         * 'finish_wait()', and we could have exited the loop above due
1398         * to a signal, and had a wakeup event happen after the signal
1399         * test but before the 'finish_wait()'.
1400         *
1401         * So only after the finish_wait() can we reliably determine
1402         * if we got woken up or not, so we can now figure out the final
1403         * return value based on that state without races.
1404         *
1405         * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1406         * waiter, but an exclusive one requires WQ_FLAG_DONE.
1407         */
1408        if (behavior == EXCLUSIVE)
1409                return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1410
1411        return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1412}
1413
1414void wait_on_page_bit(struct page *page, int bit_nr)
1415{
1416        wait_queue_head_t *q = page_waitqueue(page);
1417        wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1418}
1419EXPORT_SYMBOL(wait_on_page_bit);
1420
1421int wait_on_page_bit_killable(struct page *page, int bit_nr)
1422{
1423        wait_queue_head_t *q = page_waitqueue(page);
1424        return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1425}
1426EXPORT_SYMBOL(wait_on_page_bit_killable);
1427
1428/**
1429 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1430 * @page: The page to wait for.
1431 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1432 *
1433 * The caller should hold a reference on @page.  They expect the page to
1434 * become unlocked relatively soon, but do not wish to hold up migration
1435 * (for example) by holding the reference while waiting for the page to
1436 * come unlocked.  After this function returns, the caller should not
1437 * dereference @page.
1438 *
1439 * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal.
1440 */
1441int put_and_wait_on_page_locked(struct page *page, int state)
1442{
1443        wait_queue_head_t *q;
1444
1445        page = compound_head(page);
1446        q = page_waitqueue(page);
1447        return wait_on_page_bit_common(q, page, PG_locked, state, DROP);
1448}
1449
1450/**
1451 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1452 * @page: Page defining the wait queue of interest
1453 * @waiter: Waiter to add to the queue
1454 *
1455 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1456 */
1457void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1458{
1459        wait_queue_head_t *q = page_waitqueue(page);
1460        unsigned long flags;
1461
1462        spin_lock_irqsave(&q->lock, flags);
1463        __add_wait_queue_entry_tail(q, waiter);
1464        SetPageWaiters(page);
1465        spin_unlock_irqrestore(&q->lock, flags);
1466}
1467EXPORT_SYMBOL_GPL(add_page_wait_queue);
1468
1469#ifndef clear_bit_unlock_is_negative_byte
1470
1471/*
1472 * PG_waiters is the high bit in the same byte as PG_lock.
1473 *
1474 * On x86 (and on many other architectures), we can clear PG_lock and
1475 * test the sign bit at the same time. But if the architecture does
1476 * not support that special operation, we just do this all by hand
1477 * instead.
1478 *
1479 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1480 * being cleared, but a memory barrier should be unnecessary since it is
1481 * in the same byte as PG_locked.
1482 */
1483static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1484{
1485        clear_bit_unlock(nr, mem);
1486        /* smp_mb__after_atomic(); */
1487        return test_bit(PG_waiters, mem);
1488}
1489
1490#endif
1491
1492/**
1493 * unlock_page - unlock a locked page
1494 * @page: the page
1495 *
1496 * Unlocks the page and wakes up sleepers in wait_on_page_locked().
1497 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1498 * mechanism between PageLocked pages and PageWriteback pages is shared.
1499 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1500 *
1501 * Note that this depends on PG_waiters being the sign bit in the byte
1502 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1503 * clear the PG_locked bit and test PG_waiters at the same time fairly
1504 * portably (architectures that do LL/SC can test any bit, while x86 can
1505 * test the sign bit).
1506 */
1507void unlock_page(struct page *page)
1508{
1509        BUILD_BUG_ON(PG_waiters != 7);
1510        page = compound_head(page);
1511        VM_BUG_ON_PAGE(!PageLocked(page), page);
1512        if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1513                wake_up_page_bit(page, PG_locked);
1514}
1515EXPORT_SYMBOL(unlock_page);
1516
1517/**
1518 * end_page_private_2 - Clear PG_private_2 and release any waiters
1519 * @page: The page
1520 *
1521 * Clear the PG_private_2 bit on a page and wake up any sleepers waiting for
1522 * this.  The page ref held for PG_private_2 being set is released.
1523 *
1524 * This is, for example, used when a netfs page is being written to a local
1525 * disk cache, thereby allowing writes to the cache for the same page to be
1526 * serialised.
1527 */
1528void end_page_private_2(struct page *page)
1529{
1530        page = compound_head(page);
1531        VM_BUG_ON_PAGE(!PagePrivate2(page), page);
1532        clear_bit_unlock(PG_private_2, &page->flags);
1533        wake_up_page_bit(page, PG_private_2);
1534        put_page(page);
1535}
1536EXPORT_SYMBOL(end_page_private_2);
1537
1538/**
1539 * wait_on_page_private_2 - Wait for PG_private_2 to be cleared on a page
1540 * @page: The page to wait on
1541 *
1542 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page.
1543 */
1544void wait_on_page_private_2(struct page *page)
1545{
1546        page = compound_head(page);
1547        while (PagePrivate2(page))
1548                wait_on_page_bit(page, PG_private_2);
1549}
1550EXPORT_SYMBOL(wait_on_page_private_2);
1551
1552/**
1553 * wait_on_page_private_2_killable - Wait for PG_private_2 to be cleared on a page
1554 * @page: The page to wait on
1555 *
1556 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page or until a
1557 * fatal signal is received by the calling task.
1558 *
1559 * Return:
1560 * - 0 if successful.
1561 * - -EINTR if a fatal signal was encountered.
1562 */
1563int wait_on_page_private_2_killable(struct page *page)
1564{
1565        int ret = 0;
1566
1567        page = compound_head(page);
1568        while (PagePrivate2(page)) {
1569                ret = wait_on_page_bit_killable(page, PG_private_2);
1570                if (ret < 0)
1571                        break;
1572        }
1573
1574        return ret;
1575}
1576EXPORT_SYMBOL(wait_on_page_private_2_killable);
1577
1578/**
1579 * end_page_writeback - end writeback against a page
1580 * @page: the page
1581 */
1582void end_page_writeback(struct page *page)
1583{
1584        /*
1585         * TestClearPageReclaim could be used here but it is an atomic
1586         * operation and overkill in this particular case. Failing to
1587         * shuffle a page marked for immediate reclaim is too mild to
1588         * justify taking an atomic operation penalty at the end of
1589         * ever page writeback.
1590         */
1591        if (PageReclaim(page)) {
1592                ClearPageReclaim(page);
1593                rotate_reclaimable_page(page);
1594        }
1595
1596        /*
1597         * Writeback does not hold a page reference of its own, relying
1598         * on truncation to wait for the clearing of PG_writeback.
1599         * But here we must make sure that the page is not freed and
1600         * reused before the wake_up_page().
1601         */
1602        get_page(page);
1603        if (!test_clear_page_writeback(page))
1604                BUG();
1605
1606        smp_mb__after_atomic();
1607        wake_up_page(page, PG_writeback);
1608        put_page(page);
1609}
1610EXPORT_SYMBOL(end_page_writeback);
1611
1612/*
1613 * After completing I/O on a page, call this routine to update the page
1614 * flags appropriately
1615 */
1616void page_endio(struct page *page, bool is_write, int err)
1617{
1618        if (!is_write) {
1619                if (!err) {
1620                        SetPageUptodate(page);
1621                } else {
1622                        ClearPageUptodate(page);
1623                        SetPageError(page);
1624                }
1625                unlock_page(page);
1626        } else {
1627                if (err) {
1628                        struct address_space *mapping;
1629
1630                        SetPageError(page);
1631                        mapping = page_mapping(page);
1632                        if (mapping)
1633                                mapping_set_error(mapping, err);
1634                }
1635                end_page_writeback(page);
1636        }
1637}
1638EXPORT_SYMBOL_GPL(page_endio);
1639
1640/**
1641 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1642 * @__page: the page to lock
1643 */
1644void __lock_page(struct page *__page)
1645{
1646        struct page *page = compound_head(__page);
1647        wait_queue_head_t *q = page_waitqueue(page);
1648        wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1649                                EXCLUSIVE);
1650}
1651EXPORT_SYMBOL(__lock_page);
1652
1653int __lock_page_killable(struct page *__page)
1654{
1655        struct page *page = compound_head(__page);
1656        wait_queue_head_t *q = page_waitqueue(page);
1657        return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1658                                        EXCLUSIVE);
1659}
1660EXPORT_SYMBOL_GPL(__lock_page_killable);
1661
1662int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1663{
1664        struct wait_queue_head *q = page_waitqueue(page);
1665        int ret = 0;
1666
1667        wait->page = page;
1668        wait->bit_nr = PG_locked;
1669
1670        spin_lock_irq(&q->lock);
1671        __add_wait_queue_entry_tail(q, &wait->wait);
1672        SetPageWaiters(page);
1673        ret = !trylock_page(page);
1674        /*
1675         * If we were successful now, we know we're still on the
1676         * waitqueue as we're still under the lock. This means it's
1677         * safe to remove and return success, we know the callback
1678         * isn't going to trigger.
1679         */
1680        if (!ret)
1681                __remove_wait_queue(q, &wait->wait);
1682        else
1683                ret = -EIOCBQUEUED;
1684        spin_unlock_irq(&q->lock);
1685        return ret;
1686}
1687
1688/*
1689 * Return values:
1690 * 1 - page is locked; mmap_lock is still held.
1691 * 0 - page is not locked.
1692 *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1693 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1694 *     which case mmap_lock is still held.
1695 *
1696 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1697 * with the page locked and the mmap_lock unperturbed.
1698 */
1699int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1700                         unsigned int flags)
1701{
1702        if (fault_flag_allow_retry_first(flags)) {
1703                /*
1704                 * CAUTION! In this case, mmap_lock is not released
1705                 * even though return 0.
1706                 */
1707                if (flags & FAULT_FLAG_RETRY_NOWAIT)
1708                        return 0;
1709
1710                mmap_read_unlock(mm);
1711                if (flags & FAULT_FLAG_KILLABLE)
1712                        wait_on_page_locked_killable(page);
1713                else
1714                        wait_on_page_locked(page);
1715                return 0;
1716        }
1717        if (flags & FAULT_FLAG_KILLABLE) {
1718                int ret;
1719
1720                ret = __lock_page_killable(page);
1721                if (ret) {
1722                        mmap_read_unlock(mm);
1723                        return 0;
1724                }
1725        } else {
1726                __lock_page(page);
1727        }
1728        return 1;
1729
1730}
1731
1732/**
1733 * page_cache_next_miss() - Find the next gap in the page cache.
1734 * @mapping: Mapping.
1735 * @index: Index.
1736 * @max_scan: Maximum range to search.
1737 *
1738 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1739 * gap with the lowest index.
1740 *
1741 * This function may be called under the rcu_read_lock.  However, this will
1742 * not atomically search a snapshot of the cache at a single point in time.
1743 * For example, if a gap is created at index 5, then subsequently a gap is
1744 * created at index 10, page_cache_next_miss covering both indices may
1745 * return 10 if called under the rcu_read_lock.
1746 *
1747 * Return: The index of the gap if found, otherwise an index outside the
1748 * range specified (in which case 'return - index >= max_scan' will be true).
1749 * In the rare case of index wrap-around, 0 will be returned.
1750 */
1751pgoff_t page_cache_next_miss(struct address_space *mapping,
1752                             pgoff_t index, unsigned long max_scan)
1753{
1754        XA_STATE(xas, &mapping->i_pages, index);
1755
1756        while (max_scan--) {
1757                void *entry = xas_next(&xas);
1758                if (!entry || xa_is_value(entry))
1759                        break;
1760                if (xas.xa_index == 0)
1761                        break;
1762        }
1763
1764        return xas.xa_index;
1765}
1766EXPORT_SYMBOL(page_cache_next_miss);
1767
1768/**
1769 * page_cache_prev_miss() - Find the previous gap in the page cache.
1770 * @mapping: Mapping.
1771 * @index: Index.
1772 * @max_scan: Maximum range to search.
1773 *
1774 * Search the range [max(index - max_scan + 1, 0), index] for the
1775 * gap with the highest index.
1776 *
1777 * This function may be called under the rcu_read_lock.  However, this will
1778 * not atomically search a snapshot of the cache at a single point in time.
1779 * For example, if a gap is created at index 10, then subsequently a gap is
1780 * created at index 5, page_cache_prev_miss() covering both indices may
1781 * return 5 if called under the rcu_read_lock.
1782 *
1783 * Return: The index of the gap if found, otherwise an index outside the
1784 * range specified (in which case 'index - return >= max_scan' will be true).
1785 * In the rare case of wrap-around, ULONG_MAX will be returned.
1786 */
1787pgoff_t page_cache_prev_miss(struct address_space *mapping,
1788                             pgoff_t index, unsigned long max_scan)
1789{
1790        XA_STATE(xas, &mapping->i_pages, index);
1791
1792        while (max_scan--) {
1793                void *entry = xas_prev(&xas);
1794                if (!entry || xa_is_value(entry))
1795                        break;
1796                if (xas.xa_index == ULONG_MAX)
1797                        break;
1798        }
1799
1800        return xas.xa_index;
1801}
1802EXPORT_SYMBOL(page_cache_prev_miss);
1803
1804/*
1805 * mapping_get_entry - Get a page cache entry.
1806 * @mapping: the address_space to search
1807 * @index: The page cache index.
1808 *
1809 * Looks up the page cache slot at @mapping & @index.  If there is a
1810 * page cache page, the head page is returned with an increased refcount.
1811 *
1812 * If the slot holds a shadow entry of a previously evicted page, or a
1813 * swap entry from shmem/tmpfs, it is returned.
1814 *
1815 * Return: The head page or shadow entry, %NULL if nothing is found.
1816 */
1817static struct page *mapping_get_entry(struct address_space *mapping,
1818                pgoff_t index)
1819{
1820        XA_STATE(xas, &mapping->i_pages, index);
1821        struct page *page;
1822
1823        rcu_read_lock();
1824repeat:
1825        xas_reset(&xas);
1826        page = xas_load(&xas);
1827        if (xas_retry(&xas, page))
1828                goto repeat;
1829        /*
1830         * A shadow entry of a recently evicted page, or a swap entry from
1831         * shmem/tmpfs.  Return it without attempting to raise page count.
1832         */
1833        if (!page || xa_is_value(page))
1834                goto out;
1835
1836        if (!page_cache_get_speculative(page))
1837                goto repeat;
1838
1839        /*
1840         * Has the page moved or been split?
1841         * This is part of the lockless pagecache protocol. See
1842         * include/linux/pagemap.h for details.
1843         */
1844        if (unlikely(page != xas_reload(&xas))) {
1845                put_page(page);
1846                goto repeat;
1847        }
1848out:
1849        rcu_read_unlock();
1850
1851        return page;
1852}
1853
1854/**
1855 * pagecache_get_page - Find and get a reference to a page.
1856 * @mapping: The address_space to search.
1857 * @index: The page index.
1858 * @fgp_flags: %FGP flags modify how the page is returned.
1859 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1860 *
1861 * Looks up the page cache entry at @mapping & @index.
1862 *
1863 * @fgp_flags can be zero or more of these flags:
1864 *
1865 * * %FGP_ACCESSED - The page will be marked accessed.
1866 * * %FGP_LOCK - The page is returned locked.
1867 * * %FGP_HEAD - If the page is present and a THP, return the head page
1868 *   rather than the exact page specified by the index.
1869 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1870 *   instead of allocating a new page to replace it.
1871 * * %FGP_CREAT - If no page is present then a new page is allocated using
1872 *   @gfp_mask and added to the page cache and the VM's LRU list.
1873 *   The page is returned locked and with an increased refcount.
1874 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1875 *   page is already in cache.  If the page was allocated, unlock it before
1876 *   returning so the caller can do the same dance.
1877 * * %FGP_WRITE - The page will be written
1878 * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1879 * * %FGP_NOWAIT - Don't get blocked by page lock
1880 *
1881 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1882 * if the %GFP flags specified for %FGP_CREAT are atomic.
1883 *
1884 * If there is a page cache page, it is returned with an increased refcount.
1885 *
1886 * Return: The found page or %NULL otherwise.
1887 */
1888struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1889                int fgp_flags, gfp_t gfp_mask)
1890{
1891        struct page *page;
1892
1893repeat:
1894        page = mapping_get_entry(mapping, index);
1895        if (xa_is_value(page)) {
1896                if (fgp_flags & FGP_ENTRY)
1897                        return page;
1898                page = NULL;
1899        }
1900        if (!page)
1901                goto no_page;
1902
1903        if (fgp_flags & FGP_LOCK) {
1904                if (fgp_flags & FGP_NOWAIT) {
1905                        if (!trylock_page(page)) {
1906                                put_page(page);
1907                                return NULL;
1908                        }
1909                } else {
1910                        lock_page(page);
1911                }
1912
1913                /* Has the page been truncated? */
1914                if (unlikely(page->mapping != mapping)) {
1915                        unlock_page(page);
1916                        put_page(page);
1917                        goto repeat;
1918                }
1919                VM_BUG_ON_PAGE(!thp_contains(page, index), page);
1920        }
1921
1922        if (fgp_flags & FGP_ACCESSED)
1923                mark_page_accessed(page);
1924        else if (fgp_flags & FGP_WRITE) {
1925                /* Clear idle flag for buffer write */
1926                if (page_is_idle(page))
1927                        clear_page_idle(page);
1928        }
1929        if (!(fgp_flags & FGP_HEAD))
1930                page = find_subpage(page, index);
1931
1932no_page:
1933        if (!page && (fgp_flags & FGP_CREAT)) {
1934                int err;
1935                if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1936                        gfp_mask |= __GFP_WRITE;
1937                if (fgp_flags & FGP_NOFS)
1938                        gfp_mask &= ~__GFP_FS;
1939
1940                page = __page_cache_alloc(gfp_mask);
1941                if (!page)
1942                        return NULL;
1943
1944                if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1945                        fgp_flags |= FGP_LOCK;
1946
1947                /* Init accessed so avoid atomic mark_page_accessed later */
1948                if (fgp_flags & FGP_ACCESSED)
1949                        __SetPageReferenced(page);
1950
1951                err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1952                if (unlikely(err)) {
1953                        put_page(page);
1954                        page = NULL;
1955                        if (err == -EEXIST)
1956                                goto repeat;
1957                }
1958
1959                /*
1960                 * add_to_page_cache_lru locks the page, and for mmap we expect
1961                 * an unlocked page.
1962                 */
1963                if (page && (fgp_flags & FGP_FOR_MMAP))
1964                        unlock_page(page);
1965        }
1966
1967        return page;
1968}
1969EXPORT_SYMBOL(pagecache_get_page);
1970
1971static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max,
1972                xa_mark_t mark)
1973{
1974        struct page *page;
1975
1976retry:
1977        if (mark == XA_PRESENT)
1978                page = xas_find(xas, max);
1979        else
1980                page = xas_find_marked(xas, max, mark);
1981
1982        if (xas_retry(xas, page))
1983                goto retry;
1984        /*
1985         * A shadow entry of a recently evicted page, a swap
1986         * entry from shmem/tmpfs or a DAX entry.  Return it
1987         * without attempting to raise page count.
1988         */
1989        if (!page || xa_is_value(page))
1990                return page;
1991
1992        if (!page_cache_get_speculative(page))
1993                goto reset;
1994
1995        /* Has the page moved or been split? */
1996        if (unlikely(page != xas_reload(xas))) {
1997                put_page(page);
1998                goto reset;
1999        }
2000
2001        return page;
2002reset:
2003        xas_reset(xas);
2004        goto retry;
2005}
2006
2007/**
2008 * find_get_entries - gang pagecache lookup
2009 * @mapping:    The address_space to search
2010 * @start:      The starting page cache index
2011 * @end:        The final page index (inclusive).
2012 * @pvec:       Where the resulting entries are placed.
2013 * @indices:    The cache indices corresponding to the entries in @entries
2014 *
2015 * find_get_entries() will search for and return a batch of entries in
2016 * the mapping.  The entries are placed in @pvec.  find_get_entries()
2017 * takes a reference on any actual pages it returns.
2018 *
2019 * The search returns a group of mapping-contiguous page cache entries
2020 * with ascending indexes.  There may be holes in the indices due to
2021 * not-present pages.
2022 *
2023 * Any shadow entries of evicted pages, or swap entries from
2024 * shmem/tmpfs, are included in the returned array.
2025 *
2026 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
2027 * stops at that page: the caller is likely to have a better way to handle
2028 * the compound page as a whole, and then skip its extent, than repeatedly
2029 * calling find_get_entries() to return all its tails.
2030 *
2031 * Return: the number of pages and shadow entries which were found.
2032 */
2033unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
2034                pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
2035{
2036        XA_STATE(xas, &mapping->i_pages, start);
2037        struct page *page;
2038        unsigned int ret = 0;
2039        unsigned nr_entries = PAGEVEC_SIZE;
2040
2041        rcu_read_lock();
2042        while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2043                /*
2044                 * Terminate early on finding a THP, to allow the caller to
2045                 * handle it all at once; but continue if this is hugetlbfs.
2046                 */
2047                if (!xa_is_value(page) && PageTransHuge(page) &&
2048                                !PageHuge(page)) {
2049                        page = find_subpage(page, xas.xa_index);
2050                        nr_entries = ret + 1;
2051                }
2052
2053                indices[ret] = xas.xa_index;
2054                pvec->pages[ret] = page;
2055                if (++ret == nr_entries)
2056                        break;
2057        }
2058        rcu_read_unlock();
2059
2060        pvec->nr = ret;
2061        return ret;
2062}
2063
2064/**
2065 * find_lock_entries - Find a batch of pagecache entries.
2066 * @mapping:    The address_space to search.
2067 * @start:      The starting page cache index.
2068 * @end:        The final page index (inclusive).
2069 * @pvec:       Where the resulting entries are placed.
2070 * @indices:    The cache indices of the entries in @pvec.
2071 *
2072 * find_lock_entries() will return a batch of entries from @mapping.
2073 * Swap, shadow and DAX entries are included.  Pages are returned
2074 * locked and with an incremented refcount.  Pages which are locked by
2075 * somebody else or under writeback are skipped.  Only the head page of
2076 * a THP is returned.  Pages which are partially outside the range are
2077 * not returned.
2078 *
2079 * The entries have ascending indexes.  The indices may not be consecutive
2080 * due to not-present entries, THP pages, pages which could not be locked
2081 * or pages under writeback.
2082 *
2083 * Return: The number of entries which were found.
2084 */
2085unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2086                pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
2087{
2088        XA_STATE(xas, &mapping->i_pages, start);
2089        struct page *page;
2090
2091        rcu_read_lock();
2092        while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2093                if (!xa_is_value(page)) {
2094                        if (page->index < start)
2095                                goto put;
2096                        VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
2097                        if (page->index + thp_nr_pages(page) - 1 > end)
2098                                goto put;
2099                        if (!trylock_page(page))
2100                                goto put;
2101                        if (page->mapping != mapping || PageWriteback(page))
2102                                goto unlock;
2103                        VM_BUG_ON_PAGE(!thp_contains(page, xas.xa_index),
2104                                        page);
2105                }
2106                indices[pvec->nr] = xas.xa_index;
2107                if (!pagevec_add(pvec, page))
2108                        break;
2109                goto next;
2110unlock:
2111                unlock_page(page);
2112put:
2113                put_page(page);
2114next:
2115                if (!xa_is_value(page) && PageTransHuge(page)) {
2116                        unsigned int nr_pages = thp_nr_pages(page);
2117
2118                        /* Final THP may cross MAX_LFS_FILESIZE on 32-bit */
2119                        xas_set(&xas, page->index + nr_pages);
2120                        if (xas.xa_index < nr_pages)
2121                                break;
2122                }
2123        }
2124        rcu_read_unlock();
2125
2126        return pagevec_count(pvec);
2127}
2128
2129/**
2130 * find_get_pages_range - gang pagecache lookup
2131 * @mapping:    The address_space to search
2132 * @start:      The starting page index
2133 * @end:        The final page index (inclusive)
2134 * @nr_pages:   The maximum number of pages
2135 * @pages:      Where the resulting pages are placed
2136 *
2137 * find_get_pages_range() will search for and return a group of up to @nr_pages
2138 * pages in the mapping starting at index @start and up to index @end
2139 * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
2140 * a reference against the returned pages.
2141 *
2142 * The search returns a group of mapping-contiguous pages with ascending
2143 * indexes.  There may be holes in the indices due to not-present pages.
2144 * We also update @start to index the next page for the traversal.
2145 *
2146 * Return: the number of pages which were found. If this number is
2147 * smaller than @nr_pages, the end of specified range has been
2148 * reached.
2149 */
2150unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2151                              pgoff_t end, unsigned int nr_pages,
2152                              struct page **pages)
2153{
2154        XA_STATE(xas, &mapping->i_pages, *start);
2155        struct page *page;
2156        unsigned ret = 0;
2157
2158        if (unlikely(!nr_pages))
2159                return 0;
2160
2161        rcu_read_lock();
2162        while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2163                /* Skip over shadow, swap and DAX entries */
2164                if (xa_is_value(page))
2165                        continue;
2166
2167                pages[ret] = find_subpage(page, xas.xa_index);
2168                if (++ret == nr_pages) {
2169                        *start = xas.xa_index + 1;
2170                        goto out;
2171                }
2172        }
2173
2174        /*
2175         * We come here when there is no page beyond @end. We take care to not
2176         * overflow the index @start as it confuses some of the callers. This
2177         * breaks the iteration when there is a page at index -1 but that is
2178         * already broken anyway.
2179         */
2180        if (end == (pgoff_t)-1)
2181                *start = (pgoff_t)-1;
2182        else
2183                *start = end + 1;
2184out:
2185        rcu_read_unlock();
2186
2187        return ret;
2188}
2189
2190/**
2191 * find_get_pages_contig - gang contiguous pagecache lookup
2192 * @mapping:    The address_space to search
2193 * @index:      The starting page index
2194 * @nr_pages:   The maximum number of pages
2195 * @pages:      Where the resulting pages are placed
2196 *
2197 * find_get_pages_contig() works exactly like find_get_pages(), except
2198 * that the returned number of pages are guaranteed to be contiguous.
2199 *
2200 * Return: the number of pages which were found.
2201 */
2202unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2203                               unsigned int nr_pages, struct page **pages)
2204{
2205        XA_STATE(xas, &mapping->i_pages, index);
2206        struct page *page;
2207        unsigned int ret = 0;
2208
2209        if (unlikely(!nr_pages))
2210                return 0;
2211
2212        rcu_read_lock();
2213        for (page = xas_load(&xas); page; page = xas_next(&xas)) {
2214                if (xas_retry(&xas, page))
2215                        continue;
2216                /*
2217                 * If the entry has been swapped out, we can stop looking.
2218                 * No current caller is looking for DAX entries.
2219                 */
2220                if (xa_is_value(page))
2221                        break;
2222
2223                if (!page_cache_get_speculative(page))
2224                        goto retry;
2225
2226                /* Has the page moved or been split? */
2227                if (unlikely(page != xas_reload(&xas)))
2228                        goto put_page;
2229
2230                pages[ret] = find_subpage(page, xas.xa_index);
2231                if (++ret == nr_pages)
2232                        break;
2233                continue;
2234put_page:
2235                put_page(page);
2236retry:
2237                xas_reset(&xas);
2238        }
2239        rcu_read_unlock();
2240        return ret;
2241}
2242EXPORT_SYMBOL(find_get_pages_contig);
2243
2244/**
2245 * find_get_pages_range_tag - Find and return head pages matching @tag.
2246 * @mapping:    the address_space to search
2247 * @index:      the starting page index
2248 * @end:        The final page index (inclusive)
2249 * @tag:        the tag index
2250 * @nr_pages:   the maximum number of pages
2251 * @pages:      where the resulting pages are placed
2252 *
2253 * Like find_get_pages(), except we only return head pages which are tagged
2254 * with @tag.  @index is updated to the index immediately after the last
2255 * page we return, ready for the next iteration.
2256 *
2257 * Return: the number of pages which were found.
2258 */
2259unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2260                        pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2261                        struct page **pages)
2262{
2263        XA_STATE(xas, &mapping->i_pages, *index);
2264        struct page *page;
2265        unsigned ret = 0;
2266
2267        if (unlikely(!nr_pages))
2268                return 0;
2269
2270        rcu_read_lock();
2271        while ((page = find_get_entry(&xas, end, tag))) {
2272                /*
2273                 * Shadow entries should never be tagged, but this iteration
2274                 * is lockless so there is a window for page reclaim to evict
2275                 * a page we saw tagged.  Skip over it.
2276                 */
2277                if (xa_is_value(page))
2278                        continue;
2279
2280                pages[ret] = page;
2281                if (++ret == nr_pages) {
2282                        *index = page->index + thp_nr_pages(page);
2283                        goto out;
2284                }
2285        }
2286
2287        /*
2288         * We come here when we got to @end. We take care to not overflow the
2289         * index @index as it confuses some of the callers. This breaks the
2290         * iteration when there is a page at index -1 but that is already
2291         * broken anyway.
2292         */
2293        if (end == (pgoff_t)-1)
2294                *index = (pgoff_t)-1;
2295        else
2296                *index = end + 1;
2297out:
2298        rcu_read_unlock();
2299
2300        return ret;
2301}
2302EXPORT_SYMBOL(find_get_pages_range_tag);
2303
2304/*
2305 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2306 * a _large_ part of the i/o request. Imagine the worst scenario:
2307 *
2308 *      ---R__________________________________________B__________
2309 *         ^ reading here                             ^ bad block(assume 4k)
2310 *
2311 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2312 * => failing the whole request => read(R) => read(R+1) =>
2313 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2314 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2315 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2316 *
2317 * It is going insane. Fix it by quickly scaling down the readahead size.
2318 */
2319static void shrink_readahead_size_eio(struct file_ra_state *ra)
2320{
2321        ra->ra_pages /= 4;
2322}
2323
2324/*
2325 * filemap_get_read_batch - Get a batch of pages for read
2326 *
2327 * Get a batch of pages which represent a contiguous range of bytes
2328 * in the file.  No tail pages will be returned.  If @index is in the
2329 * middle of a THP, the entire THP will be returned.  The last page in
2330 * the batch may have Readahead set or be not Uptodate so that the
2331 * caller can take the appropriate action.
2332 */
2333static void filemap_get_read_batch(struct address_space *mapping,
2334                pgoff_t index, pgoff_t max, struct pagevec *pvec)
2335{
2336        XA_STATE(xas, &mapping->i_pages, index);
2337        struct page *head;
2338
2339        rcu_read_lock();
2340        for (head = xas_load(&xas); head; head = xas_next(&xas)) {
2341                if (xas_retry(&xas, head))
2342                        continue;
2343                if (xas.xa_index > max || xa_is_value(head))
2344                        break;
2345                if (!page_cache_get_speculative(head))
2346                        goto retry;
2347
2348                /* Has the page moved or been split? */
2349                if (unlikely(head != xas_reload(&xas)))
2350                        goto put_page;
2351
2352                if (!pagevec_add(pvec, head))
2353                        break;
2354                if (!PageUptodate(head))
2355                        break;
2356                if (PageReadahead(head))
2357                        break;
2358                xas.xa_index = head->index + thp_nr_pages(head) - 1;
2359                xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK;
2360                continue;
2361put_page:
2362                put_page(head);
2363retry:
2364                xas_reset(&xas);
2365        }
2366        rcu_read_unlock();
2367}
2368
2369static int filemap_read_page(struct file *file, struct address_space *mapping,
2370                struct page *page)
2371{
2372        int error;
2373
2374        /*
2375         * A previous I/O error may have been due to temporary failures,
2376         * eg. multipath errors.  PG_error will be set again if readpage
2377         * fails.
2378         */
2379        ClearPageError(page);
2380        /* Start the actual read. The read will unlock the page. */
2381        error = mapping->a_ops->readpage(file, page);
2382        if (error)
2383                return error;
2384
2385        error = wait_on_page_locked_killable(page);
2386        if (error)
2387                return error;
2388        if (PageUptodate(page))
2389                return 0;
2390        shrink_readahead_size_eio(&file->f_ra);
2391        return -EIO;
2392}
2393
2394static bool filemap_range_uptodate(struct address_space *mapping,
2395                loff_t pos, struct iov_iter *iter, struct page *page)
2396{
2397        int count;
2398
2399        if (PageUptodate(page))
2400                return true;
2401        /* pipes can't handle partially uptodate pages */
2402        if (iov_iter_is_pipe(iter))
2403                return false;
2404        if (!mapping->a_ops->is_partially_uptodate)
2405                return false;
2406        if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page)))
2407                return false;
2408
2409        count = iter->count;
2410        if (page_offset(page) > pos) {
2411                count -= page_offset(page) - pos;
2412                pos = 0;
2413        } else {
2414                pos -= page_offset(page);
2415        }
2416
2417        return mapping->a_ops->is_partially_uptodate(page, pos, count);
2418}
2419
2420static int filemap_update_page(struct kiocb *iocb,
2421                struct address_space *mapping, struct iov_iter *iter,
2422                struct page *page)
2423{
2424        int error;
2425
2426        if (iocb->ki_flags & IOCB_NOWAIT) {
2427                if (!filemap_invalidate_trylock_shared(mapping))
2428                        return -EAGAIN;
2429        } else {
2430                filemap_invalidate_lock_shared(mapping);
2431        }
2432
2433        if (!trylock_page(page)) {
2434                error = -EAGAIN;
2435                if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2436                        goto unlock_mapping;
2437                if (!(iocb->ki_flags & IOCB_WAITQ)) {
2438                        filemap_invalidate_unlock_shared(mapping);
2439                        put_and_wait_on_page_locked(page, TASK_KILLABLE);
2440                        return AOP_TRUNCATED_PAGE;
2441                }
2442                error = __lock_page_async(page, iocb->ki_waitq);
2443                if (error)
2444                        goto unlock_mapping;
2445        }
2446
2447        error = AOP_TRUNCATED_PAGE;
2448        if (!page->mapping)
2449                goto unlock;
2450
2451        error = 0;
2452        if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, page))
2453                goto unlock;
2454
2455        error = -EAGAIN;
2456        if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2457                goto unlock;
2458
2459        error = filemap_read_page(iocb->ki_filp, mapping, page);
2460        goto unlock_mapping;
2461unlock:
2462        unlock_page(page);
2463unlock_mapping:
2464        filemap_invalidate_unlock_shared(mapping);
2465        if (error == AOP_TRUNCATED_PAGE)
2466                put_page(page);
2467        return error;
2468}
2469
2470static int filemap_create_page(struct file *file,
2471                struct address_space *mapping, pgoff_t index,
2472                struct pagevec *pvec)
2473{
2474        struct page *page;
2475        int error;
2476
2477        page = page_cache_alloc(mapping);
2478        if (!page)
2479                return -ENOMEM;
2480
2481        /*
2482         * Protect against truncate / hole punch. Grabbing invalidate_lock here
2483         * assures we cannot instantiate and bring uptodate new pagecache pages
2484         * after evicting page cache during truncate and before actually
2485         * freeing blocks.  Note that we could release invalidate_lock after
2486         * inserting the page into page cache as the locked page would then be
2487         * enough to synchronize with hole punching. But there are code paths
2488         * such as filemap_update_page() filling in partially uptodate pages or
2489         * ->readpages() that need to hold invalidate_lock while mapping blocks
2490         * for IO so let's hold the lock here as well to keep locking rules
2491         * simple.
2492         */
2493        filemap_invalidate_lock_shared(mapping);
2494        error = add_to_page_cache_lru(page, mapping, index,
2495                        mapping_gfp_constraint(mapping, GFP_KERNEL));
2496        if (error == -EEXIST)
2497                error = AOP_TRUNCATED_PAGE;
2498        if (error)
2499                goto error;
2500
2501        error = filemap_read_page(file, mapping, page);
2502        if (error)
2503                goto error;
2504
2505        filemap_invalidate_unlock_shared(mapping);
2506        pagevec_add(pvec, page);
2507        return 0;
2508error:
2509        filemap_invalidate_unlock_shared(mapping);
2510        put_page(page);
2511        return error;
2512}
2513
2514static int filemap_readahead(struct kiocb *iocb, struct file *file,
2515                struct address_space *mapping, struct page *page,
2516                pgoff_t last_index)
2517{
2518        if (iocb->ki_flags & IOCB_NOIO)
2519                return -EAGAIN;
2520        page_cache_async_readahead(mapping, &file->f_ra, file, page,
2521                        page->index, last_index - page->index);
2522        return 0;
2523}
2524
2525static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2526                struct pagevec *pvec)
2527{
2528        struct file *filp = iocb->ki_filp;
2529        struct address_space *mapping = filp->f_mapping;
2530        struct file_ra_state *ra = &filp->f_ra;
2531        pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2532        pgoff_t last_index;
2533        struct page *page;
2534        int err = 0;
2535
2536        last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2537retry:
2538        if (fatal_signal_pending(current))
2539                return -EINTR;
2540
2541        filemap_get_read_batch(mapping, index, last_index, pvec);
2542        if (!pagevec_count(pvec)) {
2543                if (iocb->ki_flags & IOCB_NOIO)
2544                        return -EAGAIN;
2545                page_cache_sync_readahead(mapping, ra, filp, index,
2546                                last_index - index);
2547                filemap_get_read_batch(mapping, index, last_index, pvec);
2548        }
2549        if (!pagevec_count(pvec)) {
2550                if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2551                        return -EAGAIN;
2552                err = filemap_create_page(filp, mapping,
2553                                iocb->ki_pos >> PAGE_SHIFT, pvec);
2554                if (err == AOP_TRUNCATED_PAGE)
2555                        goto retry;
2556                return err;
2557        }
2558
2559        page = pvec->pages[pagevec_count(pvec) - 1];
2560        if (PageReadahead(page)) {
2561                err = filemap_readahead(iocb, filp, mapping, page, last_index);
2562                if (err)
2563                        goto err;
2564        }
2565        if (!PageUptodate(page)) {
2566                if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1)
2567                        iocb->ki_flags |= IOCB_NOWAIT;
2568                err = filemap_update_page(iocb, mapping, iter, page);
2569                if (err)
2570                        goto err;
2571        }
2572
2573        return 0;
2574err:
2575        if (err < 0)
2576                put_page(page);
2577        if (likely(--pvec->nr))
2578                return 0;
2579        if (err == AOP_TRUNCATED_PAGE)
2580                goto retry;
2581        return err;
2582}
2583
2584/**
2585 * filemap_read - Read data from the page cache.
2586 * @iocb: The iocb to read.
2587 * @iter: Destination for the data.
2588 * @already_read: Number of bytes already read by the caller.
2589 *
2590 * Copies data from the page cache.  If the data is not currently present,
2591 * uses the readahead and readpage address_space operations to fetch it.
2592 *
2593 * Return: Total number of bytes copied, including those already read by
2594 * the caller.  If an error happens before any bytes are copied, returns
2595 * a negative error number.
2596 */
2597ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2598                ssize_t already_read)
2599{
2600        struct file *filp = iocb->ki_filp;
2601        struct file_ra_state *ra = &filp->f_ra;
2602        struct address_space *mapping = filp->f_mapping;
2603        struct inode *inode = mapping->host;
2604        struct pagevec pvec;
2605        int i, error = 0;
2606        bool writably_mapped;
2607        loff_t isize, end_offset;
2608
2609        if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2610                return 0;
2611        if (unlikely(!iov_iter_count(iter)))
2612                return 0;
2613
2614        iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2615        pagevec_init(&pvec);
2616
2617        do {
2618                cond_resched();
2619
2620                /*
2621                 * If we've already successfully copied some data, then we
2622                 * can no longer safely return -EIOCBQUEUED. Hence mark
2623                 * an async read NOWAIT at that point.
2624                 */
2625                if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2626                        iocb->ki_flags |= IOCB_NOWAIT;
2627
2628                error = filemap_get_pages(iocb, iter, &pvec);
2629                if (error < 0)
2630                        break;
2631
2632                /*
2633                 * i_size must be checked after we know the pages are Uptodate.
2634                 *
2635                 * Checking i_size after the check allows us to calculate
2636                 * the correct value for "nr", which means the zero-filled
2637                 * part of the page is not copied back to userspace (unless
2638                 * another truncate extends the file - this is desired though).
2639                 */
2640                isize = i_size_read(inode);
2641                if (unlikely(iocb->ki_pos >= isize))
2642                        goto put_pages;
2643                end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2644
2645                /*
2646                 * Once we start copying data, we don't want to be touching any
2647                 * cachelines that might be contended:
2648                 */
2649                writably_mapped = mapping_writably_mapped(mapping);
2650
2651                /*
2652                 * When a sequential read accesses a page several times, only
2653                 * mark it as accessed the first time.
2654                 */
2655                if (iocb->ki_pos >> PAGE_SHIFT !=
2656                    ra->prev_pos >> PAGE_SHIFT)
2657                        mark_page_accessed(pvec.pages[0]);
2658
2659                for (i = 0; i < pagevec_count(&pvec); i++) {
2660                        struct page *page = pvec.pages[i];
2661                        size_t page_size = thp_size(page);
2662                        size_t offset = iocb->ki_pos & (page_size - 1);
2663                        size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2664                                             page_size - offset);
2665                        size_t copied;
2666
2667                        if (end_offset < page_offset(page))
2668                                break;
2669                        if (i > 0)
2670                                mark_page_accessed(page);
2671                        /*
2672                         * If users can be writing to this page using arbitrary
2673                         * virtual addresses, take care about potential aliasing
2674                         * before reading the page on the kernel side.
2675                         */
2676                        if (writably_mapped) {
2677                                int j;
2678
2679                                for (j = 0; j < thp_nr_pages(page); j++)
2680                                        flush_dcache_page(page + j);
2681                        }
2682
2683                        copied = copy_page_to_iter(page, offset, bytes, iter);
2684
2685                        already_read += copied;
2686                        iocb->ki_pos += copied;
2687                        ra->prev_pos = iocb->ki_pos;
2688
2689                        if (copied < bytes) {
2690                                error = -EFAULT;
2691                                break;
2692                        }
2693                }
2694put_pages:
2695                for (i = 0; i < pagevec_count(&pvec); i++)
2696                        put_page(pvec.pages[i]);
2697                pagevec_reinit(&pvec);
2698        } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2699
2700        file_accessed(filp);
2701
2702        return already_read ? already_read : error;
2703}
2704EXPORT_SYMBOL_GPL(filemap_read);
2705
2706/**
2707 * generic_file_read_iter - generic filesystem read routine
2708 * @iocb:       kernel I/O control block
2709 * @iter:       destination for the data read
2710 *
2711 * This is the "read_iter()" routine for all filesystems
2712 * that can use the page cache directly.
2713 *
2714 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2715 * be returned when no data can be read without waiting for I/O requests
2716 * to complete; it doesn't prevent readahead.
2717 *
2718 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2719 * requests shall be made for the read or for readahead.  When no data
2720 * can be read, -EAGAIN shall be returned.  When readahead would be
2721 * triggered, a partial, possibly empty read shall be returned.
2722 *
2723 * Return:
2724 * * number of bytes copied, even for partial reads
2725 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2726 */
2727ssize_t
2728generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2729{
2730        size_t count = iov_iter_count(iter);
2731        ssize_t retval = 0;
2732
2733        if (!count)
2734                return 0; /* skip atime */
2735
2736        if (iocb->ki_flags & IOCB_DIRECT) {
2737                struct file *file = iocb->ki_filp;
2738                struct address_space *mapping = file->f_mapping;
2739                struct inode *inode = mapping->host;
2740                loff_t size;
2741
2742                size = i_size_read(inode);
2743                if (iocb->ki_flags & IOCB_NOWAIT) {
2744                        if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2745                                                iocb->ki_pos + count - 1))
2746                                return -EAGAIN;
2747                } else {
2748                        retval = filemap_write_and_wait_range(mapping,
2749                                                iocb->ki_pos,
2750                                                iocb->ki_pos + count - 1);
2751                        if (retval < 0)
2752                                return retval;
2753                }
2754
2755                file_accessed(file);
2756
2757                retval = mapping->a_ops->direct_IO(iocb, iter);
2758                if (retval >= 0) {
2759                        iocb->ki_pos += retval;
2760                        count -= retval;
2761                }
2762                if (retval != -EIOCBQUEUED)
2763                        iov_iter_revert(iter, count - iov_iter_count(iter));
2764
2765                /*
2766                 * Btrfs can have a short DIO read if we encounter
2767                 * compressed extents, so if there was an error, or if
2768                 * we've already read everything we wanted to, or if
2769                 * there was a short read because we hit EOF, go ahead
2770                 * and return.  Otherwise fallthrough to buffered io for
2771                 * the rest of the read.  Buffered reads will not work for
2772                 * DAX files, so don't bother trying.
2773                 */
2774                if (retval < 0 || !count || iocb->ki_pos >= size ||
2775                    IS_DAX(inode))
2776                        return retval;
2777        }
2778
2779        return filemap_read(iocb, iter, retval);
2780}
2781EXPORT_SYMBOL(generic_file_read_iter);
2782
2783static inline loff_t page_seek_hole_data(struct xa_state *xas,
2784                struct address_space *mapping, struct page *page,
2785                loff_t start, loff_t end, bool seek_data)
2786{
2787        const struct address_space_operations *ops = mapping->a_ops;
2788        size_t offset, bsz = i_blocksize(mapping->host);
2789
2790        if (xa_is_value(page) || PageUptodate(page))
2791                return seek_data ? start : end;
2792        if (!ops->is_partially_uptodate)
2793                return seek_data ? end : start;
2794
2795        xas_pause(xas);
2796        rcu_read_unlock();
2797        lock_page(page);
2798        if (unlikely(page->mapping != mapping))
2799                goto unlock;
2800
2801        offset = offset_in_thp(page, start) & ~(bsz - 1);
2802
2803        do {
2804                if (ops->is_partially_uptodate(page, offset, bsz) == seek_data)
2805                        break;
2806                start = (start + bsz) & ~(bsz - 1);
2807                offset += bsz;
2808        } while (offset < thp_size(page));
2809unlock:
2810        unlock_page(page);
2811        rcu_read_lock();
2812        return start;
2813}
2814
2815static inline
2816unsigned int seek_page_size(struct xa_state *xas, struct page *page)
2817{
2818        if (xa_is_value(page))
2819                return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2820        return thp_size(page);
2821}
2822
2823/**
2824 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2825 * @mapping: Address space to search.
2826 * @start: First byte to consider.
2827 * @end: Limit of search (exclusive).
2828 * @whence: Either SEEK_HOLE or SEEK_DATA.
2829 *
2830 * If the page cache knows which blocks contain holes and which blocks
2831 * contain data, your filesystem can use this function to implement
2832 * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
2833 * entirely memory-based such as tmpfs, and filesystems which support
2834 * unwritten extents.
2835 *
2836 * Return: The requested offset on success, or -ENXIO if @whence specifies
2837 * SEEK_DATA and there is no data after @start.  There is an implicit hole
2838 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2839 * and @end contain data.
2840 */
2841loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2842                loff_t end, int whence)
2843{
2844        XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2845        pgoff_t max = (end - 1) >> PAGE_SHIFT;
2846        bool seek_data = (whence == SEEK_DATA);
2847        struct page *page;
2848
2849        if (end <= start)
2850                return -ENXIO;
2851
2852        rcu_read_lock();
2853        while ((page = find_get_entry(&xas, max, XA_PRESENT))) {
2854                loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2855                unsigned int seek_size;
2856
2857                if (start < pos) {
2858                        if (!seek_data)
2859                                goto unlock;
2860                        start = pos;
2861                }
2862
2863                seek_size = seek_page_size(&xas, page);
2864                pos = round_up(pos + 1, seek_size);
2865                start = page_seek_hole_data(&xas, mapping, page, start, pos,
2866                                seek_data);
2867                if (start < pos)
2868                        goto unlock;
2869                if (start >= end)
2870                        break;
2871                if (seek_size > PAGE_SIZE)
2872                        xas_set(&xas, pos >> PAGE_SHIFT);
2873                if (!xa_is_value(page))
2874                        put_page(page);
2875        }
2876        if (seek_data)
2877                start = -ENXIO;
2878unlock:
2879        rcu_read_unlock();
2880        if (page && !xa_is_value(page))
2881                put_page(page);
2882        if (start > end)
2883                return end;
2884        return start;
2885}
2886
2887#ifdef CONFIG_MMU
2888#define MMAP_LOTSAMISS  (100)
2889/*
2890 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2891 * @vmf - the vm_fault for this fault.
2892 * @page - the page to lock.
2893 * @fpin - the pointer to the file we may pin (or is already pinned).
2894 *
2895 * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2896 * It differs in that it actually returns the page locked if it returns 1 and 0
2897 * if it couldn't lock the page.  If we did have to drop the mmap_lock then fpin
2898 * will point to the pinned file and needs to be fput()'ed at a later point.
2899 */
2900static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2901                                     struct file **fpin)
2902{
2903        if (trylock_page(page))
2904                return 1;
2905
2906        /*
2907         * NOTE! This will make us return with VM_FAULT_RETRY, but with
2908         * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2909         * is supposed to work. We have way too many special cases..
2910         */
2911        if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2912                return 0;
2913
2914        *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2915        if (vmf->flags & FAULT_FLAG_KILLABLE) {
2916                if (__lock_page_killable(page)) {
2917                        /*
2918                         * We didn't have the right flags to drop the mmap_lock,
2919                         * but all fault_handlers only check for fatal signals
2920                         * if we return VM_FAULT_RETRY, so we need to drop the
2921                         * mmap_lock here and return 0 if we don't have a fpin.
2922                         */
2923                        if (*fpin == NULL)
2924                                mmap_read_unlock(vmf->vma->vm_mm);
2925                        return 0;
2926                }
2927        } else
2928                __lock_page(page);
2929        return 1;
2930}
2931
2932
2933/*
2934 * Synchronous readahead happens when we don't even find a page in the page
2935 * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2936 * to drop the mmap sem we return the file that was pinned in order for us to do
2937 * that.  If we didn't pin a file then we return NULL.  The file that is
2938 * returned needs to be fput()'ed when we're done with it.
2939 */
2940static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2941{
2942        struct file *file = vmf->vma->vm_file;
2943        struct file_ra_state *ra = &file->f_ra;
2944        struct address_space *mapping = file->f_mapping;
2945        DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
2946        struct file *fpin = NULL;
2947        unsigned int mmap_miss;
2948
2949        /* If we don't want any read-ahead, don't bother */
2950        if (vmf->vma->vm_flags & VM_RAND_READ)
2951                return fpin;
2952        if (!ra->ra_pages)
2953                return fpin;
2954
2955        if (vmf->vma->vm_flags & VM_SEQ_READ) {
2956                fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2957                page_cache_sync_ra(&ractl, ra->ra_pages);
2958                return fpin;
2959        }
2960
2961        /* Avoid banging the cache line if not needed */
2962        mmap_miss = READ_ONCE(ra->mmap_miss);
2963        if (mmap_miss < MMAP_LOTSAMISS * 10)
2964                WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
2965
2966        /*
2967         * Do we miss much more than hit in this file? If so,
2968         * stop bothering with read-ahead. It will only hurt.
2969         */
2970        if (mmap_miss > MMAP_LOTSAMISS)
2971                return fpin;
2972
2973        /*
2974         * mmap read-around
2975         */
2976        fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2977        ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
2978        ra->size = ra->ra_pages;
2979        ra->async_size = ra->ra_pages / 4;
2980        ractl._index = ra->start;
2981        do_page_cache_ra(&ractl, ra->size, ra->async_size);
2982        return fpin;
2983}
2984
2985/*
2986 * Asynchronous readahead happens when we find the page and PG_readahead,
2987 * so we want to possibly extend the readahead further.  We return the file that
2988 * was pinned if we have to drop the mmap_lock in order to do IO.
2989 */
2990static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2991                                            struct page *page)
2992{
2993        struct file *file = vmf->vma->vm_file;
2994        struct file_ra_state *ra = &file->f_ra;
2995        struct address_space *mapping = file->f_mapping;
2996        struct file *fpin = NULL;
2997        unsigned int mmap_miss;
2998        pgoff_t offset = vmf->pgoff;
2999
3000        /* If we don't want any read-ahead, don't bother */
3001        if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3002                return fpin;
3003        mmap_miss = READ_ONCE(ra->mmap_miss);
3004        if (mmap_miss)
3005                WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3006        if (PageReadahead(page)) {
3007                fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3008                page_cache_async_readahead(mapping, ra, file,
3009                                           page, offset, ra->ra_pages);
3010        }
3011        return fpin;
3012}
3013
3014/**
3015 * filemap_fault - read in file data for page fault handling
3016 * @vmf:        struct vm_fault containing details of the fault
3017 *
3018 * filemap_fault() is invoked via the vma operations vector for a
3019 * mapped memory region to read in file data during a page fault.
3020 *
3021 * The goto's are kind of ugly, but this streamlines the normal case of having
3022 * it in the page cache, and handles the special cases reasonably without
3023 * having a lot of duplicated code.
3024 *
3025 * vma->vm_mm->mmap_lock must be held on entry.
3026 *
3027 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3028 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
3029 *
3030 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3031 * has not been released.
3032 *
3033 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3034 *
3035 * Return: bitwise-OR of %VM_FAULT_ codes.
3036 */
3037vm_fault_t filemap_fault(struct vm_fault *vmf)
3038{
3039        int error;
3040        struct file *file = vmf->vma->vm_file;
3041        struct file *fpin = NULL;
3042        struct address_space *mapping = file->f_mapping;
3043        struct inode *inode = mapping->host;
3044        pgoff_t offset = vmf->pgoff;
3045        pgoff_t max_off;
3046        struct page *page;
3047        vm_fault_t ret = 0;
3048        bool mapping_locked = false;
3049
3050        max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3051        if (unlikely(offset >= max_off))
3052                return VM_FAULT_SIGBUS;
3053
3054        /*
3055         * Do we have something in the page cache already?
3056         */
3057        page = find_get_page(mapping, offset);
3058        if (likely(page)) {
3059                /*
3060                 * We found the page, so try async readahead before waiting for
3061                 * the lock.
3062                 */
3063                if (!(vmf->flags & FAULT_FLAG_TRIED))
3064                        fpin = do_async_mmap_readahead(vmf, page);
3065                if (unlikely(!PageUptodate(page))) {
3066                        filemap_invalidate_lock_shared(mapping);
3067                        mapping_locked = true;
3068                }
3069        } else {
3070                /* No page in the page cache at all */
3071                count_vm_event(PGMAJFAULT);
3072                count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3073                ret = VM_FAULT_MAJOR;
3074                fpin = do_sync_mmap_readahead(vmf);
3075retry_find:
3076                /*
3077                 * See comment in filemap_create_page() why we need
3078                 * invalidate_lock
3079                 */
3080                if (!mapping_locked) {
3081                        filemap_invalidate_lock_shared(mapping);
3082                        mapping_locked = true;
3083                }
3084                page = pagecache_get_page(mapping, offset,
3085                                          FGP_CREAT|FGP_FOR_MMAP,
3086                                          vmf->gfp_mask);
3087                if (!page) {
3088                        if (fpin)
3089                                goto out_retry;
3090                        filemap_invalidate_unlock_shared(mapping);
3091                        return VM_FAULT_OOM;
3092                }
3093        }
3094
3095        if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
3096                goto out_retry;
3097
3098        /* Did it get truncated? */
3099        if (unlikely(compound_head(page)->mapping != mapping)) {
3100                unlock_page(page);
3101                put_page(page);
3102                goto retry_find;
3103        }
3104        VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
3105
3106        /*
3107         * We have a locked page in the page cache, now we need to check
3108         * that it's up-to-date. If not, it is going to be due to an error.
3109         */
3110        if (unlikely(!PageUptodate(page))) {
3111                /*
3112                 * The page was in cache and uptodate and now it is not.
3113                 * Strange but possible since we didn't hold the page lock all
3114                 * the time. Let's drop everything get the invalidate lock and
3115                 * try again.
3116                 */
3117                if (!mapping_locked) {
3118                        unlock_page(page);
3119                        put_page(page);
3120                        goto retry_find;
3121                }
3122                goto page_not_uptodate;
3123        }
3124
3125        /*
3126         * We've made it this far and we had to drop our mmap_lock, now is the
3127         * time to return to the upper layer and have it re-find the vma and
3128         * redo the fault.
3129         */
3130        if (fpin) {
3131                unlock_page(page);
3132                goto out_retry;
3133        }
3134        if (mapping_locked)
3135                filemap_invalidate_unlock_shared(mapping);
3136
3137        /*
3138         * Found the page and have a reference on it.
3139         * We must recheck i_size under page lock.
3140         */
3141        max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3142        if (unlikely(offset >= max_off)) {
3143                unlock_page(page);
3144                put_page(page);
3145                return VM_FAULT_SIGBUS;
3146        }
3147
3148        vmf->page = page;
3149        return ret | VM_FAULT_LOCKED;
3150
3151page_not_uptodate:
3152        /*
3153         * Umm, take care of errors if the page isn't up-to-date.
3154         * Try to re-read it _once_. We do this synchronously,
3155         * because there really aren't any performance issues here
3156         * and we need to check for errors.
3157         */
3158        fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3159        error = filemap_read_page(file, mapping, page);
3160        if (fpin)
3161                goto out_retry;
3162        put_page(page);
3163
3164        if (!error || error == AOP_TRUNCATED_PAGE)
3165                goto retry_find;
3166        filemap_invalidate_unlock_shared(mapping);
3167
3168        return VM_FAULT_SIGBUS;
3169
3170out_retry:
3171        /*
3172         * We dropped the mmap_lock, we need to return to the fault handler to
3173         * re-find the vma and come back and find our hopefully still populated
3174         * page.
3175         */
3176        if (page)
3177                put_page(page);
3178        if (mapping_locked)
3179                filemap_invalidate_unlock_shared(mapping);
3180        if (fpin)
3181                fput(fpin);
3182        return ret | VM_FAULT_RETRY;
3183}
3184EXPORT_SYMBOL(filemap_fault);
3185
3186static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
3187{
3188        struct mm_struct *mm = vmf->vma->vm_mm;
3189
3190        /* Huge page is mapped? No need to proceed. */
3191        if (pmd_trans_huge(*vmf->pmd)) {
3192                unlock_page(page);
3193                put_page(page);
3194                return true;
3195        }
3196
3197        if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3198            vm_fault_t ret = do_set_pmd(vmf, page);
3199            if (!ret) {
3200                    /* The page is mapped successfully, reference consumed. */
3201                    unlock_page(page);
3202                    return true;
3203            }
3204        }
3205
3206        if (pmd_none(*vmf->pmd)) {
3207                vmf->ptl = pmd_lock(mm, vmf->pmd);
3208                if (likely(pmd_none(*vmf->pmd))) {
3209                        mm_inc_nr_ptes(mm);
3210                        pmd_populate(mm, vmf->pmd, vmf->prealloc_pte);
3211                        vmf->prealloc_pte = NULL;
3212                }
3213                spin_unlock(vmf->ptl);
3214        }
3215
3216        /* See comment in handle_pte_fault() */
3217        if (pmd_devmap_trans_unstable(vmf->pmd)) {
3218                unlock_page(page);
3219                put_page(page);
3220                return true;
3221        }
3222
3223        return false;
3224}
3225
3226static struct page *next_uptodate_page(struct page *page,
3227                                       struct address_space *mapping,
3228                                       struct xa_state *xas, pgoff_t end_pgoff)
3229{
3230        unsigned long max_idx;
3231
3232        do {
3233                if (!page)
3234                        return NULL;
3235                if (xas_retry(xas, page))
3236                        continue;
3237                if (xa_is_value(page))
3238                        continue;
3239                if (PageLocked(page))
3240                        continue;
3241                if (!page_cache_get_speculative(page))
3242                        continue;
3243                /* Has the page moved or been split? */
3244                if (unlikely(page != xas_reload(xas)))
3245                        goto skip;
3246                if (!PageUptodate(page) || PageReadahead(page))
3247                        goto skip;
3248                if (PageHWPoison(page))
3249                        goto skip;
3250                if (!trylock_page(page))
3251                        goto skip;
3252                if (page->mapping != mapping)
3253                        goto unlock;
3254                if (!PageUptodate(page))
3255                        goto unlock;
3256                max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3257                if (xas->xa_index >= max_idx)
3258                        goto unlock;
3259                return page;
3260unlock:
3261                unlock_page(page);
3262skip:
3263                put_page(page);
3264        } while ((page = xas_next_entry(xas, end_pgoff)) != NULL);
3265
3266        return NULL;
3267}
3268
3269static inline struct page *first_map_page(struct address_space *mapping,
3270                                          struct xa_state *xas,
3271                                          pgoff_t end_pgoff)
3272{
3273        return next_uptodate_page(xas_find(xas, end_pgoff),
3274                                  mapping, xas, end_pgoff);
3275}
3276
3277static inline struct page *next_map_page(struct address_space *mapping,
3278                                         struct xa_state *xas,
3279                                         pgoff_t end_pgoff)
3280{
3281        return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3282                                  mapping, xas, end_pgoff);
3283}
3284
3285vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3286                             pgoff_t start_pgoff, pgoff_t end_pgoff)
3287{
3288        struct vm_area_struct *vma = vmf->vma;
3289        struct file *file = vma->vm_file;
3290        struct address_space *mapping = file->f_mapping;
3291        pgoff_t last_pgoff = start_pgoff;
3292        unsigned long addr;
3293        XA_STATE(xas, &mapping->i_pages, start_pgoff);
3294        struct page *head, *page;
3295        unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3296        vm_fault_t ret = 0;
3297
3298        rcu_read_lock();
3299        head = first_map_page(mapping, &xas, end_pgoff);
3300        if (!head)
3301                goto out;
3302
3303        if (filemap_map_pmd(vmf, head)) {
3304                ret = VM_FAULT_NOPAGE;
3305                goto out;
3306        }
3307
3308        addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3309        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3310        do {
3311                page = find_subpage(head, xas.xa_index);
3312                if (PageHWPoison(page))
3313                        goto unlock;
3314
3315                if (mmap_miss > 0)
3316                        mmap_miss--;
3317
3318                addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3319                vmf->pte += xas.xa_index - last_pgoff;
3320                last_pgoff = xas.xa_index;
3321
3322                if (!pte_none(*vmf->pte))
3323                        goto unlock;
3324
3325                /* We're about to handle the fault */
3326                if (vmf->address == addr)
3327                        ret = VM_FAULT_NOPAGE;
3328
3329                do_set_pte(vmf, page, addr);
3330                /* no need to invalidate: a not-present page won't be cached */
3331                update_mmu_cache(vma, addr, vmf->pte);
3332                unlock_page(head);
3333                continue;
3334unlock:
3335                unlock_page(head);
3336                put_page(head);
3337        } while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3338        pte_unmap_unlock(vmf->pte, vmf->ptl);
3339out:
3340        rcu_read_unlock();
3341        WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3342        return ret;
3343}
3344EXPORT_SYMBOL(filemap_map_pages);
3345
3346vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3347{
3348        struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3349        struct page *page = vmf->page;
3350        vm_fault_t ret = VM_FAULT_LOCKED;
3351
3352        sb_start_pagefault(mapping->host->i_sb);
3353        file_update_time(vmf->vma->vm_file);
3354        lock_page(page);
3355        if (page->mapping != mapping) {
3356                unlock_page(page);
3357                ret = VM_FAULT_NOPAGE;
3358                goto out;
3359        }
3360        /*
3361         * We mark the page dirty already here so that when freeze is in
3362         * progress, we are guaranteed that writeback during freezing will
3363         * see the dirty page and writeprotect it again.
3364         */
3365        set_page_dirty(page);
3366        wait_for_stable_page(page);
3367out:
3368        sb_end_pagefault(mapping->host->i_sb);
3369        return ret;
3370}
3371
3372const struct vm_operations_struct generic_file_vm_ops = {
3373        .fault          = filemap_fault,
3374        .map_pages      = filemap_map_pages,
3375        .page_mkwrite   = filemap_page_mkwrite,
3376};
3377
3378/* This is used for a general mmap of a disk file */
3379
3380int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3381{
3382        struct address_space *mapping = file->f_mapping;
3383
3384        if (!mapping->a_ops->readpage)
3385                return -ENOEXEC;
3386        file_accessed(file);
3387        vma->vm_ops = &generic_file_vm_ops;
3388        return 0;
3389}
3390
3391/*
3392 * This is for filesystems which do not implement ->writepage.
3393 */
3394int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3395{
3396        if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3397                return -EINVAL;
3398        return generic_file_mmap(file, vma);
3399}
3400#else
3401vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3402{
3403        return VM_FAULT_SIGBUS;
3404}
3405int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3406{
3407        return -ENOSYS;
3408}
3409int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3410{
3411        return -ENOSYS;
3412}
3413#endif /* CONFIG_MMU */
3414
3415EXPORT_SYMBOL(filemap_page_mkwrite);
3416EXPORT_SYMBOL(generic_file_mmap);
3417EXPORT_SYMBOL(generic_file_readonly_mmap);
3418
3419static struct page *wait_on_page_read(struct page *page)
3420{
3421        if (!IS_ERR(page)) {
3422                wait_on_page_locked(page);
3423                if (!PageUptodate(page)) {
3424                        put_page(page);
3425                        page = ERR_PTR(-EIO);
3426                }
3427        }
3428        return page;
3429}
3430
3431static struct page *do_read_cache_page(struct address_space *mapping,
3432                                pgoff_t index,
3433                                int (*filler)(void *, struct page *),
3434                                void *data,
3435                                gfp_t gfp)
3436{
3437        struct page *page;
3438        int err;
3439repeat:
3440        page = find_get_page(mapping, index);
3441        if (!page) {
3442                page = __page_cache_alloc(gfp);
3443                if (!page)
3444                        return ERR_PTR(-ENOMEM);
3445                err = add_to_page_cache_lru(page, mapping, index, gfp);
3446                if (unlikely(err)) {
3447                        put_page(page);
3448                        if (err == -EEXIST)
3449                                goto repeat;
3450                        /* Presumably ENOMEM for xarray node */
3451                        return ERR_PTR(err);
3452                }
3453
3454filler:
3455                if (filler)
3456                        err = filler(data, page);
3457                else
3458                        err = mapping->a_ops->readpage(data, page);
3459
3460                if (err < 0) {
3461                        put_page(page);
3462                        return ERR_PTR(err);
3463                }
3464
3465                page = wait_on_page_read(page);
3466                if (IS_ERR(page))
3467                        return page;
3468                goto out;
3469        }
3470        if (PageUptodate(page))
3471                goto out;
3472
3473        /*
3474         * Page is not up to date and may be locked due to one of the following
3475         * case a: Page is being filled and the page lock is held
3476         * case b: Read/write error clearing the page uptodate status
3477         * case c: Truncation in progress (page locked)
3478         * case d: Reclaim in progress
3479         *
3480         * Case a, the page will be up to date when the page is unlocked.
3481         *    There is no need to serialise on the page lock here as the page
3482         *    is pinned so the lock gives no additional protection. Even if the
3483         *    page is truncated, the data is still valid if PageUptodate as
3484         *    it's a race vs truncate race.
3485         * Case b, the page will not be up to date
3486         * Case c, the page may be truncated but in itself, the data may still
3487         *    be valid after IO completes as it's a read vs truncate race. The
3488         *    operation must restart if the page is not uptodate on unlock but
3489         *    otherwise serialising on page lock to stabilise the mapping gives
3490         *    no additional guarantees to the caller as the page lock is
3491         *    released before return.
3492         * Case d, similar to truncation. If reclaim holds the page lock, it
3493         *    will be a race with remove_mapping that determines if the mapping
3494         *    is valid on unlock but otherwise the data is valid and there is
3495         *    no need to serialise with page lock.
3496         *
3497         * As the page lock gives no additional guarantee, we optimistically
3498         * wait on the page to be unlocked and check if it's up to date and
3499         * use the page if it is. Otherwise, the page lock is required to
3500         * distinguish between the different cases. The motivation is that we
3501         * avoid spurious serialisations and wakeups when multiple processes
3502         * wait on the same page for IO to complete.
3503         */
3504        wait_on_page_locked(page);
3505        if (PageUptodate(page))
3506                goto out;
3507
3508        /* Distinguish between all the cases under the safety of the lock */
3509        lock_page(page);
3510
3511        /* Case c or d, restart the operation */
3512        if (!page->mapping) {
3513                unlock_page(page);
3514                put_page(page);
3515                goto repeat;
3516        }
3517
3518        /* Someone else locked and filled the page in a very small window */
3519        if (PageUptodate(page)) {
3520                unlock_page(page);
3521                goto out;
3522        }
3523
3524        /*
3525         * A previous I/O error may have been due to temporary
3526         * failures.
3527         * Clear page error before actual read, PG_error will be
3528         * set again if read page fails.
3529         */
3530        ClearPageError(page);
3531        goto filler;
3532
3533out:
3534        mark_page_accessed(page);
3535        return page;
3536}
3537
3538/**
3539 * read_cache_page - read into page cache, fill it if needed
3540 * @mapping:    the page's address_space
3541 * @index:      the page index
3542 * @filler:     function to perform the read
3543 * @data:       first arg to filler(data, page) function, often left as NULL
3544 *
3545 * Read into the page cache. If a page already exists, and PageUptodate() is
3546 * not set, try to fill the page and wait for it to become unlocked.
3547 *
3548 * If the page does not get brought uptodate, return -EIO.
3549 *
3550 * The function expects mapping->invalidate_lock to be already held.
3551 *
3552 * Return: up to date page on success, ERR_PTR() on failure.
3553 */
3554struct page *read_cache_page(struct address_space *mapping,
3555                                pgoff_t index,
3556                                int (*filler)(void *, struct page *),
3557                                void *data)
3558{
3559        return do_read_cache_page(mapping, index, filler, data,
3560                        mapping_gfp_mask(mapping));
3561}
3562EXPORT_SYMBOL(read_cache_page);
3563
3564/**
3565 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3566 * @mapping:    the page's address_space
3567 * @index:      the page index
3568 * @gfp:        the page allocator flags to use if allocating
3569 *
3570 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3571 * any new page allocations done using the specified allocation flags.
3572 *
3573 * If the page does not get brought uptodate, return -EIO.
3574 *
3575 * The function expects mapping->invalidate_lock to be already held.
3576 *
3577 * Return: up to date page on success, ERR_PTR() on failure.
3578 */
3579struct page *read_cache_page_gfp(struct address_space *mapping,
3580                                pgoff_t index,
3581                                gfp_t gfp)
3582{
3583        return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3584}
3585EXPORT_SYMBOL(read_cache_page_gfp);
3586
3587int pagecache_write_begin(struct file *file, struct address_space *mapping,
3588                                loff_t pos, unsigned len, unsigned flags,
3589                                struct page **pagep, void **fsdata)
3590{
3591        const struct address_space_operations *aops = mapping->a_ops;
3592
3593        return aops->write_begin(file, mapping, pos, len, flags,
3594                                                        pagep, fsdata);
3595}
3596EXPORT_SYMBOL(pagecache_write_begin);
3597
3598int pagecache_write_end(struct file *file, struct address_space *mapping,
3599                                loff_t pos, unsigned len, unsigned copied,
3600                                struct page *page, void *fsdata)
3601{
3602        const struct address_space_operations *aops = mapping->a_ops;
3603
3604        return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3605}
3606EXPORT_SYMBOL(pagecache_write_end);
3607
3608/*
3609 * Warn about a page cache invalidation failure during a direct I/O write.
3610 */
3611void dio_warn_stale_pagecache(struct file *filp)
3612{
3613        static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3614        char pathname[128];
3615        char *path;
3616
3617        errseq_set(&filp->f_mapping->wb_err, -EIO);
3618        if (__ratelimit(&_rs)) {
3619                path = file_path(filp, pathname, sizeof(pathname));
3620                if (IS_ERR(path))
3621                        path = "(unknown)";
3622                pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3623                pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3624                        current->comm);
3625        }
3626}
3627
3628ssize_t
3629generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3630{
3631        struct file     *file = iocb->ki_filp;
3632        struct address_space *mapping = file->f_mapping;
3633        struct inode    *inode = mapping->host;
3634        loff_t          pos = iocb->ki_pos;
3635        ssize_t         written;
3636        size_t          write_len;
3637        pgoff_t         end;
3638
3639        write_len = iov_iter_count(from);
3640        end = (pos + write_len - 1) >> PAGE_SHIFT;
3641
3642        if (iocb->ki_flags & IOCB_NOWAIT) {
3643                /* If there are pages to writeback, return */
3644                if (filemap_range_has_page(file->f_mapping, pos,
3645                                           pos + write_len - 1))
3646                        return -EAGAIN;
3647        } else {
3648                written = filemap_write_and_wait_range(mapping, pos,
3649                                                        pos + write_len - 1);
3650                if (written)
3651                        goto out;
3652        }
3653
3654        /*
3655         * After a write we want buffered reads to be sure to go to disk to get
3656         * the new data.  We invalidate clean cached page from the region we're
3657         * about to write.  We do this *before* the write so that we can return
3658         * without clobbering -EIOCBQUEUED from ->direct_IO().
3659         */
3660        written = invalidate_inode_pages2_range(mapping,
3661                                        pos >> PAGE_SHIFT, end);
3662        /*
3663         * If a page can not be invalidated, return 0 to fall back
3664         * to buffered write.
3665         */
3666        if (written) {
3667                if (written == -EBUSY)
3668                        return 0;
3669                goto out;
3670        }
3671
3672        written = mapping->a_ops->direct_IO(iocb, from);
3673
3674        /*
3675         * Finally, try again to invalidate clean pages which might have been
3676         * cached by non-direct readahead, or faulted in by get_user_pages()
3677         * if the source of the write was an mmap'ed region of the file
3678         * we're writing.  Either one is a pretty crazy thing to do,
3679         * so we don't support it 100%.  If this invalidation
3680         * fails, tough, the write still worked...
3681         *
3682         * Most of the time we do not need this since dio_complete() will do
3683         * the invalidation for us. However there are some file systems that
3684         * do not end up with dio_complete() being called, so let's not break
3685         * them by removing it completely.
3686         *
3687         * Noticeable example is a blkdev_direct_IO().
3688         *
3689         * Skip invalidation for async writes or if mapping has no pages.
3690         */
3691        if (written > 0 && mapping->nrpages &&
3692            invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3693                dio_warn_stale_pagecache(file);
3694
3695        if (written > 0) {
3696                pos += written;
3697                write_len -= written;
3698                if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3699                        i_size_write(inode, pos);
3700                        mark_inode_dirty(inode);
3701                }
3702                iocb->ki_pos = pos;
3703        }
3704        if (written != -EIOCBQUEUED)
3705                iov_iter_revert(from, write_len - iov_iter_count(from));
3706out:
3707        return written;
3708}
3709EXPORT_SYMBOL(generic_file_direct_write);
3710
3711/*
3712 * Find or create a page at the given pagecache position. Return the locked
3713 * page. This function is specifically for buffered writes.
3714 */
3715struct page *grab_cache_page_write_begin(struct address_space *mapping,
3716                                        pgoff_t index, unsigned flags)
3717{
3718        struct page *page;
3719        int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3720
3721        if (flags & AOP_FLAG_NOFS)
3722                fgp_flags |= FGP_NOFS;
3723
3724        page = pagecache_get_page(mapping, index, fgp_flags,
3725                        mapping_gfp_mask(mapping));
3726        if (page)
3727                wait_for_stable_page(page);
3728
3729        return page;
3730}
3731EXPORT_SYMBOL(grab_cache_page_write_begin);
3732
3733ssize_t generic_perform_write(struct file *file,
3734                                struct iov_iter *i, loff_t pos)
3735{
3736        struct address_space *mapping = file->f_mapping;
3737        const struct address_space_operations *a_ops = mapping->a_ops;
3738        long status = 0;
3739        ssize_t written = 0;
3740        unsigned int flags = 0;
3741
3742        do {
3743                struct page *page;
3744                unsigned long offset;   /* Offset into pagecache page */
3745                unsigned long bytes;    /* Bytes to write to page */
3746                size_t copied;          /* Bytes copied from user */
3747                void *fsdata;
3748
3749                offset = (pos & (PAGE_SIZE - 1));
3750                bytes = min_t(unsigned long, PAGE_SIZE - offset,
3751                                                iov_iter_count(i));
3752
3753again:
3754                /*
3755                 * Bring in the user page that we will copy from _first_.
3756                 * Otherwise there's a nasty deadlock on copying from the
3757                 * same page as we're writing to, without it being marked
3758                 * up-to-date.
3759                 */
3760                if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3761                        status = -EFAULT;
3762                        break;
3763                }
3764
3765                if (fatal_signal_pending(current)) {
3766                        status = -EINTR;
3767                        break;
3768                }
3769
3770                status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3771                                                &page, &fsdata);
3772                if (unlikely(status < 0))
3773                        break;
3774
3775                if (mapping_writably_mapped(mapping))
3776                        flush_dcache_page(page);
3777
3778                copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3779                flush_dcache_page(page);
3780
3781                status = a_ops->write_end(file, mapping, pos, bytes, copied,
3782                                                page, fsdata);
3783                if (unlikely(status != copied)) {
3784                        iov_iter_revert(i, copied - max(status, 0L));
3785                        if (unlikely(status < 0))
3786                                break;
3787                }
3788                cond_resched();
3789
3790                if (unlikely(status == 0)) {
3791                        /*
3792                         * A short copy made ->write_end() reject the
3793                         * thing entirely.  Might be memory poisoning
3794                         * halfway through, might be a race with munmap,
3795                         * might be severe memory pressure.
3796                         */
3797                        if (copied)
3798                                bytes = copied;
3799                        goto again;
3800                }
3801                pos += status;
3802                written += status;
3803
3804                balance_dirty_pages_ratelimited(mapping);
3805        } while (iov_iter_count(i));
3806
3807        return written ? written : status;
3808}
3809EXPORT_SYMBOL(generic_perform_write);
3810
3811/**
3812 * __generic_file_write_iter - write data to a file
3813 * @iocb:       IO state structure (file, offset, etc.)
3814 * @from:       iov_iter with data to write
3815 *
3816 * This function does all the work needed for actually writing data to a
3817 * file. It does all basic checks, removes SUID from the file, updates
3818 * modification times and calls proper subroutines depending on whether we
3819 * do direct IO or a standard buffered write.
3820 *
3821 * It expects i_rwsem to be grabbed unless we work on a block device or similar
3822 * object which does not need locking at all.
3823 *
3824 * This function does *not* take care of syncing data in case of O_SYNC write.
3825 * A caller has to handle it. This is mainly due to the fact that we want to
3826 * avoid syncing under i_rwsem.
3827 *
3828 * Return:
3829 * * number of bytes written, even for truncated writes
3830 * * negative error code if no data has been written at all
3831 */
3832ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3833{
3834        struct file *file = iocb->ki_filp;
3835        struct address_space *mapping = file->f_mapping;
3836        struct inode    *inode = mapping->host;
3837        ssize_t         written = 0;
3838        ssize_t         err;
3839        ssize_t         status;
3840
3841        /* We can write back this queue in page reclaim */
3842        current->backing_dev_info = inode_to_bdi(inode);
3843        err = file_remove_privs(file);
3844        if (err)
3845                goto out;
3846
3847        err = file_update_time(file);
3848        if (err)
3849                goto out;
3850
3851        if (iocb->ki_flags & IOCB_DIRECT) {
3852                loff_t pos, endbyte;
3853
3854                written = generic_file_direct_write(iocb, from);
3855                /*
3856                 * If the write stopped short of completing, fall back to
3857                 * buffered writes.  Some filesystems do this for writes to
3858                 * holes, for example.  For DAX files, a buffered write will
3859                 * not succeed (even if it did, DAX does not handle dirty
3860                 * page-cache pages correctly).
3861                 */
3862                if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3863                        goto out;
3864
3865                status = generic_perform_write(file, from, pos = iocb->ki_pos);
3866                /*
3867                 * If generic_perform_write() returned a synchronous error
3868                 * then we want to return the number of bytes which were
3869                 * direct-written, or the error code if that was zero.  Note
3870                 * that this differs from normal direct-io semantics, which
3871                 * will return -EFOO even if some bytes were written.
3872                 */
3873                if (unlikely(status < 0)) {
3874                        err = status;
3875                        goto out;
3876                }
3877                /*
3878                 * We need to ensure that the page cache pages are written to
3879                 * disk and invalidated to preserve the expected O_DIRECT
3880                 * semantics.
3881                 */
3882                endbyte = pos + status - 1;
3883                err = filemap_write_and_wait_range(mapping, pos, endbyte);
3884                if (err == 0) {
3885                        iocb->ki_pos = endbyte + 1;
3886                        written += status;
3887                        invalidate_mapping_pages(mapping,
3888                                                 pos >> PAGE_SHIFT,
3889                                                 endbyte >> PAGE_SHIFT);
3890                } else {
3891                        /*
3892                         * We don't know how much we wrote, so just return
3893                         * the number of bytes which were direct-written
3894                         */
3895                }
3896        } else {
3897                written = generic_perform_write(file, from, iocb->ki_pos);
3898                if (likely(written > 0))
3899                        iocb->ki_pos += written;
3900        }
3901out:
3902        current->backing_dev_info = NULL;
3903        return written ? written : err;
3904}
3905EXPORT_SYMBOL(__generic_file_write_iter);
3906
3907/**
3908 * generic_file_write_iter - write data to a file
3909 * @iocb:       IO state structure
3910 * @from:       iov_iter with data to write
3911 *
3912 * This is a wrapper around __generic_file_write_iter() to be used by most
3913 * filesystems. It takes care of syncing the file in case of O_SYNC file
3914 * and acquires i_rwsem as needed.
3915 * Return:
3916 * * negative error code if no data has been written at all of
3917 *   vfs_fsync_range() failed for a synchronous write
3918 * * number of bytes written, even for truncated writes
3919 */
3920ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3921{
3922        struct file *file = iocb->ki_filp;
3923        struct inode *inode = file->f_mapping->host;
3924        ssize_t ret;
3925
3926        inode_lock(inode);
3927        ret = generic_write_checks(iocb, from);
3928        if (ret > 0)
3929                ret = __generic_file_write_iter(iocb, from);
3930        inode_unlock(inode);
3931
3932        if (ret > 0)
3933                ret = generic_write_sync(iocb, ret);
3934        return ret;
3935}
3936EXPORT_SYMBOL(generic_file_write_iter);
3937
3938/**
3939 * try_to_release_page() - release old fs-specific metadata on a page
3940 *
3941 * @page: the page which the kernel is trying to free
3942 * @gfp_mask: memory allocation flags (and I/O mode)
3943 *
3944 * The address_space is to try to release any data against the page
3945 * (presumably at page->private).
3946 *
3947 * This may also be called if PG_fscache is set on a page, indicating that the
3948 * page is known to the local caching routines.
3949 *
3950 * The @gfp_mask argument specifies whether I/O may be performed to release
3951 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3952 *
3953 * Return: %1 if the release was successful, otherwise return zero.
3954 */
3955int try_to_release_page(struct page *page, gfp_t gfp_mask)
3956{
3957        struct address_space * const mapping = page->mapping;
3958
3959        BUG_ON(!PageLocked(page));
3960        if (PageWriteback(page))
3961                return 0;
3962
3963        if (mapping && mapping->a_ops->releasepage)
3964                return mapping->a_ops->releasepage(page, gfp_mask);
3965        return try_to_free_buffers(page);
3966}
3967
3968EXPORT_SYMBOL(try_to_release_page);
3969