linux/mm/kasan/shadow.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * This file contains KASAN runtime code that manages shadow memory for
   4 * generic and software tag-based KASAN modes.
   5 *
   6 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
   7 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
   8 *
   9 * Some code borrowed from https://github.com/xairy/kasan-prototype by
  10 *        Andrey Konovalov <andreyknvl@gmail.com>
  11 */
  12
  13#include <linux/init.h>
  14#include <linux/kasan.h>
  15#include <linux/kernel.h>
  16#include <linux/kfence.h>
  17#include <linux/kmemleak.h>
  18#include <linux/memory.h>
  19#include <linux/mm.h>
  20#include <linux/string.h>
  21#include <linux/types.h>
  22#include <linux/vmalloc.h>
  23
  24#include <asm/cacheflush.h>
  25#include <asm/tlbflush.h>
  26
  27#include "kasan.h"
  28
  29bool __kasan_check_read(const volatile void *p, unsigned int size)
  30{
  31        return kasan_check_range((unsigned long)p, size, false, _RET_IP_);
  32}
  33EXPORT_SYMBOL(__kasan_check_read);
  34
  35bool __kasan_check_write(const volatile void *p, unsigned int size)
  36{
  37        return kasan_check_range((unsigned long)p, size, true, _RET_IP_);
  38}
  39EXPORT_SYMBOL(__kasan_check_write);
  40
  41#undef memset
  42void *memset(void *addr, int c, size_t len)
  43{
  44        if (!kasan_check_range((unsigned long)addr, len, true, _RET_IP_))
  45                return NULL;
  46
  47        return __memset(addr, c, len);
  48}
  49
  50#ifdef __HAVE_ARCH_MEMMOVE
  51#undef memmove
  52void *memmove(void *dest, const void *src, size_t len)
  53{
  54        if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
  55            !kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
  56                return NULL;
  57
  58        return __memmove(dest, src, len);
  59}
  60#endif
  61
  62#undef memcpy
  63void *memcpy(void *dest, const void *src, size_t len)
  64{
  65        if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
  66            !kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
  67                return NULL;
  68
  69        return __memcpy(dest, src, len);
  70}
  71
  72void kasan_poison(const void *addr, size_t size, u8 value, bool init)
  73{
  74        void *shadow_start, *shadow_end;
  75
  76        if (!kasan_arch_is_ready())
  77                return;
  78
  79        /*
  80         * Perform shadow offset calculation based on untagged address, as
  81         * some of the callers (e.g. kasan_poison_object_data) pass tagged
  82         * addresses to this function.
  83         */
  84        addr = kasan_reset_tag(addr);
  85
  86        /* Skip KFENCE memory if called explicitly outside of sl*b. */
  87        if (is_kfence_address(addr))
  88                return;
  89
  90        if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
  91                return;
  92        if (WARN_ON(size & KASAN_GRANULE_MASK))
  93                return;
  94
  95        shadow_start = kasan_mem_to_shadow(addr);
  96        shadow_end = kasan_mem_to_shadow(addr + size);
  97
  98        __memset(shadow_start, value, shadow_end - shadow_start);
  99}
 100EXPORT_SYMBOL(kasan_poison);
 101
 102#ifdef CONFIG_KASAN_GENERIC
 103void kasan_poison_last_granule(const void *addr, size_t size)
 104{
 105        if (!kasan_arch_is_ready())
 106                return;
 107
 108        if (size & KASAN_GRANULE_MASK) {
 109                u8 *shadow = (u8 *)kasan_mem_to_shadow(addr + size);
 110                *shadow = size & KASAN_GRANULE_MASK;
 111        }
 112}
 113#endif
 114
 115void kasan_unpoison(const void *addr, size_t size, bool init)
 116{
 117        u8 tag = get_tag(addr);
 118
 119        /*
 120         * Perform shadow offset calculation based on untagged address, as
 121         * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
 122         * addresses to this function.
 123         */
 124        addr = kasan_reset_tag(addr);
 125
 126        /*
 127         * Skip KFENCE memory if called explicitly outside of sl*b. Also note
 128         * that calls to ksize(), where size is not a multiple of machine-word
 129         * size, would otherwise poison the invalid portion of the word.
 130         */
 131        if (is_kfence_address(addr))
 132                return;
 133
 134        if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
 135                return;
 136
 137        /* Unpoison all granules that cover the object. */
 138        kasan_poison(addr, round_up(size, KASAN_GRANULE_SIZE), tag, false);
 139
 140        /* Partially poison the last granule for the generic mode. */
 141        if (IS_ENABLED(CONFIG_KASAN_GENERIC))
 142                kasan_poison_last_granule(addr, size);
 143}
 144
 145#ifdef CONFIG_MEMORY_HOTPLUG
 146static bool shadow_mapped(unsigned long addr)
 147{
 148        pgd_t *pgd = pgd_offset_k(addr);
 149        p4d_t *p4d;
 150        pud_t *pud;
 151        pmd_t *pmd;
 152        pte_t *pte;
 153
 154        if (pgd_none(*pgd))
 155                return false;
 156        p4d = p4d_offset(pgd, addr);
 157        if (p4d_none(*p4d))
 158                return false;
 159        pud = pud_offset(p4d, addr);
 160        if (pud_none(*pud))
 161                return false;
 162
 163        /*
 164         * We can't use pud_large() or pud_huge(), the first one is
 165         * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
 166         * pud_bad(), if pud is bad then it's bad because it's huge.
 167         */
 168        if (pud_bad(*pud))
 169                return true;
 170        pmd = pmd_offset(pud, addr);
 171        if (pmd_none(*pmd))
 172                return false;
 173
 174        if (pmd_bad(*pmd))
 175                return true;
 176        pte = pte_offset_kernel(pmd, addr);
 177        return !pte_none(*pte);
 178}
 179
 180static int __meminit kasan_mem_notifier(struct notifier_block *nb,
 181                        unsigned long action, void *data)
 182{
 183        struct memory_notify *mem_data = data;
 184        unsigned long nr_shadow_pages, start_kaddr, shadow_start;
 185        unsigned long shadow_end, shadow_size;
 186
 187        nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
 188        start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
 189        shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
 190        shadow_size = nr_shadow_pages << PAGE_SHIFT;
 191        shadow_end = shadow_start + shadow_size;
 192
 193        if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
 194                WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE))
 195                return NOTIFY_BAD;
 196
 197        switch (action) {
 198        case MEM_GOING_ONLINE: {
 199                void *ret;
 200
 201                /*
 202                 * If shadow is mapped already than it must have been mapped
 203                 * during the boot. This could happen if we onlining previously
 204                 * offlined memory.
 205                 */
 206                if (shadow_mapped(shadow_start))
 207                        return NOTIFY_OK;
 208
 209                ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
 210                                        shadow_end, GFP_KERNEL,
 211                                        PAGE_KERNEL, VM_NO_GUARD,
 212                                        pfn_to_nid(mem_data->start_pfn),
 213                                        __builtin_return_address(0));
 214                if (!ret)
 215                        return NOTIFY_BAD;
 216
 217                kmemleak_ignore(ret);
 218                return NOTIFY_OK;
 219        }
 220        case MEM_CANCEL_ONLINE:
 221        case MEM_OFFLINE: {
 222                struct vm_struct *vm;
 223
 224                /*
 225                 * shadow_start was either mapped during boot by kasan_init()
 226                 * or during memory online by __vmalloc_node_range().
 227                 * In the latter case we can use vfree() to free shadow.
 228                 * Non-NULL result of the find_vm_area() will tell us if
 229                 * that was the second case.
 230                 *
 231                 * Currently it's not possible to free shadow mapped
 232                 * during boot by kasan_init(). It's because the code
 233                 * to do that hasn't been written yet. So we'll just
 234                 * leak the memory.
 235                 */
 236                vm = find_vm_area((void *)shadow_start);
 237                if (vm)
 238                        vfree((void *)shadow_start);
 239        }
 240        }
 241
 242        return NOTIFY_OK;
 243}
 244
 245static int __init kasan_memhotplug_init(void)
 246{
 247        hotplug_memory_notifier(kasan_mem_notifier, 0);
 248
 249        return 0;
 250}
 251
 252core_initcall(kasan_memhotplug_init);
 253#endif
 254
 255#ifdef CONFIG_KASAN_VMALLOC
 256
 257static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
 258                                      void *unused)
 259{
 260        unsigned long page;
 261        pte_t pte;
 262
 263        if (likely(!pte_none(*ptep)))
 264                return 0;
 265
 266        page = __get_free_page(GFP_KERNEL);
 267        if (!page)
 268                return -ENOMEM;
 269
 270        memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
 271        pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
 272
 273        spin_lock(&init_mm.page_table_lock);
 274        if (likely(pte_none(*ptep))) {
 275                set_pte_at(&init_mm, addr, ptep, pte);
 276                page = 0;
 277        }
 278        spin_unlock(&init_mm.page_table_lock);
 279        if (page)
 280                free_page(page);
 281        return 0;
 282}
 283
 284int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
 285{
 286        unsigned long shadow_start, shadow_end;
 287        int ret;
 288
 289        if (!is_vmalloc_or_module_addr((void *)addr))
 290                return 0;
 291
 292        shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
 293        shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
 294        shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
 295        shadow_end = ALIGN(shadow_end, PAGE_SIZE);
 296
 297        ret = apply_to_page_range(&init_mm, shadow_start,
 298                                  shadow_end - shadow_start,
 299                                  kasan_populate_vmalloc_pte, NULL);
 300        if (ret)
 301                return ret;
 302
 303        flush_cache_vmap(shadow_start, shadow_end);
 304
 305        /*
 306         * We need to be careful about inter-cpu effects here. Consider:
 307         *
 308         *   CPU#0                                CPU#1
 309         * WRITE_ONCE(p, vmalloc(100));         while (x = READ_ONCE(p)) ;
 310         *                                      p[99] = 1;
 311         *
 312         * With compiler instrumentation, that ends up looking like this:
 313         *
 314         *   CPU#0                                CPU#1
 315         * // vmalloc() allocates memory
 316         * // let a = area->addr
 317         * // we reach kasan_populate_vmalloc
 318         * // and call kasan_unpoison:
 319         * STORE shadow(a), unpoison_val
 320         * ...
 321         * STORE shadow(a+99), unpoison_val     x = LOAD p
 322         * // rest of vmalloc process           <data dependency>
 323         * STORE p, a                           LOAD shadow(x+99)
 324         *
 325         * If there is no barrier between the end of unpoisoning the shadow
 326         * and the store of the result to p, the stores could be committed
 327         * in a different order by CPU#0, and CPU#1 could erroneously observe
 328         * poison in the shadow.
 329         *
 330         * We need some sort of barrier between the stores.
 331         *
 332         * In the vmalloc() case, this is provided by a smp_wmb() in
 333         * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
 334         * get_vm_area() and friends, the caller gets shadow allocated but
 335         * doesn't have any pages mapped into the virtual address space that
 336         * has been reserved. Mapping those pages in will involve taking and
 337         * releasing a page-table lock, which will provide the barrier.
 338         */
 339
 340        return 0;
 341}
 342
 343/*
 344 * Poison the shadow for a vmalloc region. Called as part of the
 345 * freeing process at the time the region is freed.
 346 */
 347void kasan_poison_vmalloc(const void *start, unsigned long size)
 348{
 349        if (!is_vmalloc_or_module_addr(start))
 350                return;
 351
 352        size = round_up(size, KASAN_GRANULE_SIZE);
 353        kasan_poison(start, size, KASAN_VMALLOC_INVALID, false);
 354}
 355
 356void kasan_unpoison_vmalloc(const void *start, unsigned long size)
 357{
 358        if (!is_vmalloc_or_module_addr(start))
 359                return;
 360
 361        kasan_unpoison(start, size, false);
 362}
 363
 364static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
 365                                        void *unused)
 366{
 367        unsigned long page;
 368
 369        page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
 370
 371        spin_lock(&init_mm.page_table_lock);
 372
 373        if (likely(!pte_none(*ptep))) {
 374                pte_clear(&init_mm, addr, ptep);
 375                free_page(page);
 376        }
 377        spin_unlock(&init_mm.page_table_lock);
 378
 379        return 0;
 380}
 381
 382/*
 383 * Release the backing for the vmalloc region [start, end), which
 384 * lies within the free region [free_region_start, free_region_end).
 385 *
 386 * This can be run lazily, long after the region was freed. It runs
 387 * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
 388 * infrastructure.
 389 *
 390 * How does this work?
 391 * -------------------
 392 *
 393 * We have a region that is page aligned, labeled as A.
 394 * That might not map onto the shadow in a way that is page-aligned:
 395 *
 396 *                    start                     end
 397 *                    v                         v
 398 * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
 399 *  -------- -------- --------          -------- --------
 400 *      |        |       |                 |        |
 401 *      |        |       |         /-------/        |
 402 *      \-------\|/------/         |/---------------/
 403 *              |||                ||
 404 *             |??AAAAAA|AAAAAAAA|AA??????|                < shadow
 405 *                 (1)      (2)      (3)
 406 *
 407 * First we align the start upwards and the end downwards, so that the
 408 * shadow of the region aligns with shadow page boundaries. In the
 409 * example, this gives us the shadow page (2). This is the shadow entirely
 410 * covered by this allocation.
 411 *
 412 * Then we have the tricky bits. We want to know if we can free the
 413 * partially covered shadow pages - (1) and (3) in the example. For this,
 414 * we are given the start and end of the free region that contains this
 415 * allocation. Extending our previous example, we could have:
 416 *
 417 *  free_region_start                                    free_region_end
 418 *  |                 start                     end      |
 419 *  v                 v                         v        v
 420 * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
 421 *  -------- -------- --------          -------- --------
 422 *      |        |       |                 |        |
 423 *      |        |       |         /-------/        |
 424 *      \-------\|/------/         |/---------------/
 425 *              |||                ||
 426 *             |FFAAAAAA|AAAAAAAA|AAF?????|                < shadow
 427 *                 (1)      (2)      (3)
 428 *
 429 * Once again, we align the start of the free region up, and the end of
 430 * the free region down so that the shadow is page aligned. So we can free
 431 * page (1) - we know no allocation currently uses anything in that page,
 432 * because all of it is in the vmalloc free region. But we cannot free
 433 * page (3), because we can't be sure that the rest of it is unused.
 434 *
 435 * We only consider pages that contain part of the original region for
 436 * freeing: we don't try to free other pages from the free region or we'd
 437 * end up trying to free huge chunks of virtual address space.
 438 *
 439 * Concurrency
 440 * -----------
 441 *
 442 * How do we know that we're not freeing a page that is simultaneously
 443 * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
 444 *
 445 * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
 446 * at the same time. While we run under free_vmap_area_lock, the population
 447 * code does not.
 448 *
 449 * free_vmap_area_lock instead operates to ensure that the larger range
 450 * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
 451 * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
 452 * no space identified as free will become used while we are running. This
 453 * means that so long as we are careful with alignment and only free shadow
 454 * pages entirely covered by the free region, we will not run in to any
 455 * trouble - any simultaneous allocations will be for disjoint regions.
 456 */
 457void kasan_release_vmalloc(unsigned long start, unsigned long end,
 458                           unsigned long free_region_start,
 459                           unsigned long free_region_end)
 460{
 461        void *shadow_start, *shadow_end;
 462        unsigned long region_start, region_end;
 463        unsigned long size;
 464
 465        region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE);
 466        region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE);
 467
 468        free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE);
 469
 470        if (start != region_start &&
 471            free_region_start < region_start)
 472                region_start -= KASAN_MEMORY_PER_SHADOW_PAGE;
 473
 474        free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE);
 475
 476        if (end != region_end &&
 477            free_region_end > region_end)
 478                region_end += KASAN_MEMORY_PER_SHADOW_PAGE;
 479
 480        shadow_start = kasan_mem_to_shadow((void *)region_start);
 481        shadow_end = kasan_mem_to_shadow((void *)region_end);
 482
 483        if (shadow_end > shadow_start) {
 484                size = shadow_end - shadow_start;
 485                apply_to_existing_page_range(&init_mm,
 486                                             (unsigned long)shadow_start,
 487                                             size, kasan_depopulate_vmalloc_pte,
 488                                             NULL);
 489                flush_tlb_kernel_range((unsigned long)shadow_start,
 490                                       (unsigned long)shadow_end);
 491        }
 492}
 493
 494#else /* CONFIG_KASAN_VMALLOC */
 495
 496int kasan_module_alloc(void *addr, size_t size)
 497{
 498        void *ret;
 499        size_t scaled_size;
 500        size_t shadow_size;
 501        unsigned long shadow_start;
 502
 503        shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
 504        scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
 505                                KASAN_SHADOW_SCALE_SHIFT;
 506        shadow_size = round_up(scaled_size, PAGE_SIZE);
 507
 508        if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
 509                return -EINVAL;
 510
 511        ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
 512                        shadow_start + shadow_size,
 513                        GFP_KERNEL,
 514                        PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
 515                        __builtin_return_address(0));
 516
 517        if (ret) {
 518                __memset(ret, KASAN_SHADOW_INIT, shadow_size);
 519                find_vm_area(addr)->flags |= VM_KASAN;
 520                kmemleak_ignore(ret);
 521                return 0;
 522        }
 523
 524        return -ENOMEM;
 525}
 526
 527void kasan_free_shadow(const struct vm_struct *vm)
 528{
 529        if (vm->flags & VM_KASAN)
 530                vfree(kasan_mem_to_shadow(vm->addr));
 531}
 532
 533#endif
 534