linux/mm/ksm.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Memory merging support.
   4 *
   5 * This code enables dynamic sharing of identical pages found in different
   6 * memory areas, even if they are not shared by fork()
   7 *
   8 * Copyright (C) 2008-2009 Red Hat, Inc.
   9 * Authors:
  10 *      Izik Eidus
  11 *      Andrea Arcangeli
  12 *      Chris Wright
  13 *      Hugh Dickins
  14 */
  15
  16#include <linux/errno.h>
  17#include <linux/mm.h>
  18#include <linux/fs.h>
  19#include <linux/mman.h>
  20#include <linux/sched.h>
  21#include <linux/sched/mm.h>
  22#include <linux/sched/coredump.h>
  23#include <linux/rwsem.h>
  24#include <linux/pagemap.h>
  25#include <linux/rmap.h>
  26#include <linux/spinlock.h>
  27#include <linux/xxhash.h>
  28#include <linux/delay.h>
  29#include <linux/kthread.h>
  30#include <linux/wait.h>
  31#include <linux/slab.h>
  32#include <linux/rbtree.h>
  33#include <linux/memory.h>
  34#include <linux/mmu_notifier.h>
  35#include <linux/swap.h>
  36#include <linux/ksm.h>
  37#include <linux/hashtable.h>
  38#include <linux/freezer.h>
  39#include <linux/oom.h>
  40#include <linux/numa.h>
  41
  42#include <asm/tlbflush.h>
  43#include "internal.h"
  44
  45#ifdef CONFIG_NUMA
  46#define NUMA(x)         (x)
  47#define DO_NUMA(x)      do { (x); } while (0)
  48#else
  49#define NUMA(x)         (0)
  50#define DO_NUMA(x)      do { } while (0)
  51#endif
  52
  53/**
  54 * DOC: Overview
  55 *
  56 * A few notes about the KSM scanning process,
  57 * to make it easier to understand the data structures below:
  58 *
  59 * In order to reduce excessive scanning, KSM sorts the memory pages by their
  60 * contents into a data structure that holds pointers to the pages' locations.
  61 *
  62 * Since the contents of the pages may change at any moment, KSM cannot just
  63 * insert the pages into a normal sorted tree and expect it to find anything.
  64 * Therefore KSM uses two data structures - the stable and the unstable tree.
  65 *
  66 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
  67 * by their contents.  Because each such page is write-protected, searching on
  68 * this tree is fully assured to be working (except when pages are unmapped),
  69 * and therefore this tree is called the stable tree.
  70 *
  71 * The stable tree node includes information required for reverse
  72 * mapping from a KSM page to virtual addresses that map this page.
  73 *
  74 * In order to avoid large latencies of the rmap walks on KSM pages,
  75 * KSM maintains two types of nodes in the stable tree:
  76 *
  77 * * the regular nodes that keep the reverse mapping structures in a
  78 *   linked list
  79 * * the "chains" that link nodes ("dups") that represent the same
  80 *   write protected memory content, but each "dup" corresponds to a
  81 *   different KSM page copy of that content
  82 *
  83 * Internally, the regular nodes, "dups" and "chains" are represented
  84 * using the same struct stable_node structure.
  85 *
  86 * In addition to the stable tree, KSM uses a second data structure called the
  87 * unstable tree: this tree holds pointers to pages which have been found to
  88 * be "unchanged for a period of time".  The unstable tree sorts these pages
  89 * by their contents, but since they are not write-protected, KSM cannot rely
  90 * upon the unstable tree to work correctly - the unstable tree is liable to
  91 * be corrupted as its contents are modified, and so it is called unstable.
  92 *
  93 * KSM solves this problem by several techniques:
  94 *
  95 * 1) The unstable tree is flushed every time KSM completes scanning all
  96 *    memory areas, and then the tree is rebuilt again from the beginning.
  97 * 2) KSM will only insert into the unstable tree, pages whose hash value
  98 *    has not changed since the previous scan of all memory areas.
  99 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
 100 *    colors of the nodes and not on their contents, assuring that even when
 101 *    the tree gets "corrupted" it won't get out of balance, so scanning time
 102 *    remains the same (also, searching and inserting nodes in an rbtree uses
 103 *    the same algorithm, so we have no overhead when we flush and rebuild).
 104 * 4) KSM never flushes the stable tree, which means that even if it were to
 105 *    take 10 attempts to find a page in the unstable tree, once it is found,
 106 *    it is secured in the stable tree.  (When we scan a new page, we first
 107 *    compare it against the stable tree, and then against the unstable tree.)
 108 *
 109 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
 110 * stable trees and multiple unstable trees: one of each for each NUMA node.
 111 */
 112
 113/**
 114 * struct mm_slot - ksm information per mm that is being scanned
 115 * @link: link to the mm_slots hash list
 116 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
 117 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
 118 * @mm: the mm that this information is valid for
 119 */
 120struct mm_slot {
 121        struct hlist_node link;
 122        struct list_head mm_list;
 123        struct rmap_item *rmap_list;
 124        struct mm_struct *mm;
 125};
 126
 127/**
 128 * struct ksm_scan - cursor for scanning
 129 * @mm_slot: the current mm_slot we are scanning
 130 * @address: the next address inside that to be scanned
 131 * @rmap_list: link to the next rmap to be scanned in the rmap_list
 132 * @seqnr: count of completed full scans (needed when removing unstable node)
 133 *
 134 * There is only the one ksm_scan instance of this cursor structure.
 135 */
 136struct ksm_scan {
 137        struct mm_slot *mm_slot;
 138        unsigned long address;
 139        struct rmap_item **rmap_list;
 140        unsigned long seqnr;
 141};
 142
 143/**
 144 * struct stable_node - node of the stable rbtree
 145 * @node: rb node of this ksm page in the stable tree
 146 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
 147 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
 148 * @list: linked into migrate_nodes, pending placement in the proper node tree
 149 * @hlist: hlist head of rmap_items using this ksm page
 150 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
 151 * @chain_prune_time: time of the last full garbage collection
 152 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
 153 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
 154 */
 155struct stable_node {
 156        union {
 157                struct rb_node node;    /* when node of stable tree */
 158                struct {                /* when listed for migration */
 159                        struct list_head *head;
 160                        struct {
 161                                struct hlist_node hlist_dup;
 162                                struct list_head list;
 163                        };
 164                };
 165        };
 166        struct hlist_head hlist;
 167        union {
 168                unsigned long kpfn;
 169                unsigned long chain_prune_time;
 170        };
 171        /*
 172         * STABLE_NODE_CHAIN can be any negative number in
 173         * rmap_hlist_len negative range, but better not -1 to be able
 174         * to reliably detect underflows.
 175         */
 176#define STABLE_NODE_CHAIN -1024
 177        int rmap_hlist_len;
 178#ifdef CONFIG_NUMA
 179        int nid;
 180#endif
 181};
 182
 183/**
 184 * struct rmap_item - reverse mapping item for virtual addresses
 185 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
 186 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
 187 * @nid: NUMA node id of unstable tree in which linked (may not match page)
 188 * @mm: the memory structure this rmap_item is pointing into
 189 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
 190 * @oldchecksum: previous checksum of the page at that virtual address
 191 * @node: rb node of this rmap_item in the unstable tree
 192 * @head: pointer to stable_node heading this list in the stable tree
 193 * @hlist: link into hlist of rmap_items hanging off that stable_node
 194 */
 195struct rmap_item {
 196        struct rmap_item *rmap_list;
 197        union {
 198                struct anon_vma *anon_vma;      /* when stable */
 199#ifdef CONFIG_NUMA
 200                int nid;                /* when node of unstable tree */
 201#endif
 202        };
 203        struct mm_struct *mm;
 204        unsigned long address;          /* + low bits used for flags below */
 205        unsigned int oldchecksum;       /* when unstable */
 206        union {
 207                struct rb_node node;    /* when node of unstable tree */
 208                struct {                /* when listed from stable tree */
 209                        struct stable_node *head;
 210                        struct hlist_node hlist;
 211                };
 212        };
 213};
 214
 215#define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
 216#define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
 217#define STABLE_FLAG     0x200   /* is listed from the stable tree */
 218
 219/* The stable and unstable tree heads */
 220static struct rb_root one_stable_tree[1] = { RB_ROOT };
 221static struct rb_root one_unstable_tree[1] = { RB_ROOT };
 222static struct rb_root *root_stable_tree = one_stable_tree;
 223static struct rb_root *root_unstable_tree = one_unstable_tree;
 224
 225/* Recently migrated nodes of stable tree, pending proper placement */
 226static LIST_HEAD(migrate_nodes);
 227#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
 228
 229#define MM_SLOTS_HASH_BITS 10
 230static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
 231
 232static struct mm_slot ksm_mm_head = {
 233        .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
 234};
 235static struct ksm_scan ksm_scan = {
 236        .mm_slot = &ksm_mm_head,
 237};
 238
 239static struct kmem_cache *rmap_item_cache;
 240static struct kmem_cache *stable_node_cache;
 241static struct kmem_cache *mm_slot_cache;
 242
 243/* The number of nodes in the stable tree */
 244static unsigned long ksm_pages_shared;
 245
 246/* The number of page slots additionally sharing those nodes */
 247static unsigned long ksm_pages_sharing;
 248
 249/* The number of nodes in the unstable tree */
 250static unsigned long ksm_pages_unshared;
 251
 252/* The number of rmap_items in use: to calculate pages_volatile */
 253static unsigned long ksm_rmap_items;
 254
 255/* The number of stable_node chains */
 256static unsigned long ksm_stable_node_chains;
 257
 258/* The number of stable_node dups linked to the stable_node chains */
 259static unsigned long ksm_stable_node_dups;
 260
 261/* Delay in pruning stale stable_node_dups in the stable_node_chains */
 262static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
 263
 264/* Maximum number of page slots sharing a stable node */
 265static int ksm_max_page_sharing = 256;
 266
 267/* Number of pages ksmd should scan in one batch */
 268static unsigned int ksm_thread_pages_to_scan = 100;
 269
 270/* Milliseconds ksmd should sleep between batches */
 271static unsigned int ksm_thread_sleep_millisecs = 20;
 272
 273/* Checksum of an empty (zeroed) page */
 274static unsigned int zero_checksum __read_mostly;
 275
 276/* Whether to merge empty (zeroed) pages with actual zero pages */
 277static bool ksm_use_zero_pages __read_mostly;
 278
 279#ifdef CONFIG_NUMA
 280/* Zeroed when merging across nodes is not allowed */
 281static unsigned int ksm_merge_across_nodes = 1;
 282static int ksm_nr_node_ids = 1;
 283#else
 284#define ksm_merge_across_nodes  1U
 285#define ksm_nr_node_ids         1
 286#endif
 287
 288#define KSM_RUN_STOP    0
 289#define KSM_RUN_MERGE   1
 290#define KSM_RUN_UNMERGE 2
 291#define KSM_RUN_OFFLINE 4
 292static unsigned long ksm_run = KSM_RUN_STOP;
 293static void wait_while_offlining(void);
 294
 295static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
 296static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
 297static DEFINE_MUTEX(ksm_thread_mutex);
 298static DEFINE_SPINLOCK(ksm_mmlist_lock);
 299
 300#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
 301                sizeof(struct __struct), __alignof__(struct __struct),\
 302                (__flags), NULL)
 303
 304static int __init ksm_slab_init(void)
 305{
 306        rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
 307        if (!rmap_item_cache)
 308                goto out;
 309
 310        stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
 311        if (!stable_node_cache)
 312                goto out_free1;
 313
 314        mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
 315        if (!mm_slot_cache)
 316                goto out_free2;
 317
 318        return 0;
 319
 320out_free2:
 321        kmem_cache_destroy(stable_node_cache);
 322out_free1:
 323        kmem_cache_destroy(rmap_item_cache);
 324out:
 325        return -ENOMEM;
 326}
 327
 328static void __init ksm_slab_free(void)
 329{
 330        kmem_cache_destroy(mm_slot_cache);
 331        kmem_cache_destroy(stable_node_cache);
 332        kmem_cache_destroy(rmap_item_cache);
 333        mm_slot_cache = NULL;
 334}
 335
 336static __always_inline bool is_stable_node_chain(struct stable_node *chain)
 337{
 338        return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
 339}
 340
 341static __always_inline bool is_stable_node_dup(struct stable_node *dup)
 342{
 343        return dup->head == STABLE_NODE_DUP_HEAD;
 344}
 345
 346static inline void stable_node_chain_add_dup(struct stable_node *dup,
 347                                             struct stable_node *chain)
 348{
 349        VM_BUG_ON(is_stable_node_dup(dup));
 350        dup->head = STABLE_NODE_DUP_HEAD;
 351        VM_BUG_ON(!is_stable_node_chain(chain));
 352        hlist_add_head(&dup->hlist_dup, &chain->hlist);
 353        ksm_stable_node_dups++;
 354}
 355
 356static inline void __stable_node_dup_del(struct stable_node *dup)
 357{
 358        VM_BUG_ON(!is_stable_node_dup(dup));
 359        hlist_del(&dup->hlist_dup);
 360        ksm_stable_node_dups--;
 361}
 362
 363static inline void stable_node_dup_del(struct stable_node *dup)
 364{
 365        VM_BUG_ON(is_stable_node_chain(dup));
 366        if (is_stable_node_dup(dup))
 367                __stable_node_dup_del(dup);
 368        else
 369                rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
 370#ifdef CONFIG_DEBUG_VM
 371        dup->head = NULL;
 372#endif
 373}
 374
 375static inline struct rmap_item *alloc_rmap_item(void)
 376{
 377        struct rmap_item *rmap_item;
 378
 379        rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
 380                                                __GFP_NORETRY | __GFP_NOWARN);
 381        if (rmap_item)
 382                ksm_rmap_items++;
 383        return rmap_item;
 384}
 385
 386static inline void free_rmap_item(struct rmap_item *rmap_item)
 387{
 388        ksm_rmap_items--;
 389        rmap_item->mm = NULL;   /* debug safety */
 390        kmem_cache_free(rmap_item_cache, rmap_item);
 391}
 392
 393static inline struct stable_node *alloc_stable_node(void)
 394{
 395        /*
 396         * The allocation can take too long with GFP_KERNEL when memory is under
 397         * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
 398         * grants access to memory reserves, helping to avoid this problem.
 399         */
 400        return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
 401}
 402
 403static inline void free_stable_node(struct stable_node *stable_node)
 404{
 405        VM_BUG_ON(stable_node->rmap_hlist_len &&
 406                  !is_stable_node_chain(stable_node));
 407        kmem_cache_free(stable_node_cache, stable_node);
 408}
 409
 410static inline struct mm_slot *alloc_mm_slot(void)
 411{
 412        if (!mm_slot_cache)     /* initialization failed */
 413                return NULL;
 414        return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
 415}
 416
 417static inline void free_mm_slot(struct mm_slot *mm_slot)
 418{
 419        kmem_cache_free(mm_slot_cache, mm_slot);
 420}
 421
 422static struct mm_slot *get_mm_slot(struct mm_struct *mm)
 423{
 424        struct mm_slot *slot;
 425
 426        hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
 427                if (slot->mm == mm)
 428                        return slot;
 429
 430        return NULL;
 431}
 432
 433static void insert_to_mm_slots_hash(struct mm_struct *mm,
 434                                    struct mm_slot *mm_slot)
 435{
 436        mm_slot->mm = mm;
 437        hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
 438}
 439
 440/*
 441 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
 442 * page tables after it has passed through ksm_exit() - which, if necessary,
 443 * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
 444 * a special flag: they can just back out as soon as mm_users goes to zero.
 445 * ksm_test_exit() is used throughout to make this test for exit: in some
 446 * places for correctness, in some places just to avoid unnecessary work.
 447 */
 448static inline bool ksm_test_exit(struct mm_struct *mm)
 449{
 450        return atomic_read(&mm->mm_users) == 0;
 451}
 452
 453/*
 454 * We use break_ksm to break COW on a ksm page: it's a stripped down
 455 *
 456 *      if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
 457 *              put_page(page);
 458 *
 459 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
 460 * in case the application has unmapped and remapped mm,addr meanwhile.
 461 * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
 462 * mmap of /dev/mem, where we would not want to touch it.
 463 *
 464 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
 465 * of the process that owns 'vma'.  We also do not want to enforce
 466 * protection keys here anyway.
 467 */
 468static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
 469{
 470        struct page *page;
 471        vm_fault_t ret = 0;
 472
 473        do {
 474                cond_resched();
 475                page = follow_page(vma, addr,
 476                                FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
 477                if (IS_ERR_OR_NULL(page))
 478                        break;
 479                if (PageKsm(page))
 480                        ret = handle_mm_fault(vma, addr,
 481                                              FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
 482                                              NULL);
 483                else
 484                        ret = VM_FAULT_WRITE;
 485                put_page(page);
 486        } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
 487        /*
 488         * We must loop because handle_mm_fault() may back out if there's
 489         * any difficulty e.g. if pte accessed bit gets updated concurrently.
 490         *
 491         * VM_FAULT_WRITE is what we have been hoping for: it indicates that
 492         * COW has been broken, even if the vma does not permit VM_WRITE;
 493         * but note that a concurrent fault might break PageKsm for us.
 494         *
 495         * VM_FAULT_SIGBUS could occur if we race with truncation of the
 496         * backing file, which also invalidates anonymous pages: that's
 497         * okay, that truncation will have unmapped the PageKsm for us.
 498         *
 499         * VM_FAULT_OOM: at the time of writing (late July 2009), setting
 500         * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
 501         * current task has TIF_MEMDIE set, and will be OOM killed on return
 502         * to user; and ksmd, having no mm, would never be chosen for that.
 503         *
 504         * But if the mm is in a limited mem_cgroup, then the fault may fail
 505         * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
 506         * even ksmd can fail in this way - though it's usually breaking ksm
 507         * just to undo a merge it made a moment before, so unlikely to oom.
 508         *
 509         * That's a pity: we might therefore have more kernel pages allocated
 510         * than we're counting as nodes in the stable tree; but ksm_do_scan
 511         * will retry to break_cow on each pass, so should recover the page
 512         * in due course.  The important thing is to not let VM_MERGEABLE
 513         * be cleared while any such pages might remain in the area.
 514         */
 515        return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
 516}
 517
 518static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
 519                unsigned long addr)
 520{
 521        struct vm_area_struct *vma;
 522        if (ksm_test_exit(mm))
 523                return NULL;
 524        vma = vma_lookup(mm, addr);
 525        if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 526                return NULL;
 527        return vma;
 528}
 529
 530static void break_cow(struct rmap_item *rmap_item)
 531{
 532        struct mm_struct *mm = rmap_item->mm;
 533        unsigned long addr = rmap_item->address;
 534        struct vm_area_struct *vma;
 535
 536        /*
 537         * It is not an accident that whenever we want to break COW
 538         * to undo, we also need to drop a reference to the anon_vma.
 539         */
 540        put_anon_vma(rmap_item->anon_vma);
 541
 542        mmap_read_lock(mm);
 543        vma = find_mergeable_vma(mm, addr);
 544        if (vma)
 545                break_ksm(vma, addr);
 546        mmap_read_unlock(mm);
 547}
 548
 549static struct page *get_mergeable_page(struct rmap_item *rmap_item)
 550{
 551        struct mm_struct *mm = rmap_item->mm;
 552        unsigned long addr = rmap_item->address;
 553        struct vm_area_struct *vma;
 554        struct page *page;
 555
 556        mmap_read_lock(mm);
 557        vma = find_mergeable_vma(mm, addr);
 558        if (!vma)
 559                goto out;
 560
 561        page = follow_page(vma, addr, FOLL_GET);
 562        if (IS_ERR_OR_NULL(page))
 563                goto out;
 564        if (PageAnon(page)) {
 565                flush_anon_page(vma, page, addr);
 566                flush_dcache_page(page);
 567        } else {
 568                put_page(page);
 569out:
 570                page = NULL;
 571        }
 572        mmap_read_unlock(mm);
 573        return page;
 574}
 575
 576/*
 577 * This helper is used for getting right index into array of tree roots.
 578 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
 579 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
 580 * every node has its own stable and unstable tree.
 581 */
 582static inline int get_kpfn_nid(unsigned long kpfn)
 583{
 584        return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
 585}
 586
 587static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
 588                                                   struct rb_root *root)
 589{
 590        struct stable_node *chain = alloc_stable_node();
 591        VM_BUG_ON(is_stable_node_chain(dup));
 592        if (likely(chain)) {
 593                INIT_HLIST_HEAD(&chain->hlist);
 594                chain->chain_prune_time = jiffies;
 595                chain->rmap_hlist_len = STABLE_NODE_CHAIN;
 596#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
 597                chain->nid = NUMA_NO_NODE; /* debug */
 598#endif
 599                ksm_stable_node_chains++;
 600
 601                /*
 602                 * Put the stable node chain in the first dimension of
 603                 * the stable tree and at the same time remove the old
 604                 * stable node.
 605                 */
 606                rb_replace_node(&dup->node, &chain->node, root);
 607
 608                /*
 609                 * Move the old stable node to the second dimension
 610                 * queued in the hlist_dup. The invariant is that all
 611                 * dup stable_nodes in the chain->hlist point to pages
 612                 * that are write protected and have the exact same
 613                 * content.
 614                 */
 615                stable_node_chain_add_dup(dup, chain);
 616        }
 617        return chain;
 618}
 619
 620static inline void free_stable_node_chain(struct stable_node *chain,
 621                                          struct rb_root *root)
 622{
 623        rb_erase(&chain->node, root);
 624        free_stable_node(chain);
 625        ksm_stable_node_chains--;
 626}
 627
 628static void remove_node_from_stable_tree(struct stable_node *stable_node)
 629{
 630        struct rmap_item *rmap_item;
 631
 632        /* check it's not STABLE_NODE_CHAIN or negative */
 633        BUG_ON(stable_node->rmap_hlist_len < 0);
 634
 635        hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
 636                if (rmap_item->hlist.next)
 637                        ksm_pages_sharing--;
 638                else
 639                        ksm_pages_shared--;
 640                VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
 641                stable_node->rmap_hlist_len--;
 642                put_anon_vma(rmap_item->anon_vma);
 643                rmap_item->address &= PAGE_MASK;
 644                cond_resched();
 645        }
 646
 647        /*
 648         * We need the second aligned pointer of the migrate_nodes
 649         * list_head to stay clear from the rb_parent_color union
 650         * (aligned and different than any node) and also different
 651         * from &migrate_nodes. This will verify that future list.h changes
 652         * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
 653         */
 654        BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
 655        BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
 656
 657        if (stable_node->head == &migrate_nodes)
 658                list_del(&stable_node->list);
 659        else
 660                stable_node_dup_del(stable_node);
 661        free_stable_node(stable_node);
 662}
 663
 664enum get_ksm_page_flags {
 665        GET_KSM_PAGE_NOLOCK,
 666        GET_KSM_PAGE_LOCK,
 667        GET_KSM_PAGE_TRYLOCK
 668};
 669
 670/*
 671 * get_ksm_page: checks if the page indicated by the stable node
 672 * is still its ksm page, despite having held no reference to it.
 673 * In which case we can trust the content of the page, and it
 674 * returns the gotten page; but if the page has now been zapped,
 675 * remove the stale node from the stable tree and return NULL.
 676 * But beware, the stable node's page might be being migrated.
 677 *
 678 * You would expect the stable_node to hold a reference to the ksm page.
 679 * But if it increments the page's count, swapping out has to wait for
 680 * ksmd to come around again before it can free the page, which may take
 681 * seconds or even minutes: much too unresponsive.  So instead we use a
 682 * "keyhole reference": access to the ksm page from the stable node peeps
 683 * out through its keyhole to see if that page still holds the right key,
 684 * pointing back to this stable node.  This relies on freeing a PageAnon
 685 * page to reset its page->mapping to NULL, and relies on no other use of
 686 * a page to put something that might look like our key in page->mapping.
 687 * is on its way to being freed; but it is an anomaly to bear in mind.
 688 */
 689static struct page *get_ksm_page(struct stable_node *stable_node,
 690                                 enum get_ksm_page_flags flags)
 691{
 692        struct page *page;
 693        void *expected_mapping;
 694        unsigned long kpfn;
 695
 696        expected_mapping = (void *)((unsigned long)stable_node |
 697                                        PAGE_MAPPING_KSM);
 698again:
 699        kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
 700        page = pfn_to_page(kpfn);
 701        if (READ_ONCE(page->mapping) != expected_mapping)
 702                goto stale;
 703
 704        /*
 705         * We cannot do anything with the page while its refcount is 0.
 706         * Usually 0 means free, or tail of a higher-order page: in which
 707         * case this node is no longer referenced, and should be freed;
 708         * however, it might mean that the page is under page_ref_freeze().
 709         * The __remove_mapping() case is easy, again the node is now stale;
 710         * the same is in reuse_ksm_page() case; but if page is swapcache
 711         * in migrate_page_move_mapping(), it might still be our page,
 712         * in which case it's essential to keep the node.
 713         */
 714        while (!get_page_unless_zero(page)) {
 715                /*
 716                 * Another check for page->mapping != expected_mapping would
 717                 * work here too.  We have chosen the !PageSwapCache test to
 718                 * optimize the common case, when the page is or is about to
 719                 * be freed: PageSwapCache is cleared (under spin_lock_irq)
 720                 * in the ref_freeze section of __remove_mapping(); but Anon
 721                 * page->mapping reset to NULL later, in free_pages_prepare().
 722                 */
 723                if (!PageSwapCache(page))
 724                        goto stale;
 725                cpu_relax();
 726        }
 727
 728        if (READ_ONCE(page->mapping) != expected_mapping) {
 729                put_page(page);
 730                goto stale;
 731        }
 732
 733        if (flags == GET_KSM_PAGE_TRYLOCK) {
 734                if (!trylock_page(page)) {
 735                        put_page(page);
 736                        return ERR_PTR(-EBUSY);
 737                }
 738        } else if (flags == GET_KSM_PAGE_LOCK)
 739                lock_page(page);
 740
 741        if (flags != GET_KSM_PAGE_NOLOCK) {
 742                if (READ_ONCE(page->mapping) != expected_mapping) {
 743                        unlock_page(page);
 744                        put_page(page);
 745                        goto stale;
 746                }
 747        }
 748        return page;
 749
 750stale:
 751        /*
 752         * We come here from above when page->mapping or !PageSwapCache
 753         * suggests that the node is stale; but it might be under migration.
 754         * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
 755         * before checking whether node->kpfn has been changed.
 756         */
 757        smp_rmb();
 758        if (READ_ONCE(stable_node->kpfn) != kpfn)
 759                goto again;
 760        remove_node_from_stable_tree(stable_node);
 761        return NULL;
 762}
 763
 764/*
 765 * Removing rmap_item from stable or unstable tree.
 766 * This function will clean the information from the stable/unstable tree.
 767 */
 768static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
 769{
 770        if (rmap_item->address & STABLE_FLAG) {
 771                struct stable_node *stable_node;
 772                struct page *page;
 773
 774                stable_node = rmap_item->head;
 775                page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
 776                if (!page)
 777                        goto out;
 778
 779                hlist_del(&rmap_item->hlist);
 780                unlock_page(page);
 781                put_page(page);
 782
 783                if (!hlist_empty(&stable_node->hlist))
 784                        ksm_pages_sharing--;
 785                else
 786                        ksm_pages_shared--;
 787                VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
 788                stable_node->rmap_hlist_len--;
 789
 790                put_anon_vma(rmap_item->anon_vma);
 791                rmap_item->head = NULL;
 792                rmap_item->address &= PAGE_MASK;
 793
 794        } else if (rmap_item->address & UNSTABLE_FLAG) {
 795                unsigned char age;
 796                /*
 797                 * Usually ksmd can and must skip the rb_erase, because
 798                 * root_unstable_tree was already reset to RB_ROOT.
 799                 * But be careful when an mm is exiting: do the rb_erase
 800                 * if this rmap_item was inserted by this scan, rather
 801                 * than left over from before.
 802                 */
 803                age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
 804                BUG_ON(age > 1);
 805                if (!age)
 806                        rb_erase(&rmap_item->node,
 807                                 root_unstable_tree + NUMA(rmap_item->nid));
 808                ksm_pages_unshared--;
 809                rmap_item->address &= PAGE_MASK;
 810        }
 811out:
 812        cond_resched();         /* we're called from many long loops */
 813}
 814
 815static void remove_trailing_rmap_items(struct rmap_item **rmap_list)
 816{
 817        while (*rmap_list) {
 818                struct rmap_item *rmap_item = *rmap_list;
 819                *rmap_list = rmap_item->rmap_list;
 820                remove_rmap_item_from_tree(rmap_item);
 821                free_rmap_item(rmap_item);
 822        }
 823}
 824
 825/*
 826 * Though it's very tempting to unmerge rmap_items from stable tree rather
 827 * than check every pte of a given vma, the locking doesn't quite work for
 828 * that - an rmap_item is assigned to the stable tree after inserting ksm
 829 * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
 830 * rmap_items from parent to child at fork time (so as not to waste time
 831 * if exit comes before the next scan reaches it).
 832 *
 833 * Similarly, although we'd like to remove rmap_items (so updating counts
 834 * and freeing memory) when unmerging an area, it's easier to leave that
 835 * to the next pass of ksmd - consider, for example, how ksmd might be
 836 * in cmp_and_merge_page on one of the rmap_items we would be removing.
 837 */
 838static int unmerge_ksm_pages(struct vm_area_struct *vma,
 839                             unsigned long start, unsigned long end)
 840{
 841        unsigned long addr;
 842        int err = 0;
 843
 844        for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
 845                if (ksm_test_exit(vma->vm_mm))
 846                        break;
 847                if (signal_pending(current))
 848                        err = -ERESTARTSYS;
 849                else
 850                        err = break_ksm(vma, addr);
 851        }
 852        return err;
 853}
 854
 855static inline struct stable_node *page_stable_node(struct page *page)
 856{
 857        return PageKsm(page) ? page_rmapping(page) : NULL;
 858}
 859
 860static inline void set_page_stable_node(struct page *page,
 861                                        struct stable_node *stable_node)
 862{
 863        page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
 864}
 865
 866#ifdef CONFIG_SYSFS
 867/*
 868 * Only called through the sysfs control interface:
 869 */
 870static int remove_stable_node(struct stable_node *stable_node)
 871{
 872        struct page *page;
 873        int err;
 874
 875        page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
 876        if (!page) {
 877                /*
 878                 * get_ksm_page did remove_node_from_stable_tree itself.
 879                 */
 880                return 0;
 881        }
 882
 883        /*
 884         * Page could be still mapped if this races with __mmput() running in
 885         * between ksm_exit() and exit_mmap(). Just refuse to let
 886         * merge_across_nodes/max_page_sharing be switched.
 887         */
 888        err = -EBUSY;
 889        if (!page_mapped(page)) {
 890                /*
 891                 * The stable node did not yet appear stale to get_ksm_page(),
 892                 * since that allows for an unmapped ksm page to be recognized
 893                 * right up until it is freed; but the node is safe to remove.
 894                 * This page might be in a pagevec waiting to be freed,
 895                 * or it might be PageSwapCache (perhaps under writeback),
 896                 * or it might have been removed from swapcache a moment ago.
 897                 */
 898                set_page_stable_node(page, NULL);
 899                remove_node_from_stable_tree(stable_node);
 900                err = 0;
 901        }
 902
 903        unlock_page(page);
 904        put_page(page);
 905        return err;
 906}
 907
 908static int remove_stable_node_chain(struct stable_node *stable_node,
 909                                    struct rb_root *root)
 910{
 911        struct stable_node *dup;
 912        struct hlist_node *hlist_safe;
 913
 914        if (!is_stable_node_chain(stable_node)) {
 915                VM_BUG_ON(is_stable_node_dup(stable_node));
 916                if (remove_stable_node(stable_node))
 917                        return true;
 918                else
 919                        return false;
 920        }
 921
 922        hlist_for_each_entry_safe(dup, hlist_safe,
 923                                  &stable_node->hlist, hlist_dup) {
 924                VM_BUG_ON(!is_stable_node_dup(dup));
 925                if (remove_stable_node(dup))
 926                        return true;
 927        }
 928        BUG_ON(!hlist_empty(&stable_node->hlist));
 929        free_stable_node_chain(stable_node, root);
 930        return false;
 931}
 932
 933static int remove_all_stable_nodes(void)
 934{
 935        struct stable_node *stable_node, *next;
 936        int nid;
 937        int err = 0;
 938
 939        for (nid = 0; nid < ksm_nr_node_ids; nid++) {
 940                while (root_stable_tree[nid].rb_node) {
 941                        stable_node = rb_entry(root_stable_tree[nid].rb_node,
 942                                                struct stable_node, node);
 943                        if (remove_stable_node_chain(stable_node,
 944                                                     root_stable_tree + nid)) {
 945                                err = -EBUSY;
 946                                break;  /* proceed to next nid */
 947                        }
 948                        cond_resched();
 949                }
 950        }
 951        list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
 952                if (remove_stable_node(stable_node))
 953                        err = -EBUSY;
 954                cond_resched();
 955        }
 956        return err;
 957}
 958
 959static int unmerge_and_remove_all_rmap_items(void)
 960{
 961        struct mm_slot *mm_slot;
 962        struct mm_struct *mm;
 963        struct vm_area_struct *vma;
 964        int err = 0;
 965
 966        spin_lock(&ksm_mmlist_lock);
 967        ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
 968                                                struct mm_slot, mm_list);
 969        spin_unlock(&ksm_mmlist_lock);
 970
 971        for (mm_slot = ksm_scan.mm_slot;
 972                        mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
 973                mm = mm_slot->mm;
 974                mmap_read_lock(mm);
 975                for (vma = mm->mmap; vma; vma = vma->vm_next) {
 976                        if (ksm_test_exit(mm))
 977                                break;
 978                        if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 979                                continue;
 980                        err = unmerge_ksm_pages(vma,
 981                                                vma->vm_start, vma->vm_end);
 982                        if (err)
 983                                goto error;
 984                }
 985
 986                remove_trailing_rmap_items(&mm_slot->rmap_list);
 987                mmap_read_unlock(mm);
 988
 989                spin_lock(&ksm_mmlist_lock);
 990                ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
 991                                                struct mm_slot, mm_list);
 992                if (ksm_test_exit(mm)) {
 993                        hash_del(&mm_slot->link);
 994                        list_del(&mm_slot->mm_list);
 995                        spin_unlock(&ksm_mmlist_lock);
 996
 997                        free_mm_slot(mm_slot);
 998                        clear_bit(MMF_VM_MERGEABLE, &mm->flags);
 999                        mmdrop(mm);
1000                } else
1001                        spin_unlock(&ksm_mmlist_lock);
1002        }
1003
1004        /* Clean up stable nodes, but don't worry if some are still busy */
1005        remove_all_stable_nodes();
1006        ksm_scan.seqnr = 0;
1007        return 0;
1008
1009error:
1010        mmap_read_unlock(mm);
1011        spin_lock(&ksm_mmlist_lock);
1012        ksm_scan.mm_slot = &ksm_mm_head;
1013        spin_unlock(&ksm_mmlist_lock);
1014        return err;
1015}
1016#endif /* CONFIG_SYSFS */
1017
1018static u32 calc_checksum(struct page *page)
1019{
1020        u32 checksum;
1021        void *addr = kmap_atomic(page);
1022        checksum = xxhash(addr, PAGE_SIZE, 0);
1023        kunmap_atomic(addr);
1024        return checksum;
1025}
1026
1027static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1028                              pte_t *orig_pte)
1029{
1030        struct mm_struct *mm = vma->vm_mm;
1031        struct page_vma_mapped_walk pvmw = {
1032                .page = page,
1033                .vma = vma,
1034        };
1035        int swapped;
1036        int err = -EFAULT;
1037        struct mmu_notifier_range range;
1038
1039        pvmw.address = page_address_in_vma(page, vma);
1040        if (pvmw.address == -EFAULT)
1041                goto out;
1042
1043        BUG_ON(PageTransCompound(page));
1044
1045        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1046                                pvmw.address,
1047                                pvmw.address + PAGE_SIZE);
1048        mmu_notifier_invalidate_range_start(&range);
1049
1050        if (!page_vma_mapped_walk(&pvmw))
1051                goto out_mn;
1052        if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1053                goto out_unlock;
1054
1055        if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1056            (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1057                                                mm_tlb_flush_pending(mm)) {
1058                pte_t entry;
1059
1060                swapped = PageSwapCache(page);
1061                flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1062                /*
1063                 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1064                 * take any lock, therefore the check that we are going to make
1065                 * with the pagecount against the mapcount is racy and
1066                 * O_DIRECT can happen right after the check.
1067                 * So we clear the pte and flush the tlb before the check
1068                 * this assure us that no O_DIRECT can happen after the check
1069                 * or in the middle of the check.
1070                 *
1071                 * No need to notify as we are downgrading page table to read
1072                 * only not changing it to point to a new page.
1073                 *
1074                 * See Documentation/vm/mmu_notifier.rst
1075                 */
1076                entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1077                /*
1078                 * Check that no O_DIRECT or similar I/O is in progress on the
1079                 * page
1080                 */
1081                if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1082                        set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1083                        goto out_unlock;
1084                }
1085                if (pte_dirty(entry))
1086                        set_page_dirty(page);
1087
1088                if (pte_protnone(entry))
1089                        entry = pte_mkclean(pte_clear_savedwrite(entry));
1090                else
1091                        entry = pte_mkclean(pte_wrprotect(entry));
1092                set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1093        }
1094        *orig_pte = *pvmw.pte;
1095        err = 0;
1096
1097out_unlock:
1098        page_vma_mapped_walk_done(&pvmw);
1099out_mn:
1100        mmu_notifier_invalidate_range_end(&range);
1101out:
1102        return err;
1103}
1104
1105/**
1106 * replace_page - replace page in vma by new ksm page
1107 * @vma:      vma that holds the pte pointing to page
1108 * @page:     the page we are replacing by kpage
1109 * @kpage:    the ksm page we replace page by
1110 * @orig_pte: the original value of the pte
1111 *
1112 * Returns 0 on success, -EFAULT on failure.
1113 */
1114static int replace_page(struct vm_area_struct *vma, struct page *page,
1115                        struct page *kpage, pte_t orig_pte)
1116{
1117        struct mm_struct *mm = vma->vm_mm;
1118        pmd_t *pmd;
1119        pte_t *ptep;
1120        pte_t newpte;
1121        spinlock_t *ptl;
1122        unsigned long addr;
1123        int err = -EFAULT;
1124        struct mmu_notifier_range range;
1125
1126        addr = page_address_in_vma(page, vma);
1127        if (addr == -EFAULT)
1128                goto out;
1129
1130        pmd = mm_find_pmd(mm, addr);
1131        if (!pmd)
1132                goto out;
1133
1134        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1135                                addr + PAGE_SIZE);
1136        mmu_notifier_invalidate_range_start(&range);
1137
1138        ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1139        if (!pte_same(*ptep, orig_pte)) {
1140                pte_unmap_unlock(ptep, ptl);
1141                goto out_mn;
1142        }
1143
1144        /*
1145         * No need to check ksm_use_zero_pages here: we can only have a
1146         * zero_page here if ksm_use_zero_pages was enabled already.
1147         */
1148        if (!is_zero_pfn(page_to_pfn(kpage))) {
1149                get_page(kpage);
1150                page_add_anon_rmap(kpage, vma, addr, false);
1151                newpte = mk_pte(kpage, vma->vm_page_prot);
1152        } else {
1153                newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1154                                               vma->vm_page_prot));
1155                /*
1156                 * We're replacing an anonymous page with a zero page, which is
1157                 * not anonymous. We need to do proper accounting otherwise we
1158                 * will get wrong values in /proc, and a BUG message in dmesg
1159                 * when tearing down the mm.
1160                 */
1161                dec_mm_counter(mm, MM_ANONPAGES);
1162        }
1163
1164        flush_cache_page(vma, addr, pte_pfn(*ptep));
1165        /*
1166         * No need to notify as we are replacing a read only page with another
1167         * read only page with the same content.
1168         *
1169         * See Documentation/vm/mmu_notifier.rst
1170         */
1171        ptep_clear_flush(vma, addr, ptep);
1172        set_pte_at_notify(mm, addr, ptep, newpte);
1173
1174        page_remove_rmap(page, false);
1175        if (!page_mapped(page))
1176                try_to_free_swap(page);
1177        put_page(page);
1178
1179        pte_unmap_unlock(ptep, ptl);
1180        err = 0;
1181out_mn:
1182        mmu_notifier_invalidate_range_end(&range);
1183out:
1184        return err;
1185}
1186
1187/*
1188 * try_to_merge_one_page - take two pages and merge them into one
1189 * @vma: the vma that holds the pte pointing to page
1190 * @page: the PageAnon page that we want to replace with kpage
1191 * @kpage: the PageKsm page that we want to map instead of page,
1192 *         or NULL the first time when we want to use page as kpage.
1193 *
1194 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1195 */
1196static int try_to_merge_one_page(struct vm_area_struct *vma,
1197                                 struct page *page, struct page *kpage)
1198{
1199        pte_t orig_pte = __pte(0);
1200        int err = -EFAULT;
1201
1202        if (page == kpage)                      /* ksm page forked */
1203                return 0;
1204
1205        if (!PageAnon(page))
1206                goto out;
1207
1208        /*
1209         * We need the page lock to read a stable PageSwapCache in
1210         * write_protect_page().  We use trylock_page() instead of
1211         * lock_page() because we don't want to wait here - we
1212         * prefer to continue scanning and merging different pages,
1213         * then come back to this page when it is unlocked.
1214         */
1215        if (!trylock_page(page))
1216                goto out;
1217
1218        if (PageTransCompound(page)) {
1219                if (split_huge_page(page))
1220                        goto out_unlock;
1221        }
1222
1223        /*
1224         * If this anonymous page is mapped only here, its pte may need
1225         * to be write-protected.  If it's mapped elsewhere, all of its
1226         * ptes are necessarily already write-protected.  But in either
1227         * case, we need to lock and check page_count is not raised.
1228         */
1229        if (write_protect_page(vma, page, &orig_pte) == 0) {
1230                if (!kpage) {
1231                        /*
1232                         * While we hold page lock, upgrade page from
1233                         * PageAnon+anon_vma to PageKsm+NULL stable_node:
1234                         * stable_tree_insert() will update stable_node.
1235                         */
1236                        set_page_stable_node(page, NULL);
1237                        mark_page_accessed(page);
1238                        /*
1239                         * Page reclaim just frees a clean page with no dirty
1240                         * ptes: make sure that the ksm page would be swapped.
1241                         */
1242                        if (!PageDirty(page))
1243                                SetPageDirty(page);
1244                        err = 0;
1245                } else if (pages_identical(page, kpage))
1246                        err = replace_page(vma, page, kpage, orig_pte);
1247        }
1248
1249        if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1250                munlock_vma_page(page);
1251                if (!PageMlocked(kpage)) {
1252                        unlock_page(page);
1253                        lock_page(kpage);
1254                        mlock_vma_page(kpage);
1255                        page = kpage;           /* for final unlock */
1256                }
1257        }
1258
1259out_unlock:
1260        unlock_page(page);
1261out:
1262        return err;
1263}
1264
1265/*
1266 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1267 * but no new kernel page is allocated: kpage must already be a ksm page.
1268 *
1269 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1270 */
1271static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1272                                      struct page *page, struct page *kpage)
1273{
1274        struct mm_struct *mm = rmap_item->mm;
1275        struct vm_area_struct *vma;
1276        int err = -EFAULT;
1277
1278        mmap_read_lock(mm);
1279        vma = find_mergeable_vma(mm, rmap_item->address);
1280        if (!vma)
1281                goto out;
1282
1283        err = try_to_merge_one_page(vma, page, kpage);
1284        if (err)
1285                goto out;
1286
1287        /* Unstable nid is in union with stable anon_vma: remove first */
1288        remove_rmap_item_from_tree(rmap_item);
1289
1290        /* Must get reference to anon_vma while still holding mmap_lock */
1291        rmap_item->anon_vma = vma->anon_vma;
1292        get_anon_vma(vma->anon_vma);
1293out:
1294        mmap_read_unlock(mm);
1295        return err;
1296}
1297
1298/*
1299 * try_to_merge_two_pages - take two identical pages and prepare them
1300 * to be merged into one page.
1301 *
1302 * This function returns the kpage if we successfully merged two identical
1303 * pages into one ksm page, NULL otherwise.
1304 *
1305 * Note that this function upgrades page to ksm page: if one of the pages
1306 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1307 */
1308static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1309                                           struct page *page,
1310                                           struct rmap_item *tree_rmap_item,
1311                                           struct page *tree_page)
1312{
1313        int err;
1314
1315        err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1316        if (!err) {
1317                err = try_to_merge_with_ksm_page(tree_rmap_item,
1318                                                        tree_page, page);
1319                /*
1320                 * If that fails, we have a ksm page with only one pte
1321                 * pointing to it: so break it.
1322                 */
1323                if (err)
1324                        break_cow(rmap_item);
1325        }
1326        return err ? NULL : page;
1327}
1328
1329static __always_inline
1330bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1331{
1332        VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1333        /*
1334         * Check that at least one mapping still exists, otherwise
1335         * there's no much point to merge and share with this
1336         * stable_node, as the underlying tree_page of the other
1337         * sharer is going to be freed soon.
1338         */
1339        return stable_node->rmap_hlist_len &&
1340                stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1341}
1342
1343static __always_inline
1344bool is_page_sharing_candidate(struct stable_node *stable_node)
1345{
1346        return __is_page_sharing_candidate(stable_node, 0);
1347}
1348
1349static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1350                                    struct stable_node **_stable_node,
1351                                    struct rb_root *root,
1352                                    bool prune_stale_stable_nodes)
1353{
1354        struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1355        struct hlist_node *hlist_safe;
1356        struct page *_tree_page, *tree_page = NULL;
1357        int nr = 0;
1358        int found_rmap_hlist_len;
1359
1360        if (!prune_stale_stable_nodes ||
1361            time_before(jiffies, stable_node->chain_prune_time +
1362                        msecs_to_jiffies(
1363                                ksm_stable_node_chains_prune_millisecs)))
1364                prune_stale_stable_nodes = false;
1365        else
1366                stable_node->chain_prune_time = jiffies;
1367
1368        hlist_for_each_entry_safe(dup, hlist_safe,
1369                                  &stable_node->hlist, hlist_dup) {
1370                cond_resched();
1371                /*
1372                 * We must walk all stable_node_dup to prune the stale
1373                 * stable nodes during lookup.
1374                 *
1375                 * get_ksm_page can drop the nodes from the
1376                 * stable_node->hlist if they point to freed pages
1377                 * (that's why we do a _safe walk). The "dup"
1378                 * stable_node parameter itself will be freed from
1379                 * under us if it returns NULL.
1380                 */
1381                _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1382                if (!_tree_page)
1383                        continue;
1384                nr += 1;
1385                if (is_page_sharing_candidate(dup)) {
1386                        if (!found ||
1387                            dup->rmap_hlist_len > found_rmap_hlist_len) {
1388                                if (found)
1389                                        put_page(tree_page);
1390                                found = dup;
1391                                found_rmap_hlist_len = found->rmap_hlist_len;
1392                                tree_page = _tree_page;
1393
1394                                /* skip put_page for found dup */
1395                                if (!prune_stale_stable_nodes)
1396                                        break;
1397                                continue;
1398                        }
1399                }
1400                put_page(_tree_page);
1401        }
1402
1403        if (found) {
1404                /*
1405                 * nr is counting all dups in the chain only if
1406                 * prune_stale_stable_nodes is true, otherwise we may
1407                 * break the loop at nr == 1 even if there are
1408                 * multiple entries.
1409                 */
1410                if (prune_stale_stable_nodes && nr == 1) {
1411                        /*
1412                         * If there's not just one entry it would
1413                         * corrupt memory, better BUG_ON. In KSM
1414                         * context with no lock held it's not even
1415                         * fatal.
1416                         */
1417                        BUG_ON(stable_node->hlist.first->next);
1418
1419                        /*
1420                         * There's just one entry and it is below the
1421                         * deduplication limit so drop the chain.
1422                         */
1423                        rb_replace_node(&stable_node->node, &found->node,
1424                                        root);
1425                        free_stable_node(stable_node);
1426                        ksm_stable_node_chains--;
1427                        ksm_stable_node_dups--;
1428                        /*
1429                         * NOTE: the caller depends on the stable_node
1430                         * to be equal to stable_node_dup if the chain
1431                         * was collapsed.
1432                         */
1433                        *_stable_node = found;
1434                        /*
1435                         * Just for robustness, as stable_node is
1436                         * otherwise left as a stable pointer, the
1437                         * compiler shall optimize it away at build
1438                         * time.
1439                         */
1440                        stable_node = NULL;
1441                } else if (stable_node->hlist.first != &found->hlist_dup &&
1442                           __is_page_sharing_candidate(found, 1)) {
1443                        /*
1444                         * If the found stable_node dup can accept one
1445                         * more future merge (in addition to the one
1446                         * that is underway) and is not at the head of
1447                         * the chain, put it there so next search will
1448                         * be quicker in the !prune_stale_stable_nodes
1449                         * case.
1450                         *
1451                         * NOTE: it would be inaccurate to use nr > 1
1452                         * instead of checking the hlist.first pointer
1453                         * directly, because in the
1454                         * prune_stale_stable_nodes case "nr" isn't
1455                         * the position of the found dup in the chain,
1456                         * but the total number of dups in the chain.
1457                         */
1458                        hlist_del(&found->hlist_dup);
1459                        hlist_add_head(&found->hlist_dup,
1460                                       &stable_node->hlist);
1461                }
1462        }
1463
1464        *_stable_node_dup = found;
1465        return tree_page;
1466}
1467
1468static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1469                                               struct rb_root *root)
1470{
1471        if (!is_stable_node_chain(stable_node))
1472                return stable_node;
1473        if (hlist_empty(&stable_node->hlist)) {
1474                free_stable_node_chain(stable_node, root);
1475                return NULL;
1476        }
1477        return hlist_entry(stable_node->hlist.first,
1478                           typeof(*stable_node), hlist_dup);
1479}
1480
1481/*
1482 * Like for get_ksm_page, this function can free the *_stable_node and
1483 * *_stable_node_dup if the returned tree_page is NULL.
1484 *
1485 * It can also free and overwrite *_stable_node with the found
1486 * stable_node_dup if the chain is collapsed (in which case
1487 * *_stable_node will be equal to *_stable_node_dup like if the chain
1488 * never existed). It's up to the caller to verify tree_page is not
1489 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1490 *
1491 * *_stable_node_dup is really a second output parameter of this
1492 * function and will be overwritten in all cases, the caller doesn't
1493 * need to initialize it.
1494 */
1495static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1496                                        struct stable_node **_stable_node,
1497                                        struct rb_root *root,
1498                                        bool prune_stale_stable_nodes)
1499{
1500        struct stable_node *stable_node = *_stable_node;
1501        if (!is_stable_node_chain(stable_node)) {
1502                if (is_page_sharing_candidate(stable_node)) {
1503                        *_stable_node_dup = stable_node;
1504                        return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1505                }
1506                /*
1507                 * _stable_node_dup set to NULL means the stable_node
1508                 * reached the ksm_max_page_sharing limit.
1509                 */
1510                *_stable_node_dup = NULL;
1511                return NULL;
1512        }
1513        return stable_node_dup(_stable_node_dup, _stable_node, root,
1514                               prune_stale_stable_nodes);
1515}
1516
1517static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1518                                                struct stable_node **s_n,
1519                                                struct rb_root *root)
1520{
1521        return __stable_node_chain(s_n_d, s_n, root, true);
1522}
1523
1524static __always_inline struct page *chain(struct stable_node **s_n_d,
1525                                          struct stable_node *s_n,
1526                                          struct rb_root *root)
1527{
1528        struct stable_node *old_stable_node = s_n;
1529        struct page *tree_page;
1530
1531        tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1532        /* not pruning dups so s_n cannot have changed */
1533        VM_BUG_ON(s_n != old_stable_node);
1534        return tree_page;
1535}
1536
1537/*
1538 * stable_tree_search - search for page inside the stable tree
1539 *
1540 * This function checks if there is a page inside the stable tree
1541 * with identical content to the page that we are scanning right now.
1542 *
1543 * This function returns the stable tree node of identical content if found,
1544 * NULL otherwise.
1545 */
1546static struct page *stable_tree_search(struct page *page)
1547{
1548        int nid;
1549        struct rb_root *root;
1550        struct rb_node **new;
1551        struct rb_node *parent;
1552        struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1553        struct stable_node *page_node;
1554
1555        page_node = page_stable_node(page);
1556        if (page_node && page_node->head != &migrate_nodes) {
1557                /* ksm page forked */
1558                get_page(page);
1559                return page;
1560        }
1561
1562        nid = get_kpfn_nid(page_to_pfn(page));
1563        root = root_stable_tree + nid;
1564again:
1565        new = &root->rb_node;
1566        parent = NULL;
1567
1568        while (*new) {
1569                struct page *tree_page;
1570                int ret;
1571
1572                cond_resched();
1573                stable_node = rb_entry(*new, struct stable_node, node);
1574                stable_node_any = NULL;
1575                tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1576                /*
1577                 * NOTE: stable_node may have been freed by
1578                 * chain_prune() if the returned stable_node_dup is
1579                 * not NULL. stable_node_dup may have been inserted in
1580                 * the rbtree instead as a regular stable_node (in
1581                 * order to collapse the stable_node chain if a single
1582                 * stable_node dup was found in it). In such case the
1583                 * stable_node is overwritten by the calleee to point
1584                 * to the stable_node_dup that was collapsed in the
1585                 * stable rbtree and stable_node will be equal to
1586                 * stable_node_dup like if the chain never existed.
1587                 */
1588                if (!stable_node_dup) {
1589                        /*
1590                         * Either all stable_node dups were full in
1591                         * this stable_node chain, or this chain was
1592                         * empty and should be rb_erased.
1593                         */
1594                        stable_node_any = stable_node_dup_any(stable_node,
1595                                                              root);
1596                        if (!stable_node_any) {
1597                                /* rb_erase just run */
1598                                goto again;
1599                        }
1600                        /*
1601                         * Take any of the stable_node dups page of
1602                         * this stable_node chain to let the tree walk
1603                         * continue. All KSM pages belonging to the
1604                         * stable_node dups in a stable_node chain
1605                         * have the same content and they're
1606                         * write protected at all times. Any will work
1607                         * fine to continue the walk.
1608                         */
1609                        tree_page = get_ksm_page(stable_node_any,
1610                                                 GET_KSM_PAGE_NOLOCK);
1611                }
1612                VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1613                if (!tree_page) {
1614                        /*
1615                         * If we walked over a stale stable_node,
1616                         * get_ksm_page() will call rb_erase() and it
1617                         * may rebalance the tree from under us. So
1618                         * restart the search from scratch. Returning
1619                         * NULL would be safe too, but we'd generate
1620                         * false negative insertions just because some
1621                         * stable_node was stale.
1622                         */
1623                        goto again;
1624                }
1625
1626                ret = memcmp_pages(page, tree_page);
1627                put_page(tree_page);
1628
1629                parent = *new;
1630                if (ret < 0)
1631                        new = &parent->rb_left;
1632                else if (ret > 0)
1633                        new = &parent->rb_right;
1634                else {
1635                        if (page_node) {
1636                                VM_BUG_ON(page_node->head != &migrate_nodes);
1637                                /*
1638                                 * Test if the migrated page should be merged
1639                                 * into a stable node dup. If the mapcount is
1640                                 * 1 we can migrate it with another KSM page
1641                                 * without adding it to the chain.
1642                                 */
1643                                if (page_mapcount(page) > 1)
1644                                        goto chain_append;
1645                        }
1646
1647                        if (!stable_node_dup) {
1648                                /*
1649                                 * If the stable_node is a chain and
1650                                 * we got a payload match in memcmp
1651                                 * but we cannot merge the scanned
1652                                 * page in any of the existing
1653                                 * stable_node dups because they're
1654                                 * all full, we need to wait the
1655                                 * scanned page to find itself a match
1656                                 * in the unstable tree to create a
1657                                 * brand new KSM page to add later to
1658                                 * the dups of this stable_node.
1659                                 */
1660                                return NULL;
1661                        }
1662
1663                        /*
1664                         * Lock and unlock the stable_node's page (which
1665                         * might already have been migrated) so that page
1666                         * migration is sure to notice its raised count.
1667                         * It would be more elegant to return stable_node
1668                         * than kpage, but that involves more changes.
1669                         */
1670                        tree_page = get_ksm_page(stable_node_dup,
1671                                                 GET_KSM_PAGE_TRYLOCK);
1672
1673                        if (PTR_ERR(tree_page) == -EBUSY)
1674                                return ERR_PTR(-EBUSY);
1675
1676                        if (unlikely(!tree_page))
1677                                /*
1678                                 * The tree may have been rebalanced,
1679                                 * so re-evaluate parent and new.
1680                                 */
1681                                goto again;
1682                        unlock_page(tree_page);
1683
1684                        if (get_kpfn_nid(stable_node_dup->kpfn) !=
1685                            NUMA(stable_node_dup->nid)) {
1686                                put_page(tree_page);
1687                                goto replace;
1688                        }
1689                        return tree_page;
1690                }
1691        }
1692
1693        if (!page_node)
1694                return NULL;
1695
1696        list_del(&page_node->list);
1697        DO_NUMA(page_node->nid = nid);
1698        rb_link_node(&page_node->node, parent, new);
1699        rb_insert_color(&page_node->node, root);
1700out:
1701        if (is_page_sharing_candidate(page_node)) {
1702                get_page(page);
1703                return page;
1704        } else
1705                return NULL;
1706
1707replace:
1708        /*
1709         * If stable_node was a chain and chain_prune collapsed it,
1710         * stable_node has been updated to be the new regular
1711         * stable_node. A collapse of the chain is indistinguishable
1712         * from the case there was no chain in the stable
1713         * rbtree. Otherwise stable_node is the chain and
1714         * stable_node_dup is the dup to replace.
1715         */
1716        if (stable_node_dup == stable_node) {
1717                VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1718                VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1719                /* there is no chain */
1720                if (page_node) {
1721                        VM_BUG_ON(page_node->head != &migrate_nodes);
1722                        list_del(&page_node->list);
1723                        DO_NUMA(page_node->nid = nid);
1724                        rb_replace_node(&stable_node_dup->node,
1725                                        &page_node->node,
1726                                        root);
1727                        if (is_page_sharing_candidate(page_node))
1728                                get_page(page);
1729                        else
1730                                page = NULL;
1731                } else {
1732                        rb_erase(&stable_node_dup->node, root);
1733                        page = NULL;
1734                }
1735        } else {
1736                VM_BUG_ON(!is_stable_node_chain(stable_node));
1737                __stable_node_dup_del(stable_node_dup);
1738                if (page_node) {
1739                        VM_BUG_ON(page_node->head != &migrate_nodes);
1740                        list_del(&page_node->list);
1741                        DO_NUMA(page_node->nid = nid);
1742                        stable_node_chain_add_dup(page_node, stable_node);
1743                        if (is_page_sharing_candidate(page_node))
1744                                get_page(page);
1745                        else
1746                                page = NULL;
1747                } else {
1748                        page = NULL;
1749                }
1750        }
1751        stable_node_dup->head = &migrate_nodes;
1752        list_add(&stable_node_dup->list, stable_node_dup->head);
1753        return page;
1754
1755chain_append:
1756        /* stable_node_dup could be null if it reached the limit */
1757        if (!stable_node_dup)
1758                stable_node_dup = stable_node_any;
1759        /*
1760         * If stable_node was a chain and chain_prune collapsed it,
1761         * stable_node has been updated to be the new regular
1762         * stable_node. A collapse of the chain is indistinguishable
1763         * from the case there was no chain in the stable
1764         * rbtree. Otherwise stable_node is the chain and
1765         * stable_node_dup is the dup to replace.
1766         */
1767        if (stable_node_dup == stable_node) {
1768                VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1769                /* chain is missing so create it */
1770                stable_node = alloc_stable_node_chain(stable_node_dup,
1771                                                      root);
1772                if (!stable_node)
1773                        return NULL;
1774        }
1775        /*
1776         * Add this stable_node dup that was
1777         * migrated to the stable_node chain
1778         * of the current nid for this page
1779         * content.
1780         */
1781        VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1782        VM_BUG_ON(page_node->head != &migrate_nodes);
1783        list_del(&page_node->list);
1784        DO_NUMA(page_node->nid = nid);
1785        stable_node_chain_add_dup(page_node, stable_node);
1786        goto out;
1787}
1788
1789/*
1790 * stable_tree_insert - insert stable tree node pointing to new ksm page
1791 * into the stable tree.
1792 *
1793 * This function returns the stable tree node just allocated on success,
1794 * NULL otherwise.
1795 */
1796static struct stable_node *stable_tree_insert(struct page *kpage)
1797{
1798        int nid;
1799        unsigned long kpfn;
1800        struct rb_root *root;
1801        struct rb_node **new;
1802        struct rb_node *parent;
1803        struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1804        bool need_chain = false;
1805
1806        kpfn = page_to_pfn(kpage);
1807        nid = get_kpfn_nid(kpfn);
1808        root = root_stable_tree + nid;
1809again:
1810        parent = NULL;
1811        new = &root->rb_node;
1812
1813        while (*new) {
1814                struct page *tree_page;
1815                int ret;
1816
1817                cond_resched();
1818                stable_node = rb_entry(*new, struct stable_node, node);
1819                stable_node_any = NULL;
1820                tree_page = chain(&stable_node_dup, stable_node, root);
1821                if (!stable_node_dup) {
1822                        /*
1823                         * Either all stable_node dups were full in
1824                         * this stable_node chain, or this chain was
1825                         * empty and should be rb_erased.
1826                         */
1827                        stable_node_any = stable_node_dup_any(stable_node,
1828                                                              root);
1829                        if (!stable_node_any) {
1830                                /* rb_erase just run */
1831                                goto again;
1832                        }
1833                        /*
1834                         * Take any of the stable_node dups page of
1835                         * this stable_node chain to let the tree walk
1836                         * continue. All KSM pages belonging to the
1837                         * stable_node dups in a stable_node chain
1838                         * have the same content and they're
1839                         * write protected at all times. Any will work
1840                         * fine to continue the walk.
1841                         */
1842                        tree_page = get_ksm_page(stable_node_any,
1843                                                 GET_KSM_PAGE_NOLOCK);
1844                }
1845                VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1846                if (!tree_page) {
1847                        /*
1848                         * If we walked over a stale stable_node,
1849                         * get_ksm_page() will call rb_erase() and it
1850                         * may rebalance the tree from under us. So
1851                         * restart the search from scratch. Returning
1852                         * NULL would be safe too, but we'd generate
1853                         * false negative insertions just because some
1854                         * stable_node was stale.
1855                         */
1856                        goto again;
1857                }
1858
1859                ret = memcmp_pages(kpage, tree_page);
1860                put_page(tree_page);
1861
1862                parent = *new;
1863                if (ret < 0)
1864                        new = &parent->rb_left;
1865                else if (ret > 0)
1866                        new = &parent->rb_right;
1867                else {
1868                        need_chain = true;
1869                        break;
1870                }
1871        }
1872
1873        stable_node_dup = alloc_stable_node();
1874        if (!stable_node_dup)
1875                return NULL;
1876
1877        INIT_HLIST_HEAD(&stable_node_dup->hlist);
1878        stable_node_dup->kpfn = kpfn;
1879        set_page_stable_node(kpage, stable_node_dup);
1880        stable_node_dup->rmap_hlist_len = 0;
1881        DO_NUMA(stable_node_dup->nid = nid);
1882        if (!need_chain) {
1883                rb_link_node(&stable_node_dup->node, parent, new);
1884                rb_insert_color(&stable_node_dup->node, root);
1885        } else {
1886                if (!is_stable_node_chain(stable_node)) {
1887                        struct stable_node *orig = stable_node;
1888                        /* chain is missing so create it */
1889                        stable_node = alloc_stable_node_chain(orig, root);
1890                        if (!stable_node) {
1891                                free_stable_node(stable_node_dup);
1892                                return NULL;
1893                        }
1894                }
1895                stable_node_chain_add_dup(stable_node_dup, stable_node);
1896        }
1897
1898        return stable_node_dup;
1899}
1900
1901/*
1902 * unstable_tree_search_insert - search for identical page,
1903 * else insert rmap_item into the unstable tree.
1904 *
1905 * This function searches for a page in the unstable tree identical to the
1906 * page currently being scanned; and if no identical page is found in the
1907 * tree, we insert rmap_item as a new object into the unstable tree.
1908 *
1909 * This function returns pointer to rmap_item found to be identical
1910 * to the currently scanned page, NULL otherwise.
1911 *
1912 * This function does both searching and inserting, because they share
1913 * the same walking algorithm in an rbtree.
1914 */
1915static
1916struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1917                                              struct page *page,
1918                                              struct page **tree_pagep)
1919{
1920        struct rb_node **new;
1921        struct rb_root *root;
1922        struct rb_node *parent = NULL;
1923        int nid;
1924
1925        nid = get_kpfn_nid(page_to_pfn(page));
1926        root = root_unstable_tree + nid;
1927        new = &root->rb_node;
1928
1929        while (*new) {
1930                struct rmap_item *tree_rmap_item;
1931                struct page *tree_page;
1932                int ret;
1933
1934                cond_resched();
1935                tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1936                tree_page = get_mergeable_page(tree_rmap_item);
1937                if (!tree_page)
1938                        return NULL;
1939
1940                /*
1941                 * Don't substitute a ksm page for a forked page.
1942                 */
1943                if (page == tree_page) {
1944                        put_page(tree_page);
1945                        return NULL;
1946                }
1947
1948                ret = memcmp_pages(page, tree_page);
1949
1950                parent = *new;
1951                if (ret < 0) {
1952                        put_page(tree_page);
1953                        new = &parent->rb_left;
1954                } else if (ret > 0) {
1955                        put_page(tree_page);
1956                        new = &parent->rb_right;
1957                } else if (!ksm_merge_across_nodes &&
1958                           page_to_nid(tree_page) != nid) {
1959                        /*
1960                         * If tree_page has been migrated to another NUMA node,
1961                         * it will be flushed out and put in the right unstable
1962                         * tree next time: only merge with it when across_nodes.
1963                         */
1964                        put_page(tree_page);
1965                        return NULL;
1966                } else {
1967                        *tree_pagep = tree_page;
1968                        return tree_rmap_item;
1969                }
1970        }
1971
1972        rmap_item->address |= UNSTABLE_FLAG;
1973        rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1974        DO_NUMA(rmap_item->nid = nid);
1975        rb_link_node(&rmap_item->node, parent, new);
1976        rb_insert_color(&rmap_item->node, root);
1977
1978        ksm_pages_unshared++;
1979        return NULL;
1980}
1981
1982/*
1983 * stable_tree_append - add another rmap_item to the linked list of
1984 * rmap_items hanging off a given node of the stable tree, all sharing
1985 * the same ksm page.
1986 */
1987static void stable_tree_append(struct rmap_item *rmap_item,
1988                               struct stable_node *stable_node,
1989                               bool max_page_sharing_bypass)
1990{
1991        /*
1992         * rmap won't find this mapping if we don't insert the
1993         * rmap_item in the right stable_node
1994         * duplicate. page_migration could break later if rmap breaks,
1995         * so we can as well crash here. We really need to check for
1996         * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1997         * for other negative values as an underflow if detected here
1998         * for the first time (and not when decreasing rmap_hlist_len)
1999         * would be sign of memory corruption in the stable_node.
2000         */
2001        BUG_ON(stable_node->rmap_hlist_len < 0);
2002
2003        stable_node->rmap_hlist_len++;
2004        if (!max_page_sharing_bypass)
2005                /* possibly non fatal but unexpected overflow, only warn */
2006                WARN_ON_ONCE(stable_node->rmap_hlist_len >
2007                             ksm_max_page_sharing);
2008
2009        rmap_item->head = stable_node;
2010        rmap_item->address |= STABLE_FLAG;
2011        hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2012
2013        if (rmap_item->hlist.next)
2014                ksm_pages_sharing++;
2015        else
2016                ksm_pages_shared++;
2017}
2018
2019/*
2020 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2021 * if not, compare checksum to previous and if it's the same, see if page can
2022 * be inserted into the unstable tree, or merged with a page already there and
2023 * both transferred to the stable tree.
2024 *
2025 * @page: the page that we are searching identical page to.
2026 * @rmap_item: the reverse mapping into the virtual address of this page
2027 */
2028static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2029{
2030        struct mm_struct *mm = rmap_item->mm;
2031        struct rmap_item *tree_rmap_item;
2032        struct page *tree_page = NULL;
2033        struct stable_node *stable_node;
2034        struct page *kpage;
2035        unsigned int checksum;
2036        int err;
2037        bool max_page_sharing_bypass = false;
2038
2039        stable_node = page_stable_node(page);
2040        if (stable_node) {
2041                if (stable_node->head != &migrate_nodes &&
2042                    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2043                    NUMA(stable_node->nid)) {
2044                        stable_node_dup_del(stable_node);
2045                        stable_node->head = &migrate_nodes;
2046                        list_add(&stable_node->list, stable_node->head);
2047                }
2048                if (stable_node->head != &migrate_nodes &&
2049                    rmap_item->head == stable_node)
2050                        return;
2051                /*
2052                 * If it's a KSM fork, allow it to go over the sharing limit
2053                 * without warnings.
2054                 */
2055                if (!is_page_sharing_candidate(stable_node))
2056                        max_page_sharing_bypass = true;
2057        }
2058
2059        /* We first start with searching the page inside the stable tree */
2060        kpage = stable_tree_search(page);
2061        if (kpage == page && rmap_item->head == stable_node) {
2062                put_page(kpage);
2063                return;
2064        }
2065
2066        remove_rmap_item_from_tree(rmap_item);
2067
2068        if (kpage) {
2069                if (PTR_ERR(kpage) == -EBUSY)
2070                        return;
2071
2072                err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2073                if (!err) {
2074                        /*
2075                         * The page was successfully merged:
2076                         * add its rmap_item to the stable tree.
2077                         */
2078                        lock_page(kpage);
2079                        stable_tree_append(rmap_item, page_stable_node(kpage),
2080                                           max_page_sharing_bypass);
2081                        unlock_page(kpage);
2082                }
2083                put_page(kpage);
2084                return;
2085        }
2086
2087        /*
2088         * If the hash value of the page has changed from the last time
2089         * we calculated it, this page is changing frequently: therefore we
2090         * don't want to insert it in the unstable tree, and we don't want
2091         * to waste our time searching for something identical to it there.
2092         */
2093        checksum = calc_checksum(page);
2094        if (rmap_item->oldchecksum != checksum) {
2095                rmap_item->oldchecksum = checksum;
2096                return;
2097        }
2098
2099        /*
2100         * Same checksum as an empty page. We attempt to merge it with the
2101         * appropriate zero page if the user enabled this via sysfs.
2102         */
2103        if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2104                struct vm_area_struct *vma;
2105
2106                mmap_read_lock(mm);
2107                vma = find_mergeable_vma(mm, rmap_item->address);
2108                if (vma) {
2109                        err = try_to_merge_one_page(vma, page,
2110                                        ZERO_PAGE(rmap_item->address));
2111                } else {
2112                        /*
2113                         * If the vma is out of date, we do not need to
2114                         * continue.
2115                         */
2116                        err = 0;
2117                }
2118                mmap_read_unlock(mm);
2119                /*
2120                 * In case of failure, the page was not really empty, so we
2121                 * need to continue. Otherwise we're done.
2122                 */
2123                if (!err)
2124                        return;
2125        }
2126        tree_rmap_item =
2127                unstable_tree_search_insert(rmap_item, page, &tree_page);
2128        if (tree_rmap_item) {
2129                bool split;
2130
2131                kpage = try_to_merge_two_pages(rmap_item, page,
2132                                                tree_rmap_item, tree_page);
2133                /*
2134                 * If both pages we tried to merge belong to the same compound
2135                 * page, then we actually ended up increasing the reference
2136                 * count of the same compound page twice, and split_huge_page
2137                 * failed.
2138                 * Here we set a flag if that happened, and we use it later to
2139                 * try split_huge_page again. Since we call put_page right
2140                 * afterwards, the reference count will be correct and
2141                 * split_huge_page should succeed.
2142                 */
2143                split = PageTransCompound(page)
2144                        && compound_head(page) == compound_head(tree_page);
2145                put_page(tree_page);
2146                if (kpage) {
2147                        /*
2148                         * The pages were successfully merged: insert new
2149                         * node in the stable tree and add both rmap_items.
2150                         */
2151                        lock_page(kpage);
2152                        stable_node = stable_tree_insert(kpage);
2153                        if (stable_node) {
2154                                stable_tree_append(tree_rmap_item, stable_node,
2155                                                   false);
2156                                stable_tree_append(rmap_item, stable_node,
2157                                                   false);
2158                        }
2159                        unlock_page(kpage);
2160
2161                        /*
2162                         * If we fail to insert the page into the stable tree,
2163                         * we will have 2 virtual addresses that are pointing
2164                         * to a ksm page left outside the stable tree,
2165                         * in which case we need to break_cow on both.
2166                         */
2167                        if (!stable_node) {
2168                                break_cow(tree_rmap_item);
2169                                break_cow(rmap_item);
2170                        }
2171                } else if (split) {
2172                        /*
2173                         * We are here if we tried to merge two pages and
2174                         * failed because they both belonged to the same
2175                         * compound page. We will split the page now, but no
2176                         * merging will take place.
2177                         * We do not want to add the cost of a full lock; if
2178                         * the page is locked, it is better to skip it and
2179                         * perhaps try again later.
2180                         */
2181                        if (!trylock_page(page))
2182                                return;
2183                        split_huge_page(page);
2184                        unlock_page(page);
2185                }
2186        }
2187}
2188
2189static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2190                                            struct rmap_item **rmap_list,
2191                                            unsigned long addr)
2192{
2193        struct rmap_item *rmap_item;
2194
2195        while (*rmap_list) {
2196                rmap_item = *rmap_list;
2197                if ((rmap_item->address & PAGE_MASK) == addr)
2198                        return rmap_item;
2199                if (rmap_item->address > addr)
2200                        break;
2201                *rmap_list = rmap_item->rmap_list;
2202                remove_rmap_item_from_tree(rmap_item);
2203                free_rmap_item(rmap_item);
2204        }
2205
2206        rmap_item = alloc_rmap_item();
2207        if (rmap_item) {
2208                /* It has already been zeroed */
2209                rmap_item->mm = mm_slot->mm;
2210                rmap_item->address = addr;
2211                rmap_item->rmap_list = *rmap_list;
2212                *rmap_list = rmap_item;
2213        }
2214        return rmap_item;
2215}
2216
2217static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2218{
2219        struct mm_struct *mm;
2220        struct mm_slot *slot;
2221        struct vm_area_struct *vma;
2222        struct rmap_item *rmap_item;
2223        int nid;
2224
2225        if (list_empty(&ksm_mm_head.mm_list))
2226                return NULL;
2227
2228        slot = ksm_scan.mm_slot;
2229        if (slot == &ksm_mm_head) {
2230                /*
2231                 * A number of pages can hang around indefinitely on per-cpu
2232                 * pagevecs, raised page count preventing write_protect_page
2233                 * from merging them.  Though it doesn't really matter much,
2234                 * it is puzzling to see some stuck in pages_volatile until
2235                 * other activity jostles them out, and they also prevented
2236                 * LTP's KSM test from succeeding deterministically; so drain
2237                 * them here (here rather than on entry to ksm_do_scan(),
2238                 * so we don't IPI too often when pages_to_scan is set low).
2239                 */
2240                lru_add_drain_all();
2241
2242                /*
2243                 * Whereas stale stable_nodes on the stable_tree itself
2244                 * get pruned in the regular course of stable_tree_search(),
2245                 * those moved out to the migrate_nodes list can accumulate:
2246                 * so prune them once before each full scan.
2247                 */
2248                if (!ksm_merge_across_nodes) {
2249                        struct stable_node *stable_node, *next;
2250                        struct page *page;
2251
2252                        list_for_each_entry_safe(stable_node, next,
2253                                                 &migrate_nodes, list) {
2254                                page = get_ksm_page(stable_node,
2255                                                    GET_KSM_PAGE_NOLOCK);
2256                                if (page)
2257                                        put_page(page);
2258                                cond_resched();
2259                        }
2260                }
2261
2262                for (nid = 0; nid < ksm_nr_node_ids; nid++)
2263                        root_unstable_tree[nid] = RB_ROOT;
2264
2265                spin_lock(&ksm_mmlist_lock);
2266                slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2267                ksm_scan.mm_slot = slot;
2268                spin_unlock(&ksm_mmlist_lock);
2269                /*
2270                 * Although we tested list_empty() above, a racing __ksm_exit
2271                 * of the last mm on the list may have removed it since then.
2272                 */
2273                if (slot == &ksm_mm_head)
2274                        return NULL;
2275next_mm:
2276                ksm_scan.address = 0;
2277                ksm_scan.rmap_list = &slot->rmap_list;
2278        }
2279
2280        mm = slot->mm;
2281        mmap_read_lock(mm);
2282        if (ksm_test_exit(mm))
2283                vma = NULL;
2284        else
2285                vma = find_vma(mm, ksm_scan.address);
2286
2287        for (; vma; vma = vma->vm_next) {
2288                if (!(vma->vm_flags & VM_MERGEABLE))
2289                        continue;
2290                if (ksm_scan.address < vma->vm_start)
2291                        ksm_scan.address = vma->vm_start;
2292                if (!vma->anon_vma)
2293                        ksm_scan.address = vma->vm_end;
2294
2295                while (ksm_scan.address < vma->vm_end) {
2296                        if (ksm_test_exit(mm))
2297                                break;
2298                        *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2299                        if (IS_ERR_OR_NULL(*page)) {
2300                                ksm_scan.address += PAGE_SIZE;
2301                                cond_resched();
2302                                continue;
2303                        }
2304                        if (PageAnon(*page)) {
2305                                flush_anon_page(vma, *page, ksm_scan.address);
2306                                flush_dcache_page(*page);
2307                                rmap_item = get_next_rmap_item(slot,
2308                                        ksm_scan.rmap_list, ksm_scan.address);
2309                                if (rmap_item) {
2310                                        ksm_scan.rmap_list =
2311                                                        &rmap_item->rmap_list;
2312                                        ksm_scan.address += PAGE_SIZE;
2313                                } else
2314                                        put_page(*page);
2315                                mmap_read_unlock(mm);
2316                                return rmap_item;
2317                        }
2318                        put_page(*page);
2319                        ksm_scan.address += PAGE_SIZE;
2320                        cond_resched();
2321                }
2322        }
2323
2324        if (ksm_test_exit(mm)) {
2325                ksm_scan.address = 0;
2326                ksm_scan.rmap_list = &slot->rmap_list;
2327        }
2328        /*
2329         * Nuke all the rmap_items that are above this current rmap:
2330         * because there were no VM_MERGEABLE vmas with such addresses.
2331         */
2332        remove_trailing_rmap_items(ksm_scan.rmap_list);
2333
2334        spin_lock(&ksm_mmlist_lock);
2335        ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2336                                                struct mm_slot, mm_list);
2337        if (ksm_scan.address == 0) {
2338                /*
2339                 * We've completed a full scan of all vmas, holding mmap_lock
2340                 * throughout, and found no VM_MERGEABLE: so do the same as
2341                 * __ksm_exit does to remove this mm from all our lists now.
2342                 * This applies either when cleaning up after __ksm_exit
2343                 * (but beware: we can reach here even before __ksm_exit),
2344                 * or when all VM_MERGEABLE areas have been unmapped (and
2345                 * mmap_lock then protects against race with MADV_MERGEABLE).
2346                 */
2347                hash_del(&slot->link);
2348                list_del(&slot->mm_list);
2349                spin_unlock(&ksm_mmlist_lock);
2350
2351                free_mm_slot(slot);
2352                clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2353                mmap_read_unlock(mm);
2354                mmdrop(mm);
2355        } else {
2356                mmap_read_unlock(mm);
2357                /*
2358                 * mmap_read_unlock(mm) first because after
2359                 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2360                 * already have been freed under us by __ksm_exit()
2361                 * because the "mm_slot" is still hashed and
2362                 * ksm_scan.mm_slot doesn't point to it anymore.
2363                 */
2364                spin_unlock(&ksm_mmlist_lock);
2365        }
2366
2367        /* Repeat until we've completed scanning the whole list */
2368        slot = ksm_scan.mm_slot;
2369        if (slot != &ksm_mm_head)
2370                goto next_mm;
2371
2372        ksm_scan.seqnr++;
2373        return NULL;
2374}
2375
2376/**
2377 * ksm_do_scan  - the ksm scanner main worker function.
2378 * @scan_npages:  number of pages we want to scan before we return.
2379 */
2380static void ksm_do_scan(unsigned int scan_npages)
2381{
2382        struct rmap_item *rmap_item;
2383        struct page *page;
2384
2385        while (scan_npages-- && likely(!freezing(current))) {
2386                cond_resched();
2387                rmap_item = scan_get_next_rmap_item(&page);
2388                if (!rmap_item)
2389                        return;
2390                cmp_and_merge_page(page, rmap_item);
2391                put_page(page);
2392        }
2393}
2394
2395static int ksmd_should_run(void)
2396{
2397        return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2398}
2399
2400static int ksm_scan_thread(void *nothing)
2401{
2402        unsigned int sleep_ms;
2403
2404        set_freezable();
2405        set_user_nice(current, 5);
2406
2407        while (!kthread_should_stop()) {
2408                mutex_lock(&ksm_thread_mutex);
2409                wait_while_offlining();
2410                if (ksmd_should_run())
2411                        ksm_do_scan(ksm_thread_pages_to_scan);
2412                mutex_unlock(&ksm_thread_mutex);
2413
2414                try_to_freeze();
2415
2416                if (ksmd_should_run()) {
2417                        sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2418                        wait_event_interruptible_timeout(ksm_iter_wait,
2419                                sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2420                                msecs_to_jiffies(sleep_ms));
2421                } else {
2422                        wait_event_freezable(ksm_thread_wait,
2423                                ksmd_should_run() || kthread_should_stop());
2424                }
2425        }
2426        return 0;
2427}
2428
2429int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2430                unsigned long end, int advice, unsigned long *vm_flags)
2431{
2432        struct mm_struct *mm = vma->vm_mm;
2433        int err;
2434
2435        switch (advice) {
2436        case MADV_MERGEABLE:
2437                /*
2438                 * Be somewhat over-protective for now!
2439                 */
2440                if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2441                                 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2442                                 VM_HUGETLB | VM_MIXEDMAP))
2443                        return 0;               /* just ignore the advice */
2444
2445                if (vma_is_dax(vma))
2446                        return 0;
2447
2448#ifdef VM_SAO
2449                if (*vm_flags & VM_SAO)
2450                        return 0;
2451#endif
2452#ifdef VM_SPARC_ADI
2453                if (*vm_flags & VM_SPARC_ADI)
2454                        return 0;
2455#endif
2456
2457                if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2458                        err = __ksm_enter(mm);
2459                        if (err)
2460                                return err;
2461                }
2462
2463                *vm_flags |= VM_MERGEABLE;
2464                break;
2465
2466        case MADV_UNMERGEABLE:
2467                if (!(*vm_flags & VM_MERGEABLE))
2468                        return 0;               /* just ignore the advice */
2469
2470                if (vma->anon_vma) {
2471                        err = unmerge_ksm_pages(vma, start, end);
2472                        if (err)
2473                                return err;
2474                }
2475
2476                *vm_flags &= ~VM_MERGEABLE;
2477                break;
2478        }
2479
2480        return 0;
2481}
2482EXPORT_SYMBOL_GPL(ksm_madvise);
2483
2484int __ksm_enter(struct mm_struct *mm)
2485{
2486        struct mm_slot *mm_slot;
2487        int needs_wakeup;
2488
2489        mm_slot = alloc_mm_slot();
2490        if (!mm_slot)
2491                return -ENOMEM;
2492
2493        /* Check ksm_run too?  Would need tighter locking */
2494        needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2495
2496        spin_lock(&ksm_mmlist_lock);
2497        insert_to_mm_slots_hash(mm, mm_slot);
2498        /*
2499         * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2500         * insert just behind the scanning cursor, to let the area settle
2501         * down a little; when fork is followed by immediate exec, we don't
2502         * want ksmd to waste time setting up and tearing down an rmap_list.
2503         *
2504         * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2505         * scanning cursor, otherwise KSM pages in newly forked mms will be
2506         * missed: then we might as well insert at the end of the list.
2507         */
2508        if (ksm_run & KSM_RUN_UNMERGE)
2509                list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2510        else
2511                list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2512        spin_unlock(&ksm_mmlist_lock);
2513
2514        set_bit(MMF_VM_MERGEABLE, &mm->flags);
2515        mmgrab(mm);
2516
2517        if (needs_wakeup)
2518                wake_up_interruptible(&ksm_thread_wait);
2519
2520        return 0;
2521}
2522
2523void __ksm_exit(struct mm_struct *mm)
2524{
2525        struct mm_slot *mm_slot;
2526        int easy_to_free = 0;
2527
2528        /*
2529         * This process is exiting: if it's straightforward (as is the
2530         * case when ksmd was never running), free mm_slot immediately.
2531         * But if it's at the cursor or has rmap_items linked to it, use
2532         * mmap_lock to synchronize with any break_cows before pagetables
2533         * are freed, and leave the mm_slot on the list for ksmd to free.
2534         * Beware: ksm may already have noticed it exiting and freed the slot.
2535         */
2536
2537        spin_lock(&ksm_mmlist_lock);
2538        mm_slot = get_mm_slot(mm);
2539        if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2540                if (!mm_slot->rmap_list) {
2541                        hash_del(&mm_slot->link);
2542                        list_del(&mm_slot->mm_list);
2543                        easy_to_free = 1;
2544                } else {
2545                        list_move(&mm_slot->mm_list,
2546                                  &ksm_scan.mm_slot->mm_list);
2547                }
2548        }
2549        spin_unlock(&ksm_mmlist_lock);
2550
2551        if (easy_to_free) {
2552                free_mm_slot(mm_slot);
2553                clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2554                mmdrop(mm);
2555        } else if (mm_slot) {
2556                mmap_write_lock(mm);
2557                mmap_write_unlock(mm);
2558        }
2559}
2560
2561struct page *ksm_might_need_to_copy(struct page *page,
2562                        struct vm_area_struct *vma, unsigned long address)
2563{
2564        struct anon_vma *anon_vma = page_anon_vma(page);
2565        struct page *new_page;
2566
2567        if (PageKsm(page)) {
2568                if (page_stable_node(page) &&
2569                    !(ksm_run & KSM_RUN_UNMERGE))
2570                        return page;    /* no need to copy it */
2571        } else if (!anon_vma) {
2572                return page;            /* no need to copy it */
2573        } else if (anon_vma->root == vma->anon_vma->root &&
2574                 page->index == linear_page_index(vma, address)) {
2575                return page;            /* still no need to copy it */
2576        }
2577        if (!PageUptodate(page))
2578                return page;            /* let do_swap_page report the error */
2579
2580        new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2581        if (new_page && mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL)) {
2582                put_page(new_page);
2583                new_page = NULL;
2584        }
2585        if (new_page) {
2586                copy_user_highpage(new_page, page, address, vma);
2587
2588                SetPageDirty(new_page);
2589                __SetPageUptodate(new_page);
2590                __SetPageLocked(new_page);
2591        }
2592
2593        return new_page;
2594}
2595
2596void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2597{
2598        struct stable_node *stable_node;
2599        struct rmap_item *rmap_item;
2600        int search_new_forks = 0;
2601
2602        VM_BUG_ON_PAGE(!PageKsm(page), page);
2603
2604        /*
2605         * Rely on the page lock to protect against concurrent modifications
2606         * to that page's node of the stable tree.
2607         */
2608        VM_BUG_ON_PAGE(!PageLocked(page), page);
2609
2610        stable_node = page_stable_node(page);
2611        if (!stable_node)
2612                return;
2613again:
2614        hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2615                struct anon_vma *anon_vma = rmap_item->anon_vma;
2616                struct anon_vma_chain *vmac;
2617                struct vm_area_struct *vma;
2618
2619                cond_resched();
2620                anon_vma_lock_read(anon_vma);
2621                anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2622                                               0, ULONG_MAX) {
2623                        unsigned long addr;
2624
2625                        cond_resched();
2626                        vma = vmac->vma;
2627
2628                        /* Ignore the stable/unstable/sqnr flags */
2629                        addr = rmap_item->address & PAGE_MASK;
2630
2631                        if (addr < vma->vm_start || addr >= vma->vm_end)
2632                                continue;
2633                        /*
2634                         * Initially we examine only the vma which covers this
2635                         * rmap_item; but later, if there is still work to do,
2636                         * we examine covering vmas in other mms: in case they
2637                         * were forked from the original since ksmd passed.
2638                         */
2639                        if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2640                                continue;
2641
2642                        if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2643                                continue;
2644
2645                        if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2646                                anon_vma_unlock_read(anon_vma);
2647                                return;
2648                        }
2649                        if (rwc->done && rwc->done(page)) {
2650                                anon_vma_unlock_read(anon_vma);
2651                                return;
2652                        }
2653                }
2654                anon_vma_unlock_read(anon_vma);
2655        }
2656        if (!search_new_forks++)
2657                goto again;
2658}
2659
2660#ifdef CONFIG_MIGRATION
2661void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2662{
2663        struct stable_node *stable_node;
2664
2665        VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2666        VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2667        VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2668
2669        stable_node = page_stable_node(newpage);
2670        if (stable_node) {
2671                VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2672                stable_node->kpfn = page_to_pfn(newpage);
2673                /*
2674                 * newpage->mapping was set in advance; now we need smp_wmb()
2675                 * to make sure that the new stable_node->kpfn is visible
2676                 * to get_ksm_page() before it can see that oldpage->mapping
2677                 * has gone stale (or that PageSwapCache has been cleared).
2678                 */
2679                smp_wmb();
2680                set_page_stable_node(oldpage, NULL);
2681        }
2682}
2683#endif /* CONFIG_MIGRATION */
2684
2685#ifdef CONFIG_MEMORY_HOTREMOVE
2686static void wait_while_offlining(void)
2687{
2688        while (ksm_run & KSM_RUN_OFFLINE) {
2689                mutex_unlock(&ksm_thread_mutex);
2690                wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2691                            TASK_UNINTERRUPTIBLE);
2692                mutex_lock(&ksm_thread_mutex);
2693        }
2694}
2695
2696static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2697                                         unsigned long start_pfn,
2698                                         unsigned long end_pfn)
2699{
2700        if (stable_node->kpfn >= start_pfn &&
2701            stable_node->kpfn < end_pfn) {
2702                /*
2703                 * Don't get_ksm_page, page has already gone:
2704                 * which is why we keep kpfn instead of page*
2705                 */
2706                remove_node_from_stable_tree(stable_node);
2707                return true;
2708        }
2709        return false;
2710}
2711
2712static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2713                                           unsigned long start_pfn,
2714                                           unsigned long end_pfn,
2715                                           struct rb_root *root)
2716{
2717        struct stable_node *dup;
2718        struct hlist_node *hlist_safe;
2719
2720        if (!is_stable_node_chain(stable_node)) {
2721                VM_BUG_ON(is_stable_node_dup(stable_node));
2722                return stable_node_dup_remove_range(stable_node, start_pfn,
2723                                                    end_pfn);
2724        }
2725
2726        hlist_for_each_entry_safe(dup, hlist_safe,
2727                                  &stable_node->hlist, hlist_dup) {
2728                VM_BUG_ON(!is_stable_node_dup(dup));
2729                stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2730        }
2731        if (hlist_empty(&stable_node->hlist)) {
2732                free_stable_node_chain(stable_node, root);
2733                return true; /* notify caller that tree was rebalanced */
2734        } else
2735                return false;
2736}
2737
2738static void ksm_check_stable_tree(unsigned long start_pfn,
2739                                  unsigned long end_pfn)
2740{
2741        struct stable_node *stable_node, *next;
2742        struct rb_node *node;
2743        int nid;
2744
2745        for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2746                node = rb_first(root_stable_tree + nid);
2747                while (node) {
2748                        stable_node = rb_entry(node, struct stable_node, node);
2749                        if (stable_node_chain_remove_range(stable_node,
2750                                                           start_pfn, end_pfn,
2751                                                           root_stable_tree +
2752                                                           nid))
2753                                node = rb_first(root_stable_tree + nid);
2754                        else
2755                                node = rb_next(node);
2756                        cond_resched();
2757                }
2758        }
2759        list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2760                if (stable_node->kpfn >= start_pfn &&
2761                    stable_node->kpfn < end_pfn)
2762                        remove_node_from_stable_tree(stable_node);
2763                cond_resched();
2764        }
2765}
2766
2767static int ksm_memory_callback(struct notifier_block *self,
2768                               unsigned long action, void *arg)
2769{
2770        struct memory_notify *mn = arg;
2771
2772        switch (action) {
2773        case MEM_GOING_OFFLINE:
2774                /*
2775                 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2776                 * and remove_all_stable_nodes() while memory is going offline:
2777                 * it is unsafe for them to touch the stable tree at this time.
2778                 * But unmerge_ksm_pages(), rmap lookups and other entry points
2779                 * which do not need the ksm_thread_mutex are all safe.
2780                 */
2781                mutex_lock(&ksm_thread_mutex);
2782                ksm_run |= KSM_RUN_OFFLINE;
2783                mutex_unlock(&ksm_thread_mutex);
2784                break;
2785
2786        case MEM_OFFLINE:
2787                /*
2788                 * Most of the work is done by page migration; but there might
2789                 * be a few stable_nodes left over, still pointing to struct
2790                 * pages which have been offlined: prune those from the tree,
2791                 * otherwise get_ksm_page() might later try to access a
2792                 * non-existent struct page.
2793                 */
2794                ksm_check_stable_tree(mn->start_pfn,
2795                                      mn->start_pfn + mn->nr_pages);
2796                fallthrough;
2797        case MEM_CANCEL_OFFLINE:
2798                mutex_lock(&ksm_thread_mutex);
2799                ksm_run &= ~KSM_RUN_OFFLINE;
2800                mutex_unlock(&ksm_thread_mutex);
2801
2802                smp_mb();       /* wake_up_bit advises this */
2803                wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2804                break;
2805        }
2806        return NOTIFY_OK;
2807}
2808#else
2809static void wait_while_offlining(void)
2810{
2811}
2812#endif /* CONFIG_MEMORY_HOTREMOVE */
2813
2814#ifdef CONFIG_SYSFS
2815/*
2816 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2817 */
2818
2819#define KSM_ATTR_RO(_name) \
2820        static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2821#define KSM_ATTR(_name) \
2822        static struct kobj_attribute _name##_attr = \
2823                __ATTR(_name, 0644, _name##_show, _name##_store)
2824
2825static ssize_t sleep_millisecs_show(struct kobject *kobj,
2826                                    struct kobj_attribute *attr, char *buf)
2827{
2828        return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
2829}
2830
2831static ssize_t sleep_millisecs_store(struct kobject *kobj,
2832                                     struct kobj_attribute *attr,
2833                                     const char *buf, size_t count)
2834{
2835        unsigned int msecs;
2836        int err;
2837
2838        err = kstrtouint(buf, 10, &msecs);
2839        if (err)
2840                return -EINVAL;
2841
2842        ksm_thread_sleep_millisecs = msecs;
2843        wake_up_interruptible(&ksm_iter_wait);
2844
2845        return count;
2846}
2847KSM_ATTR(sleep_millisecs);
2848
2849static ssize_t pages_to_scan_show(struct kobject *kobj,
2850                                  struct kobj_attribute *attr, char *buf)
2851{
2852        return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
2853}
2854
2855static ssize_t pages_to_scan_store(struct kobject *kobj,
2856                                   struct kobj_attribute *attr,
2857                                   const char *buf, size_t count)
2858{
2859        unsigned int nr_pages;
2860        int err;
2861
2862        err = kstrtouint(buf, 10, &nr_pages);
2863        if (err)
2864                return -EINVAL;
2865
2866        ksm_thread_pages_to_scan = nr_pages;
2867
2868        return count;
2869}
2870KSM_ATTR(pages_to_scan);
2871
2872static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2873                        char *buf)
2874{
2875        return sysfs_emit(buf, "%lu\n", ksm_run);
2876}
2877
2878static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2879                         const char *buf, size_t count)
2880{
2881        unsigned int flags;
2882        int err;
2883
2884        err = kstrtouint(buf, 10, &flags);
2885        if (err)
2886                return -EINVAL;
2887        if (flags > KSM_RUN_UNMERGE)
2888                return -EINVAL;
2889
2890        /*
2891         * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2892         * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2893         * breaking COW to free the pages_shared (but leaves mm_slots
2894         * on the list for when ksmd may be set running again).
2895         */
2896
2897        mutex_lock(&ksm_thread_mutex);
2898        wait_while_offlining();
2899        if (ksm_run != flags) {
2900                ksm_run = flags;
2901                if (flags & KSM_RUN_UNMERGE) {
2902                        set_current_oom_origin();
2903                        err = unmerge_and_remove_all_rmap_items();
2904                        clear_current_oom_origin();
2905                        if (err) {
2906                                ksm_run = KSM_RUN_STOP;
2907                                count = err;
2908                        }
2909                }
2910        }
2911        mutex_unlock(&ksm_thread_mutex);
2912
2913        if (flags & KSM_RUN_MERGE)
2914                wake_up_interruptible(&ksm_thread_wait);
2915
2916        return count;
2917}
2918KSM_ATTR(run);
2919
2920#ifdef CONFIG_NUMA
2921static ssize_t merge_across_nodes_show(struct kobject *kobj,
2922                                       struct kobj_attribute *attr, char *buf)
2923{
2924        return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
2925}
2926
2927static ssize_t merge_across_nodes_store(struct kobject *kobj,
2928                                   struct kobj_attribute *attr,
2929                                   const char *buf, size_t count)
2930{
2931        int err;
2932        unsigned long knob;
2933
2934        err = kstrtoul(buf, 10, &knob);
2935        if (err)
2936                return err;
2937        if (knob > 1)
2938                return -EINVAL;
2939
2940        mutex_lock(&ksm_thread_mutex);
2941        wait_while_offlining();
2942        if (ksm_merge_across_nodes != knob) {
2943                if (ksm_pages_shared || remove_all_stable_nodes())
2944                        err = -EBUSY;
2945                else if (root_stable_tree == one_stable_tree) {
2946                        struct rb_root *buf;
2947                        /*
2948                         * This is the first time that we switch away from the
2949                         * default of merging across nodes: must now allocate
2950                         * a buffer to hold as many roots as may be needed.
2951                         * Allocate stable and unstable together:
2952                         * MAXSMP NODES_SHIFT 10 will use 16kB.
2953                         */
2954                        buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2955                                      GFP_KERNEL);
2956                        /* Let us assume that RB_ROOT is NULL is zero */
2957                        if (!buf)
2958                                err = -ENOMEM;
2959                        else {
2960                                root_stable_tree = buf;
2961                                root_unstable_tree = buf + nr_node_ids;
2962                                /* Stable tree is empty but not the unstable */
2963                                root_unstable_tree[0] = one_unstable_tree[0];
2964                        }
2965                }
2966                if (!err) {
2967                        ksm_merge_across_nodes = knob;
2968                        ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2969                }
2970        }
2971        mutex_unlock(&ksm_thread_mutex);
2972
2973        return err ? err : count;
2974}
2975KSM_ATTR(merge_across_nodes);
2976#endif
2977
2978static ssize_t use_zero_pages_show(struct kobject *kobj,
2979                                   struct kobj_attribute *attr, char *buf)
2980{
2981        return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
2982}
2983static ssize_t use_zero_pages_store(struct kobject *kobj,
2984                                   struct kobj_attribute *attr,
2985                                   const char *buf, size_t count)
2986{
2987        int err;
2988        bool value;
2989
2990        err = kstrtobool(buf, &value);
2991        if (err)
2992                return -EINVAL;
2993
2994        ksm_use_zero_pages = value;
2995
2996        return count;
2997}
2998KSM_ATTR(use_zero_pages);
2999
3000static ssize_t max_page_sharing_show(struct kobject *kobj,
3001                                     struct kobj_attribute *attr, char *buf)
3002{
3003        return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3004}
3005
3006static ssize_t max_page_sharing_store(struct kobject *kobj,
3007                                      struct kobj_attribute *attr,
3008                                      const char *buf, size_t count)
3009{
3010        int err;
3011        int knob;
3012
3013        err = kstrtoint(buf, 10, &knob);
3014        if (err)
3015                return err;
3016        /*
3017         * When a KSM page is created it is shared by 2 mappings. This
3018         * being a signed comparison, it implicitly verifies it's not
3019         * negative.
3020         */
3021        if (knob < 2)
3022                return -EINVAL;
3023
3024        if (READ_ONCE(ksm_max_page_sharing) == knob)
3025                return count;
3026
3027        mutex_lock(&ksm_thread_mutex);
3028        wait_while_offlining();
3029        if (ksm_max_page_sharing != knob) {
3030                if (ksm_pages_shared || remove_all_stable_nodes())
3031                        err = -EBUSY;
3032                else
3033                        ksm_max_page_sharing = knob;
3034        }
3035        mutex_unlock(&ksm_thread_mutex);
3036
3037        return err ? err : count;
3038}
3039KSM_ATTR(max_page_sharing);
3040
3041static ssize_t pages_shared_show(struct kobject *kobj,
3042                                 struct kobj_attribute *attr, char *buf)
3043{
3044        return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3045}
3046KSM_ATTR_RO(pages_shared);
3047
3048static ssize_t pages_sharing_show(struct kobject *kobj,
3049                                  struct kobj_attribute *attr, char *buf)
3050{
3051        return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3052}
3053KSM_ATTR_RO(pages_sharing);
3054
3055static ssize_t pages_unshared_show(struct kobject *kobj,
3056                                   struct kobj_attribute *attr, char *buf)
3057{
3058        return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3059}
3060KSM_ATTR_RO(pages_unshared);
3061
3062static ssize_t pages_volatile_show(struct kobject *kobj,
3063                                   struct kobj_attribute *attr, char *buf)
3064{
3065        long ksm_pages_volatile;
3066
3067        ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3068                                - ksm_pages_sharing - ksm_pages_unshared;
3069        /*
3070         * It was not worth any locking to calculate that statistic,
3071         * but it might therefore sometimes be negative: conceal that.
3072         */
3073        if (ksm_pages_volatile < 0)
3074                ksm_pages_volatile = 0;
3075        return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3076}
3077KSM_ATTR_RO(pages_volatile);
3078
3079static ssize_t stable_node_dups_show(struct kobject *kobj,
3080                                     struct kobj_attribute *attr, char *buf)
3081{
3082        return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3083}
3084KSM_ATTR_RO(stable_node_dups);
3085
3086static ssize_t stable_node_chains_show(struct kobject *kobj,
3087                                       struct kobj_attribute *attr, char *buf)
3088{
3089        return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3090}
3091KSM_ATTR_RO(stable_node_chains);
3092
3093static ssize_t
3094stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3095                                        struct kobj_attribute *attr,
3096                                        char *buf)
3097{
3098        return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3099}
3100
3101static ssize_t
3102stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3103                                         struct kobj_attribute *attr,
3104                                         const char *buf, size_t count)
3105{
3106        unsigned int msecs;
3107        int err;
3108
3109        err = kstrtouint(buf, 10, &msecs);
3110        if (err)
3111                return -EINVAL;
3112
3113        ksm_stable_node_chains_prune_millisecs = msecs;
3114
3115        return count;
3116}
3117KSM_ATTR(stable_node_chains_prune_millisecs);
3118
3119static ssize_t full_scans_show(struct kobject *kobj,
3120                               struct kobj_attribute *attr, char *buf)
3121{
3122        return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3123}
3124KSM_ATTR_RO(full_scans);
3125
3126static struct attribute *ksm_attrs[] = {
3127        &sleep_millisecs_attr.attr,
3128        &pages_to_scan_attr.attr,
3129        &run_attr.attr,
3130        &pages_shared_attr.attr,
3131        &pages_sharing_attr.attr,
3132        &pages_unshared_attr.attr,
3133        &pages_volatile_attr.attr,
3134        &full_scans_attr.attr,
3135#ifdef CONFIG_NUMA
3136        &merge_across_nodes_attr.attr,
3137#endif
3138        &max_page_sharing_attr.attr,
3139        &stable_node_chains_attr.attr,
3140        &stable_node_dups_attr.attr,
3141        &stable_node_chains_prune_millisecs_attr.attr,
3142        &use_zero_pages_attr.attr,
3143        NULL,
3144};
3145
3146static const struct attribute_group ksm_attr_group = {
3147        .attrs = ksm_attrs,
3148        .name = "ksm",
3149};
3150#endif /* CONFIG_SYSFS */
3151
3152static int __init ksm_init(void)
3153{
3154        struct task_struct *ksm_thread;
3155        int err;
3156
3157        /* The correct value depends on page size and endianness */
3158        zero_checksum = calc_checksum(ZERO_PAGE(0));
3159        /* Default to false for backwards compatibility */
3160        ksm_use_zero_pages = false;
3161
3162        err = ksm_slab_init();
3163        if (err)
3164                goto out;
3165
3166        ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3167        if (IS_ERR(ksm_thread)) {
3168                pr_err("ksm: creating kthread failed\n");
3169                err = PTR_ERR(ksm_thread);
3170                goto out_free;
3171        }
3172
3173#ifdef CONFIG_SYSFS
3174        err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3175        if (err) {
3176                pr_err("ksm: register sysfs failed\n");
3177                kthread_stop(ksm_thread);
3178                goto out_free;
3179        }
3180#else
3181        ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3182
3183#endif /* CONFIG_SYSFS */
3184
3185#ifdef CONFIG_MEMORY_HOTREMOVE
3186        /* There is no significance to this priority 100 */
3187        hotplug_memory_notifier(ksm_memory_callback, 100);
3188#endif
3189        return 0;
3190
3191out_free:
3192        ksm_slab_free();
3193out:
3194        return err;
3195}
3196subsys_initcall(ksm_init);
3197