linux/mm/memory-failure.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2008, 2009 Intel Corporation
   4 * Authors: Andi Kleen, Fengguang Wu
   5 *
   6 * High level machine check handler. Handles pages reported by the
   7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
   8 * failure.
   9 * 
  10 * In addition there is a "soft offline" entry point that allows stop using
  11 * not-yet-corrupted-by-suspicious pages without killing anything.
  12 *
  13 * Handles page cache pages in various states.  The tricky part
  14 * here is that we can access any page asynchronously in respect to 
  15 * other VM users, because memory failures could happen anytime and 
  16 * anywhere. This could violate some of their assumptions. This is why 
  17 * this code has to be extremely careful. Generally it tries to use 
  18 * normal locking rules, as in get the standard locks, even if that means 
  19 * the error handling takes potentially a long time.
  20 *
  21 * It can be very tempting to add handling for obscure cases here.
  22 * In general any code for handling new cases should only be added iff:
  23 * - You know how to test it.
  24 * - You have a test that can be added to mce-test
  25 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
  26 * - The case actually shows up as a frequent (top 10) page state in
  27 *   tools/vm/page-types when running a real workload.
  28 * 
  29 * There are several operations here with exponential complexity because
  30 * of unsuitable VM data structures. For example the operation to map back 
  31 * from RMAP chains to processes has to walk the complete process list and 
  32 * has non linear complexity with the number. But since memory corruptions
  33 * are rare we hope to get away with this. This avoids impacting the core 
  34 * VM.
  35 */
  36#include <linux/kernel.h>
  37#include <linux/mm.h>
  38#include <linux/page-flags.h>
  39#include <linux/kernel-page-flags.h>
  40#include <linux/sched/signal.h>
  41#include <linux/sched/task.h>
  42#include <linux/ksm.h>
  43#include <linux/rmap.h>
  44#include <linux/export.h>
  45#include <linux/pagemap.h>
  46#include <linux/swap.h>
  47#include <linux/backing-dev.h>
  48#include <linux/migrate.h>
  49#include <linux/suspend.h>
  50#include <linux/slab.h>
  51#include <linux/swapops.h>
  52#include <linux/hugetlb.h>
  53#include <linux/memory_hotplug.h>
  54#include <linux/mm_inline.h>
  55#include <linux/memremap.h>
  56#include <linux/kfifo.h>
  57#include <linux/ratelimit.h>
  58#include <linux/page-isolation.h>
  59#include <linux/pagewalk.h>
  60#include "internal.h"
  61#include "ras/ras_event.h"
  62
  63int sysctl_memory_failure_early_kill __read_mostly = 0;
  64
  65int sysctl_memory_failure_recovery __read_mostly = 1;
  66
  67atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
  68
  69static bool __page_handle_poison(struct page *page)
  70{
  71        int ret;
  72
  73        zone_pcp_disable(page_zone(page));
  74        ret = dissolve_free_huge_page(page);
  75        if (!ret)
  76                ret = take_page_off_buddy(page);
  77        zone_pcp_enable(page_zone(page));
  78
  79        return ret > 0;
  80}
  81
  82static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
  83{
  84        if (hugepage_or_freepage) {
  85                /*
  86                 * Doing this check for free pages is also fine since dissolve_free_huge_page
  87                 * returns 0 for non-hugetlb pages as well.
  88                 */
  89                if (!__page_handle_poison(page))
  90                        /*
  91                         * We could fail to take off the target page from buddy
  92                         * for example due to racy page allocation, but that's
  93                         * acceptable because soft-offlined page is not broken
  94                         * and if someone really want to use it, they should
  95                         * take it.
  96                         */
  97                        return false;
  98        }
  99
 100        SetPageHWPoison(page);
 101        if (release)
 102                put_page(page);
 103        page_ref_inc(page);
 104        num_poisoned_pages_inc();
 105
 106        return true;
 107}
 108
 109#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
 110
 111u32 hwpoison_filter_enable = 0;
 112u32 hwpoison_filter_dev_major = ~0U;
 113u32 hwpoison_filter_dev_minor = ~0U;
 114u64 hwpoison_filter_flags_mask;
 115u64 hwpoison_filter_flags_value;
 116EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
 117EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
 118EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
 119EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
 120EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
 121
 122static int hwpoison_filter_dev(struct page *p)
 123{
 124        struct address_space *mapping;
 125        dev_t dev;
 126
 127        if (hwpoison_filter_dev_major == ~0U &&
 128            hwpoison_filter_dev_minor == ~0U)
 129                return 0;
 130
 131        /*
 132         * page_mapping() does not accept slab pages.
 133         */
 134        if (PageSlab(p))
 135                return -EINVAL;
 136
 137        mapping = page_mapping(p);
 138        if (mapping == NULL || mapping->host == NULL)
 139                return -EINVAL;
 140
 141        dev = mapping->host->i_sb->s_dev;
 142        if (hwpoison_filter_dev_major != ~0U &&
 143            hwpoison_filter_dev_major != MAJOR(dev))
 144                return -EINVAL;
 145        if (hwpoison_filter_dev_minor != ~0U &&
 146            hwpoison_filter_dev_minor != MINOR(dev))
 147                return -EINVAL;
 148
 149        return 0;
 150}
 151
 152static int hwpoison_filter_flags(struct page *p)
 153{
 154        if (!hwpoison_filter_flags_mask)
 155                return 0;
 156
 157        if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
 158                                    hwpoison_filter_flags_value)
 159                return 0;
 160        else
 161                return -EINVAL;
 162}
 163
 164/*
 165 * This allows stress tests to limit test scope to a collection of tasks
 166 * by putting them under some memcg. This prevents killing unrelated/important
 167 * processes such as /sbin/init. Note that the target task may share clean
 168 * pages with init (eg. libc text), which is harmless. If the target task
 169 * share _dirty_ pages with another task B, the test scheme must make sure B
 170 * is also included in the memcg. At last, due to race conditions this filter
 171 * can only guarantee that the page either belongs to the memcg tasks, or is
 172 * a freed page.
 173 */
 174#ifdef CONFIG_MEMCG
 175u64 hwpoison_filter_memcg;
 176EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
 177static int hwpoison_filter_task(struct page *p)
 178{
 179        if (!hwpoison_filter_memcg)
 180                return 0;
 181
 182        if (page_cgroup_ino(p) != hwpoison_filter_memcg)
 183                return -EINVAL;
 184
 185        return 0;
 186}
 187#else
 188static int hwpoison_filter_task(struct page *p) { return 0; }
 189#endif
 190
 191int hwpoison_filter(struct page *p)
 192{
 193        if (!hwpoison_filter_enable)
 194                return 0;
 195
 196        if (hwpoison_filter_dev(p))
 197                return -EINVAL;
 198
 199        if (hwpoison_filter_flags(p))
 200                return -EINVAL;
 201
 202        if (hwpoison_filter_task(p))
 203                return -EINVAL;
 204
 205        return 0;
 206}
 207#else
 208int hwpoison_filter(struct page *p)
 209{
 210        return 0;
 211}
 212#endif
 213
 214EXPORT_SYMBOL_GPL(hwpoison_filter);
 215
 216/*
 217 * Kill all processes that have a poisoned page mapped and then isolate
 218 * the page.
 219 *
 220 * General strategy:
 221 * Find all processes having the page mapped and kill them.
 222 * But we keep a page reference around so that the page is not
 223 * actually freed yet.
 224 * Then stash the page away
 225 *
 226 * There's no convenient way to get back to mapped processes
 227 * from the VMAs. So do a brute-force search over all
 228 * running processes.
 229 *
 230 * Remember that machine checks are not common (or rather
 231 * if they are common you have other problems), so this shouldn't
 232 * be a performance issue.
 233 *
 234 * Also there are some races possible while we get from the
 235 * error detection to actually handle it.
 236 */
 237
 238struct to_kill {
 239        struct list_head nd;
 240        struct task_struct *tsk;
 241        unsigned long addr;
 242        short size_shift;
 243};
 244
 245/*
 246 * Send all the processes who have the page mapped a signal.
 247 * ``action optional'' if they are not immediately affected by the error
 248 * ``action required'' if error happened in current execution context
 249 */
 250static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
 251{
 252        struct task_struct *t = tk->tsk;
 253        short addr_lsb = tk->size_shift;
 254        int ret = 0;
 255
 256        pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
 257                        pfn, t->comm, t->pid);
 258
 259        if (flags & MF_ACTION_REQUIRED) {
 260                if (t == current)
 261                        ret = force_sig_mceerr(BUS_MCEERR_AR,
 262                                         (void __user *)tk->addr, addr_lsb);
 263                else
 264                        /* Signal other processes sharing the page if they have PF_MCE_EARLY set. */
 265                        ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
 266                                addr_lsb, t);
 267        } else {
 268                /*
 269                 * Don't use force here, it's convenient if the signal
 270                 * can be temporarily blocked.
 271                 * This could cause a loop when the user sets SIGBUS
 272                 * to SIG_IGN, but hopefully no one will do that?
 273                 */
 274                ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
 275                                      addr_lsb, t);  /* synchronous? */
 276        }
 277        if (ret < 0)
 278                pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
 279                        t->comm, t->pid, ret);
 280        return ret;
 281}
 282
 283/*
 284 * Unknown page type encountered. Try to check whether it can turn PageLRU by
 285 * lru_add_drain_all.
 286 */
 287void shake_page(struct page *p)
 288{
 289        if (PageHuge(p))
 290                return;
 291
 292        if (!PageSlab(p)) {
 293                lru_add_drain_all();
 294                if (PageLRU(p) || is_free_buddy_page(p))
 295                        return;
 296        }
 297
 298        /*
 299         * TODO: Could shrink slab caches here if a lightweight range-based
 300         * shrinker will be available.
 301         */
 302}
 303EXPORT_SYMBOL_GPL(shake_page);
 304
 305static unsigned long dev_pagemap_mapping_shift(struct page *page,
 306                struct vm_area_struct *vma)
 307{
 308        unsigned long address = vma_address(page, vma);
 309        unsigned long ret = 0;
 310        pgd_t *pgd;
 311        p4d_t *p4d;
 312        pud_t *pud;
 313        pmd_t *pmd;
 314        pte_t *pte;
 315
 316        pgd = pgd_offset(vma->vm_mm, address);
 317        if (!pgd_present(*pgd))
 318                return 0;
 319        p4d = p4d_offset(pgd, address);
 320        if (!p4d_present(*p4d))
 321                return 0;
 322        pud = pud_offset(p4d, address);
 323        if (!pud_present(*pud))
 324                return 0;
 325        if (pud_devmap(*pud))
 326                return PUD_SHIFT;
 327        pmd = pmd_offset(pud, address);
 328        if (!pmd_present(*pmd))
 329                return 0;
 330        if (pmd_devmap(*pmd))
 331                return PMD_SHIFT;
 332        pte = pte_offset_map(pmd, address);
 333        if (pte_present(*pte) && pte_devmap(*pte))
 334                ret = PAGE_SHIFT;
 335        pte_unmap(pte);
 336        return ret;
 337}
 338
 339/*
 340 * Failure handling: if we can't find or can't kill a process there's
 341 * not much we can do.  We just print a message and ignore otherwise.
 342 */
 343
 344/*
 345 * Schedule a process for later kill.
 346 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 347 */
 348static void add_to_kill(struct task_struct *tsk, struct page *p,
 349                       struct vm_area_struct *vma,
 350                       struct list_head *to_kill)
 351{
 352        struct to_kill *tk;
 353
 354        tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
 355        if (!tk) {
 356                pr_err("Memory failure: Out of memory while machine check handling\n");
 357                return;
 358        }
 359
 360        tk->addr = page_address_in_vma(p, vma);
 361        if (is_zone_device_page(p))
 362                tk->size_shift = dev_pagemap_mapping_shift(p, vma);
 363        else
 364                tk->size_shift = page_shift(compound_head(p));
 365
 366        /*
 367         * Send SIGKILL if "tk->addr == -EFAULT". Also, as
 368         * "tk->size_shift" is always non-zero for !is_zone_device_page(),
 369         * so "tk->size_shift == 0" effectively checks no mapping on
 370         * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
 371         * to a process' address space, it's possible not all N VMAs
 372         * contain mappings for the page, but at least one VMA does.
 373         * Only deliver SIGBUS with payload derived from the VMA that
 374         * has a mapping for the page.
 375         */
 376        if (tk->addr == -EFAULT) {
 377                pr_info("Memory failure: Unable to find user space address %lx in %s\n",
 378                        page_to_pfn(p), tsk->comm);
 379        } else if (tk->size_shift == 0) {
 380                kfree(tk);
 381                return;
 382        }
 383
 384        get_task_struct(tsk);
 385        tk->tsk = tsk;
 386        list_add_tail(&tk->nd, to_kill);
 387}
 388
 389/*
 390 * Kill the processes that have been collected earlier.
 391 *
 392 * Only do anything when FORCEKILL is set, otherwise just free the
 393 * list (this is used for clean pages which do not need killing)
 394 * Also when FAIL is set do a force kill because something went
 395 * wrong earlier.
 396 */
 397static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
 398                unsigned long pfn, int flags)
 399{
 400        struct to_kill *tk, *next;
 401
 402        list_for_each_entry_safe (tk, next, to_kill, nd) {
 403                if (forcekill) {
 404                        /*
 405                         * In case something went wrong with munmapping
 406                         * make sure the process doesn't catch the
 407                         * signal and then access the memory. Just kill it.
 408                         */
 409                        if (fail || tk->addr == -EFAULT) {
 410                                pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
 411                                       pfn, tk->tsk->comm, tk->tsk->pid);
 412                                do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
 413                                                 tk->tsk, PIDTYPE_PID);
 414                        }
 415
 416                        /*
 417                         * In theory the process could have mapped
 418                         * something else on the address in-between. We could
 419                         * check for that, but we need to tell the
 420                         * process anyways.
 421                         */
 422                        else if (kill_proc(tk, pfn, flags) < 0)
 423                                pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
 424                                       pfn, tk->tsk->comm, tk->tsk->pid);
 425                }
 426                put_task_struct(tk->tsk);
 427                kfree(tk);
 428        }
 429}
 430
 431/*
 432 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 433 * on behalf of the thread group. Return task_struct of the (first found)
 434 * dedicated thread if found, and return NULL otherwise.
 435 *
 436 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 437 * have to call rcu_read_lock/unlock() in this function.
 438 */
 439static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
 440{
 441        struct task_struct *t;
 442
 443        for_each_thread(tsk, t) {
 444                if (t->flags & PF_MCE_PROCESS) {
 445                        if (t->flags & PF_MCE_EARLY)
 446                                return t;
 447                } else {
 448                        if (sysctl_memory_failure_early_kill)
 449                                return t;
 450                }
 451        }
 452        return NULL;
 453}
 454
 455/*
 456 * Determine whether a given process is "early kill" process which expects
 457 * to be signaled when some page under the process is hwpoisoned.
 458 * Return task_struct of the dedicated thread (main thread unless explicitly
 459 * specified) if the process is "early kill" and otherwise returns NULL.
 460 *
 461 * Note that the above is true for Action Optional case. For Action Required
 462 * case, it's only meaningful to the current thread which need to be signaled
 463 * with SIGBUS, this error is Action Optional for other non current
 464 * processes sharing the same error page,if the process is "early kill", the
 465 * task_struct of the dedicated thread will also be returned.
 466 */
 467static struct task_struct *task_early_kill(struct task_struct *tsk,
 468                                           int force_early)
 469{
 470        if (!tsk->mm)
 471                return NULL;
 472        /*
 473         * Comparing ->mm here because current task might represent
 474         * a subthread, while tsk always points to the main thread.
 475         */
 476        if (force_early && tsk->mm == current->mm)
 477                return current;
 478
 479        return find_early_kill_thread(tsk);
 480}
 481
 482/*
 483 * Collect processes when the error hit an anonymous page.
 484 */
 485static void collect_procs_anon(struct page *page, struct list_head *to_kill,
 486                                int force_early)
 487{
 488        struct vm_area_struct *vma;
 489        struct task_struct *tsk;
 490        struct anon_vma *av;
 491        pgoff_t pgoff;
 492
 493        av = page_lock_anon_vma_read(page);
 494        if (av == NULL) /* Not actually mapped anymore */
 495                return;
 496
 497        pgoff = page_to_pgoff(page);
 498        read_lock(&tasklist_lock);
 499        for_each_process (tsk) {
 500                struct anon_vma_chain *vmac;
 501                struct task_struct *t = task_early_kill(tsk, force_early);
 502
 503                if (!t)
 504                        continue;
 505                anon_vma_interval_tree_foreach(vmac, &av->rb_root,
 506                                               pgoff, pgoff) {
 507                        vma = vmac->vma;
 508                        if (!page_mapped_in_vma(page, vma))
 509                                continue;
 510                        if (vma->vm_mm == t->mm)
 511                                add_to_kill(t, page, vma, to_kill);
 512                }
 513        }
 514        read_unlock(&tasklist_lock);
 515        page_unlock_anon_vma_read(av);
 516}
 517
 518/*
 519 * Collect processes when the error hit a file mapped page.
 520 */
 521static void collect_procs_file(struct page *page, struct list_head *to_kill,
 522                                int force_early)
 523{
 524        struct vm_area_struct *vma;
 525        struct task_struct *tsk;
 526        struct address_space *mapping = page->mapping;
 527        pgoff_t pgoff;
 528
 529        i_mmap_lock_read(mapping);
 530        read_lock(&tasklist_lock);
 531        pgoff = page_to_pgoff(page);
 532        for_each_process(tsk) {
 533                struct task_struct *t = task_early_kill(tsk, force_early);
 534
 535                if (!t)
 536                        continue;
 537                vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
 538                                      pgoff) {
 539                        /*
 540                         * Send early kill signal to tasks where a vma covers
 541                         * the page but the corrupted page is not necessarily
 542                         * mapped it in its pte.
 543                         * Assume applications who requested early kill want
 544                         * to be informed of all such data corruptions.
 545                         */
 546                        if (vma->vm_mm == t->mm)
 547                                add_to_kill(t, page, vma, to_kill);
 548                }
 549        }
 550        read_unlock(&tasklist_lock);
 551        i_mmap_unlock_read(mapping);
 552}
 553
 554/*
 555 * Collect the processes who have the corrupted page mapped to kill.
 556 */
 557static void collect_procs(struct page *page, struct list_head *tokill,
 558                                int force_early)
 559{
 560        if (!page->mapping)
 561                return;
 562
 563        if (PageAnon(page))
 564                collect_procs_anon(page, tokill, force_early);
 565        else
 566                collect_procs_file(page, tokill, force_early);
 567}
 568
 569struct hwp_walk {
 570        struct to_kill tk;
 571        unsigned long pfn;
 572        int flags;
 573};
 574
 575static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
 576{
 577        tk->addr = addr;
 578        tk->size_shift = shift;
 579}
 580
 581static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
 582                                unsigned long poisoned_pfn, struct to_kill *tk)
 583{
 584        unsigned long pfn = 0;
 585
 586        if (pte_present(pte)) {
 587                pfn = pte_pfn(pte);
 588        } else {
 589                swp_entry_t swp = pte_to_swp_entry(pte);
 590
 591                if (is_hwpoison_entry(swp))
 592                        pfn = hwpoison_entry_to_pfn(swp);
 593        }
 594
 595        if (!pfn || pfn != poisoned_pfn)
 596                return 0;
 597
 598        set_to_kill(tk, addr, shift);
 599        return 1;
 600}
 601
 602#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 603static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
 604                                      struct hwp_walk *hwp)
 605{
 606        pmd_t pmd = *pmdp;
 607        unsigned long pfn;
 608        unsigned long hwpoison_vaddr;
 609
 610        if (!pmd_present(pmd))
 611                return 0;
 612        pfn = pmd_pfn(pmd);
 613        if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
 614                hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
 615                set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
 616                return 1;
 617        }
 618        return 0;
 619}
 620#else
 621static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
 622                                      struct hwp_walk *hwp)
 623{
 624        return 0;
 625}
 626#endif
 627
 628static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
 629                              unsigned long end, struct mm_walk *walk)
 630{
 631        struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
 632        int ret = 0;
 633        pte_t *ptep, *mapped_pte;
 634        spinlock_t *ptl;
 635
 636        ptl = pmd_trans_huge_lock(pmdp, walk->vma);
 637        if (ptl) {
 638                ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
 639                spin_unlock(ptl);
 640                goto out;
 641        }
 642
 643        if (pmd_trans_unstable(pmdp))
 644                goto out;
 645
 646        mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
 647                                                addr, &ptl);
 648        for (; addr != end; ptep++, addr += PAGE_SIZE) {
 649                ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
 650                                             hwp->pfn, &hwp->tk);
 651                if (ret == 1)
 652                        break;
 653        }
 654        pte_unmap_unlock(mapped_pte, ptl);
 655out:
 656        cond_resched();
 657        return ret;
 658}
 659
 660#ifdef CONFIG_HUGETLB_PAGE
 661static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
 662                            unsigned long addr, unsigned long end,
 663                            struct mm_walk *walk)
 664{
 665        struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
 666        pte_t pte = huge_ptep_get(ptep);
 667        struct hstate *h = hstate_vma(walk->vma);
 668
 669        return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
 670                                      hwp->pfn, &hwp->tk);
 671}
 672#else
 673#define hwpoison_hugetlb_range  NULL
 674#endif
 675
 676static struct mm_walk_ops hwp_walk_ops = {
 677        .pmd_entry = hwpoison_pte_range,
 678        .hugetlb_entry = hwpoison_hugetlb_range,
 679};
 680
 681/*
 682 * Sends SIGBUS to the current process with error info.
 683 *
 684 * This function is intended to handle "Action Required" MCEs on already
 685 * hardware poisoned pages. They could happen, for example, when
 686 * memory_failure() failed to unmap the error page at the first call, or
 687 * when multiple local machine checks happened on different CPUs.
 688 *
 689 * MCE handler currently has no easy access to the error virtual address,
 690 * so this function walks page table to find it. The returned virtual address
 691 * is proper in most cases, but it could be wrong when the application
 692 * process has multiple entries mapping the error page.
 693 */
 694static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
 695                                  int flags)
 696{
 697        int ret;
 698        struct hwp_walk priv = {
 699                .pfn = pfn,
 700        };
 701        priv.tk.tsk = p;
 702
 703        mmap_read_lock(p->mm);
 704        ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
 705                              (void *)&priv);
 706        if (ret == 1 && priv.tk.addr)
 707                kill_proc(&priv.tk, pfn, flags);
 708        mmap_read_unlock(p->mm);
 709        return ret ? -EFAULT : -EHWPOISON;
 710}
 711
 712static const char *action_name[] = {
 713        [MF_IGNORED] = "Ignored",
 714        [MF_FAILED] = "Failed",
 715        [MF_DELAYED] = "Delayed",
 716        [MF_RECOVERED] = "Recovered",
 717};
 718
 719static const char * const action_page_types[] = {
 720        [MF_MSG_KERNEL]                 = "reserved kernel page",
 721        [MF_MSG_KERNEL_HIGH_ORDER]      = "high-order kernel page",
 722        [MF_MSG_SLAB]                   = "kernel slab page",
 723        [MF_MSG_DIFFERENT_COMPOUND]     = "different compound page after locking",
 724        [MF_MSG_POISONED_HUGE]          = "huge page already hardware poisoned",
 725        [MF_MSG_HUGE]                   = "huge page",
 726        [MF_MSG_FREE_HUGE]              = "free huge page",
 727        [MF_MSG_NON_PMD_HUGE]           = "non-pmd-sized huge page",
 728        [MF_MSG_UNMAP_FAILED]           = "unmapping failed page",
 729        [MF_MSG_DIRTY_SWAPCACHE]        = "dirty swapcache page",
 730        [MF_MSG_CLEAN_SWAPCACHE]        = "clean swapcache page",
 731        [MF_MSG_DIRTY_MLOCKED_LRU]      = "dirty mlocked LRU page",
 732        [MF_MSG_CLEAN_MLOCKED_LRU]      = "clean mlocked LRU page",
 733        [MF_MSG_DIRTY_UNEVICTABLE_LRU]  = "dirty unevictable LRU page",
 734        [MF_MSG_CLEAN_UNEVICTABLE_LRU]  = "clean unevictable LRU page",
 735        [MF_MSG_DIRTY_LRU]              = "dirty LRU page",
 736        [MF_MSG_CLEAN_LRU]              = "clean LRU page",
 737        [MF_MSG_TRUNCATED_LRU]          = "already truncated LRU page",
 738        [MF_MSG_BUDDY]                  = "free buddy page",
 739        [MF_MSG_BUDDY_2ND]              = "free buddy page (2nd try)",
 740        [MF_MSG_DAX]                    = "dax page",
 741        [MF_MSG_UNSPLIT_THP]            = "unsplit thp",
 742        [MF_MSG_UNKNOWN]                = "unknown page",
 743};
 744
 745/*
 746 * XXX: It is possible that a page is isolated from LRU cache,
 747 * and then kept in swap cache or failed to remove from page cache.
 748 * The page count will stop it from being freed by unpoison.
 749 * Stress tests should be aware of this memory leak problem.
 750 */
 751static int delete_from_lru_cache(struct page *p)
 752{
 753        if (!isolate_lru_page(p)) {
 754                /*
 755                 * Clear sensible page flags, so that the buddy system won't
 756                 * complain when the page is unpoison-and-freed.
 757                 */
 758                ClearPageActive(p);
 759                ClearPageUnevictable(p);
 760
 761                /*
 762                 * Poisoned page might never drop its ref count to 0 so we have
 763                 * to uncharge it manually from its memcg.
 764                 */
 765                mem_cgroup_uncharge(p);
 766
 767                /*
 768                 * drop the page count elevated by isolate_lru_page()
 769                 */
 770                put_page(p);
 771                return 0;
 772        }
 773        return -EIO;
 774}
 775
 776static int truncate_error_page(struct page *p, unsigned long pfn,
 777                                struct address_space *mapping)
 778{
 779        int ret = MF_FAILED;
 780
 781        if (mapping->a_ops->error_remove_page) {
 782                int err = mapping->a_ops->error_remove_page(mapping, p);
 783
 784                if (err != 0) {
 785                        pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
 786                                pfn, err);
 787                } else if (page_has_private(p) &&
 788                           !try_to_release_page(p, GFP_NOIO)) {
 789                        pr_info("Memory failure: %#lx: failed to release buffers\n",
 790                                pfn);
 791                } else {
 792                        ret = MF_RECOVERED;
 793                }
 794        } else {
 795                /*
 796                 * If the file system doesn't support it just invalidate
 797                 * This fails on dirty or anything with private pages
 798                 */
 799                if (invalidate_inode_page(p))
 800                        ret = MF_RECOVERED;
 801                else
 802                        pr_info("Memory failure: %#lx: Failed to invalidate\n",
 803                                pfn);
 804        }
 805
 806        return ret;
 807}
 808
 809/*
 810 * Error hit kernel page.
 811 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 812 * could be more sophisticated.
 813 */
 814static int me_kernel(struct page *p, unsigned long pfn)
 815{
 816        unlock_page(p);
 817        return MF_IGNORED;
 818}
 819
 820/*
 821 * Page in unknown state. Do nothing.
 822 */
 823static int me_unknown(struct page *p, unsigned long pfn)
 824{
 825        pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
 826        unlock_page(p);
 827        return MF_FAILED;
 828}
 829
 830/*
 831 * Clean (or cleaned) page cache page.
 832 */
 833static int me_pagecache_clean(struct page *p, unsigned long pfn)
 834{
 835        int ret;
 836        struct address_space *mapping;
 837
 838        delete_from_lru_cache(p);
 839
 840        /*
 841         * For anonymous pages we're done the only reference left
 842         * should be the one m_f() holds.
 843         */
 844        if (PageAnon(p)) {
 845                ret = MF_RECOVERED;
 846                goto out;
 847        }
 848
 849        /*
 850         * Now truncate the page in the page cache. This is really
 851         * more like a "temporary hole punch"
 852         * Don't do this for block devices when someone else
 853         * has a reference, because it could be file system metadata
 854         * and that's not safe to truncate.
 855         */
 856        mapping = page_mapping(p);
 857        if (!mapping) {
 858                /*
 859                 * Page has been teared down in the meanwhile
 860                 */
 861                ret = MF_FAILED;
 862                goto out;
 863        }
 864
 865        /*
 866         * Truncation is a bit tricky. Enable it per file system for now.
 867         *
 868         * Open: to take i_rwsem or not for this? Right now we don't.
 869         */
 870        ret = truncate_error_page(p, pfn, mapping);
 871out:
 872        unlock_page(p);
 873        return ret;
 874}
 875
 876/*
 877 * Dirty pagecache page
 878 * Issues: when the error hit a hole page the error is not properly
 879 * propagated.
 880 */
 881static int me_pagecache_dirty(struct page *p, unsigned long pfn)
 882{
 883        struct address_space *mapping = page_mapping(p);
 884
 885        SetPageError(p);
 886        /* TBD: print more information about the file. */
 887        if (mapping) {
 888                /*
 889                 * IO error will be reported by write(), fsync(), etc.
 890                 * who check the mapping.
 891                 * This way the application knows that something went
 892                 * wrong with its dirty file data.
 893                 *
 894                 * There's one open issue:
 895                 *
 896                 * The EIO will be only reported on the next IO
 897                 * operation and then cleared through the IO map.
 898                 * Normally Linux has two mechanisms to pass IO error
 899                 * first through the AS_EIO flag in the address space
 900                 * and then through the PageError flag in the page.
 901                 * Since we drop pages on memory failure handling the
 902                 * only mechanism open to use is through AS_AIO.
 903                 *
 904                 * This has the disadvantage that it gets cleared on
 905                 * the first operation that returns an error, while
 906                 * the PageError bit is more sticky and only cleared
 907                 * when the page is reread or dropped.  If an
 908                 * application assumes it will always get error on
 909                 * fsync, but does other operations on the fd before
 910                 * and the page is dropped between then the error
 911                 * will not be properly reported.
 912                 *
 913                 * This can already happen even without hwpoisoned
 914                 * pages: first on metadata IO errors (which only
 915                 * report through AS_EIO) or when the page is dropped
 916                 * at the wrong time.
 917                 *
 918                 * So right now we assume that the application DTRT on
 919                 * the first EIO, but we're not worse than other parts
 920                 * of the kernel.
 921                 */
 922                mapping_set_error(mapping, -EIO);
 923        }
 924
 925        return me_pagecache_clean(p, pfn);
 926}
 927
 928/*
 929 * Clean and dirty swap cache.
 930 *
 931 * Dirty swap cache page is tricky to handle. The page could live both in page
 932 * cache and swap cache(ie. page is freshly swapped in). So it could be
 933 * referenced concurrently by 2 types of PTEs:
 934 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 935 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 936 * and then
 937 *      - clear dirty bit to prevent IO
 938 *      - remove from LRU
 939 *      - but keep in the swap cache, so that when we return to it on
 940 *        a later page fault, we know the application is accessing
 941 *        corrupted data and shall be killed (we installed simple
 942 *        interception code in do_swap_page to catch it).
 943 *
 944 * Clean swap cache pages can be directly isolated. A later page fault will
 945 * bring in the known good data from disk.
 946 */
 947static int me_swapcache_dirty(struct page *p, unsigned long pfn)
 948{
 949        int ret;
 950
 951        ClearPageDirty(p);
 952        /* Trigger EIO in shmem: */
 953        ClearPageUptodate(p);
 954
 955        ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
 956        unlock_page(p);
 957        return ret;
 958}
 959
 960static int me_swapcache_clean(struct page *p, unsigned long pfn)
 961{
 962        int ret;
 963
 964        delete_from_swap_cache(p);
 965
 966        ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
 967        unlock_page(p);
 968        return ret;
 969}
 970
 971/*
 972 * Huge pages. Needs work.
 973 * Issues:
 974 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 975 *   To narrow down kill region to one page, we need to break up pmd.
 976 */
 977static int me_huge_page(struct page *p, unsigned long pfn)
 978{
 979        int res;
 980        struct page *hpage = compound_head(p);
 981        struct address_space *mapping;
 982
 983        if (!PageHuge(hpage))
 984                return MF_DELAYED;
 985
 986        mapping = page_mapping(hpage);
 987        if (mapping) {
 988                res = truncate_error_page(hpage, pfn, mapping);
 989                unlock_page(hpage);
 990        } else {
 991                res = MF_FAILED;
 992                unlock_page(hpage);
 993                /*
 994                 * migration entry prevents later access on error anonymous
 995                 * hugepage, so we can free and dissolve it into buddy to
 996                 * save healthy subpages.
 997                 */
 998                if (PageAnon(hpage))
 999                        put_page(hpage);
1000                if (__page_handle_poison(p)) {
1001                        page_ref_inc(p);
1002                        res = MF_RECOVERED;
1003                }
1004        }
1005
1006        return res;
1007}
1008
1009/*
1010 * Various page states we can handle.
1011 *
1012 * A page state is defined by its current page->flags bits.
1013 * The table matches them in order and calls the right handler.
1014 *
1015 * This is quite tricky because we can access page at any time
1016 * in its live cycle, so all accesses have to be extremely careful.
1017 *
1018 * This is not complete. More states could be added.
1019 * For any missing state don't attempt recovery.
1020 */
1021
1022#define dirty           (1UL << PG_dirty)
1023#define sc              ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1024#define unevict         (1UL << PG_unevictable)
1025#define mlock           (1UL << PG_mlocked)
1026#define lru             (1UL << PG_lru)
1027#define head            (1UL << PG_head)
1028#define slab            (1UL << PG_slab)
1029#define reserved        (1UL << PG_reserved)
1030
1031static struct page_state {
1032        unsigned long mask;
1033        unsigned long res;
1034        enum mf_action_page_type type;
1035
1036        /* Callback ->action() has to unlock the relevant page inside it. */
1037        int (*action)(struct page *p, unsigned long pfn);
1038} error_states[] = {
1039        { reserved,     reserved,       MF_MSG_KERNEL,  me_kernel },
1040        /*
1041         * free pages are specially detected outside this table:
1042         * PG_buddy pages only make a small fraction of all free pages.
1043         */
1044
1045        /*
1046         * Could in theory check if slab page is free or if we can drop
1047         * currently unused objects without touching them. But just
1048         * treat it as standard kernel for now.
1049         */
1050        { slab,         slab,           MF_MSG_SLAB,    me_kernel },
1051
1052        { head,         head,           MF_MSG_HUGE,            me_huge_page },
1053
1054        { sc|dirty,     sc|dirty,       MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1055        { sc|dirty,     sc,             MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
1056
1057        { mlock|dirty,  mlock|dirty,    MF_MSG_DIRTY_MLOCKED_LRU,       me_pagecache_dirty },
1058        { mlock|dirty,  mlock,          MF_MSG_CLEAN_MLOCKED_LRU,       me_pagecache_clean },
1059
1060        { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU,   me_pagecache_dirty },
1061        { unevict|dirty, unevict,       MF_MSG_CLEAN_UNEVICTABLE_LRU,   me_pagecache_clean },
1062
1063        { lru|dirty,    lru|dirty,      MF_MSG_DIRTY_LRU,       me_pagecache_dirty },
1064        { lru|dirty,    lru,            MF_MSG_CLEAN_LRU,       me_pagecache_clean },
1065
1066        /*
1067         * Catchall entry: must be at end.
1068         */
1069        { 0,            0,              MF_MSG_UNKNOWN, me_unknown },
1070};
1071
1072#undef dirty
1073#undef sc
1074#undef unevict
1075#undef mlock
1076#undef lru
1077#undef head
1078#undef slab
1079#undef reserved
1080
1081/*
1082 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1083 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1084 */
1085static void action_result(unsigned long pfn, enum mf_action_page_type type,
1086                          enum mf_result result)
1087{
1088        trace_memory_failure_event(pfn, type, result);
1089
1090        pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
1091                pfn, action_page_types[type], action_name[result]);
1092}
1093
1094static int page_action(struct page_state *ps, struct page *p,
1095                        unsigned long pfn)
1096{
1097        int result;
1098        int count;
1099
1100        /* page p should be unlocked after returning from ps->action().  */
1101        result = ps->action(p, pfn);
1102
1103        count = page_count(p) - 1;
1104        if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
1105                count--;
1106        if (count > 0) {
1107                pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
1108                       pfn, action_page_types[ps->type], count);
1109                result = MF_FAILED;
1110        }
1111        action_result(pfn, ps->type, result);
1112
1113        /* Could do more checks here if page looks ok */
1114        /*
1115         * Could adjust zone counters here to correct for the missing page.
1116         */
1117
1118        return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1119}
1120
1121/*
1122 * Return true if a page type of a given page is supported by hwpoison
1123 * mechanism (while handling could fail), otherwise false.  This function
1124 * does not return true for hugetlb or device memory pages, so it's assumed
1125 * to be called only in the context where we never have such pages.
1126 */
1127static inline bool HWPoisonHandlable(struct page *page)
1128{
1129        return PageLRU(page) || __PageMovable(page) || is_free_buddy_page(page);
1130}
1131
1132static int __get_hwpoison_page(struct page *page)
1133{
1134        struct page *head = compound_head(page);
1135        int ret = 0;
1136        bool hugetlb = false;
1137
1138        ret = get_hwpoison_huge_page(head, &hugetlb);
1139        if (hugetlb)
1140                return ret;
1141
1142        /*
1143         * This check prevents from calling get_hwpoison_unless_zero()
1144         * for any unsupported type of page in order to reduce the risk of
1145         * unexpected races caused by taking a page refcount.
1146         */
1147        if (!HWPoisonHandlable(head))
1148                return -EBUSY;
1149
1150        if (get_page_unless_zero(head)) {
1151                if (head == compound_head(page))
1152                        return 1;
1153
1154                pr_info("Memory failure: %#lx cannot catch tail\n",
1155                        page_to_pfn(page));
1156                put_page(head);
1157        }
1158
1159        return 0;
1160}
1161
1162static int get_any_page(struct page *p, unsigned long flags)
1163{
1164        int ret = 0, pass = 0;
1165        bool count_increased = false;
1166
1167        if (flags & MF_COUNT_INCREASED)
1168                count_increased = true;
1169
1170try_again:
1171        if (!count_increased) {
1172                ret = __get_hwpoison_page(p);
1173                if (!ret) {
1174                        if (page_count(p)) {
1175                                /* We raced with an allocation, retry. */
1176                                if (pass++ < 3)
1177                                        goto try_again;
1178                                ret = -EBUSY;
1179                        } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1180                                /* We raced with put_page, retry. */
1181                                if (pass++ < 3)
1182                                        goto try_again;
1183                                ret = -EIO;
1184                        }
1185                        goto out;
1186                } else if (ret == -EBUSY) {
1187                        /*
1188                         * We raced with (possibly temporary) unhandlable
1189                         * page, retry.
1190                         */
1191                        if (pass++ < 3) {
1192                                shake_page(p);
1193                                goto try_again;
1194                        }
1195                        ret = -EIO;
1196                        goto out;
1197                }
1198        }
1199
1200        if (PageHuge(p) || HWPoisonHandlable(p)) {
1201                ret = 1;
1202        } else {
1203                /*
1204                 * A page we cannot handle. Check whether we can turn
1205                 * it into something we can handle.
1206                 */
1207                if (pass++ < 3) {
1208                        put_page(p);
1209                        shake_page(p);
1210                        count_increased = false;
1211                        goto try_again;
1212                }
1213                put_page(p);
1214                ret = -EIO;
1215        }
1216out:
1217        if (ret == -EIO)
1218                dump_page(p, "hwpoison: unhandlable page");
1219
1220        return ret;
1221}
1222
1223/**
1224 * get_hwpoison_page() - Get refcount for memory error handling
1225 * @p:          Raw error page (hit by memory error)
1226 * @flags:      Flags controlling behavior of error handling
1227 *
1228 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1229 * error on it, after checking that the error page is in a well-defined state
1230 * (defined as a page-type we can successfully handle the memor error on it,
1231 * such as LRU page and hugetlb page).
1232 *
1233 * Memory error handling could be triggered at any time on any type of page,
1234 * so it's prone to race with typical memory management lifecycle (like
1235 * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1236 * extra care for the error page's state (as done in __get_hwpoison_page()),
1237 * and has some retry logic in get_any_page().
1238 *
1239 * Return: 0 on failure,
1240 *         1 on success for in-use pages in a well-defined state,
1241 *         -EIO for pages on which we can not handle memory errors,
1242 *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1243 *         operations like allocation and free.
1244 */
1245static int get_hwpoison_page(struct page *p, unsigned long flags)
1246{
1247        int ret;
1248
1249        zone_pcp_disable(page_zone(p));
1250        ret = get_any_page(p, flags);
1251        zone_pcp_enable(page_zone(p));
1252
1253        return ret;
1254}
1255
1256/*
1257 * Do all that is necessary to remove user space mappings. Unmap
1258 * the pages and send SIGBUS to the processes if the data was dirty.
1259 */
1260static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1261                                  int flags, struct page *hpage)
1262{
1263        enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
1264        struct address_space *mapping;
1265        LIST_HEAD(tokill);
1266        bool unmap_success;
1267        int kill = 1, forcekill;
1268        bool mlocked = PageMlocked(hpage);
1269
1270        /*
1271         * Here we are interested only in user-mapped pages, so skip any
1272         * other types of pages.
1273         */
1274        if (PageReserved(p) || PageSlab(p))
1275                return true;
1276        if (!(PageLRU(hpage) || PageHuge(p)))
1277                return true;
1278
1279        /*
1280         * This check implies we don't kill processes if their pages
1281         * are in the swap cache early. Those are always late kills.
1282         */
1283        if (!page_mapped(hpage))
1284                return true;
1285
1286        if (PageKsm(p)) {
1287                pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
1288                return false;
1289        }
1290
1291        if (PageSwapCache(p)) {
1292                pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1293                        pfn);
1294                ttu |= TTU_IGNORE_HWPOISON;
1295        }
1296
1297        /*
1298         * Propagate the dirty bit from PTEs to struct page first, because we
1299         * need this to decide if we should kill or just drop the page.
1300         * XXX: the dirty test could be racy: set_page_dirty() may not always
1301         * be called inside page lock (it's recommended but not enforced).
1302         */
1303        mapping = page_mapping(hpage);
1304        if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1305            mapping_can_writeback(mapping)) {
1306                if (page_mkclean(hpage)) {
1307                        SetPageDirty(hpage);
1308                } else {
1309                        kill = 0;
1310                        ttu |= TTU_IGNORE_HWPOISON;
1311                        pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1312                                pfn);
1313                }
1314        }
1315
1316        /*
1317         * First collect all the processes that have the page
1318         * mapped in dirty form.  This has to be done before try_to_unmap,
1319         * because ttu takes the rmap data structures down.
1320         *
1321         * Error handling: We ignore errors here because
1322         * there's nothing that can be done.
1323         */
1324        if (kill)
1325                collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1326
1327        if (!PageHuge(hpage)) {
1328                try_to_unmap(hpage, ttu);
1329        } else {
1330                if (!PageAnon(hpage)) {
1331                        /*
1332                         * For hugetlb pages in shared mappings, try_to_unmap
1333                         * could potentially call huge_pmd_unshare.  Because of
1334                         * this, take semaphore in write mode here and set
1335                         * TTU_RMAP_LOCKED to indicate we have taken the lock
1336                         * at this higher level.
1337                         */
1338                        mapping = hugetlb_page_mapping_lock_write(hpage);
1339                        if (mapping) {
1340                                try_to_unmap(hpage, ttu|TTU_RMAP_LOCKED);
1341                                i_mmap_unlock_write(mapping);
1342                        } else
1343                                pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1344                } else {
1345                        try_to_unmap(hpage, ttu);
1346                }
1347        }
1348
1349        unmap_success = !page_mapped(hpage);
1350        if (!unmap_success)
1351                pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1352                       pfn, page_mapcount(hpage));
1353
1354        /*
1355         * try_to_unmap() might put mlocked page in lru cache, so call
1356         * shake_page() again to ensure that it's flushed.
1357         */
1358        if (mlocked)
1359                shake_page(hpage);
1360
1361        /*
1362         * Now that the dirty bit has been propagated to the
1363         * struct page and all unmaps done we can decide if
1364         * killing is needed or not.  Only kill when the page
1365         * was dirty or the process is not restartable,
1366         * otherwise the tokill list is merely
1367         * freed.  When there was a problem unmapping earlier
1368         * use a more force-full uncatchable kill to prevent
1369         * any accesses to the poisoned memory.
1370         */
1371        forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1372        kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1373
1374        return unmap_success;
1375}
1376
1377static int identify_page_state(unsigned long pfn, struct page *p,
1378                                unsigned long page_flags)
1379{
1380        struct page_state *ps;
1381
1382        /*
1383         * The first check uses the current page flags which may not have any
1384         * relevant information. The second check with the saved page flags is
1385         * carried out only if the first check can't determine the page status.
1386         */
1387        for (ps = error_states;; ps++)
1388                if ((p->flags & ps->mask) == ps->res)
1389                        break;
1390
1391        page_flags |= (p->flags & (1UL << PG_dirty));
1392
1393        if (!ps->mask)
1394                for (ps = error_states;; ps++)
1395                        if ((page_flags & ps->mask) == ps->res)
1396                                break;
1397        return page_action(ps, p, pfn);
1398}
1399
1400static int try_to_split_thp_page(struct page *page, const char *msg)
1401{
1402        lock_page(page);
1403        if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1404                unsigned long pfn = page_to_pfn(page);
1405
1406                unlock_page(page);
1407                if (!PageAnon(page))
1408                        pr_info("%s: %#lx: non anonymous thp\n", msg, pfn);
1409                else
1410                        pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1411                put_page(page);
1412                return -EBUSY;
1413        }
1414        unlock_page(page);
1415
1416        return 0;
1417}
1418
1419static int memory_failure_hugetlb(unsigned long pfn, int flags)
1420{
1421        struct page *p = pfn_to_page(pfn);
1422        struct page *head = compound_head(p);
1423        int res;
1424        unsigned long page_flags;
1425
1426        if (TestSetPageHWPoison(head)) {
1427                pr_err("Memory failure: %#lx: already hardware poisoned\n",
1428                       pfn);
1429                res = -EHWPOISON;
1430                if (flags & MF_ACTION_REQUIRED)
1431                        res = kill_accessing_process(current, page_to_pfn(head), flags);
1432                return res;
1433        }
1434
1435        num_poisoned_pages_inc();
1436
1437        if (!(flags & MF_COUNT_INCREASED)) {
1438                res = get_hwpoison_page(p, flags);
1439                if (!res) {
1440                        /*
1441                         * Check "filter hit" and "race with other subpage."
1442                         */
1443                        lock_page(head);
1444                        if (PageHWPoison(head)) {
1445                                if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1446                                    || (p != head && TestSetPageHWPoison(head))) {
1447                                        num_poisoned_pages_dec();
1448                                        unlock_page(head);
1449                                        return 0;
1450                                }
1451                        }
1452                        unlock_page(head);
1453                        res = MF_FAILED;
1454                        if (__page_handle_poison(p)) {
1455                                page_ref_inc(p);
1456                                res = MF_RECOVERED;
1457                        }
1458                        action_result(pfn, MF_MSG_FREE_HUGE, res);
1459                        return res == MF_RECOVERED ? 0 : -EBUSY;
1460                } else if (res < 0) {
1461                        action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1462                        return -EBUSY;
1463                }
1464        }
1465
1466        lock_page(head);
1467        page_flags = head->flags;
1468
1469        if (!PageHWPoison(head)) {
1470                pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1471                num_poisoned_pages_dec();
1472                unlock_page(head);
1473                put_page(head);
1474                return 0;
1475        }
1476
1477        /*
1478         * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1479         * simply disable it. In order to make it work properly, we need
1480         * make sure that:
1481         *  - conversion of a pud that maps an error hugetlb into hwpoison
1482         *    entry properly works, and
1483         *  - other mm code walking over page table is aware of pud-aligned
1484         *    hwpoison entries.
1485         */
1486        if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1487                action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1488                res = -EBUSY;
1489                goto out;
1490        }
1491
1492        if (!hwpoison_user_mappings(p, pfn, flags, head)) {
1493                action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1494                res = -EBUSY;
1495                goto out;
1496        }
1497
1498        return identify_page_state(pfn, p, page_flags);
1499out:
1500        unlock_page(head);
1501        return res;
1502}
1503
1504static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1505                struct dev_pagemap *pgmap)
1506{
1507        struct page *page = pfn_to_page(pfn);
1508        unsigned long size = 0;
1509        struct to_kill *tk;
1510        LIST_HEAD(tokill);
1511        int rc = -EBUSY;
1512        loff_t start;
1513        dax_entry_t cookie;
1514
1515        if (flags & MF_COUNT_INCREASED)
1516                /*
1517                 * Drop the extra refcount in case we come from madvise().
1518                 */
1519                put_page(page);
1520
1521        /* device metadata space is not recoverable */
1522        if (!pgmap_pfn_valid(pgmap, pfn)) {
1523                rc = -ENXIO;
1524                goto out;
1525        }
1526
1527        /*
1528         * Prevent the inode from being freed while we are interrogating
1529         * the address_space, typically this would be handled by
1530         * lock_page(), but dax pages do not use the page lock. This
1531         * also prevents changes to the mapping of this pfn until
1532         * poison signaling is complete.
1533         */
1534        cookie = dax_lock_page(page);
1535        if (!cookie)
1536                goto out;
1537
1538        if (hwpoison_filter(page)) {
1539                rc = 0;
1540                goto unlock;
1541        }
1542
1543        if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1544                /*
1545                 * TODO: Handle HMM pages which may need coordination
1546                 * with device-side memory.
1547                 */
1548                goto unlock;
1549        }
1550
1551        /*
1552         * Use this flag as an indication that the dax page has been
1553         * remapped UC to prevent speculative consumption of poison.
1554         */
1555        SetPageHWPoison(page);
1556
1557        /*
1558         * Unlike System-RAM there is no possibility to swap in a
1559         * different physical page at a given virtual address, so all
1560         * userspace consumption of ZONE_DEVICE memory necessitates
1561         * SIGBUS (i.e. MF_MUST_KILL)
1562         */
1563        flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1564        collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1565
1566        list_for_each_entry(tk, &tokill, nd)
1567                if (tk->size_shift)
1568                        size = max(size, 1UL << tk->size_shift);
1569        if (size) {
1570                /*
1571                 * Unmap the largest mapping to avoid breaking up
1572                 * device-dax mappings which are constant size. The
1573                 * actual size of the mapping being torn down is
1574                 * communicated in siginfo, see kill_proc()
1575                 */
1576                start = (page->index << PAGE_SHIFT) & ~(size - 1);
1577                unmap_mapping_range(page->mapping, start, size, 0);
1578        }
1579        kill_procs(&tokill, flags & MF_MUST_KILL, false, pfn, flags);
1580        rc = 0;
1581unlock:
1582        dax_unlock_page(page, cookie);
1583out:
1584        /* drop pgmap ref acquired in caller */
1585        put_dev_pagemap(pgmap);
1586        action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1587        return rc;
1588}
1589
1590/**
1591 * memory_failure - Handle memory failure of a page.
1592 * @pfn: Page Number of the corrupted page
1593 * @flags: fine tune action taken
1594 *
1595 * This function is called by the low level machine check code
1596 * of an architecture when it detects hardware memory corruption
1597 * of a page. It tries its best to recover, which includes
1598 * dropping pages, killing processes etc.
1599 *
1600 * The function is primarily of use for corruptions that
1601 * happen outside the current execution context (e.g. when
1602 * detected by a background scrubber)
1603 *
1604 * Must run in process context (e.g. a work queue) with interrupts
1605 * enabled and no spinlocks hold.
1606 */
1607int memory_failure(unsigned long pfn, int flags)
1608{
1609        struct page *p;
1610        struct page *hpage;
1611        struct page *orig_head;
1612        struct dev_pagemap *pgmap;
1613        int res = 0;
1614        unsigned long page_flags;
1615        bool retry = true;
1616        static DEFINE_MUTEX(mf_mutex);
1617
1618        if (!sysctl_memory_failure_recovery)
1619                panic("Memory failure on page %lx", pfn);
1620
1621        p = pfn_to_online_page(pfn);
1622        if (!p) {
1623                if (pfn_valid(pfn)) {
1624                        pgmap = get_dev_pagemap(pfn, NULL);
1625                        if (pgmap)
1626                                return memory_failure_dev_pagemap(pfn, flags,
1627                                                                  pgmap);
1628                }
1629                pr_err("Memory failure: %#lx: memory outside kernel control\n",
1630                        pfn);
1631                return -ENXIO;
1632        }
1633
1634        mutex_lock(&mf_mutex);
1635
1636try_again:
1637        if (PageHuge(p)) {
1638                res = memory_failure_hugetlb(pfn, flags);
1639                goto unlock_mutex;
1640        }
1641
1642        if (TestSetPageHWPoison(p)) {
1643                pr_err("Memory failure: %#lx: already hardware poisoned\n",
1644                        pfn);
1645                res = -EHWPOISON;
1646                if (flags & MF_ACTION_REQUIRED)
1647                        res = kill_accessing_process(current, pfn, flags);
1648                goto unlock_mutex;
1649        }
1650
1651        orig_head = hpage = compound_head(p);
1652        num_poisoned_pages_inc();
1653
1654        /*
1655         * We need/can do nothing about count=0 pages.
1656         * 1) it's a free page, and therefore in safe hand:
1657         *    prep_new_page() will be the gate keeper.
1658         * 2) it's part of a non-compound high order page.
1659         *    Implies some kernel user: cannot stop them from
1660         *    R/W the page; let's pray that the page has been
1661         *    used and will be freed some time later.
1662         * In fact it's dangerous to directly bump up page count from 0,
1663         * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1664         */
1665        if (!(flags & MF_COUNT_INCREASED)) {
1666                res = get_hwpoison_page(p, flags);
1667                if (!res) {
1668                        if (is_free_buddy_page(p)) {
1669                                if (take_page_off_buddy(p)) {
1670                                        page_ref_inc(p);
1671                                        res = MF_RECOVERED;
1672                                } else {
1673                                        /* We lost the race, try again */
1674                                        if (retry) {
1675                                                ClearPageHWPoison(p);
1676                                                num_poisoned_pages_dec();
1677                                                retry = false;
1678                                                goto try_again;
1679                                        }
1680                                        res = MF_FAILED;
1681                                }
1682                                action_result(pfn, MF_MSG_BUDDY, res);
1683                                res = res == MF_RECOVERED ? 0 : -EBUSY;
1684                        } else {
1685                                action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1686                                res = -EBUSY;
1687                        }
1688                        goto unlock_mutex;
1689                } else if (res < 0) {
1690                        action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1691                        res = -EBUSY;
1692                        goto unlock_mutex;
1693                }
1694        }
1695
1696        if (PageTransHuge(hpage)) {
1697                /*
1698                 * The flag must be set after the refcount is bumped
1699                 * otherwise it may race with THP split.
1700                 * And the flag can't be set in get_hwpoison_page() since
1701                 * it is called by soft offline too and it is just called
1702                 * for !MF_COUNT_INCREASE.  So here seems to be the best
1703                 * place.
1704                 *
1705                 * Don't need care about the above error handling paths for
1706                 * get_hwpoison_page() since they handle either free page
1707                 * or unhandlable page.  The refcount is bumped iff the
1708                 * page is a valid handlable page.
1709                 */
1710                SetPageHasHWPoisoned(hpage);
1711                if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1712                        action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1713                        res = -EBUSY;
1714                        goto unlock_mutex;
1715                }
1716                VM_BUG_ON_PAGE(!page_count(p), p);
1717        }
1718
1719        /*
1720         * We ignore non-LRU pages for good reasons.
1721         * - PG_locked is only well defined for LRU pages and a few others
1722         * - to avoid races with __SetPageLocked()
1723         * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1724         * The check (unnecessarily) ignores LRU pages being isolated and
1725         * walked by the page reclaim code, however that's not a big loss.
1726         */
1727        shake_page(p);
1728
1729        lock_page(p);
1730
1731        /*
1732         * The page could have changed compound pages during the locking.
1733         * If this happens just bail out.
1734         */
1735        if (PageCompound(p) && compound_head(p) != orig_head) {
1736                action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1737                res = -EBUSY;
1738                goto unlock_page;
1739        }
1740
1741        /*
1742         * We use page flags to determine what action should be taken, but
1743         * the flags can be modified by the error containment action.  One
1744         * example is an mlocked page, where PG_mlocked is cleared by
1745         * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1746         * correctly, we save a copy of the page flags at this time.
1747         */
1748        page_flags = p->flags;
1749
1750        /*
1751         * unpoison always clear PG_hwpoison inside page lock
1752         */
1753        if (!PageHWPoison(p)) {
1754                pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1755                num_poisoned_pages_dec();
1756                unlock_page(p);
1757                put_page(p);
1758                goto unlock_mutex;
1759        }
1760        if (hwpoison_filter(p)) {
1761                if (TestClearPageHWPoison(p))
1762                        num_poisoned_pages_dec();
1763                unlock_page(p);
1764                put_page(p);
1765                goto unlock_mutex;
1766        }
1767
1768        /*
1769         * __munlock_pagevec may clear a writeback page's LRU flag without
1770         * page_lock. We need wait writeback completion for this page or it
1771         * may trigger vfs BUG while evict inode.
1772         */
1773        if (!PageTransTail(p) && !PageLRU(p) && !PageWriteback(p))
1774                goto identify_page_state;
1775
1776        /*
1777         * It's very difficult to mess with pages currently under IO
1778         * and in many cases impossible, so we just avoid it here.
1779         */
1780        wait_on_page_writeback(p);
1781
1782        /*
1783         * Now take care of user space mappings.
1784         * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1785         */
1786        if (!hwpoison_user_mappings(p, pfn, flags, p)) {
1787                action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1788                res = -EBUSY;
1789                goto unlock_page;
1790        }
1791
1792        /*
1793         * Torn down by someone else?
1794         */
1795        if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1796                action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1797                res = -EBUSY;
1798                goto unlock_page;
1799        }
1800
1801identify_page_state:
1802        res = identify_page_state(pfn, p, page_flags);
1803        mutex_unlock(&mf_mutex);
1804        return res;
1805unlock_page:
1806        unlock_page(p);
1807unlock_mutex:
1808        mutex_unlock(&mf_mutex);
1809        return res;
1810}
1811EXPORT_SYMBOL_GPL(memory_failure);
1812
1813#define MEMORY_FAILURE_FIFO_ORDER       4
1814#define MEMORY_FAILURE_FIFO_SIZE        (1 << MEMORY_FAILURE_FIFO_ORDER)
1815
1816struct memory_failure_entry {
1817        unsigned long pfn;
1818        int flags;
1819};
1820
1821struct memory_failure_cpu {
1822        DECLARE_KFIFO(fifo, struct memory_failure_entry,
1823                      MEMORY_FAILURE_FIFO_SIZE);
1824        spinlock_t lock;
1825        struct work_struct work;
1826};
1827
1828static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1829
1830/**
1831 * memory_failure_queue - Schedule handling memory failure of a page.
1832 * @pfn: Page Number of the corrupted page
1833 * @flags: Flags for memory failure handling
1834 *
1835 * This function is called by the low level hardware error handler
1836 * when it detects hardware memory corruption of a page. It schedules
1837 * the recovering of error page, including dropping pages, killing
1838 * processes etc.
1839 *
1840 * The function is primarily of use for corruptions that
1841 * happen outside the current execution context (e.g. when
1842 * detected by a background scrubber)
1843 *
1844 * Can run in IRQ context.
1845 */
1846void memory_failure_queue(unsigned long pfn, int flags)
1847{
1848        struct memory_failure_cpu *mf_cpu;
1849        unsigned long proc_flags;
1850        struct memory_failure_entry entry = {
1851                .pfn =          pfn,
1852                .flags =        flags,
1853        };
1854
1855        mf_cpu = &get_cpu_var(memory_failure_cpu);
1856        spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1857        if (kfifo_put(&mf_cpu->fifo, entry))
1858                schedule_work_on(smp_processor_id(), &mf_cpu->work);
1859        else
1860                pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1861                       pfn);
1862        spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1863        put_cpu_var(memory_failure_cpu);
1864}
1865EXPORT_SYMBOL_GPL(memory_failure_queue);
1866
1867static void memory_failure_work_func(struct work_struct *work)
1868{
1869        struct memory_failure_cpu *mf_cpu;
1870        struct memory_failure_entry entry = { 0, };
1871        unsigned long proc_flags;
1872        int gotten;
1873
1874        mf_cpu = container_of(work, struct memory_failure_cpu, work);
1875        for (;;) {
1876                spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1877                gotten = kfifo_get(&mf_cpu->fifo, &entry);
1878                spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1879                if (!gotten)
1880                        break;
1881                if (entry.flags & MF_SOFT_OFFLINE)
1882                        soft_offline_page(entry.pfn, entry.flags);
1883                else
1884                        memory_failure(entry.pfn, entry.flags);
1885        }
1886}
1887
1888/*
1889 * Process memory_failure work queued on the specified CPU.
1890 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1891 */
1892void memory_failure_queue_kick(int cpu)
1893{
1894        struct memory_failure_cpu *mf_cpu;
1895
1896        mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1897        cancel_work_sync(&mf_cpu->work);
1898        memory_failure_work_func(&mf_cpu->work);
1899}
1900
1901static int __init memory_failure_init(void)
1902{
1903        struct memory_failure_cpu *mf_cpu;
1904        int cpu;
1905
1906        for_each_possible_cpu(cpu) {
1907                mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1908                spin_lock_init(&mf_cpu->lock);
1909                INIT_KFIFO(mf_cpu->fifo);
1910                INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1911        }
1912
1913        return 0;
1914}
1915core_initcall(memory_failure_init);
1916
1917#define unpoison_pr_info(fmt, pfn, rs)                  \
1918({                                                      \
1919        if (__ratelimit(rs))                            \
1920                pr_info(fmt, pfn);                      \
1921})
1922
1923/**
1924 * unpoison_memory - Unpoison a previously poisoned page
1925 * @pfn: Page number of the to be unpoisoned page
1926 *
1927 * Software-unpoison a page that has been poisoned by
1928 * memory_failure() earlier.
1929 *
1930 * This is only done on the software-level, so it only works
1931 * for linux injected failures, not real hardware failures
1932 *
1933 * Returns 0 for success, otherwise -errno.
1934 */
1935int unpoison_memory(unsigned long pfn)
1936{
1937        struct page *page;
1938        struct page *p;
1939        int freeit = 0;
1940        unsigned long flags = 0;
1941        static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1942                                        DEFAULT_RATELIMIT_BURST);
1943
1944        if (!pfn_valid(pfn))
1945                return -ENXIO;
1946
1947        p = pfn_to_page(pfn);
1948        page = compound_head(p);
1949
1950        if (!PageHWPoison(p)) {
1951                unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1952                                 pfn, &unpoison_rs);
1953                return 0;
1954        }
1955
1956        if (page_count(page) > 1) {
1957                unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1958                                 pfn, &unpoison_rs);
1959                return 0;
1960        }
1961
1962        if (page_mapped(page)) {
1963                unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1964                                 pfn, &unpoison_rs);
1965                return 0;
1966        }
1967
1968        if (page_mapping(page)) {
1969                unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1970                                 pfn, &unpoison_rs);
1971                return 0;
1972        }
1973
1974        /*
1975         * unpoison_memory() can encounter thp only when the thp is being
1976         * worked by memory_failure() and the page lock is not held yet.
1977         * In such case, we yield to memory_failure() and make unpoison fail.
1978         */
1979        if (!PageHuge(page) && PageTransHuge(page)) {
1980                unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1981                                 pfn, &unpoison_rs);
1982                return 0;
1983        }
1984
1985        if (!get_hwpoison_page(p, flags)) {
1986                if (TestClearPageHWPoison(p))
1987                        num_poisoned_pages_dec();
1988                unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1989                                 pfn, &unpoison_rs);
1990                return 0;
1991        }
1992
1993        lock_page(page);
1994        /*
1995         * This test is racy because PG_hwpoison is set outside of page lock.
1996         * That's acceptable because that won't trigger kernel panic. Instead,
1997         * the PG_hwpoison page will be caught and isolated on the entrance to
1998         * the free buddy page pool.
1999         */
2000        if (TestClearPageHWPoison(page)) {
2001                unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2002                                 pfn, &unpoison_rs);
2003                num_poisoned_pages_dec();
2004                freeit = 1;
2005        }
2006        unlock_page(page);
2007
2008        put_page(page);
2009        if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
2010                put_page(page);
2011
2012        return 0;
2013}
2014EXPORT_SYMBOL(unpoison_memory);
2015
2016static bool isolate_page(struct page *page, struct list_head *pagelist)
2017{
2018        bool isolated = false;
2019        bool lru = PageLRU(page);
2020
2021        if (PageHuge(page)) {
2022                isolated = isolate_huge_page(page, pagelist);
2023        } else {
2024                if (lru)
2025                        isolated = !isolate_lru_page(page);
2026                else
2027                        isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
2028
2029                if (isolated)
2030                        list_add(&page->lru, pagelist);
2031        }
2032
2033        if (isolated && lru)
2034                inc_node_page_state(page, NR_ISOLATED_ANON +
2035                                    page_is_file_lru(page));
2036
2037        /*
2038         * If we succeed to isolate the page, we grabbed another refcount on
2039         * the page, so we can safely drop the one we got from get_any_pages().
2040         * If we failed to isolate the page, it means that we cannot go further
2041         * and we will return an error, so drop the reference we got from
2042         * get_any_pages() as well.
2043         */
2044        put_page(page);
2045        return isolated;
2046}
2047
2048/*
2049 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
2050 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2051 * If the page is mapped, it migrates the contents over.
2052 */
2053static int __soft_offline_page(struct page *page)
2054{
2055        int ret = 0;
2056        unsigned long pfn = page_to_pfn(page);
2057        struct page *hpage = compound_head(page);
2058        char const *msg_page[] = {"page", "hugepage"};
2059        bool huge = PageHuge(page);
2060        LIST_HEAD(pagelist);
2061        struct migration_target_control mtc = {
2062                .nid = NUMA_NO_NODE,
2063                .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2064        };
2065
2066        /*
2067         * Check PageHWPoison again inside page lock because PageHWPoison
2068         * is set by memory_failure() outside page lock. Note that
2069         * memory_failure() also double-checks PageHWPoison inside page lock,
2070         * so there's no race between soft_offline_page() and memory_failure().
2071         */
2072        lock_page(page);
2073        if (!PageHuge(page))
2074                wait_on_page_writeback(page);
2075        if (PageHWPoison(page)) {
2076                unlock_page(page);
2077                put_page(page);
2078                pr_info("soft offline: %#lx page already poisoned\n", pfn);
2079                return 0;
2080        }
2081
2082        if (!PageHuge(page))
2083                /*
2084                 * Try to invalidate first. This should work for
2085                 * non dirty unmapped page cache pages.
2086                 */
2087                ret = invalidate_inode_page(page);
2088        unlock_page(page);
2089
2090        /*
2091         * RED-PEN would be better to keep it isolated here, but we
2092         * would need to fix isolation locking first.
2093         */
2094        if (ret) {
2095                pr_info("soft_offline: %#lx: invalidated\n", pfn);
2096                page_handle_poison(page, false, true);
2097                return 0;
2098        }
2099
2100        if (isolate_page(hpage, &pagelist)) {
2101                ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2102                        (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2103                if (!ret) {
2104                        bool release = !huge;
2105
2106                        if (!page_handle_poison(page, huge, release))
2107                                ret = -EBUSY;
2108                } else {
2109                        if (!list_empty(&pagelist))
2110                                putback_movable_pages(&pagelist);
2111
2112                        pr_info("soft offline: %#lx: %s migration failed %d, type %lx (%pGp)\n",
2113                                pfn, msg_page[huge], ret, page->flags, &page->flags);
2114                        if (ret > 0)
2115                                ret = -EBUSY;
2116                }
2117        } else {
2118                pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %lx (%pGp)\n",
2119                        pfn, msg_page[huge], page_count(page), page->flags, &page->flags);
2120                ret = -EBUSY;
2121        }
2122        return ret;
2123}
2124
2125static int soft_offline_in_use_page(struct page *page)
2126{
2127        struct page *hpage = compound_head(page);
2128
2129        if (!PageHuge(page) && PageTransHuge(hpage))
2130                if (try_to_split_thp_page(page, "soft offline") < 0)
2131                        return -EBUSY;
2132        return __soft_offline_page(page);
2133}
2134
2135static int soft_offline_free_page(struct page *page)
2136{
2137        int rc = 0;
2138
2139        if (!page_handle_poison(page, true, false))
2140                rc = -EBUSY;
2141
2142        return rc;
2143}
2144
2145static void put_ref_page(struct page *page)
2146{
2147        if (page)
2148                put_page(page);
2149}
2150
2151/**
2152 * soft_offline_page - Soft offline a page.
2153 * @pfn: pfn to soft-offline
2154 * @flags: flags. Same as memory_failure().
2155 *
2156 * Returns 0 on success, otherwise negated errno.
2157 *
2158 * Soft offline a page, by migration or invalidation,
2159 * without killing anything. This is for the case when
2160 * a page is not corrupted yet (so it's still valid to access),
2161 * but has had a number of corrected errors and is better taken
2162 * out.
2163 *
2164 * The actual policy on when to do that is maintained by
2165 * user space.
2166 *
2167 * This should never impact any application or cause data loss,
2168 * however it might take some time.
2169 *
2170 * This is not a 100% solution for all memory, but tries to be
2171 * ``good enough'' for the majority of memory.
2172 */
2173int soft_offline_page(unsigned long pfn, int flags)
2174{
2175        int ret;
2176        bool try_again = true;
2177        struct page *page, *ref_page = NULL;
2178
2179        WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
2180
2181        if (!pfn_valid(pfn))
2182                return -ENXIO;
2183        if (flags & MF_COUNT_INCREASED)
2184                ref_page = pfn_to_page(pfn);
2185
2186        /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2187        page = pfn_to_online_page(pfn);
2188        if (!page) {
2189                put_ref_page(ref_page);
2190                return -EIO;
2191        }
2192
2193        if (PageHWPoison(page)) {
2194                pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2195                put_ref_page(ref_page);
2196                return 0;
2197        }
2198
2199retry:
2200        get_online_mems();
2201        ret = get_hwpoison_page(page, flags);
2202        put_online_mems();
2203
2204        if (ret > 0) {
2205                ret = soft_offline_in_use_page(page);
2206        } else if (ret == 0) {
2207                if (soft_offline_free_page(page) && try_again) {
2208                        try_again = false;
2209                        goto retry;
2210                }
2211        }
2212
2213        return ret;
2214}
2215