linux/mm/memory_hotplug.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/memory_hotplug.c
   4 *
   5 *  Copyright (C)
   6 */
   7
   8#include <linux/stddef.h>
   9#include <linux/mm.h>
  10#include <linux/sched/signal.h>
  11#include <linux/swap.h>
  12#include <linux/interrupt.h>
  13#include <linux/pagemap.h>
  14#include <linux/compiler.h>
  15#include <linux/export.h>
  16#include <linux/pagevec.h>
  17#include <linux/writeback.h>
  18#include <linux/slab.h>
  19#include <linux/sysctl.h>
  20#include <linux/cpu.h>
  21#include <linux/memory.h>
  22#include <linux/memremap.h>
  23#include <linux/memory_hotplug.h>
  24#include <linux/highmem.h>
  25#include <linux/vmalloc.h>
  26#include <linux/ioport.h>
  27#include <linux/delay.h>
  28#include <linux/migrate.h>
  29#include <linux/page-isolation.h>
  30#include <linux/pfn.h>
  31#include <linux/suspend.h>
  32#include <linux/mm_inline.h>
  33#include <linux/firmware-map.h>
  34#include <linux/stop_machine.h>
  35#include <linux/hugetlb.h>
  36#include <linux/memblock.h>
  37#include <linux/compaction.h>
  38#include <linux/rmap.h>
  39
  40#include <asm/tlbflush.h>
  41
  42#include "internal.h"
  43#include "shuffle.h"
  44
  45
  46/*
  47 * memory_hotplug.memmap_on_memory parameter
  48 */
  49static bool memmap_on_memory __ro_after_init;
  50#ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
  51module_param(memmap_on_memory, bool, 0444);
  52MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug");
  53#endif
  54
  55enum {
  56        ONLINE_POLICY_CONTIG_ZONES = 0,
  57        ONLINE_POLICY_AUTO_MOVABLE,
  58};
  59
  60const char *online_policy_to_str[] = {
  61        [ONLINE_POLICY_CONTIG_ZONES] = "contig-zones",
  62        [ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable",
  63};
  64
  65static int set_online_policy(const char *val, const struct kernel_param *kp)
  66{
  67        int ret = sysfs_match_string(online_policy_to_str, val);
  68
  69        if (ret < 0)
  70                return ret;
  71        *((int *)kp->arg) = ret;
  72        return 0;
  73}
  74
  75static int get_online_policy(char *buffer, const struct kernel_param *kp)
  76{
  77        return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]);
  78}
  79
  80/*
  81 * memory_hotplug.online_policy: configure online behavior when onlining without
  82 * specifying a zone (MMOP_ONLINE)
  83 *
  84 * "contig-zones": keep zone contiguous
  85 * "auto-movable": online memory to ZONE_MOVABLE if the configuration
  86 *                 (auto_movable_ratio, auto_movable_numa_aware) allows for it
  87 */
  88static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES;
  89static const struct kernel_param_ops online_policy_ops = {
  90        .set = set_online_policy,
  91        .get = get_online_policy,
  92};
  93module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644);
  94MODULE_PARM_DESC(online_policy,
  95                "Set the online policy (\"contig-zones\", \"auto-movable\") "
  96                "Default: \"contig-zones\"");
  97
  98/*
  99 * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio
 100 *
 101 * The ratio represent an upper limit and the kernel might decide to not
 102 * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory
 103 * doesn't allow for more MOVABLE memory.
 104 */
 105static unsigned int auto_movable_ratio __read_mostly = 301;
 106module_param(auto_movable_ratio, uint, 0644);
 107MODULE_PARM_DESC(auto_movable_ratio,
 108                "Set the maximum ratio of MOVABLE:KERNEL memory in the system "
 109                "in percent for \"auto-movable\" online policy. Default: 301");
 110
 111/*
 112 * memory_hotplug.auto_movable_numa_aware: consider numa node stats
 113 */
 114#ifdef CONFIG_NUMA
 115static bool auto_movable_numa_aware __read_mostly = true;
 116module_param(auto_movable_numa_aware, bool, 0644);
 117MODULE_PARM_DESC(auto_movable_numa_aware,
 118                "Consider numa node stats in addition to global stats in "
 119                "\"auto-movable\" online policy. Default: true");
 120#endif /* CONFIG_NUMA */
 121
 122/*
 123 * online_page_callback contains pointer to current page onlining function.
 124 * Initially it is generic_online_page(). If it is required it could be
 125 * changed by calling set_online_page_callback() for callback registration
 126 * and restore_online_page_callback() for generic callback restore.
 127 */
 128
 129static online_page_callback_t online_page_callback = generic_online_page;
 130static DEFINE_MUTEX(online_page_callback_lock);
 131
 132DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
 133
 134void get_online_mems(void)
 135{
 136        percpu_down_read(&mem_hotplug_lock);
 137}
 138
 139void put_online_mems(void)
 140{
 141        percpu_up_read(&mem_hotplug_lock);
 142}
 143
 144bool movable_node_enabled = false;
 145
 146#ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
 147int mhp_default_online_type = MMOP_OFFLINE;
 148#else
 149int mhp_default_online_type = MMOP_ONLINE;
 150#endif
 151
 152static int __init setup_memhp_default_state(char *str)
 153{
 154        const int online_type = mhp_online_type_from_str(str);
 155
 156        if (online_type >= 0)
 157                mhp_default_online_type = online_type;
 158
 159        return 1;
 160}
 161__setup("memhp_default_state=", setup_memhp_default_state);
 162
 163void mem_hotplug_begin(void)
 164{
 165        cpus_read_lock();
 166        percpu_down_write(&mem_hotplug_lock);
 167}
 168
 169void mem_hotplug_done(void)
 170{
 171        percpu_up_write(&mem_hotplug_lock);
 172        cpus_read_unlock();
 173}
 174
 175u64 max_mem_size = U64_MAX;
 176
 177/* add this memory to iomem resource */
 178static struct resource *register_memory_resource(u64 start, u64 size,
 179                                                 const char *resource_name)
 180{
 181        struct resource *res;
 182        unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 183
 184        if (strcmp(resource_name, "System RAM"))
 185                flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
 186
 187        if (!mhp_range_allowed(start, size, true))
 188                return ERR_PTR(-E2BIG);
 189
 190        /*
 191         * Make sure value parsed from 'mem=' only restricts memory adding
 192         * while booting, so that memory hotplug won't be impacted. Please
 193         * refer to document of 'mem=' in kernel-parameters.txt for more
 194         * details.
 195         */
 196        if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
 197                return ERR_PTR(-E2BIG);
 198
 199        /*
 200         * Request ownership of the new memory range.  This might be
 201         * a child of an existing resource that was present but
 202         * not marked as busy.
 203         */
 204        res = __request_region(&iomem_resource, start, size,
 205                               resource_name, flags);
 206
 207        if (!res) {
 208                pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
 209                                start, start + size);
 210                return ERR_PTR(-EEXIST);
 211        }
 212        return res;
 213}
 214
 215static void release_memory_resource(struct resource *res)
 216{
 217        if (!res)
 218                return;
 219        release_resource(res);
 220        kfree(res);
 221}
 222
 223#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
 224static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
 225                const char *reason)
 226{
 227        /*
 228         * Disallow all operations smaller than a sub-section and only
 229         * allow operations smaller than a section for
 230         * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
 231         * enforces a larger memory_block_size_bytes() granularity for
 232         * memory that will be marked online, so this check should only
 233         * fire for direct arch_{add,remove}_memory() users outside of
 234         * add_memory_resource().
 235         */
 236        unsigned long min_align;
 237
 238        if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
 239                min_align = PAGES_PER_SUBSECTION;
 240        else
 241                min_align = PAGES_PER_SECTION;
 242        if (!IS_ALIGNED(pfn, min_align)
 243                        || !IS_ALIGNED(nr_pages, min_align)) {
 244                WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
 245                                reason, pfn, pfn + nr_pages - 1);
 246                return -EINVAL;
 247        }
 248        return 0;
 249}
 250
 251/*
 252 * Return page for the valid pfn only if the page is online. All pfn
 253 * walkers which rely on the fully initialized page->flags and others
 254 * should use this rather than pfn_valid && pfn_to_page
 255 */
 256struct page *pfn_to_online_page(unsigned long pfn)
 257{
 258        unsigned long nr = pfn_to_section_nr(pfn);
 259        struct dev_pagemap *pgmap;
 260        struct mem_section *ms;
 261
 262        if (nr >= NR_MEM_SECTIONS)
 263                return NULL;
 264
 265        ms = __nr_to_section(nr);
 266        if (!online_section(ms))
 267                return NULL;
 268
 269        /*
 270         * Save some code text when online_section() +
 271         * pfn_section_valid() are sufficient.
 272         */
 273        if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
 274                return NULL;
 275
 276        if (!pfn_section_valid(ms, pfn))
 277                return NULL;
 278
 279        if (!online_device_section(ms))
 280                return pfn_to_page(pfn);
 281
 282        /*
 283         * Slowpath: when ZONE_DEVICE collides with
 284         * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
 285         * the section may be 'offline' but 'valid'. Only
 286         * get_dev_pagemap() can determine sub-section online status.
 287         */
 288        pgmap = get_dev_pagemap(pfn, NULL);
 289        put_dev_pagemap(pgmap);
 290
 291        /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
 292        if (pgmap)
 293                return NULL;
 294
 295        return pfn_to_page(pfn);
 296}
 297EXPORT_SYMBOL_GPL(pfn_to_online_page);
 298
 299/*
 300 * Reasonably generic function for adding memory.  It is
 301 * expected that archs that support memory hotplug will
 302 * call this function after deciding the zone to which to
 303 * add the new pages.
 304 */
 305int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
 306                struct mhp_params *params)
 307{
 308        const unsigned long end_pfn = pfn + nr_pages;
 309        unsigned long cur_nr_pages;
 310        int err;
 311        struct vmem_altmap *altmap = params->altmap;
 312
 313        if (WARN_ON_ONCE(!params->pgprot.pgprot))
 314                return -EINVAL;
 315
 316        VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
 317
 318        if (altmap) {
 319                /*
 320                 * Validate altmap is within bounds of the total request
 321                 */
 322                if (altmap->base_pfn != pfn
 323                                || vmem_altmap_offset(altmap) > nr_pages) {
 324                        pr_warn_once("memory add fail, invalid altmap\n");
 325                        return -EINVAL;
 326                }
 327                altmap->alloc = 0;
 328        }
 329
 330        err = check_pfn_span(pfn, nr_pages, "add");
 331        if (err)
 332                return err;
 333
 334        for (; pfn < end_pfn; pfn += cur_nr_pages) {
 335                /* Select all remaining pages up to the next section boundary */
 336                cur_nr_pages = min(end_pfn - pfn,
 337                                   SECTION_ALIGN_UP(pfn + 1) - pfn);
 338                err = sparse_add_section(nid, pfn, cur_nr_pages, altmap);
 339                if (err)
 340                        break;
 341                cond_resched();
 342        }
 343        vmemmap_populate_print_last();
 344        return err;
 345}
 346
 347/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
 348static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
 349                                     unsigned long start_pfn,
 350                                     unsigned long end_pfn)
 351{
 352        for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
 353                if (unlikely(!pfn_to_online_page(start_pfn)))
 354                        continue;
 355
 356                if (unlikely(pfn_to_nid(start_pfn) != nid))
 357                        continue;
 358
 359                if (zone != page_zone(pfn_to_page(start_pfn)))
 360                        continue;
 361
 362                return start_pfn;
 363        }
 364
 365        return 0;
 366}
 367
 368/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
 369static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
 370                                    unsigned long start_pfn,
 371                                    unsigned long end_pfn)
 372{
 373        unsigned long pfn;
 374
 375        /* pfn is the end pfn of a memory section. */
 376        pfn = end_pfn - 1;
 377        for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
 378                if (unlikely(!pfn_to_online_page(pfn)))
 379                        continue;
 380
 381                if (unlikely(pfn_to_nid(pfn) != nid))
 382                        continue;
 383
 384                if (zone != page_zone(pfn_to_page(pfn)))
 385                        continue;
 386
 387                return pfn;
 388        }
 389
 390        return 0;
 391}
 392
 393static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
 394                             unsigned long end_pfn)
 395{
 396        unsigned long pfn;
 397        int nid = zone_to_nid(zone);
 398
 399        if (zone->zone_start_pfn == start_pfn) {
 400                /*
 401                 * If the section is smallest section in the zone, it need
 402                 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
 403                 * In this case, we find second smallest valid mem_section
 404                 * for shrinking zone.
 405                 */
 406                pfn = find_smallest_section_pfn(nid, zone, end_pfn,
 407                                                zone_end_pfn(zone));
 408                if (pfn) {
 409                        zone->spanned_pages = zone_end_pfn(zone) - pfn;
 410                        zone->zone_start_pfn = pfn;
 411                } else {
 412                        zone->zone_start_pfn = 0;
 413                        zone->spanned_pages = 0;
 414                }
 415        } else if (zone_end_pfn(zone) == end_pfn) {
 416                /*
 417                 * If the section is biggest section in the zone, it need
 418                 * shrink zone->spanned_pages.
 419                 * In this case, we find second biggest valid mem_section for
 420                 * shrinking zone.
 421                 */
 422                pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
 423                                               start_pfn);
 424                if (pfn)
 425                        zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
 426                else {
 427                        zone->zone_start_pfn = 0;
 428                        zone->spanned_pages = 0;
 429                }
 430        }
 431}
 432
 433static void update_pgdat_span(struct pglist_data *pgdat)
 434{
 435        unsigned long node_start_pfn = 0, node_end_pfn = 0;
 436        struct zone *zone;
 437
 438        for (zone = pgdat->node_zones;
 439             zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
 440                unsigned long end_pfn = zone_end_pfn(zone);
 441
 442                /* No need to lock the zones, they can't change. */
 443                if (!zone->spanned_pages)
 444                        continue;
 445                if (!node_end_pfn) {
 446                        node_start_pfn = zone->zone_start_pfn;
 447                        node_end_pfn = end_pfn;
 448                        continue;
 449                }
 450
 451                if (end_pfn > node_end_pfn)
 452                        node_end_pfn = end_pfn;
 453                if (zone->zone_start_pfn < node_start_pfn)
 454                        node_start_pfn = zone->zone_start_pfn;
 455        }
 456
 457        pgdat->node_start_pfn = node_start_pfn;
 458        pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
 459}
 460
 461void __ref remove_pfn_range_from_zone(struct zone *zone,
 462                                      unsigned long start_pfn,
 463                                      unsigned long nr_pages)
 464{
 465        const unsigned long end_pfn = start_pfn + nr_pages;
 466        struct pglist_data *pgdat = zone->zone_pgdat;
 467        unsigned long pfn, cur_nr_pages;
 468
 469        /* Poison struct pages because they are now uninitialized again. */
 470        for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
 471                cond_resched();
 472
 473                /* Select all remaining pages up to the next section boundary */
 474                cur_nr_pages =
 475                        min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
 476                page_init_poison(pfn_to_page(pfn),
 477                                 sizeof(struct page) * cur_nr_pages);
 478        }
 479
 480        /*
 481         * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
 482         * we will not try to shrink the zones - which is okay as
 483         * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
 484         */
 485        if (zone_is_zone_device(zone))
 486                return;
 487
 488        clear_zone_contiguous(zone);
 489
 490        shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
 491        update_pgdat_span(pgdat);
 492
 493        set_zone_contiguous(zone);
 494}
 495
 496static void __remove_section(unsigned long pfn, unsigned long nr_pages,
 497                             unsigned long map_offset,
 498                             struct vmem_altmap *altmap)
 499{
 500        struct mem_section *ms = __pfn_to_section(pfn);
 501
 502        if (WARN_ON_ONCE(!valid_section(ms)))
 503                return;
 504
 505        sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
 506}
 507
 508/**
 509 * __remove_pages() - remove sections of pages
 510 * @pfn: starting pageframe (must be aligned to start of a section)
 511 * @nr_pages: number of pages to remove (must be multiple of section size)
 512 * @altmap: alternative device page map or %NULL if default memmap is used
 513 *
 514 * Generic helper function to remove section mappings and sysfs entries
 515 * for the section of the memory we are removing. Caller needs to make
 516 * sure that pages are marked reserved and zones are adjust properly by
 517 * calling offline_pages().
 518 */
 519void __remove_pages(unsigned long pfn, unsigned long nr_pages,
 520                    struct vmem_altmap *altmap)
 521{
 522        const unsigned long end_pfn = pfn + nr_pages;
 523        unsigned long cur_nr_pages;
 524        unsigned long map_offset = 0;
 525
 526        map_offset = vmem_altmap_offset(altmap);
 527
 528        if (check_pfn_span(pfn, nr_pages, "remove"))
 529                return;
 530
 531        for (; pfn < end_pfn; pfn += cur_nr_pages) {
 532                cond_resched();
 533                /* Select all remaining pages up to the next section boundary */
 534                cur_nr_pages = min(end_pfn - pfn,
 535                                   SECTION_ALIGN_UP(pfn + 1) - pfn);
 536                __remove_section(pfn, cur_nr_pages, map_offset, altmap);
 537                map_offset = 0;
 538        }
 539}
 540
 541int set_online_page_callback(online_page_callback_t callback)
 542{
 543        int rc = -EINVAL;
 544
 545        get_online_mems();
 546        mutex_lock(&online_page_callback_lock);
 547
 548        if (online_page_callback == generic_online_page) {
 549                online_page_callback = callback;
 550                rc = 0;
 551        }
 552
 553        mutex_unlock(&online_page_callback_lock);
 554        put_online_mems();
 555
 556        return rc;
 557}
 558EXPORT_SYMBOL_GPL(set_online_page_callback);
 559
 560int restore_online_page_callback(online_page_callback_t callback)
 561{
 562        int rc = -EINVAL;
 563
 564        get_online_mems();
 565        mutex_lock(&online_page_callback_lock);
 566
 567        if (online_page_callback == callback) {
 568                online_page_callback = generic_online_page;
 569                rc = 0;
 570        }
 571
 572        mutex_unlock(&online_page_callback_lock);
 573        put_online_mems();
 574
 575        return rc;
 576}
 577EXPORT_SYMBOL_GPL(restore_online_page_callback);
 578
 579void generic_online_page(struct page *page, unsigned int order)
 580{
 581        /*
 582         * Freeing the page with debug_pagealloc enabled will try to unmap it,
 583         * so we should map it first. This is better than introducing a special
 584         * case in page freeing fast path.
 585         */
 586        debug_pagealloc_map_pages(page, 1 << order);
 587        __free_pages_core(page, order);
 588        totalram_pages_add(1UL << order);
 589#ifdef CONFIG_HIGHMEM
 590        if (PageHighMem(page))
 591                totalhigh_pages_add(1UL << order);
 592#endif
 593}
 594EXPORT_SYMBOL_GPL(generic_online_page);
 595
 596static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
 597{
 598        const unsigned long end_pfn = start_pfn + nr_pages;
 599        unsigned long pfn;
 600
 601        /*
 602         * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might
 603         * decide to not expose all pages to the buddy (e.g., expose them
 604         * later). We account all pages as being online and belonging to this
 605         * zone ("present").
 606         * When using memmap_on_memory, the range might not be aligned to
 607         * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
 608         * this and the first chunk to online will be pageblock_nr_pages.
 609         */
 610        for (pfn = start_pfn; pfn < end_pfn;) {
 611                int order = min(MAX_ORDER - 1UL, __ffs(pfn));
 612
 613                (*online_page_callback)(pfn_to_page(pfn), order);
 614                pfn += (1UL << order);
 615        }
 616
 617        /* mark all involved sections as online */
 618        online_mem_sections(start_pfn, end_pfn);
 619}
 620
 621/* check which state of node_states will be changed when online memory */
 622static void node_states_check_changes_online(unsigned long nr_pages,
 623        struct zone *zone, struct memory_notify *arg)
 624{
 625        int nid = zone_to_nid(zone);
 626
 627        arg->status_change_nid = NUMA_NO_NODE;
 628        arg->status_change_nid_normal = NUMA_NO_NODE;
 629        arg->status_change_nid_high = NUMA_NO_NODE;
 630
 631        if (!node_state(nid, N_MEMORY))
 632                arg->status_change_nid = nid;
 633        if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
 634                arg->status_change_nid_normal = nid;
 635#ifdef CONFIG_HIGHMEM
 636        if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
 637                arg->status_change_nid_high = nid;
 638#endif
 639}
 640
 641static void node_states_set_node(int node, struct memory_notify *arg)
 642{
 643        if (arg->status_change_nid_normal >= 0)
 644                node_set_state(node, N_NORMAL_MEMORY);
 645
 646        if (arg->status_change_nid_high >= 0)
 647                node_set_state(node, N_HIGH_MEMORY);
 648
 649        if (arg->status_change_nid >= 0)
 650                node_set_state(node, N_MEMORY);
 651}
 652
 653static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
 654                unsigned long nr_pages)
 655{
 656        unsigned long old_end_pfn = zone_end_pfn(zone);
 657
 658        if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
 659                zone->zone_start_pfn = start_pfn;
 660
 661        zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
 662}
 663
 664static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
 665                                     unsigned long nr_pages)
 666{
 667        unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
 668
 669        if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
 670                pgdat->node_start_pfn = start_pfn;
 671
 672        pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
 673
 674}
 675
 676static void section_taint_zone_device(unsigned long pfn)
 677{
 678        struct mem_section *ms = __pfn_to_section(pfn);
 679
 680        ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
 681}
 682
 683/*
 684 * Associate the pfn range with the given zone, initializing the memmaps
 685 * and resizing the pgdat/zone data to span the added pages. After this
 686 * call, all affected pages are PG_reserved.
 687 *
 688 * All aligned pageblocks are initialized to the specified migratetype
 689 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
 690 * zone stats (e.g., nr_isolate_pageblock) are touched.
 691 */
 692void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
 693                                  unsigned long nr_pages,
 694                                  struct vmem_altmap *altmap, int migratetype)
 695{
 696        struct pglist_data *pgdat = zone->zone_pgdat;
 697        int nid = pgdat->node_id;
 698
 699        clear_zone_contiguous(zone);
 700
 701        if (zone_is_empty(zone))
 702                init_currently_empty_zone(zone, start_pfn, nr_pages);
 703        resize_zone_range(zone, start_pfn, nr_pages);
 704        resize_pgdat_range(pgdat, start_pfn, nr_pages);
 705
 706        /*
 707         * Subsection population requires care in pfn_to_online_page().
 708         * Set the taint to enable the slow path detection of
 709         * ZONE_DEVICE pages in an otherwise  ZONE_{NORMAL,MOVABLE}
 710         * section.
 711         */
 712        if (zone_is_zone_device(zone)) {
 713                if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
 714                        section_taint_zone_device(start_pfn);
 715                if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
 716                        section_taint_zone_device(start_pfn + nr_pages);
 717        }
 718
 719        /*
 720         * TODO now we have a visible range of pages which are not associated
 721         * with their zone properly. Not nice but set_pfnblock_flags_mask
 722         * expects the zone spans the pfn range. All the pages in the range
 723         * are reserved so nobody should be touching them so we should be safe
 724         */
 725        memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
 726                         MEMINIT_HOTPLUG, altmap, migratetype);
 727
 728        set_zone_contiguous(zone);
 729}
 730
 731struct auto_movable_stats {
 732        unsigned long kernel_early_pages;
 733        unsigned long movable_pages;
 734};
 735
 736static void auto_movable_stats_account_zone(struct auto_movable_stats *stats,
 737                                            struct zone *zone)
 738{
 739        if (zone_idx(zone) == ZONE_MOVABLE) {
 740                stats->movable_pages += zone->present_pages;
 741        } else {
 742                stats->kernel_early_pages += zone->present_early_pages;
 743#ifdef CONFIG_CMA
 744                /*
 745                 * CMA pages (never on hotplugged memory) behave like
 746                 * ZONE_MOVABLE.
 747                 */
 748                stats->movable_pages += zone->cma_pages;
 749                stats->kernel_early_pages -= zone->cma_pages;
 750#endif /* CONFIG_CMA */
 751        }
 752}
 753struct auto_movable_group_stats {
 754        unsigned long movable_pages;
 755        unsigned long req_kernel_early_pages;
 756};
 757
 758static int auto_movable_stats_account_group(struct memory_group *group,
 759                                           void *arg)
 760{
 761        const int ratio = READ_ONCE(auto_movable_ratio);
 762        struct auto_movable_group_stats *stats = arg;
 763        long pages;
 764
 765        /*
 766         * We don't support modifying the config while the auto-movable online
 767         * policy is already enabled. Just avoid the division by zero below.
 768         */
 769        if (!ratio)
 770                return 0;
 771
 772        /*
 773         * Calculate how many early kernel pages this group requires to
 774         * satisfy the configured zone ratio.
 775         */
 776        pages = group->present_movable_pages * 100 / ratio;
 777        pages -= group->present_kernel_pages;
 778
 779        if (pages > 0)
 780                stats->req_kernel_early_pages += pages;
 781        stats->movable_pages += group->present_movable_pages;
 782        return 0;
 783}
 784
 785static bool auto_movable_can_online_movable(int nid, struct memory_group *group,
 786                                            unsigned long nr_pages)
 787{
 788        unsigned long kernel_early_pages, movable_pages;
 789        struct auto_movable_group_stats group_stats = {};
 790        struct auto_movable_stats stats = {};
 791        pg_data_t *pgdat = NODE_DATA(nid);
 792        struct zone *zone;
 793        int i;
 794
 795        /* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */
 796        if (nid == NUMA_NO_NODE) {
 797                /* TODO: cache values */
 798                for_each_populated_zone(zone)
 799                        auto_movable_stats_account_zone(&stats, zone);
 800        } else {
 801                for (i = 0; i < MAX_NR_ZONES; i++) {
 802                        zone = pgdat->node_zones + i;
 803                        if (populated_zone(zone))
 804                                auto_movable_stats_account_zone(&stats, zone);
 805                }
 806        }
 807
 808        kernel_early_pages = stats.kernel_early_pages;
 809        movable_pages = stats.movable_pages;
 810
 811        /*
 812         * Kernel memory inside dynamic memory group allows for more MOVABLE
 813         * memory within the same group. Remove the effect of all but the
 814         * current group from the stats.
 815         */
 816        walk_dynamic_memory_groups(nid, auto_movable_stats_account_group,
 817                                   group, &group_stats);
 818        if (kernel_early_pages <= group_stats.req_kernel_early_pages)
 819                return false;
 820        kernel_early_pages -= group_stats.req_kernel_early_pages;
 821        movable_pages -= group_stats.movable_pages;
 822
 823        if (group && group->is_dynamic)
 824                kernel_early_pages += group->present_kernel_pages;
 825
 826        /*
 827         * Test if we could online the given number of pages to ZONE_MOVABLE
 828         * and still stay in the configured ratio.
 829         */
 830        movable_pages += nr_pages;
 831        return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100;
 832}
 833
 834/*
 835 * Returns a default kernel memory zone for the given pfn range.
 836 * If no kernel zone covers this pfn range it will automatically go
 837 * to the ZONE_NORMAL.
 838 */
 839static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
 840                unsigned long nr_pages)
 841{
 842        struct pglist_data *pgdat = NODE_DATA(nid);
 843        int zid;
 844
 845        for (zid = 0; zid <= ZONE_NORMAL; zid++) {
 846                struct zone *zone = &pgdat->node_zones[zid];
 847
 848                if (zone_intersects(zone, start_pfn, nr_pages))
 849                        return zone;
 850        }
 851
 852        return &pgdat->node_zones[ZONE_NORMAL];
 853}
 854
 855/*
 856 * Determine to which zone to online memory dynamically based on user
 857 * configuration and system stats. We care about the following ratio:
 858 *
 859 *   MOVABLE : KERNEL
 860 *
 861 * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in
 862 * one of the kernel zones. CMA pages inside one of the kernel zones really
 863 * behaves like ZONE_MOVABLE, so we treat them accordingly.
 864 *
 865 * We don't allow for hotplugged memory in a KERNEL zone to increase the
 866 * amount of MOVABLE memory we can have, so we end up with:
 867 *
 868 *   MOVABLE : KERNEL_EARLY
 869 *
 870 * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze
 871 * boot. We base our calculation on KERNEL_EARLY internally, because:
 872 *
 873 * a) Hotplugged memory in one of the kernel zones can sometimes still get
 874 *    hotunplugged, especially when hot(un)plugging individual memory blocks.
 875 *    There is no coordination across memory devices, therefore "automatic"
 876 *    hotunplugging, as implemented in hypervisors, could result in zone
 877 *    imbalances.
 878 * b) Early/boot memory in one of the kernel zones can usually not get
 879 *    hotunplugged again (e.g., no firmware interface to unplug, fragmented
 880 *    with unmovable allocations). While there are corner cases where it might
 881 *    still work, it is barely relevant in practice.
 882 *
 883 * Exceptions are dynamic memory groups, which allow for more MOVABLE
 884 * memory within the same memory group -- because in that case, there is
 885 * coordination within the single memory device managed by a single driver.
 886 *
 887 * We rely on "present pages" instead of "managed pages", as the latter is
 888 * highly unreliable and dynamic in virtualized environments, and does not
 889 * consider boot time allocations. For example, memory ballooning adjusts the
 890 * managed pages when inflating/deflating the balloon, and balloon compaction
 891 * can even migrate inflated pages between zones.
 892 *
 893 * Using "present pages" is better but some things to keep in mind are:
 894 *
 895 * a) Some memblock allocations, such as for the crashkernel area, are
 896 *    effectively unused by the kernel, yet they account to "present pages".
 897 *    Fortunately, these allocations are comparatively small in relevant setups
 898 *    (e.g., fraction of system memory).
 899 * b) Some hotplugged memory blocks in virtualized environments, esecially
 900 *    hotplugged by virtio-mem, look like they are completely present, however,
 901 *    only parts of the memory block are actually currently usable.
 902 *    "present pages" is an upper limit that can get reached at runtime. As
 903 *    we base our calculations on KERNEL_EARLY, this is not an issue.
 904 */
 905static struct zone *auto_movable_zone_for_pfn(int nid,
 906                                              struct memory_group *group,
 907                                              unsigned long pfn,
 908                                              unsigned long nr_pages)
 909{
 910        unsigned long online_pages = 0, max_pages, end_pfn;
 911        struct page *page;
 912
 913        if (!auto_movable_ratio)
 914                goto kernel_zone;
 915
 916        if (group && !group->is_dynamic) {
 917                max_pages = group->s.max_pages;
 918                online_pages = group->present_movable_pages;
 919
 920                /* If anything is !MOVABLE online the rest !MOVABLE. */
 921                if (group->present_kernel_pages)
 922                        goto kernel_zone;
 923        } else if (!group || group->d.unit_pages == nr_pages) {
 924                max_pages = nr_pages;
 925        } else {
 926                max_pages = group->d.unit_pages;
 927                /*
 928                 * Take a look at all online sections in the current unit.
 929                 * We can safely assume that all pages within a section belong
 930                 * to the same zone, because dynamic memory groups only deal
 931                 * with hotplugged memory.
 932                 */
 933                pfn = ALIGN_DOWN(pfn, group->d.unit_pages);
 934                end_pfn = pfn + group->d.unit_pages;
 935                for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
 936                        page = pfn_to_online_page(pfn);
 937                        if (!page)
 938                                continue;
 939                        /* If anything is !MOVABLE online the rest !MOVABLE. */
 940                        if (page_zonenum(page) != ZONE_MOVABLE)
 941                                goto kernel_zone;
 942                        online_pages += PAGES_PER_SECTION;
 943                }
 944        }
 945
 946        /*
 947         * Online MOVABLE if we could *currently* online all remaining parts
 948         * MOVABLE. We expect to (add+) online them immediately next, so if
 949         * nobody interferes, all will be MOVABLE if possible.
 950         */
 951        nr_pages = max_pages - online_pages;
 952        if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages))
 953                goto kernel_zone;
 954
 955#ifdef CONFIG_NUMA
 956        if (auto_movable_numa_aware &&
 957            !auto_movable_can_online_movable(nid, group, nr_pages))
 958                goto kernel_zone;
 959#endif /* CONFIG_NUMA */
 960
 961        return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
 962kernel_zone:
 963        return default_kernel_zone_for_pfn(nid, pfn, nr_pages);
 964}
 965
 966static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
 967                unsigned long nr_pages)
 968{
 969        struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
 970                        nr_pages);
 971        struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
 972        bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
 973        bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
 974
 975        /*
 976         * We inherit the existing zone in a simple case where zones do not
 977         * overlap in the given range
 978         */
 979        if (in_kernel ^ in_movable)
 980                return (in_kernel) ? kernel_zone : movable_zone;
 981
 982        /*
 983         * If the range doesn't belong to any zone or two zones overlap in the
 984         * given range then we use movable zone only if movable_node is
 985         * enabled because we always online to a kernel zone by default.
 986         */
 987        return movable_node_enabled ? movable_zone : kernel_zone;
 988}
 989
 990struct zone *zone_for_pfn_range(int online_type, int nid,
 991                struct memory_group *group, unsigned long start_pfn,
 992                unsigned long nr_pages)
 993{
 994        if (online_type == MMOP_ONLINE_KERNEL)
 995                return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
 996
 997        if (online_type == MMOP_ONLINE_MOVABLE)
 998                return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
 999
1000        if (online_policy == ONLINE_POLICY_AUTO_MOVABLE)
1001                return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages);
1002
1003        return default_zone_for_pfn(nid, start_pfn, nr_pages);
1004}
1005
1006/*
1007 * This function should only be called by memory_block_{online,offline},
1008 * and {online,offline}_pages.
1009 */
1010void adjust_present_page_count(struct page *page, struct memory_group *group,
1011                               long nr_pages)
1012{
1013        struct zone *zone = page_zone(page);
1014        const bool movable = zone_idx(zone) == ZONE_MOVABLE;
1015
1016        /*
1017         * We only support onlining/offlining/adding/removing of complete
1018         * memory blocks; therefore, either all is either early or hotplugged.
1019         */
1020        if (early_section(__pfn_to_section(page_to_pfn(page))))
1021                zone->present_early_pages += nr_pages;
1022        zone->present_pages += nr_pages;
1023        zone->zone_pgdat->node_present_pages += nr_pages;
1024
1025        if (group && movable)
1026                group->present_movable_pages += nr_pages;
1027        else if (group && !movable)
1028                group->present_kernel_pages += nr_pages;
1029}
1030
1031int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
1032                              struct zone *zone)
1033{
1034        unsigned long end_pfn = pfn + nr_pages;
1035        int ret;
1036
1037        ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1038        if (ret)
1039                return ret;
1040
1041        move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
1042
1043        /*
1044         * It might be that the vmemmap_pages fully span sections. If that is
1045         * the case, mark those sections online here as otherwise they will be
1046         * left offline.
1047         */
1048        if (nr_pages >= PAGES_PER_SECTION)
1049                online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1050
1051        return ret;
1052}
1053
1054void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
1055{
1056        unsigned long end_pfn = pfn + nr_pages;
1057
1058        /*
1059         * It might be that the vmemmap_pages fully span sections. If that is
1060         * the case, mark those sections offline here as otherwise they will be
1061         * left online.
1062         */
1063        if (nr_pages >= PAGES_PER_SECTION)
1064                offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1065
1066        /*
1067         * The pages associated with this vmemmap have been offlined, so
1068         * we can reset its state here.
1069         */
1070        remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
1071        kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1072}
1073
1074int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
1075                       struct zone *zone, struct memory_group *group)
1076{
1077        unsigned long flags;
1078        int need_zonelists_rebuild = 0;
1079        const int nid = zone_to_nid(zone);
1080        int ret;
1081        struct memory_notify arg;
1082
1083        /*
1084         * {on,off}lining is constrained to full memory sections (or more
1085         * precisely to memory blocks from the user space POV).
1086         * memmap_on_memory is an exception because it reserves initial part
1087         * of the physical memory space for vmemmaps. That space is pageblock
1088         * aligned.
1089         */
1090        if (WARN_ON_ONCE(!nr_pages ||
1091                         !IS_ALIGNED(pfn, pageblock_nr_pages) ||
1092                         !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
1093                return -EINVAL;
1094
1095        mem_hotplug_begin();
1096
1097        /* associate pfn range with the zone */
1098        move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
1099
1100        arg.start_pfn = pfn;
1101        arg.nr_pages = nr_pages;
1102        node_states_check_changes_online(nr_pages, zone, &arg);
1103
1104        ret = memory_notify(MEM_GOING_ONLINE, &arg);
1105        ret = notifier_to_errno(ret);
1106        if (ret)
1107                goto failed_addition;
1108
1109        /*
1110         * Fixup the number of isolated pageblocks before marking the sections
1111         * onlining, such that undo_isolate_page_range() works correctly.
1112         */
1113        spin_lock_irqsave(&zone->lock, flags);
1114        zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
1115        spin_unlock_irqrestore(&zone->lock, flags);
1116
1117        /*
1118         * If this zone is not populated, then it is not in zonelist.
1119         * This means the page allocator ignores this zone.
1120         * So, zonelist must be updated after online.
1121         */
1122        if (!populated_zone(zone)) {
1123                need_zonelists_rebuild = 1;
1124                setup_zone_pageset(zone);
1125        }
1126
1127        online_pages_range(pfn, nr_pages);
1128        adjust_present_page_count(pfn_to_page(pfn), group, nr_pages);
1129
1130        node_states_set_node(nid, &arg);
1131        if (need_zonelists_rebuild)
1132                build_all_zonelists(NULL);
1133
1134        /* Basic onlining is complete, allow allocation of onlined pages. */
1135        undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
1136
1137        /*
1138         * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
1139         * the tail of the freelist when undoing isolation). Shuffle the whole
1140         * zone to make sure the just onlined pages are properly distributed
1141         * across the whole freelist - to create an initial shuffle.
1142         */
1143        shuffle_zone(zone);
1144
1145        /* reinitialise watermarks and update pcp limits */
1146        init_per_zone_wmark_min();
1147
1148        kswapd_run(nid);
1149        kcompactd_run(nid);
1150
1151        writeback_set_ratelimit();
1152
1153        memory_notify(MEM_ONLINE, &arg);
1154        mem_hotplug_done();
1155        return 0;
1156
1157failed_addition:
1158        pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1159                 (unsigned long long) pfn << PAGE_SHIFT,
1160                 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1161        memory_notify(MEM_CANCEL_ONLINE, &arg);
1162        remove_pfn_range_from_zone(zone, pfn, nr_pages);
1163        mem_hotplug_done();
1164        return ret;
1165}
1166#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1167
1168static void reset_node_present_pages(pg_data_t *pgdat)
1169{
1170        struct zone *z;
1171
1172        for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1173                z->present_pages = 0;
1174
1175        pgdat->node_present_pages = 0;
1176}
1177
1178/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1179static pg_data_t __ref *hotadd_new_pgdat(int nid)
1180{
1181        struct pglist_data *pgdat;
1182
1183        pgdat = NODE_DATA(nid);
1184        if (!pgdat) {
1185                pgdat = arch_alloc_nodedata(nid);
1186                if (!pgdat)
1187                        return NULL;
1188
1189                pgdat->per_cpu_nodestats =
1190                        alloc_percpu(struct per_cpu_nodestat);
1191                arch_refresh_nodedata(nid, pgdat);
1192        } else {
1193                int cpu;
1194                /*
1195                 * Reset the nr_zones, order and highest_zoneidx before reuse.
1196                 * Note that kswapd will init kswapd_highest_zoneidx properly
1197                 * when it starts in the near future.
1198                 */
1199                pgdat->nr_zones = 0;
1200                pgdat->kswapd_order = 0;
1201                pgdat->kswapd_highest_zoneidx = 0;
1202                for_each_online_cpu(cpu) {
1203                        struct per_cpu_nodestat *p;
1204
1205                        p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
1206                        memset(p, 0, sizeof(*p));
1207                }
1208        }
1209
1210        /* we can use NODE_DATA(nid) from here */
1211        pgdat->node_id = nid;
1212        pgdat->node_start_pfn = 0;
1213
1214        /* init node's zones as empty zones, we don't have any present pages.*/
1215        free_area_init_core_hotplug(nid);
1216
1217        /*
1218         * The node we allocated has no zone fallback lists. For avoiding
1219         * to access not-initialized zonelist, build here.
1220         */
1221        build_all_zonelists(pgdat);
1222
1223        /*
1224         * When memory is hot-added, all the memory is in offline state. So
1225         * clear all zones' present_pages because they will be updated in
1226         * online_pages() and offline_pages().
1227         */
1228        reset_node_managed_pages(pgdat);
1229        reset_node_present_pages(pgdat);
1230
1231        return pgdat;
1232}
1233
1234static void rollback_node_hotadd(int nid)
1235{
1236        pg_data_t *pgdat = NODE_DATA(nid);
1237
1238        arch_refresh_nodedata(nid, NULL);
1239        free_percpu(pgdat->per_cpu_nodestats);
1240        arch_free_nodedata(pgdat);
1241}
1242
1243
1244/*
1245 * __try_online_node - online a node if offlined
1246 * @nid: the node ID
1247 * @set_node_online: Whether we want to online the node
1248 * called by cpu_up() to online a node without onlined memory.
1249 *
1250 * Returns:
1251 * 1 -> a new node has been allocated
1252 * 0 -> the node is already online
1253 * -ENOMEM -> the node could not be allocated
1254 */
1255static int __try_online_node(int nid, bool set_node_online)
1256{
1257        pg_data_t *pgdat;
1258        int ret = 1;
1259
1260        if (node_online(nid))
1261                return 0;
1262
1263        pgdat = hotadd_new_pgdat(nid);
1264        if (!pgdat) {
1265                pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1266                ret = -ENOMEM;
1267                goto out;
1268        }
1269
1270        if (set_node_online) {
1271                node_set_online(nid);
1272                ret = register_one_node(nid);
1273                BUG_ON(ret);
1274        }
1275out:
1276        return ret;
1277}
1278
1279/*
1280 * Users of this function always want to online/register the node
1281 */
1282int try_online_node(int nid)
1283{
1284        int ret;
1285
1286        mem_hotplug_begin();
1287        ret =  __try_online_node(nid, true);
1288        mem_hotplug_done();
1289        return ret;
1290}
1291
1292static int check_hotplug_memory_range(u64 start, u64 size)
1293{
1294        /* memory range must be block size aligned */
1295        if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1296            !IS_ALIGNED(size, memory_block_size_bytes())) {
1297                pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1298                       memory_block_size_bytes(), start, size);
1299                return -EINVAL;
1300        }
1301
1302        return 0;
1303}
1304
1305static int online_memory_block(struct memory_block *mem, void *arg)
1306{
1307        mem->online_type = mhp_default_online_type;
1308        return device_online(&mem->dev);
1309}
1310
1311bool mhp_supports_memmap_on_memory(unsigned long size)
1312{
1313        unsigned long nr_vmemmap_pages = size / PAGE_SIZE;
1314        unsigned long vmemmap_size = nr_vmemmap_pages * sizeof(struct page);
1315        unsigned long remaining_size = size - vmemmap_size;
1316
1317        /*
1318         * Besides having arch support and the feature enabled at runtime, we
1319         * need a few more assumptions to hold true:
1320         *
1321         * a) We span a single memory block: memory onlining/offlinin;g happens
1322         *    in memory block granularity. We don't want the vmemmap of online
1323         *    memory blocks to reside on offline memory blocks. In the future,
1324         *    we might want to support variable-sized memory blocks to make the
1325         *    feature more versatile.
1326         *
1327         * b) The vmemmap pages span complete PMDs: We don't want vmemmap code
1328         *    to populate memory from the altmap for unrelated parts (i.e.,
1329         *    other memory blocks)
1330         *
1331         * c) The vmemmap pages (and thereby the pages that will be exposed to
1332         *    the buddy) have to cover full pageblocks: memory onlining/offlining
1333         *    code requires applicable ranges to be page-aligned, for example, to
1334         *    set the migratetypes properly.
1335         *
1336         * TODO: Although we have a check here to make sure that vmemmap pages
1337         *       fully populate a PMD, it is not the right place to check for
1338         *       this. A much better solution involves improving vmemmap code
1339         *       to fallback to base pages when trying to populate vmemmap using
1340         *       altmap as an alternative source of memory, and we do not exactly
1341         *       populate a single PMD.
1342         */
1343        return memmap_on_memory &&
1344               !hugetlb_free_vmemmap_enabled &&
1345               IS_ENABLED(CONFIG_MHP_MEMMAP_ON_MEMORY) &&
1346               size == memory_block_size_bytes() &&
1347               IS_ALIGNED(vmemmap_size, PMD_SIZE) &&
1348               IS_ALIGNED(remaining_size, (pageblock_nr_pages << PAGE_SHIFT));
1349}
1350
1351/*
1352 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1353 * and online/offline operations (triggered e.g. by sysfs).
1354 *
1355 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1356 */
1357int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1358{
1359        struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1360        struct vmem_altmap mhp_altmap = {};
1361        struct memory_group *group = NULL;
1362        u64 start, size;
1363        bool new_node = false;
1364        int ret;
1365
1366        start = res->start;
1367        size = resource_size(res);
1368
1369        ret = check_hotplug_memory_range(start, size);
1370        if (ret)
1371                return ret;
1372
1373        if (mhp_flags & MHP_NID_IS_MGID) {
1374                group = memory_group_find_by_id(nid);
1375                if (!group)
1376                        return -EINVAL;
1377                nid = group->nid;
1378        }
1379
1380        if (!node_possible(nid)) {
1381                WARN(1, "node %d was absent from the node_possible_map\n", nid);
1382                return -EINVAL;
1383        }
1384
1385        mem_hotplug_begin();
1386
1387        if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1388                memblock_add_node(start, size, nid);
1389
1390        ret = __try_online_node(nid, false);
1391        if (ret < 0)
1392                goto error;
1393        new_node = ret;
1394
1395        /*
1396         * Self hosted memmap array
1397         */
1398        if (mhp_flags & MHP_MEMMAP_ON_MEMORY) {
1399                if (!mhp_supports_memmap_on_memory(size)) {
1400                        ret = -EINVAL;
1401                        goto error;
1402                }
1403                mhp_altmap.free = PHYS_PFN(size);
1404                mhp_altmap.base_pfn = PHYS_PFN(start);
1405                params.altmap = &mhp_altmap;
1406        }
1407
1408        /* call arch's memory hotadd */
1409        ret = arch_add_memory(nid, start, size, &params);
1410        if (ret < 0)
1411                goto error;
1412
1413        /* create memory block devices after memory was added */
1414        ret = create_memory_block_devices(start, size, mhp_altmap.alloc,
1415                                          group);
1416        if (ret) {
1417                arch_remove_memory(start, size, NULL);
1418                goto error;
1419        }
1420
1421        if (new_node) {
1422                /* If sysfs file of new node can't be created, cpu on the node
1423                 * can't be hot-added. There is no rollback way now.
1424                 * So, check by BUG_ON() to catch it reluctantly..
1425                 * We online node here. We can't roll back from here.
1426                 */
1427                node_set_online(nid);
1428                ret = __register_one_node(nid);
1429                BUG_ON(ret);
1430        }
1431
1432        /* link memory sections under this node.*/
1433        link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1),
1434                          MEMINIT_HOTPLUG);
1435
1436        /* create new memmap entry */
1437        if (!strcmp(res->name, "System RAM"))
1438                firmware_map_add_hotplug(start, start + size, "System RAM");
1439
1440        /* device_online() will take the lock when calling online_pages() */
1441        mem_hotplug_done();
1442
1443        /*
1444         * In case we're allowed to merge the resource, flag it and trigger
1445         * merging now that adding succeeded.
1446         */
1447        if (mhp_flags & MHP_MERGE_RESOURCE)
1448                merge_system_ram_resource(res);
1449
1450        /* online pages if requested */
1451        if (mhp_default_online_type != MMOP_OFFLINE)
1452                walk_memory_blocks(start, size, NULL, online_memory_block);
1453
1454        return ret;
1455error:
1456        /* rollback pgdat allocation and others */
1457        if (new_node)
1458                rollback_node_hotadd(nid);
1459        if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1460                memblock_remove(start, size);
1461        mem_hotplug_done();
1462        return ret;
1463}
1464
1465/* requires device_hotplug_lock, see add_memory_resource() */
1466int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1467{
1468        struct resource *res;
1469        int ret;
1470
1471        res = register_memory_resource(start, size, "System RAM");
1472        if (IS_ERR(res))
1473                return PTR_ERR(res);
1474
1475        ret = add_memory_resource(nid, res, mhp_flags);
1476        if (ret < 0)
1477                release_memory_resource(res);
1478        return ret;
1479}
1480
1481int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1482{
1483        int rc;
1484
1485        lock_device_hotplug();
1486        rc = __add_memory(nid, start, size, mhp_flags);
1487        unlock_device_hotplug();
1488
1489        return rc;
1490}
1491EXPORT_SYMBOL_GPL(add_memory);
1492
1493/*
1494 * Add special, driver-managed memory to the system as system RAM. Such
1495 * memory is not exposed via the raw firmware-provided memmap as system
1496 * RAM, instead, it is detected and added by a driver - during cold boot,
1497 * after a reboot, and after kexec.
1498 *
1499 * Reasons why this memory should not be used for the initial memmap of a
1500 * kexec kernel or for placing kexec images:
1501 * - The booting kernel is in charge of determining how this memory will be
1502 *   used (e.g., use persistent memory as system RAM)
1503 * - Coordination with a hypervisor is required before this memory
1504 *   can be used (e.g., inaccessible parts).
1505 *
1506 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1507 * memory map") are created. Also, the created memory resource is flagged
1508 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1509 * this memory as well (esp., not place kexec images onto it).
1510 *
1511 * The resource_name (visible via /proc/iomem) has to have the format
1512 * "System RAM ($DRIVER)".
1513 */
1514int add_memory_driver_managed(int nid, u64 start, u64 size,
1515                              const char *resource_name, mhp_t mhp_flags)
1516{
1517        struct resource *res;
1518        int rc;
1519
1520        if (!resource_name ||
1521            strstr(resource_name, "System RAM (") != resource_name ||
1522            resource_name[strlen(resource_name) - 1] != ')')
1523                return -EINVAL;
1524
1525        lock_device_hotplug();
1526
1527        res = register_memory_resource(start, size, resource_name);
1528        if (IS_ERR(res)) {
1529                rc = PTR_ERR(res);
1530                goto out_unlock;
1531        }
1532
1533        rc = add_memory_resource(nid, res, mhp_flags);
1534        if (rc < 0)
1535                release_memory_resource(res);
1536
1537out_unlock:
1538        unlock_device_hotplug();
1539        return rc;
1540}
1541EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1542
1543/*
1544 * Platforms should define arch_get_mappable_range() that provides
1545 * maximum possible addressable physical memory range for which the
1546 * linear mapping could be created. The platform returned address
1547 * range must adhere to these following semantics.
1548 *
1549 * - range.start <= range.end
1550 * - Range includes both end points [range.start..range.end]
1551 *
1552 * There is also a fallback definition provided here, allowing the
1553 * entire possible physical address range in case any platform does
1554 * not define arch_get_mappable_range().
1555 */
1556struct range __weak arch_get_mappable_range(void)
1557{
1558        struct range mhp_range = {
1559                .start = 0UL,
1560                .end = -1ULL,
1561        };
1562        return mhp_range;
1563}
1564
1565struct range mhp_get_pluggable_range(bool need_mapping)
1566{
1567        const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1568        struct range mhp_range;
1569
1570        if (need_mapping) {
1571                mhp_range = arch_get_mappable_range();
1572                if (mhp_range.start > max_phys) {
1573                        mhp_range.start = 0;
1574                        mhp_range.end = 0;
1575                }
1576                mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1577        } else {
1578                mhp_range.start = 0;
1579                mhp_range.end = max_phys;
1580        }
1581        return mhp_range;
1582}
1583EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1584
1585bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1586{
1587        struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1588        u64 end = start + size;
1589
1590        if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1591                return true;
1592
1593        pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1594                start, end, mhp_range.start, mhp_range.end);
1595        return false;
1596}
1597
1598#ifdef CONFIG_MEMORY_HOTREMOVE
1599/*
1600 * Confirm all pages in a range [start, end) belong to the same zone (skipping
1601 * memory holes). When true, return the zone.
1602 */
1603struct zone *test_pages_in_a_zone(unsigned long start_pfn,
1604                                  unsigned long end_pfn)
1605{
1606        unsigned long pfn, sec_end_pfn;
1607        struct zone *zone = NULL;
1608        struct page *page;
1609
1610        for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1611             pfn < end_pfn;
1612             pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1613                /* Make sure the memory section is present first */
1614                if (!present_section_nr(pfn_to_section_nr(pfn)))
1615                        continue;
1616                for (; pfn < sec_end_pfn && pfn < end_pfn;
1617                     pfn += MAX_ORDER_NR_PAGES) {
1618                        /* Check if we got outside of the zone */
1619                        if (zone && !zone_spans_pfn(zone, pfn))
1620                                return NULL;
1621                        page = pfn_to_page(pfn);
1622                        if (zone && page_zone(page) != zone)
1623                                return NULL;
1624                        zone = page_zone(page);
1625                }
1626        }
1627
1628        return zone;
1629}
1630
1631/*
1632 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1633 * non-lru movable pages and hugepages). Will skip over most unmovable
1634 * pages (esp., pages that can be skipped when offlining), but bail out on
1635 * definitely unmovable pages.
1636 *
1637 * Returns:
1638 *      0 in case a movable page is found and movable_pfn was updated.
1639 *      -ENOENT in case no movable page was found.
1640 *      -EBUSY in case a definitely unmovable page was found.
1641 */
1642static int scan_movable_pages(unsigned long start, unsigned long end,
1643                              unsigned long *movable_pfn)
1644{
1645        unsigned long pfn;
1646
1647        for (pfn = start; pfn < end; pfn++) {
1648                struct page *page, *head;
1649                unsigned long skip;
1650
1651                if (!pfn_valid(pfn))
1652                        continue;
1653                page = pfn_to_page(pfn);
1654                if (PageLRU(page))
1655                        goto found;
1656                if (__PageMovable(page))
1657                        goto found;
1658
1659                /*
1660                 * PageOffline() pages that are not marked __PageMovable() and
1661                 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1662                 * definitely unmovable. If their reference count would be 0,
1663                 * they could at least be skipped when offlining memory.
1664                 */
1665                if (PageOffline(page) && page_count(page))
1666                        return -EBUSY;
1667
1668                if (!PageHuge(page))
1669                        continue;
1670                head = compound_head(page);
1671                /*
1672                 * This test is racy as we hold no reference or lock.  The
1673                 * hugetlb page could have been free'ed and head is no longer
1674                 * a hugetlb page before the following check.  In such unlikely
1675                 * cases false positives and negatives are possible.  Calling
1676                 * code must deal with these scenarios.
1677                 */
1678                if (HPageMigratable(head))
1679                        goto found;
1680                skip = compound_nr(head) - (page - head);
1681                pfn += skip - 1;
1682        }
1683        return -ENOENT;
1684found:
1685        *movable_pfn = pfn;
1686        return 0;
1687}
1688
1689static int
1690do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1691{
1692        unsigned long pfn;
1693        struct page *page, *head;
1694        int ret = 0;
1695        LIST_HEAD(source);
1696        static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1697                                      DEFAULT_RATELIMIT_BURST);
1698
1699        for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1700                if (!pfn_valid(pfn))
1701                        continue;
1702                page = pfn_to_page(pfn);
1703                head = compound_head(page);
1704
1705                if (PageHuge(page)) {
1706                        pfn = page_to_pfn(head) + compound_nr(head) - 1;
1707                        isolate_huge_page(head, &source);
1708                        continue;
1709                } else if (PageTransHuge(page))
1710                        pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1711
1712                /*
1713                 * HWPoison pages have elevated reference counts so the migration would
1714                 * fail on them. It also doesn't make any sense to migrate them in the
1715                 * first place. Still try to unmap such a page in case it is still mapped
1716                 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1717                 * the unmap as the catch all safety net).
1718                 */
1719                if (PageHWPoison(page)) {
1720                        if (WARN_ON(PageLRU(page)))
1721                                isolate_lru_page(page);
1722                        if (page_mapped(page))
1723                                try_to_unmap(page, TTU_IGNORE_MLOCK);
1724                        continue;
1725                }
1726
1727                if (!get_page_unless_zero(page))
1728                        continue;
1729                /*
1730                 * We can skip free pages. And we can deal with pages on
1731                 * LRU and non-lru movable pages.
1732                 */
1733                if (PageLRU(page))
1734                        ret = isolate_lru_page(page);
1735                else
1736                        ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1737                if (!ret) { /* Success */
1738                        list_add_tail(&page->lru, &source);
1739                        if (!__PageMovable(page))
1740                                inc_node_page_state(page, NR_ISOLATED_ANON +
1741                                                    page_is_file_lru(page));
1742
1743                } else {
1744                        if (__ratelimit(&migrate_rs)) {
1745                                pr_warn("failed to isolate pfn %lx\n", pfn);
1746                                dump_page(page, "isolation failed");
1747                        }
1748                }
1749                put_page(page);
1750        }
1751        if (!list_empty(&source)) {
1752                nodemask_t nmask = node_states[N_MEMORY];
1753                struct migration_target_control mtc = {
1754                        .nmask = &nmask,
1755                        .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1756                };
1757
1758                /*
1759                 * We have checked that migration range is on a single zone so
1760                 * we can use the nid of the first page to all the others.
1761                 */
1762                mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1763
1764                /*
1765                 * try to allocate from a different node but reuse this node
1766                 * if there are no other online nodes to be used (e.g. we are
1767                 * offlining a part of the only existing node)
1768                 */
1769                node_clear(mtc.nid, nmask);
1770                if (nodes_empty(nmask))
1771                        node_set(mtc.nid, nmask);
1772                ret = migrate_pages(&source, alloc_migration_target, NULL,
1773                        (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL);
1774                if (ret) {
1775                        list_for_each_entry(page, &source, lru) {
1776                                if (__ratelimit(&migrate_rs)) {
1777                                        pr_warn("migrating pfn %lx failed ret:%d\n",
1778                                                page_to_pfn(page), ret);
1779                                        dump_page(page, "migration failure");
1780                                }
1781                        }
1782                        putback_movable_pages(&source);
1783                }
1784        }
1785
1786        return ret;
1787}
1788
1789static int __init cmdline_parse_movable_node(char *p)
1790{
1791        movable_node_enabled = true;
1792        return 0;
1793}
1794early_param("movable_node", cmdline_parse_movable_node);
1795
1796/* check which state of node_states will be changed when offline memory */
1797static void node_states_check_changes_offline(unsigned long nr_pages,
1798                struct zone *zone, struct memory_notify *arg)
1799{
1800        struct pglist_data *pgdat = zone->zone_pgdat;
1801        unsigned long present_pages = 0;
1802        enum zone_type zt;
1803
1804        arg->status_change_nid = NUMA_NO_NODE;
1805        arg->status_change_nid_normal = NUMA_NO_NODE;
1806        arg->status_change_nid_high = NUMA_NO_NODE;
1807
1808        /*
1809         * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1810         * If the memory to be offline is within the range
1811         * [0..ZONE_NORMAL], and it is the last present memory there,
1812         * the zones in that range will become empty after the offlining,
1813         * thus we can determine that we need to clear the node from
1814         * node_states[N_NORMAL_MEMORY].
1815         */
1816        for (zt = 0; zt <= ZONE_NORMAL; zt++)
1817                present_pages += pgdat->node_zones[zt].present_pages;
1818        if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1819                arg->status_change_nid_normal = zone_to_nid(zone);
1820
1821#ifdef CONFIG_HIGHMEM
1822        /*
1823         * node_states[N_HIGH_MEMORY] contains nodes which
1824         * have normal memory or high memory.
1825         * Here we add the present_pages belonging to ZONE_HIGHMEM.
1826         * If the zone is within the range of [0..ZONE_HIGHMEM), and
1827         * we determine that the zones in that range become empty,
1828         * we need to clear the node for N_HIGH_MEMORY.
1829         */
1830        present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1831        if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1832                arg->status_change_nid_high = zone_to_nid(zone);
1833#endif
1834
1835        /*
1836         * We have accounted the pages from [0..ZONE_NORMAL), and
1837         * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1838         * as well.
1839         * Here we count the possible pages from ZONE_MOVABLE.
1840         * If after having accounted all the pages, we see that the nr_pages
1841         * to be offlined is over or equal to the accounted pages,
1842         * we know that the node will become empty, and so, we can clear
1843         * it for N_MEMORY as well.
1844         */
1845        present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1846
1847        if (nr_pages >= present_pages)
1848                arg->status_change_nid = zone_to_nid(zone);
1849}
1850
1851static void node_states_clear_node(int node, struct memory_notify *arg)
1852{
1853        if (arg->status_change_nid_normal >= 0)
1854                node_clear_state(node, N_NORMAL_MEMORY);
1855
1856        if (arg->status_change_nid_high >= 0)
1857                node_clear_state(node, N_HIGH_MEMORY);
1858
1859        if (arg->status_change_nid >= 0)
1860                node_clear_state(node, N_MEMORY);
1861}
1862
1863static int count_system_ram_pages_cb(unsigned long start_pfn,
1864                                     unsigned long nr_pages, void *data)
1865{
1866        unsigned long *nr_system_ram_pages = data;
1867
1868        *nr_system_ram_pages += nr_pages;
1869        return 0;
1870}
1871
1872int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages,
1873                        struct memory_group *group)
1874{
1875        const unsigned long end_pfn = start_pfn + nr_pages;
1876        unsigned long pfn, system_ram_pages = 0;
1877        unsigned long flags;
1878        struct zone *zone;
1879        struct memory_notify arg;
1880        int ret, node;
1881        char *reason;
1882
1883        /*
1884         * {on,off}lining is constrained to full memory sections (or more
1885         * precisely to memory blocks from the user space POV).
1886         * memmap_on_memory is an exception because it reserves initial part
1887         * of the physical memory space for vmemmaps. That space is pageblock
1888         * aligned.
1889         */
1890        if (WARN_ON_ONCE(!nr_pages ||
1891                         !IS_ALIGNED(start_pfn, pageblock_nr_pages) ||
1892                         !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1893                return -EINVAL;
1894
1895        mem_hotplug_begin();
1896
1897        /*
1898         * Don't allow to offline memory blocks that contain holes.
1899         * Consequently, memory blocks with holes can never get onlined
1900         * via the hotplug path - online_pages() - as hotplugged memory has
1901         * no holes. This way, we e.g., don't have to worry about marking
1902         * memory holes PG_reserved, don't need pfn_valid() checks, and can
1903         * avoid using walk_system_ram_range() later.
1904         */
1905        walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1906                              count_system_ram_pages_cb);
1907        if (system_ram_pages != nr_pages) {
1908                ret = -EINVAL;
1909                reason = "memory holes";
1910                goto failed_removal;
1911        }
1912
1913        /* This makes hotplug much easier...and readable.
1914           we assume this for now. .*/
1915        zone = test_pages_in_a_zone(start_pfn, end_pfn);
1916        if (!zone) {
1917                ret = -EINVAL;
1918                reason = "multizone range";
1919                goto failed_removal;
1920        }
1921        node = zone_to_nid(zone);
1922
1923        /*
1924         * Disable pcplists so that page isolation cannot race with freeing
1925         * in a way that pages from isolated pageblock are left on pcplists.
1926         */
1927        zone_pcp_disable(zone);
1928        lru_cache_disable();
1929
1930        /* set above range as isolated */
1931        ret = start_isolate_page_range(start_pfn, end_pfn,
1932                                       MIGRATE_MOVABLE,
1933                                       MEMORY_OFFLINE | REPORT_FAILURE);
1934        if (ret) {
1935                reason = "failure to isolate range";
1936                goto failed_removal_pcplists_disabled;
1937        }
1938
1939        arg.start_pfn = start_pfn;
1940        arg.nr_pages = nr_pages;
1941        node_states_check_changes_offline(nr_pages, zone, &arg);
1942
1943        ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1944        ret = notifier_to_errno(ret);
1945        if (ret) {
1946                reason = "notifier failure";
1947                goto failed_removal_isolated;
1948        }
1949
1950        do {
1951                pfn = start_pfn;
1952                do {
1953                        if (signal_pending(current)) {
1954                                ret = -EINTR;
1955                                reason = "signal backoff";
1956                                goto failed_removal_isolated;
1957                        }
1958
1959                        cond_resched();
1960
1961                        ret = scan_movable_pages(pfn, end_pfn, &pfn);
1962                        if (!ret) {
1963                                /*
1964                                 * TODO: fatal migration failures should bail
1965                                 * out
1966                                 */
1967                                do_migrate_range(pfn, end_pfn);
1968                        }
1969                } while (!ret);
1970
1971                if (ret != -ENOENT) {
1972                        reason = "unmovable page";
1973                        goto failed_removal_isolated;
1974                }
1975
1976                /*
1977                 * Dissolve free hugepages in the memory block before doing
1978                 * offlining actually in order to make hugetlbfs's object
1979                 * counting consistent.
1980                 */
1981                ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1982                if (ret) {
1983                        reason = "failure to dissolve huge pages";
1984                        goto failed_removal_isolated;
1985                }
1986
1987                ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
1988
1989        } while (ret);
1990
1991        /* Mark all sections offline and remove free pages from the buddy. */
1992        __offline_isolated_pages(start_pfn, end_pfn);
1993        pr_debug("Offlined Pages %ld\n", nr_pages);
1994
1995        /*
1996         * The memory sections are marked offline, and the pageblock flags
1997         * effectively stale; nobody should be touching them. Fixup the number
1998         * of isolated pageblocks, memory onlining will properly revert this.
1999         */
2000        spin_lock_irqsave(&zone->lock, flags);
2001        zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
2002        spin_unlock_irqrestore(&zone->lock, flags);
2003
2004        lru_cache_enable();
2005        zone_pcp_enable(zone);
2006
2007        /* removal success */
2008        adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
2009        adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages);
2010
2011        /* reinitialise watermarks and update pcp limits */
2012        init_per_zone_wmark_min();
2013
2014        if (!populated_zone(zone)) {
2015                zone_pcp_reset(zone);
2016                build_all_zonelists(NULL);
2017        }
2018
2019        node_states_clear_node(node, &arg);
2020        if (arg.status_change_nid >= 0) {
2021                kswapd_stop(node);
2022                kcompactd_stop(node);
2023        }
2024
2025        writeback_set_ratelimit();
2026
2027        memory_notify(MEM_OFFLINE, &arg);
2028        remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
2029        mem_hotplug_done();
2030        return 0;
2031
2032failed_removal_isolated:
2033        undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
2034        memory_notify(MEM_CANCEL_OFFLINE, &arg);
2035failed_removal_pcplists_disabled:
2036        lru_cache_enable();
2037        zone_pcp_enable(zone);
2038failed_removal:
2039        pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
2040                 (unsigned long long) start_pfn << PAGE_SHIFT,
2041                 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
2042                 reason);
2043        /* pushback to free area */
2044        mem_hotplug_done();
2045        return ret;
2046}
2047
2048static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
2049{
2050        int ret = !is_memblock_offlined(mem);
2051        int *nid = arg;
2052
2053        *nid = mem->nid;
2054        if (unlikely(ret)) {
2055                phys_addr_t beginpa, endpa;
2056
2057                beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
2058                endpa = beginpa + memory_block_size_bytes() - 1;
2059                pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
2060                        &beginpa, &endpa);
2061
2062                return -EBUSY;
2063        }
2064        return 0;
2065}
2066
2067static int get_nr_vmemmap_pages_cb(struct memory_block *mem, void *arg)
2068{
2069        /*
2070         * If not set, continue with the next block.
2071         */
2072        return mem->nr_vmemmap_pages;
2073}
2074
2075static int check_cpu_on_node(pg_data_t *pgdat)
2076{
2077        int cpu;
2078
2079        for_each_present_cpu(cpu) {
2080                if (cpu_to_node(cpu) == pgdat->node_id)
2081                        /*
2082                         * the cpu on this node isn't removed, and we can't
2083                         * offline this node.
2084                         */
2085                        return -EBUSY;
2086        }
2087
2088        return 0;
2089}
2090
2091static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
2092{
2093        int nid = *(int *)arg;
2094
2095        /*
2096         * If a memory block belongs to multiple nodes, the stored nid is not
2097         * reliable. However, such blocks are always online (e.g., cannot get
2098         * offlined) and, therefore, are still spanned by the node.
2099         */
2100        return mem->nid == nid ? -EEXIST : 0;
2101}
2102
2103/**
2104 * try_offline_node
2105 * @nid: the node ID
2106 *
2107 * Offline a node if all memory sections and cpus of the node are removed.
2108 *
2109 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2110 * and online/offline operations before this call.
2111 */
2112void try_offline_node(int nid)
2113{
2114        pg_data_t *pgdat = NODE_DATA(nid);
2115        int rc;
2116
2117        /*
2118         * If the node still spans pages (especially ZONE_DEVICE), don't
2119         * offline it. A node spans memory after move_pfn_range_to_zone(),
2120         * e.g., after the memory block was onlined.
2121         */
2122        if (pgdat->node_spanned_pages)
2123                return;
2124
2125        /*
2126         * Especially offline memory blocks might not be spanned by the
2127         * node. They will get spanned by the node once they get onlined.
2128         * However, they link to the node in sysfs and can get onlined later.
2129         */
2130        rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
2131        if (rc)
2132                return;
2133
2134        if (check_cpu_on_node(pgdat))
2135                return;
2136
2137        /*
2138         * all memory/cpu of this node are removed, we can offline this
2139         * node now.
2140         */
2141        node_set_offline(nid);
2142        unregister_one_node(nid);
2143}
2144EXPORT_SYMBOL(try_offline_node);
2145
2146static int __ref try_remove_memory(u64 start, u64 size)
2147{
2148        struct vmem_altmap mhp_altmap = {};
2149        struct vmem_altmap *altmap = NULL;
2150        unsigned long nr_vmemmap_pages;
2151        int rc = 0, nid = NUMA_NO_NODE;
2152
2153        BUG_ON(check_hotplug_memory_range(start, size));
2154
2155        /*
2156         * All memory blocks must be offlined before removing memory.  Check
2157         * whether all memory blocks in question are offline and return error
2158         * if this is not the case.
2159         *
2160         * While at it, determine the nid. Note that if we'd have mixed nodes,
2161         * we'd only try to offline the last determined one -- which is good
2162         * enough for the cases we care about.
2163         */
2164        rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb);
2165        if (rc)
2166                return rc;
2167
2168        /*
2169         * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in
2170         * the same granularity it was added - a single memory block.
2171         */
2172        if (memmap_on_memory) {
2173                nr_vmemmap_pages = walk_memory_blocks(start, size, NULL,
2174                                                      get_nr_vmemmap_pages_cb);
2175                if (nr_vmemmap_pages) {
2176                        if (size != memory_block_size_bytes()) {
2177                                pr_warn("Refuse to remove %#llx - %#llx,"
2178                                        "wrong granularity\n",
2179                                        start, start + size);
2180                                return -EINVAL;
2181                        }
2182
2183                        /*
2184                         * Let remove_pmd_table->free_hugepage_table do the
2185                         * right thing if we used vmem_altmap when hot-adding
2186                         * the range.
2187                         */
2188                        mhp_altmap.alloc = nr_vmemmap_pages;
2189                        altmap = &mhp_altmap;
2190                }
2191        }
2192
2193        /* remove memmap entry */
2194        firmware_map_remove(start, start + size, "System RAM");
2195
2196        /*
2197         * Memory block device removal under the device_hotplug_lock is
2198         * a barrier against racing online attempts.
2199         */
2200        remove_memory_block_devices(start, size);
2201
2202        mem_hotplug_begin();
2203
2204        arch_remove_memory(start, size, altmap);
2205
2206        if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
2207                memblock_free(start, size);
2208                memblock_remove(start, size);
2209        }
2210
2211        release_mem_region_adjustable(start, size);
2212
2213        if (nid != NUMA_NO_NODE)
2214                try_offline_node(nid);
2215
2216        mem_hotplug_done();
2217        return 0;
2218}
2219
2220/**
2221 * __remove_memory - Remove memory if every memory block is offline
2222 * @start: physical address of the region to remove
2223 * @size: size of the region to remove
2224 *
2225 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2226 * and online/offline operations before this call, as required by
2227 * try_offline_node().
2228 */
2229void __remove_memory(u64 start, u64 size)
2230{
2231
2232        /*
2233         * trigger BUG() if some memory is not offlined prior to calling this
2234         * function
2235         */
2236        if (try_remove_memory(start, size))
2237                BUG();
2238}
2239
2240/*
2241 * Remove memory if every memory block is offline, otherwise return -EBUSY is
2242 * some memory is not offline
2243 */
2244int remove_memory(u64 start, u64 size)
2245{
2246        int rc;
2247
2248        lock_device_hotplug();
2249        rc = try_remove_memory(start, size);
2250        unlock_device_hotplug();
2251
2252        return rc;
2253}
2254EXPORT_SYMBOL_GPL(remove_memory);
2255
2256static int try_offline_memory_block(struct memory_block *mem, void *arg)
2257{
2258        uint8_t online_type = MMOP_ONLINE_KERNEL;
2259        uint8_t **online_types = arg;
2260        struct page *page;
2261        int rc;
2262
2263        /*
2264         * Sense the online_type via the zone of the memory block. Offlining
2265         * with multiple zones within one memory block will be rejected
2266         * by offlining code ... so we don't care about that.
2267         */
2268        page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
2269        if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2270                online_type = MMOP_ONLINE_MOVABLE;
2271
2272        rc = device_offline(&mem->dev);
2273        /*
2274         * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2275         * so try_reonline_memory_block() can do the right thing.
2276         */
2277        if (!rc)
2278                **online_types = online_type;
2279
2280        (*online_types)++;
2281        /* Ignore if already offline. */
2282        return rc < 0 ? rc : 0;
2283}
2284
2285static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2286{
2287        uint8_t **online_types = arg;
2288        int rc;
2289
2290        if (**online_types != MMOP_OFFLINE) {
2291                mem->online_type = **online_types;
2292                rc = device_online(&mem->dev);
2293                if (rc < 0)
2294                        pr_warn("%s: Failed to re-online memory: %d",
2295                                __func__, rc);
2296        }
2297
2298        /* Continue processing all remaining memory blocks. */
2299        (*online_types)++;
2300        return 0;
2301}
2302
2303/*
2304 * Try to offline and remove memory. Might take a long time to finish in case
2305 * memory is still in use. Primarily useful for memory devices that logically
2306 * unplugged all memory (so it's no longer in use) and want to offline + remove
2307 * that memory.
2308 */
2309int offline_and_remove_memory(u64 start, u64 size)
2310{
2311        const unsigned long mb_count = size / memory_block_size_bytes();
2312        uint8_t *online_types, *tmp;
2313        int rc;
2314
2315        if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2316            !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2317                return -EINVAL;
2318
2319        /*
2320         * We'll remember the old online type of each memory block, so we can
2321         * try to revert whatever we did when offlining one memory block fails
2322         * after offlining some others succeeded.
2323         */
2324        online_types = kmalloc_array(mb_count, sizeof(*online_types),
2325                                     GFP_KERNEL);
2326        if (!online_types)
2327                return -ENOMEM;
2328        /*
2329         * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2330         * try_offline_memory_block(), we'll skip all unprocessed blocks in
2331         * try_reonline_memory_block().
2332         */
2333        memset(online_types, MMOP_OFFLINE, mb_count);
2334
2335        lock_device_hotplug();
2336
2337        tmp = online_types;
2338        rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2339
2340        /*
2341         * In case we succeeded to offline all memory, remove it.
2342         * This cannot fail as it cannot get onlined in the meantime.
2343         */
2344        if (!rc) {
2345                rc = try_remove_memory(start, size);
2346                if (rc)
2347                        pr_err("%s: Failed to remove memory: %d", __func__, rc);
2348        }
2349
2350        /*
2351         * Rollback what we did. While memory onlining might theoretically fail
2352         * (nacked by a notifier), it barely ever happens.
2353         */
2354        if (rc) {
2355                tmp = online_types;
2356                walk_memory_blocks(start, size, &tmp,
2357                                   try_reonline_memory_block);
2358        }
2359        unlock_device_hotplug();
2360
2361        kfree(online_types);
2362        return rc;
2363}
2364EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2365#endif /* CONFIG_MEMORY_HOTREMOVE */
2366