linux/mm/mempool.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/mm/mempool.c
   4 *
   5 *  memory buffer pool support. Such pools are mostly used
   6 *  for guaranteed, deadlock-free memory allocations during
   7 *  extreme VM load.
   8 *
   9 *  started by Ingo Molnar, Copyright (C) 2001
  10 *  debugging by David Rientjes, Copyright (C) 2015
  11 */
  12
  13#include <linux/mm.h>
  14#include <linux/slab.h>
  15#include <linux/highmem.h>
  16#include <linux/kasan.h>
  17#include <linux/kmemleak.h>
  18#include <linux/export.h>
  19#include <linux/mempool.h>
  20#include <linux/blkdev.h>
  21#include <linux/writeback.h>
  22#include "slab.h"
  23
  24#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
  25static void poison_error(mempool_t *pool, void *element, size_t size,
  26                         size_t byte)
  27{
  28        const int nr = pool->curr_nr;
  29        const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0);
  30        const int end = min_t(int, byte + (BITS_PER_LONG / 8), size);
  31        int i;
  32
  33        pr_err("BUG: mempool element poison mismatch\n");
  34        pr_err("Mempool %p size %zu\n", pool, size);
  35        pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : "");
  36        for (i = start; i < end; i++)
  37                pr_cont("%x ", *(u8 *)(element + i));
  38        pr_cont("%s\n", end < size ? "..." : "");
  39        dump_stack();
  40}
  41
  42static void __check_element(mempool_t *pool, void *element, size_t size)
  43{
  44        u8 *obj = element;
  45        size_t i;
  46
  47        for (i = 0; i < size; i++) {
  48                u8 exp = (i < size - 1) ? POISON_FREE : POISON_END;
  49
  50                if (obj[i] != exp) {
  51                        poison_error(pool, element, size, i);
  52                        return;
  53                }
  54        }
  55        memset(obj, POISON_INUSE, size);
  56}
  57
  58static void check_element(mempool_t *pool, void *element)
  59{
  60        /* Mempools backed by slab allocator */
  61        if (pool->free == mempool_free_slab || pool->free == mempool_kfree) {
  62                __check_element(pool, element, ksize(element));
  63        } else if (pool->free == mempool_free_pages) {
  64                /* Mempools backed by page allocator */
  65                int order = (int)(long)pool->pool_data;
  66                void *addr = kmap_atomic((struct page *)element);
  67
  68                __check_element(pool, addr, 1UL << (PAGE_SHIFT + order));
  69                kunmap_atomic(addr);
  70        }
  71}
  72
  73static void __poison_element(void *element, size_t size)
  74{
  75        u8 *obj = element;
  76
  77        memset(obj, POISON_FREE, size - 1);
  78        obj[size - 1] = POISON_END;
  79}
  80
  81static void poison_element(mempool_t *pool, void *element)
  82{
  83        /* Mempools backed by slab allocator */
  84        if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc) {
  85                __poison_element(element, ksize(element));
  86        } else if (pool->alloc == mempool_alloc_pages) {
  87                /* Mempools backed by page allocator */
  88                int order = (int)(long)pool->pool_data;
  89                void *addr = kmap_atomic((struct page *)element);
  90
  91                __poison_element(addr, 1UL << (PAGE_SHIFT + order));
  92                kunmap_atomic(addr);
  93        }
  94}
  95#else /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
  96static inline void check_element(mempool_t *pool, void *element)
  97{
  98}
  99static inline void poison_element(mempool_t *pool, void *element)
 100{
 101}
 102#endif /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
 103
 104static __always_inline void kasan_poison_element(mempool_t *pool, void *element)
 105{
 106        if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
 107                kasan_slab_free_mempool(element);
 108        else if (pool->alloc == mempool_alloc_pages)
 109                kasan_poison_pages(element, (unsigned long)pool->pool_data,
 110                                   false);
 111}
 112
 113static void kasan_unpoison_element(mempool_t *pool, void *element)
 114{
 115        if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
 116                kasan_unpoison_range(element, __ksize(element));
 117        else if (pool->alloc == mempool_alloc_pages)
 118                kasan_unpoison_pages(element, (unsigned long)pool->pool_data,
 119                                     false);
 120}
 121
 122static __always_inline void add_element(mempool_t *pool, void *element)
 123{
 124        BUG_ON(pool->curr_nr >= pool->min_nr);
 125        poison_element(pool, element);
 126        kasan_poison_element(pool, element);
 127        pool->elements[pool->curr_nr++] = element;
 128}
 129
 130static void *remove_element(mempool_t *pool)
 131{
 132        void *element = pool->elements[--pool->curr_nr];
 133
 134        BUG_ON(pool->curr_nr < 0);
 135        kasan_unpoison_element(pool, element);
 136        check_element(pool, element);
 137        return element;
 138}
 139
 140/**
 141 * mempool_exit - exit a mempool initialized with mempool_init()
 142 * @pool:      pointer to the memory pool which was initialized with
 143 *             mempool_init().
 144 *
 145 * Free all reserved elements in @pool and @pool itself.  This function
 146 * only sleeps if the free_fn() function sleeps.
 147 *
 148 * May be called on a zeroed but uninitialized mempool (i.e. allocated with
 149 * kzalloc()).
 150 */
 151void mempool_exit(mempool_t *pool)
 152{
 153        while (pool->curr_nr) {
 154                void *element = remove_element(pool);
 155                pool->free(element, pool->pool_data);
 156        }
 157        kfree(pool->elements);
 158        pool->elements = NULL;
 159}
 160EXPORT_SYMBOL(mempool_exit);
 161
 162/**
 163 * mempool_destroy - deallocate a memory pool
 164 * @pool:      pointer to the memory pool which was allocated via
 165 *             mempool_create().
 166 *
 167 * Free all reserved elements in @pool and @pool itself.  This function
 168 * only sleeps if the free_fn() function sleeps.
 169 */
 170void mempool_destroy(mempool_t *pool)
 171{
 172        if (unlikely(!pool))
 173                return;
 174
 175        mempool_exit(pool);
 176        kfree(pool);
 177}
 178EXPORT_SYMBOL(mempool_destroy);
 179
 180int mempool_init_node(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn,
 181                      mempool_free_t *free_fn, void *pool_data,
 182                      gfp_t gfp_mask, int node_id)
 183{
 184        spin_lock_init(&pool->lock);
 185        pool->min_nr    = min_nr;
 186        pool->pool_data = pool_data;
 187        pool->alloc     = alloc_fn;
 188        pool->free      = free_fn;
 189        init_waitqueue_head(&pool->wait);
 190
 191        pool->elements = kmalloc_array_node(min_nr, sizeof(void *),
 192                                            gfp_mask, node_id);
 193        if (!pool->elements)
 194                return -ENOMEM;
 195
 196        /*
 197         * First pre-allocate the guaranteed number of buffers.
 198         */
 199        while (pool->curr_nr < pool->min_nr) {
 200                void *element;
 201
 202                element = pool->alloc(gfp_mask, pool->pool_data);
 203                if (unlikely(!element)) {
 204                        mempool_exit(pool);
 205                        return -ENOMEM;
 206                }
 207                add_element(pool, element);
 208        }
 209
 210        return 0;
 211}
 212EXPORT_SYMBOL(mempool_init_node);
 213
 214/**
 215 * mempool_init - initialize a memory pool
 216 * @pool:      pointer to the memory pool that should be initialized
 217 * @min_nr:    the minimum number of elements guaranteed to be
 218 *             allocated for this pool.
 219 * @alloc_fn:  user-defined element-allocation function.
 220 * @free_fn:   user-defined element-freeing function.
 221 * @pool_data: optional private data available to the user-defined functions.
 222 *
 223 * Like mempool_create(), but initializes the pool in (i.e. embedded in another
 224 * structure).
 225 *
 226 * Return: %0 on success, negative error code otherwise.
 227 */
 228int mempool_init(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn,
 229                 mempool_free_t *free_fn, void *pool_data)
 230{
 231        return mempool_init_node(pool, min_nr, alloc_fn, free_fn,
 232                                 pool_data, GFP_KERNEL, NUMA_NO_NODE);
 233
 234}
 235EXPORT_SYMBOL(mempool_init);
 236
 237/**
 238 * mempool_create - create a memory pool
 239 * @min_nr:    the minimum number of elements guaranteed to be
 240 *             allocated for this pool.
 241 * @alloc_fn:  user-defined element-allocation function.
 242 * @free_fn:   user-defined element-freeing function.
 243 * @pool_data: optional private data available to the user-defined functions.
 244 *
 245 * this function creates and allocates a guaranteed size, preallocated
 246 * memory pool. The pool can be used from the mempool_alloc() and mempool_free()
 247 * functions. This function might sleep. Both the alloc_fn() and the free_fn()
 248 * functions might sleep - as long as the mempool_alloc() function is not called
 249 * from IRQ contexts.
 250 *
 251 * Return: pointer to the created memory pool object or %NULL on error.
 252 */
 253mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn,
 254                                mempool_free_t *free_fn, void *pool_data)
 255{
 256        return mempool_create_node(min_nr, alloc_fn, free_fn, pool_data,
 257                                   GFP_KERNEL, NUMA_NO_NODE);
 258}
 259EXPORT_SYMBOL(mempool_create);
 260
 261mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn,
 262                               mempool_free_t *free_fn, void *pool_data,
 263                               gfp_t gfp_mask, int node_id)
 264{
 265        mempool_t *pool;
 266
 267        pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id);
 268        if (!pool)
 269                return NULL;
 270
 271        if (mempool_init_node(pool, min_nr, alloc_fn, free_fn, pool_data,
 272                              gfp_mask, node_id)) {
 273                kfree(pool);
 274                return NULL;
 275        }
 276
 277        return pool;
 278}
 279EXPORT_SYMBOL(mempool_create_node);
 280
 281/**
 282 * mempool_resize - resize an existing memory pool
 283 * @pool:       pointer to the memory pool which was allocated via
 284 *              mempool_create().
 285 * @new_min_nr: the new minimum number of elements guaranteed to be
 286 *              allocated for this pool.
 287 *
 288 * This function shrinks/grows the pool. In the case of growing,
 289 * it cannot be guaranteed that the pool will be grown to the new
 290 * size immediately, but new mempool_free() calls will refill it.
 291 * This function may sleep.
 292 *
 293 * Note, the caller must guarantee that no mempool_destroy is called
 294 * while this function is running. mempool_alloc() & mempool_free()
 295 * might be called (eg. from IRQ contexts) while this function executes.
 296 *
 297 * Return: %0 on success, negative error code otherwise.
 298 */
 299int mempool_resize(mempool_t *pool, int new_min_nr)
 300{
 301        void *element;
 302        void **new_elements;
 303        unsigned long flags;
 304
 305        BUG_ON(new_min_nr <= 0);
 306        might_sleep();
 307
 308        spin_lock_irqsave(&pool->lock, flags);
 309        if (new_min_nr <= pool->min_nr) {
 310                while (new_min_nr < pool->curr_nr) {
 311                        element = remove_element(pool);
 312                        spin_unlock_irqrestore(&pool->lock, flags);
 313                        pool->free(element, pool->pool_data);
 314                        spin_lock_irqsave(&pool->lock, flags);
 315                }
 316                pool->min_nr = new_min_nr;
 317                goto out_unlock;
 318        }
 319        spin_unlock_irqrestore(&pool->lock, flags);
 320
 321        /* Grow the pool */
 322        new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements),
 323                                     GFP_KERNEL);
 324        if (!new_elements)
 325                return -ENOMEM;
 326
 327        spin_lock_irqsave(&pool->lock, flags);
 328        if (unlikely(new_min_nr <= pool->min_nr)) {
 329                /* Raced, other resize will do our work */
 330                spin_unlock_irqrestore(&pool->lock, flags);
 331                kfree(new_elements);
 332                goto out;
 333        }
 334        memcpy(new_elements, pool->elements,
 335                        pool->curr_nr * sizeof(*new_elements));
 336        kfree(pool->elements);
 337        pool->elements = new_elements;
 338        pool->min_nr = new_min_nr;
 339
 340        while (pool->curr_nr < pool->min_nr) {
 341                spin_unlock_irqrestore(&pool->lock, flags);
 342                element = pool->alloc(GFP_KERNEL, pool->pool_data);
 343                if (!element)
 344                        goto out;
 345                spin_lock_irqsave(&pool->lock, flags);
 346                if (pool->curr_nr < pool->min_nr) {
 347                        add_element(pool, element);
 348                } else {
 349                        spin_unlock_irqrestore(&pool->lock, flags);
 350                        pool->free(element, pool->pool_data);   /* Raced */
 351                        goto out;
 352                }
 353        }
 354out_unlock:
 355        spin_unlock_irqrestore(&pool->lock, flags);
 356out:
 357        return 0;
 358}
 359EXPORT_SYMBOL(mempool_resize);
 360
 361/**
 362 * mempool_alloc - allocate an element from a specific memory pool
 363 * @pool:      pointer to the memory pool which was allocated via
 364 *             mempool_create().
 365 * @gfp_mask:  the usual allocation bitmask.
 366 *
 367 * this function only sleeps if the alloc_fn() function sleeps or
 368 * returns NULL. Note that due to preallocation, this function
 369 * *never* fails when called from process contexts. (it might
 370 * fail if called from an IRQ context.)
 371 * Note: using __GFP_ZERO is not supported.
 372 *
 373 * Return: pointer to the allocated element or %NULL on error.
 374 */
 375void *mempool_alloc(mempool_t *pool, gfp_t gfp_mask)
 376{
 377        void *element;
 378        unsigned long flags;
 379        wait_queue_entry_t wait;
 380        gfp_t gfp_temp;
 381
 382        VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO);
 383        might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
 384
 385        gfp_mask |= __GFP_NOMEMALLOC;   /* don't allocate emergency reserves */
 386        gfp_mask |= __GFP_NORETRY;      /* don't loop in __alloc_pages */
 387        gfp_mask |= __GFP_NOWARN;       /* failures are OK */
 388
 389        gfp_temp = gfp_mask & ~(__GFP_DIRECT_RECLAIM|__GFP_IO);
 390
 391repeat_alloc:
 392
 393        element = pool->alloc(gfp_temp, pool->pool_data);
 394        if (likely(element != NULL))
 395                return element;
 396
 397        spin_lock_irqsave(&pool->lock, flags);
 398        if (likely(pool->curr_nr)) {
 399                element = remove_element(pool);
 400                spin_unlock_irqrestore(&pool->lock, flags);
 401                /* paired with rmb in mempool_free(), read comment there */
 402                smp_wmb();
 403                /*
 404                 * Update the allocation stack trace as this is more useful
 405                 * for debugging.
 406                 */
 407                kmemleak_update_trace(element);
 408                return element;
 409        }
 410
 411        /*
 412         * We use gfp mask w/o direct reclaim or IO for the first round.  If
 413         * alloc failed with that and @pool was empty, retry immediately.
 414         */
 415        if (gfp_temp != gfp_mask) {
 416                spin_unlock_irqrestore(&pool->lock, flags);
 417                gfp_temp = gfp_mask;
 418                goto repeat_alloc;
 419        }
 420
 421        /* We must not sleep if !__GFP_DIRECT_RECLAIM */
 422        if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
 423                spin_unlock_irqrestore(&pool->lock, flags);
 424                return NULL;
 425        }
 426
 427        /* Let's wait for someone else to return an element to @pool */
 428        init_wait(&wait);
 429        prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
 430
 431        spin_unlock_irqrestore(&pool->lock, flags);
 432
 433        /*
 434         * FIXME: this should be io_schedule().  The timeout is there as a
 435         * workaround for some DM problems in 2.6.18.
 436         */
 437        io_schedule_timeout(5*HZ);
 438
 439        finish_wait(&pool->wait, &wait);
 440        goto repeat_alloc;
 441}
 442EXPORT_SYMBOL(mempool_alloc);
 443
 444/**
 445 * mempool_free - return an element to the pool.
 446 * @element:   pool element pointer.
 447 * @pool:      pointer to the memory pool which was allocated via
 448 *             mempool_create().
 449 *
 450 * this function only sleeps if the free_fn() function sleeps.
 451 */
 452void mempool_free(void *element, mempool_t *pool)
 453{
 454        unsigned long flags;
 455
 456        if (unlikely(element == NULL))
 457                return;
 458
 459        /*
 460         * Paired with the wmb in mempool_alloc().  The preceding read is
 461         * for @element and the following @pool->curr_nr.  This ensures
 462         * that the visible value of @pool->curr_nr is from after the
 463         * allocation of @element.  This is necessary for fringe cases
 464         * where @element was passed to this task without going through
 465         * barriers.
 466         *
 467         * For example, assume @p is %NULL at the beginning and one task
 468         * performs "p = mempool_alloc(...);" while another task is doing
 469         * "while (!p) cpu_relax(); mempool_free(p, ...);".  This function
 470         * may end up using curr_nr value which is from before allocation
 471         * of @p without the following rmb.
 472         */
 473        smp_rmb();
 474
 475        /*
 476         * For correctness, we need a test which is guaranteed to trigger
 477         * if curr_nr + #allocated == min_nr.  Testing curr_nr < min_nr
 478         * without locking achieves that and refilling as soon as possible
 479         * is desirable.
 480         *
 481         * Because curr_nr visible here is always a value after the
 482         * allocation of @element, any task which decremented curr_nr below
 483         * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
 484         * incremented to min_nr afterwards.  If curr_nr gets incremented
 485         * to min_nr after the allocation of @element, the elements
 486         * allocated after that are subject to the same guarantee.
 487         *
 488         * Waiters happen iff curr_nr is 0 and the above guarantee also
 489         * ensures that there will be frees which return elements to the
 490         * pool waking up the waiters.
 491         */
 492        if (unlikely(READ_ONCE(pool->curr_nr) < pool->min_nr)) {
 493                spin_lock_irqsave(&pool->lock, flags);
 494                if (likely(pool->curr_nr < pool->min_nr)) {
 495                        add_element(pool, element);
 496                        spin_unlock_irqrestore(&pool->lock, flags);
 497                        wake_up(&pool->wait);
 498                        return;
 499                }
 500                spin_unlock_irqrestore(&pool->lock, flags);
 501        }
 502        pool->free(element, pool->pool_data);
 503}
 504EXPORT_SYMBOL(mempool_free);
 505
 506/*
 507 * A commonly used alloc and free fn.
 508 */
 509void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
 510{
 511        struct kmem_cache *mem = pool_data;
 512        VM_BUG_ON(mem->ctor);
 513        return kmem_cache_alloc(mem, gfp_mask);
 514}
 515EXPORT_SYMBOL(mempool_alloc_slab);
 516
 517void mempool_free_slab(void *element, void *pool_data)
 518{
 519        struct kmem_cache *mem = pool_data;
 520        kmem_cache_free(mem, element);
 521}
 522EXPORT_SYMBOL(mempool_free_slab);
 523
 524/*
 525 * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
 526 * specified by pool_data
 527 */
 528void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
 529{
 530        size_t size = (size_t)pool_data;
 531        return kmalloc(size, gfp_mask);
 532}
 533EXPORT_SYMBOL(mempool_kmalloc);
 534
 535void mempool_kfree(void *element, void *pool_data)
 536{
 537        kfree(element);
 538}
 539EXPORT_SYMBOL(mempool_kfree);
 540
 541/*
 542 * A simple mempool-backed page allocator that allocates pages
 543 * of the order specified by pool_data.
 544 */
 545void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
 546{
 547        int order = (int)(long)pool_data;
 548        return alloc_pages(gfp_mask, order);
 549}
 550EXPORT_SYMBOL(mempool_alloc_pages);
 551
 552void mempool_free_pages(void *element, void *pool_data)
 553{
 554        int order = (int)(long)pool_data;
 555        __free_pages(element, order);
 556}
 557EXPORT_SYMBOL(mempool_free_pages);
 558