linux/mm/migrate.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Memory Migration functionality - linux/mm/migrate.c
   4 *
   5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
   6 *
   7 * Page migration was first developed in the context of the memory hotplug
   8 * project. The main authors of the migration code are:
   9 *
  10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
  11 * Hirokazu Takahashi <taka@valinux.co.jp>
  12 * Dave Hansen <haveblue@us.ibm.com>
  13 * Christoph Lameter
  14 */
  15
  16#include <linux/migrate.h>
  17#include <linux/export.h>
  18#include <linux/swap.h>
  19#include <linux/swapops.h>
  20#include <linux/pagemap.h>
  21#include <linux/buffer_head.h>
  22#include <linux/mm_inline.h>
  23#include <linux/nsproxy.h>
  24#include <linux/pagevec.h>
  25#include <linux/ksm.h>
  26#include <linux/rmap.h>
  27#include <linux/topology.h>
  28#include <linux/cpu.h>
  29#include <linux/cpuset.h>
  30#include <linux/writeback.h>
  31#include <linux/mempolicy.h>
  32#include <linux/vmalloc.h>
  33#include <linux/security.h>
  34#include <linux/backing-dev.h>
  35#include <linux/compaction.h>
  36#include <linux/syscalls.h>
  37#include <linux/compat.h>
  38#include <linux/hugetlb.h>
  39#include <linux/hugetlb_cgroup.h>
  40#include <linux/gfp.h>
  41#include <linux/pagewalk.h>
  42#include <linux/pfn_t.h>
  43#include <linux/memremap.h>
  44#include <linux/userfaultfd_k.h>
  45#include <linux/balloon_compaction.h>
  46#include <linux/mmu_notifier.h>
  47#include <linux/page_idle.h>
  48#include <linux/page_owner.h>
  49#include <linux/sched/mm.h>
  50#include <linux/ptrace.h>
  51#include <linux/oom.h>
  52#include <linux/memory.h>
  53
  54#include <asm/tlbflush.h>
  55
  56#define CREATE_TRACE_POINTS
  57#include <trace/events/migrate.h>
  58
  59#include "internal.h"
  60
  61int isolate_movable_page(struct page *page, isolate_mode_t mode)
  62{
  63        struct address_space *mapping;
  64
  65        /*
  66         * Avoid burning cycles with pages that are yet under __free_pages(),
  67         * or just got freed under us.
  68         *
  69         * In case we 'win' a race for a movable page being freed under us and
  70         * raise its refcount preventing __free_pages() from doing its job
  71         * the put_page() at the end of this block will take care of
  72         * release this page, thus avoiding a nasty leakage.
  73         */
  74        if (unlikely(!get_page_unless_zero(page)))
  75                goto out;
  76
  77        /*
  78         * Check PageMovable before holding a PG_lock because page's owner
  79         * assumes anybody doesn't touch PG_lock of newly allocated page
  80         * so unconditionally grabbing the lock ruins page's owner side.
  81         */
  82        if (unlikely(!__PageMovable(page)))
  83                goto out_putpage;
  84        /*
  85         * As movable pages are not isolated from LRU lists, concurrent
  86         * compaction threads can race against page migration functions
  87         * as well as race against the releasing a page.
  88         *
  89         * In order to avoid having an already isolated movable page
  90         * being (wrongly) re-isolated while it is under migration,
  91         * or to avoid attempting to isolate pages being released,
  92         * lets be sure we have the page lock
  93         * before proceeding with the movable page isolation steps.
  94         */
  95        if (unlikely(!trylock_page(page)))
  96                goto out_putpage;
  97
  98        if (!PageMovable(page) || PageIsolated(page))
  99                goto out_no_isolated;
 100
 101        mapping = page_mapping(page);
 102        VM_BUG_ON_PAGE(!mapping, page);
 103
 104        if (!mapping->a_ops->isolate_page(page, mode))
 105                goto out_no_isolated;
 106
 107        /* Driver shouldn't use PG_isolated bit of page->flags */
 108        WARN_ON_ONCE(PageIsolated(page));
 109        __SetPageIsolated(page);
 110        unlock_page(page);
 111
 112        return 0;
 113
 114out_no_isolated:
 115        unlock_page(page);
 116out_putpage:
 117        put_page(page);
 118out:
 119        return -EBUSY;
 120}
 121
 122static void putback_movable_page(struct page *page)
 123{
 124        struct address_space *mapping;
 125
 126        mapping = page_mapping(page);
 127        mapping->a_ops->putback_page(page);
 128        __ClearPageIsolated(page);
 129}
 130
 131/*
 132 * Put previously isolated pages back onto the appropriate lists
 133 * from where they were once taken off for compaction/migration.
 134 *
 135 * This function shall be used whenever the isolated pageset has been
 136 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 137 * and isolate_huge_page().
 138 */
 139void putback_movable_pages(struct list_head *l)
 140{
 141        struct page *page;
 142        struct page *page2;
 143
 144        list_for_each_entry_safe(page, page2, l, lru) {
 145                if (unlikely(PageHuge(page))) {
 146                        putback_active_hugepage(page);
 147                        continue;
 148                }
 149                list_del(&page->lru);
 150                /*
 151                 * We isolated non-lru movable page so here we can use
 152                 * __PageMovable because LRU page's mapping cannot have
 153                 * PAGE_MAPPING_MOVABLE.
 154                 */
 155                if (unlikely(__PageMovable(page))) {
 156                        VM_BUG_ON_PAGE(!PageIsolated(page), page);
 157                        lock_page(page);
 158                        if (PageMovable(page))
 159                                putback_movable_page(page);
 160                        else
 161                                __ClearPageIsolated(page);
 162                        unlock_page(page);
 163                        put_page(page);
 164                } else {
 165                        mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
 166                                        page_is_file_lru(page), -thp_nr_pages(page));
 167                        putback_lru_page(page);
 168                }
 169        }
 170}
 171
 172/*
 173 * Restore a potential migration pte to a working pte entry
 174 */
 175static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
 176                                 unsigned long addr, void *old)
 177{
 178        struct page_vma_mapped_walk pvmw = {
 179                .page = old,
 180                .vma = vma,
 181                .address = addr,
 182                .flags = PVMW_SYNC | PVMW_MIGRATION,
 183        };
 184        struct page *new;
 185        pte_t pte;
 186        swp_entry_t entry;
 187
 188        VM_BUG_ON_PAGE(PageTail(page), page);
 189        while (page_vma_mapped_walk(&pvmw)) {
 190                if (PageKsm(page))
 191                        new = page;
 192                else
 193                        new = page - pvmw.page->index +
 194                                linear_page_index(vma, pvmw.address);
 195
 196#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 197                /* PMD-mapped THP migration entry */
 198                if (!pvmw.pte) {
 199                        VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
 200                        remove_migration_pmd(&pvmw, new);
 201                        continue;
 202                }
 203#endif
 204
 205                get_page(new);
 206                pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
 207                if (pte_swp_soft_dirty(*pvmw.pte))
 208                        pte = pte_mksoft_dirty(pte);
 209
 210                /*
 211                 * Recheck VMA as permissions can change since migration started
 212                 */
 213                entry = pte_to_swp_entry(*pvmw.pte);
 214                if (is_writable_migration_entry(entry))
 215                        pte = maybe_mkwrite(pte, vma);
 216                else if (pte_swp_uffd_wp(*pvmw.pte))
 217                        pte = pte_mkuffd_wp(pte);
 218
 219                if (unlikely(is_device_private_page(new))) {
 220                        if (pte_write(pte))
 221                                entry = make_writable_device_private_entry(
 222                                                        page_to_pfn(new));
 223                        else
 224                                entry = make_readable_device_private_entry(
 225                                                        page_to_pfn(new));
 226                        pte = swp_entry_to_pte(entry);
 227                        if (pte_swp_soft_dirty(*pvmw.pte))
 228                                pte = pte_swp_mksoft_dirty(pte);
 229                        if (pte_swp_uffd_wp(*pvmw.pte))
 230                                pte = pte_swp_mkuffd_wp(pte);
 231                }
 232
 233#ifdef CONFIG_HUGETLB_PAGE
 234                if (PageHuge(new)) {
 235                        unsigned int shift = huge_page_shift(hstate_vma(vma));
 236
 237                        pte = pte_mkhuge(pte);
 238                        pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
 239                        set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 240                        if (PageAnon(new))
 241                                hugepage_add_anon_rmap(new, vma, pvmw.address);
 242                        else
 243                                page_dup_rmap(new, true);
 244                } else
 245#endif
 246                {
 247                        set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 248
 249                        if (PageAnon(new))
 250                                page_add_anon_rmap(new, vma, pvmw.address, false);
 251                        else
 252                                page_add_file_rmap(new, false);
 253                }
 254                if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
 255                        mlock_vma_page(new);
 256
 257                if (PageTransHuge(page) && PageMlocked(page))
 258                        clear_page_mlock(page);
 259
 260                /* No need to invalidate - it was non-present before */
 261                update_mmu_cache(vma, pvmw.address, pvmw.pte);
 262        }
 263
 264        return true;
 265}
 266
 267/*
 268 * Get rid of all migration entries and replace them by
 269 * references to the indicated page.
 270 */
 271void remove_migration_ptes(struct page *old, struct page *new, bool locked)
 272{
 273        struct rmap_walk_control rwc = {
 274                .rmap_one = remove_migration_pte,
 275                .arg = old,
 276        };
 277
 278        if (locked)
 279                rmap_walk_locked(new, &rwc);
 280        else
 281                rmap_walk(new, &rwc);
 282}
 283
 284/*
 285 * Something used the pte of a page under migration. We need to
 286 * get to the page and wait until migration is finished.
 287 * When we return from this function the fault will be retried.
 288 */
 289void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
 290                                spinlock_t *ptl)
 291{
 292        pte_t pte;
 293        swp_entry_t entry;
 294        struct page *page;
 295
 296        spin_lock(ptl);
 297        pte = *ptep;
 298        if (!is_swap_pte(pte))
 299                goto out;
 300
 301        entry = pte_to_swp_entry(pte);
 302        if (!is_migration_entry(entry))
 303                goto out;
 304
 305        page = pfn_swap_entry_to_page(entry);
 306        page = compound_head(page);
 307
 308        /*
 309         * Once page cache replacement of page migration started, page_count
 310         * is zero; but we must not call put_and_wait_on_page_locked() without
 311         * a ref. Use get_page_unless_zero(), and just fault again if it fails.
 312         */
 313        if (!get_page_unless_zero(page))
 314                goto out;
 315        pte_unmap_unlock(ptep, ptl);
 316        put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
 317        return;
 318out:
 319        pte_unmap_unlock(ptep, ptl);
 320}
 321
 322void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 323                                unsigned long address)
 324{
 325        spinlock_t *ptl = pte_lockptr(mm, pmd);
 326        pte_t *ptep = pte_offset_map(pmd, address);
 327        __migration_entry_wait(mm, ptep, ptl);
 328}
 329
 330void migration_entry_wait_huge(struct vm_area_struct *vma,
 331                struct mm_struct *mm, pte_t *pte)
 332{
 333        spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
 334        __migration_entry_wait(mm, pte, ptl);
 335}
 336
 337#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 338void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
 339{
 340        spinlock_t *ptl;
 341        struct page *page;
 342
 343        ptl = pmd_lock(mm, pmd);
 344        if (!is_pmd_migration_entry(*pmd))
 345                goto unlock;
 346        page = pfn_swap_entry_to_page(pmd_to_swp_entry(*pmd));
 347        if (!get_page_unless_zero(page))
 348                goto unlock;
 349        spin_unlock(ptl);
 350        put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
 351        return;
 352unlock:
 353        spin_unlock(ptl);
 354}
 355#endif
 356
 357static int expected_page_refs(struct address_space *mapping, struct page *page)
 358{
 359        int expected_count = 1;
 360
 361        /*
 362         * Device private pages have an extra refcount as they are
 363         * ZONE_DEVICE pages.
 364         */
 365        expected_count += is_device_private_page(page);
 366        if (mapping)
 367                expected_count += thp_nr_pages(page) + page_has_private(page);
 368
 369        return expected_count;
 370}
 371
 372/*
 373 * Replace the page in the mapping.
 374 *
 375 * The number of remaining references must be:
 376 * 1 for anonymous pages without a mapping
 377 * 2 for pages with a mapping
 378 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 379 */
 380int migrate_page_move_mapping(struct address_space *mapping,
 381                struct page *newpage, struct page *page, int extra_count)
 382{
 383        XA_STATE(xas, &mapping->i_pages, page_index(page));
 384        struct zone *oldzone, *newzone;
 385        int dirty;
 386        int expected_count = expected_page_refs(mapping, page) + extra_count;
 387        int nr = thp_nr_pages(page);
 388
 389        if (!mapping) {
 390                /* Anonymous page without mapping */
 391                if (page_count(page) != expected_count)
 392                        return -EAGAIN;
 393
 394                /* No turning back from here */
 395                newpage->index = page->index;
 396                newpage->mapping = page->mapping;
 397                if (PageSwapBacked(page))
 398                        __SetPageSwapBacked(newpage);
 399
 400                return MIGRATEPAGE_SUCCESS;
 401        }
 402
 403        oldzone = page_zone(page);
 404        newzone = page_zone(newpage);
 405
 406        xas_lock_irq(&xas);
 407        if (page_count(page) != expected_count || xas_load(&xas) != page) {
 408                xas_unlock_irq(&xas);
 409                return -EAGAIN;
 410        }
 411
 412        if (!page_ref_freeze(page, expected_count)) {
 413                xas_unlock_irq(&xas);
 414                return -EAGAIN;
 415        }
 416
 417        /*
 418         * Now we know that no one else is looking at the page:
 419         * no turning back from here.
 420         */
 421        newpage->index = page->index;
 422        newpage->mapping = page->mapping;
 423        page_ref_add(newpage, nr); /* add cache reference */
 424        if (PageSwapBacked(page)) {
 425                __SetPageSwapBacked(newpage);
 426                if (PageSwapCache(page)) {
 427                        SetPageSwapCache(newpage);
 428                        set_page_private(newpage, page_private(page));
 429                }
 430        } else {
 431                VM_BUG_ON_PAGE(PageSwapCache(page), page);
 432        }
 433
 434        /* Move dirty while page refs frozen and newpage not yet exposed */
 435        dirty = PageDirty(page);
 436        if (dirty) {
 437                ClearPageDirty(page);
 438                SetPageDirty(newpage);
 439        }
 440
 441        xas_store(&xas, newpage);
 442        if (PageTransHuge(page)) {
 443                int i;
 444
 445                for (i = 1; i < nr; i++) {
 446                        xas_next(&xas);
 447                        xas_store(&xas, newpage);
 448                }
 449        }
 450
 451        /*
 452         * Drop cache reference from old page by unfreezing
 453         * to one less reference.
 454         * We know this isn't the last reference.
 455         */
 456        page_ref_unfreeze(page, expected_count - nr);
 457
 458        xas_unlock(&xas);
 459        /* Leave irq disabled to prevent preemption while updating stats */
 460
 461        /*
 462         * If moved to a different zone then also account
 463         * the page for that zone. Other VM counters will be
 464         * taken care of when we establish references to the
 465         * new page and drop references to the old page.
 466         *
 467         * Note that anonymous pages are accounted for
 468         * via NR_FILE_PAGES and NR_ANON_MAPPED if they
 469         * are mapped to swap space.
 470         */
 471        if (newzone != oldzone) {
 472                struct lruvec *old_lruvec, *new_lruvec;
 473                struct mem_cgroup *memcg;
 474
 475                memcg = page_memcg(page);
 476                old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
 477                new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
 478
 479                __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
 480                __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
 481                if (PageSwapBacked(page) && !PageSwapCache(page)) {
 482                        __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
 483                        __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
 484                }
 485#ifdef CONFIG_SWAP
 486                if (PageSwapCache(page)) {
 487                        __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
 488                        __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
 489                }
 490#endif
 491                if (dirty && mapping_can_writeback(mapping)) {
 492                        __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
 493                        __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
 494                        __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
 495                        __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
 496                }
 497        }
 498        local_irq_enable();
 499
 500        return MIGRATEPAGE_SUCCESS;
 501}
 502EXPORT_SYMBOL(migrate_page_move_mapping);
 503
 504/*
 505 * The expected number of remaining references is the same as that
 506 * of migrate_page_move_mapping().
 507 */
 508int migrate_huge_page_move_mapping(struct address_space *mapping,
 509                                   struct page *newpage, struct page *page)
 510{
 511        XA_STATE(xas, &mapping->i_pages, page_index(page));
 512        int expected_count;
 513
 514        xas_lock_irq(&xas);
 515        expected_count = 2 + page_has_private(page);
 516        if (page_count(page) != expected_count || xas_load(&xas) != page) {
 517                xas_unlock_irq(&xas);
 518                return -EAGAIN;
 519        }
 520
 521        if (!page_ref_freeze(page, expected_count)) {
 522                xas_unlock_irq(&xas);
 523                return -EAGAIN;
 524        }
 525
 526        newpage->index = page->index;
 527        newpage->mapping = page->mapping;
 528
 529        get_page(newpage);
 530
 531        xas_store(&xas, newpage);
 532
 533        page_ref_unfreeze(page, expected_count - 1);
 534
 535        xas_unlock_irq(&xas);
 536
 537        return MIGRATEPAGE_SUCCESS;
 538}
 539
 540/*
 541 * Copy the page to its new location
 542 */
 543void migrate_page_states(struct page *newpage, struct page *page)
 544{
 545        int cpupid;
 546
 547        if (PageError(page))
 548                SetPageError(newpage);
 549        if (PageReferenced(page))
 550                SetPageReferenced(newpage);
 551        if (PageUptodate(page))
 552                SetPageUptodate(newpage);
 553        if (TestClearPageActive(page)) {
 554                VM_BUG_ON_PAGE(PageUnevictable(page), page);
 555                SetPageActive(newpage);
 556        } else if (TestClearPageUnevictable(page))
 557                SetPageUnevictable(newpage);
 558        if (PageWorkingset(page))
 559                SetPageWorkingset(newpage);
 560        if (PageChecked(page))
 561                SetPageChecked(newpage);
 562        if (PageMappedToDisk(page))
 563                SetPageMappedToDisk(newpage);
 564
 565        /* Move dirty on pages not done by migrate_page_move_mapping() */
 566        if (PageDirty(page))
 567                SetPageDirty(newpage);
 568
 569        if (page_is_young(page))
 570                set_page_young(newpage);
 571        if (page_is_idle(page))
 572                set_page_idle(newpage);
 573
 574        /*
 575         * Copy NUMA information to the new page, to prevent over-eager
 576         * future migrations of this same page.
 577         */
 578        cpupid = page_cpupid_xchg_last(page, -1);
 579        page_cpupid_xchg_last(newpage, cpupid);
 580
 581        ksm_migrate_page(newpage, page);
 582        /*
 583         * Please do not reorder this without considering how mm/ksm.c's
 584         * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 585         */
 586        if (PageSwapCache(page))
 587                ClearPageSwapCache(page);
 588        ClearPagePrivate(page);
 589
 590        /* page->private contains hugetlb specific flags */
 591        if (!PageHuge(page))
 592                set_page_private(page, 0);
 593
 594        /*
 595         * If any waiters have accumulated on the new page then
 596         * wake them up.
 597         */
 598        if (PageWriteback(newpage))
 599                end_page_writeback(newpage);
 600
 601        /*
 602         * PG_readahead shares the same bit with PG_reclaim.  The above
 603         * end_page_writeback() may clear PG_readahead mistakenly, so set the
 604         * bit after that.
 605         */
 606        if (PageReadahead(page))
 607                SetPageReadahead(newpage);
 608
 609        copy_page_owner(page, newpage);
 610
 611        if (!PageHuge(page))
 612                mem_cgroup_migrate(page, newpage);
 613}
 614EXPORT_SYMBOL(migrate_page_states);
 615
 616void migrate_page_copy(struct page *newpage, struct page *page)
 617{
 618        if (PageHuge(page) || PageTransHuge(page))
 619                copy_huge_page(newpage, page);
 620        else
 621                copy_highpage(newpage, page);
 622
 623        migrate_page_states(newpage, page);
 624}
 625EXPORT_SYMBOL(migrate_page_copy);
 626
 627/************************************************************
 628 *                    Migration functions
 629 ***********************************************************/
 630
 631/*
 632 * Common logic to directly migrate a single LRU page suitable for
 633 * pages that do not use PagePrivate/PagePrivate2.
 634 *
 635 * Pages are locked upon entry and exit.
 636 */
 637int migrate_page(struct address_space *mapping,
 638                struct page *newpage, struct page *page,
 639                enum migrate_mode mode)
 640{
 641        int rc;
 642
 643        BUG_ON(PageWriteback(page));    /* Writeback must be complete */
 644
 645        rc = migrate_page_move_mapping(mapping, newpage, page, 0);
 646
 647        if (rc != MIGRATEPAGE_SUCCESS)
 648                return rc;
 649
 650        if (mode != MIGRATE_SYNC_NO_COPY)
 651                migrate_page_copy(newpage, page);
 652        else
 653                migrate_page_states(newpage, page);
 654        return MIGRATEPAGE_SUCCESS;
 655}
 656EXPORT_SYMBOL(migrate_page);
 657
 658#ifdef CONFIG_BLOCK
 659/* Returns true if all buffers are successfully locked */
 660static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 661                                                        enum migrate_mode mode)
 662{
 663        struct buffer_head *bh = head;
 664
 665        /* Simple case, sync compaction */
 666        if (mode != MIGRATE_ASYNC) {
 667                do {
 668                        lock_buffer(bh);
 669                        bh = bh->b_this_page;
 670
 671                } while (bh != head);
 672
 673                return true;
 674        }
 675
 676        /* async case, we cannot block on lock_buffer so use trylock_buffer */
 677        do {
 678                if (!trylock_buffer(bh)) {
 679                        /*
 680                         * We failed to lock the buffer and cannot stall in
 681                         * async migration. Release the taken locks
 682                         */
 683                        struct buffer_head *failed_bh = bh;
 684                        bh = head;
 685                        while (bh != failed_bh) {
 686                                unlock_buffer(bh);
 687                                bh = bh->b_this_page;
 688                        }
 689                        return false;
 690                }
 691
 692                bh = bh->b_this_page;
 693        } while (bh != head);
 694        return true;
 695}
 696
 697static int __buffer_migrate_page(struct address_space *mapping,
 698                struct page *newpage, struct page *page, enum migrate_mode mode,
 699                bool check_refs)
 700{
 701        struct buffer_head *bh, *head;
 702        int rc;
 703        int expected_count;
 704
 705        if (!page_has_buffers(page))
 706                return migrate_page(mapping, newpage, page, mode);
 707
 708        /* Check whether page does not have extra refs before we do more work */
 709        expected_count = expected_page_refs(mapping, page);
 710        if (page_count(page) != expected_count)
 711                return -EAGAIN;
 712
 713        head = page_buffers(page);
 714        if (!buffer_migrate_lock_buffers(head, mode))
 715                return -EAGAIN;
 716
 717        if (check_refs) {
 718                bool busy;
 719                bool invalidated = false;
 720
 721recheck_buffers:
 722                busy = false;
 723                spin_lock(&mapping->private_lock);
 724                bh = head;
 725                do {
 726                        if (atomic_read(&bh->b_count)) {
 727                                busy = true;
 728                                break;
 729                        }
 730                        bh = bh->b_this_page;
 731                } while (bh != head);
 732                if (busy) {
 733                        if (invalidated) {
 734                                rc = -EAGAIN;
 735                                goto unlock_buffers;
 736                        }
 737                        spin_unlock(&mapping->private_lock);
 738                        invalidate_bh_lrus();
 739                        invalidated = true;
 740                        goto recheck_buffers;
 741                }
 742        }
 743
 744        rc = migrate_page_move_mapping(mapping, newpage, page, 0);
 745        if (rc != MIGRATEPAGE_SUCCESS)
 746                goto unlock_buffers;
 747
 748        attach_page_private(newpage, detach_page_private(page));
 749
 750        bh = head;
 751        do {
 752                set_bh_page(bh, newpage, bh_offset(bh));
 753                bh = bh->b_this_page;
 754
 755        } while (bh != head);
 756
 757        if (mode != MIGRATE_SYNC_NO_COPY)
 758                migrate_page_copy(newpage, page);
 759        else
 760                migrate_page_states(newpage, page);
 761
 762        rc = MIGRATEPAGE_SUCCESS;
 763unlock_buffers:
 764        if (check_refs)
 765                spin_unlock(&mapping->private_lock);
 766        bh = head;
 767        do {
 768                unlock_buffer(bh);
 769                bh = bh->b_this_page;
 770
 771        } while (bh != head);
 772
 773        return rc;
 774}
 775
 776/*
 777 * Migration function for pages with buffers. This function can only be used
 778 * if the underlying filesystem guarantees that no other references to "page"
 779 * exist. For example attached buffer heads are accessed only under page lock.
 780 */
 781int buffer_migrate_page(struct address_space *mapping,
 782                struct page *newpage, struct page *page, enum migrate_mode mode)
 783{
 784        return __buffer_migrate_page(mapping, newpage, page, mode, false);
 785}
 786EXPORT_SYMBOL(buffer_migrate_page);
 787
 788/*
 789 * Same as above except that this variant is more careful and checks that there
 790 * are also no buffer head references. This function is the right one for
 791 * mappings where buffer heads are directly looked up and referenced (such as
 792 * block device mappings).
 793 */
 794int buffer_migrate_page_norefs(struct address_space *mapping,
 795                struct page *newpage, struct page *page, enum migrate_mode mode)
 796{
 797        return __buffer_migrate_page(mapping, newpage, page, mode, true);
 798}
 799#endif
 800
 801/*
 802 * Writeback a page to clean the dirty state
 803 */
 804static int writeout(struct address_space *mapping, struct page *page)
 805{
 806        struct writeback_control wbc = {
 807                .sync_mode = WB_SYNC_NONE,
 808                .nr_to_write = 1,
 809                .range_start = 0,
 810                .range_end = LLONG_MAX,
 811                .for_reclaim = 1
 812        };
 813        int rc;
 814
 815        if (!mapping->a_ops->writepage)
 816                /* No write method for the address space */
 817                return -EINVAL;
 818
 819        if (!clear_page_dirty_for_io(page))
 820                /* Someone else already triggered a write */
 821                return -EAGAIN;
 822
 823        /*
 824         * A dirty page may imply that the underlying filesystem has
 825         * the page on some queue. So the page must be clean for
 826         * migration. Writeout may mean we loose the lock and the
 827         * page state is no longer what we checked for earlier.
 828         * At this point we know that the migration attempt cannot
 829         * be successful.
 830         */
 831        remove_migration_ptes(page, page, false);
 832
 833        rc = mapping->a_ops->writepage(page, &wbc);
 834
 835        if (rc != AOP_WRITEPAGE_ACTIVATE)
 836                /* unlocked. Relock */
 837                lock_page(page);
 838
 839        return (rc < 0) ? -EIO : -EAGAIN;
 840}
 841
 842/*
 843 * Default handling if a filesystem does not provide a migration function.
 844 */
 845static int fallback_migrate_page(struct address_space *mapping,
 846        struct page *newpage, struct page *page, enum migrate_mode mode)
 847{
 848        if (PageDirty(page)) {
 849                /* Only writeback pages in full synchronous migration */
 850                switch (mode) {
 851                case MIGRATE_SYNC:
 852                case MIGRATE_SYNC_NO_COPY:
 853                        break;
 854                default:
 855                        return -EBUSY;
 856                }
 857                return writeout(mapping, page);
 858        }
 859
 860        /*
 861         * Buffers may be managed in a filesystem specific way.
 862         * We must have no buffers or drop them.
 863         */
 864        if (page_has_private(page) &&
 865            !try_to_release_page(page, GFP_KERNEL))
 866                return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
 867
 868        return migrate_page(mapping, newpage, page, mode);
 869}
 870
 871/*
 872 * Move a page to a newly allocated page
 873 * The page is locked and all ptes have been successfully removed.
 874 *
 875 * The new page will have replaced the old page if this function
 876 * is successful.
 877 *
 878 * Return value:
 879 *   < 0 - error code
 880 *  MIGRATEPAGE_SUCCESS - success
 881 */
 882static int move_to_new_page(struct page *newpage, struct page *page,
 883                                enum migrate_mode mode)
 884{
 885        struct address_space *mapping;
 886        int rc = -EAGAIN;
 887        bool is_lru = !__PageMovable(page);
 888
 889        VM_BUG_ON_PAGE(!PageLocked(page), page);
 890        VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
 891
 892        mapping = page_mapping(page);
 893
 894        if (likely(is_lru)) {
 895                if (!mapping)
 896                        rc = migrate_page(mapping, newpage, page, mode);
 897                else if (mapping->a_ops->migratepage)
 898                        /*
 899                         * Most pages have a mapping and most filesystems
 900                         * provide a migratepage callback. Anonymous pages
 901                         * are part of swap space which also has its own
 902                         * migratepage callback. This is the most common path
 903                         * for page migration.
 904                         */
 905                        rc = mapping->a_ops->migratepage(mapping, newpage,
 906                                                        page, mode);
 907                else
 908                        rc = fallback_migrate_page(mapping, newpage,
 909                                                        page, mode);
 910        } else {
 911                /*
 912                 * In case of non-lru page, it could be released after
 913                 * isolation step. In that case, we shouldn't try migration.
 914                 */
 915                VM_BUG_ON_PAGE(!PageIsolated(page), page);
 916                if (!PageMovable(page)) {
 917                        rc = MIGRATEPAGE_SUCCESS;
 918                        __ClearPageIsolated(page);
 919                        goto out;
 920                }
 921
 922                rc = mapping->a_ops->migratepage(mapping, newpage,
 923                                                page, mode);
 924                WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
 925                        !PageIsolated(page));
 926        }
 927
 928        /*
 929         * When successful, old pagecache page->mapping must be cleared before
 930         * page is freed; but stats require that PageAnon be left as PageAnon.
 931         */
 932        if (rc == MIGRATEPAGE_SUCCESS) {
 933                if (__PageMovable(page)) {
 934                        VM_BUG_ON_PAGE(!PageIsolated(page), page);
 935
 936                        /*
 937                         * We clear PG_movable under page_lock so any compactor
 938                         * cannot try to migrate this page.
 939                         */
 940                        __ClearPageIsolated(page);
 941                }
 942
 943                /*
 944                 * Anonymous and movable page->mapping will be cleared by
 945                 * free_pages_prepare so don't reset it here for keeping
 946                 * the type to work PageAnon, for example.
 947                 */
 948                if (!PageMappingFlags(page))
 949                        page->mapping = NULL;
 950
 951                if (likely(!is_zone_device_page(newpage)))
 952                        flush_dcache_page(newpage);
 953
 954        }
 955out:
 956        return rc;
 957}
 958
 959static int __unmap_and_move(struct page *page, struct page *newpage,
 960                                int force, enum migrate_mode mode)
 961{
 962        int rc = -EAGAIN;
 963        bool page_was_mapped = false;
 964        struct anon_vma *anon_vma = NULL;
 965        bool is_lru = !__PageMovable(page);
 966
 967        if (!trylock_page(page)) {
 968                if (!force || mode == MIGRATE_ASYNC)
 969                        goto out;
 970
 971                /*
 972                 * It's not safe for direct compaction to call lock_page.
 973                 * For example, during page readahead pages are added locked
 974                 * to the LRU. Later, when the IO completes the pages are
 975                 * marked uptodate and unlocked. However, the queueing
 976                 * could be merging multiple pages for one bio (e.g.
 977                 * mpage_readahead). If an allocation happens for the
 978                 * second or third page, the process can end up locking
 979                 * the same page twice and deadlocking. Rather than
 980                 * trying to be clever about what pages can be locked,
 981                 * avoid the use of lock_page for direct compaction
 982                 * altogether.
 983                 */
 984                if (current->flags & PF_MEMALLOC)
 985                        goto out;
 986
 987                lock_page(page);
 988        }
 989
 990        if (PageWriteback(page)) {
 991                /*
 992                 * Only in the case of a full synchronous migration is it
 993                 * necessary to wait for PageWriteback. In the async case,
 994                 * the retry loop is too short and in the sync-light case,
 995                 * the overhead of stalling is too much
 996                 */
 997                switch (mode) {
 998                case MIGRATE_SYNC:
 999                case MIGRATE_SYNC_NO_COPY:
1000                        break;
1001                default:
1002                        rc = -EBUSY;
1003                        goto out_unlock;
1004                }
1005                if (!force)
1006                        goto out_unlock;
1007                wait_on_page_writeback(page);
1008        }
1009
1010        /*
1011         * By try_to_migrate(), page->mapcount goes down to 0 here. In this case,
1012         * we cannot notice that anon_vma is freed while we migrates a page.
1013         * This get_anon_vma() delays freeing anon_vma pointer until the end
1014         * of migration. File cache pages are no problem because of page_lock()
1015         * File Caches may use write_page() or lock_page() in migration, then,
1016         * just care Anon page here.
1017         *
1018         * Only page_get_anon_vma() understands the subtleties of
1019         * getting a hold on an anon_vma from outside one of its mms.
1020         * But if we cannot get anon_vma, then we won't need it anyway,
1021         * because that implies that the anon page is no longer mapped
1022         * (and cannot be remapped so long as we hold the page lock).
1023         */
1024        if (PageAnon(page) && !PageKsm(page))
1025                anon_vma = page_get_anon_vma(page);
1026
1027        /*
1028         * Block others from accessing the new page when we get around to
1029         * establishing additional references. We are usually the only one
1030         * holding a reference to newpage at this point. We used to have a BUG
1031         * here if trylock_page(newpage) fails, but would like to allow for
1032         * cases where there might be a race with the previous use of newpage.
1033         * This is much like races on refcount of oldpage: just don't BUG().
1034         */
1035        if (unlikely(!trylock_page(newpage)))
1036                goto out_unlock;
1037
1038        if (unlikely(!is_lru)) {
1039                rc = move_to_new_page(newpage, page, mode);
1040                goto out_unlock_both;
1041        }
1042
1043        /*
1044         * Corner case handling:
1045         * 1. When a new swap-cache page is read into, it is added to the LRU
1046         * and treated as swapcache but it has no rmap yet.
1047         * Calling try_to_unmap() against a page->mapping==NULL page will
1048         * trigger a BUG.  So handle it here.
1049         * 2. An orphaned page (see truncate_cleanup_page) might have
1050         * fs-private metadata. The page can be picked up due to memory
1051         * offlining.  Everywhere else except page reclaim, the page is
1052         * invisible to the vm, so the page can not be migrated.  So try to
1053         * free the metadata, so the page can be freed.
1054         */
1055        if (!page->mapping) {
1056                VM_BUG_ON_PAGE(PageAnon(page), page);
1057                if (page_has_private(page)) {
1058                        try_to_free_buffers(page);
1059                        goto out_unlock_both;
1060                }
1061        } else if (page_mapped(page)) {
1062                /* Establish migration ptes */
1063                VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1064                                page);
1065                try_to_migrate(page, 0);
1066                page_was_mapped = true;
1067        }
1068
1069        if (!page_mapped(page))
1070                rc = move_to_new_page(newpage, page, mode);
1071
1072        if (page_was_mapped)
1073                remove_migration_ptes(page,
1074                        rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1075
1076out_unlock_both:
1077        unlock_page(newpage);
1078out_unlock:
1079        /* Drop an anon_vma reference if we took one */
1080        if (anon_vma)
1081                put_anon_vma(anon_vma);
1082        unlock_page(page);
1083out:
1084        /*
1085         * If migration is successful, decrease refcount of the newpage
1086         * which will not free the page because new page owner increased
1087         * refcounter. As well, if it is LRU page, add the page to LRU
1088         * list in here. Use the old state of the isolated source page to
1089         * determine if we migrated a LRU page. newpage was already unlocked
1090         * and possibly modified by its owner - don't rely on the page
1091         * state.
1092         */
1093        if (rc == MIGRATEPAGE_SUCCESS) {
1094                if (unlikely(!is_lru))
1095                        put_page(newpage);
1096                else
1097                        putback_lru_page(newpage);
1098        }
1099
1100        return rc;
1101}
1102
1103
1104/*
1105 * node_demotion[] example:
1106 *
1107 * Consider a system with two sockets.  Each socket has
1108 * three classes of memory attached: fast, medium and slow.
1109 * Each memory class is placed in its own NUMA node.  The
1110 * CPUs are placed in the node with the "fast" memory.  The
1111 * 6 NUMA nodes (0-5) might be split among the sockets like
1112 * this:
1113 *
1114 *      Socket A: 0, 1, 2
1115 *      Socket B: 3, 4, 5
1116 *
1117 * When Node 0 fills up, its memory should be migrated to
1118 * Node 1.  When Node 1 fills up, it should be migrated to
1119 * Node 2.  The migration path start on the nodes with the
1120 * processors (since allocations default to this node) and
1121 * fast memory, progress through medium and end with the
1122 * slow memory:
1123 *
1124 *      0 -> 1 -> 2 -> stop
1125 *      3 -> 4 -> 5 -> stop
1126 *
1127 * This is represented in the node_demotion[] like this:
1128 *
1129 *      {  1, // Node 0 migrates to 1
1130 *         2, // Node 1 migrates to 2
1131 *        -1, // Node 2 does not migrate
1132 *         4, // Node 3 migrates to 4
1133 *         5, // Node 4 migrates to 5
1134 *        -1} // Node 5 does not migrate
1135 */
1136
1137/*
1138 * Writes to this array occur without locking.  Cycles are
1139 * not allowed: Node X demotes to Y which demotes to X...
1140 *
1141 * If multiple reads are performed, a single rcu_read_lock()
1142 * must be held over all reads to ensure that no cycles are
1143 * observed.
1144 */
1145static int node_demotion[MAX_NUMNODES] __read_mostly =
1146        {[0 ...  MAX_NUMNODES - 1] = NUMA_NO_NODE};
1147
1148/**
1149 * next_demotion_node() - Get the next node in the demotion path
1150 * @node: The starting node to lookup the next node
1151 *
1152 * Return: node id for next memory node in the demotion path hierarchy
1153 * from @node; NUMA_NO_NODE if @node is terminal.  This does not keep
1154 * @node online or guarantee that it *continues* to be the next demotion
1155 * target.
1156 */
1157int next_demotion_node(int node)
1158{
1159        int target;
1160
1161        /*
1162         * node_demotion[] is updated without excluding this
1163         * function from running.  RCU doesn't provide any
1164         * compiler barriers, so the READ_ONCE() is required
1165         * to avoid compiler reordering or read merging.
1166         *
1167         * Make sure to use RCU over entire code blocks if
1168         * node_demotion[] reads need to be consistent.
1169         */
1170        rcu_read_lock();
1171        target = READ_ONCE(node_demotion[node]);
1172        rcu_read_unlock();
1173
1174        return target;
1175}
1176
1177/*
1178 * Obtain the lock on page, remove all ptes and migrate the page
1179 * to the newly allocated page in newpage.
1180 */
1181static int unmap_and_move(new_page_t get_new_page,
1182                                   free_page_t put_new_page,
1183                                   unsigned long private, struct page *page,
1184                                   int force, enum migrate_mode mode,
1185                                   enum migrate_reason reason,
1186                                   struct list_head *ret)
1187{
1188        int rc = MIGRATEPAGE_SUCCESS;
1189        struct page *newpage = NULL;
1190
1191        if (!thp_migration_supported() && PageTransHuge(page))
1192                return -ENOSYS;
1193
1194        if (page_count(page) == 1) {
1195                /* page was freed from under us. So we are done. */
1196                ClearPageActive(page);
1197                ClearPageUnevictable(page);
1198                if (unlikely(__PageMovable(page))) {
1199                        lock_page(page);
1200                        if (!PageMovable(page))
1201                                __ClearPageIsolated(page);
1202                        unlock_page(page);
1203                }
1204                goto out;
1205        }
1206
1207        newpage = get_new_page(page, private);
1208        if (!newpage)
1209                return -ENOMEM;
1210
1211        rc = __unmap_and_move(page, newpage, force, mode);
1212        if (rc == MIGRATEPAGE_SUCCESS)
1213                set_page_owner_migrate_reason(newpage, reason);
1214
1215out:
1216        if (rc != -EAGAIN) {
1217                /*
1218                 * A page that has been migrated has all references
1219                 * removed and will be freed. A page that has not been
1220                 * migrated will have kept its references and be restored.
1221                 */
1222                list_del(&page->lru);
1223        }
1224
1225        /*
1226         * If migration is successful, releases reference grabbed during
1227         * isolation. Otherwise, restore the page to right list unless
1228         * we want to retry.
1229         */
1230        if (rc == MIGRATEPAGE_SUCCESS) {
1231                /*
1232                 * Compaction can migrate also non-LRU pages which are
1233                 * not accounted to NR_ISOLATED_*. They can be recognized
1234                 * as __PageMovable
1235                 */
1236                if (likely(!__PageMovable(page)))
1237                        mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1238                                        page_is_file_lru(page), -thp_nr_pages(page));
1239
1240                if (reason != MR_MEMORY_FAILURE)
1241                        /*
1242                         * We release the page in page_handle_poison.
1243                         */
1244                        put_page(page);
1245        } else {
1246                if (rc != -EAGAIN)
1247                        list_add_tail(&page->lru, ret);
1248
1249                if (put_new_page)
1250                        put_new_page(newpage, private);
1251                else
1252                        put_page(newpage);
1253        }
1254
1255        return rc;
1256}
1257
1258/*
1259 * Counterpart of unmap_and_move_page() for hugepage migration.
1260 *
1261 * This function doesn't wait the completion of hugepage I/O
1262 * because there is no race between I/O and migration for hugepage.
1263 * Note that currently hugepage I/O occurs only in direct I/O
1264 * where no lock is held and PG_writeback is irrelevant,
1265 * and writeback status of all subpages are counted in the reference
1266 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1267 * under direct I/O, the reference of the head page is 512 and a bit more.)
1268 * This means that when we try to migrate hugepage whose subpages are
1269 * doing direct I/O, some references remain after try_to_unmap() and
1270 * hugepage migration fails without data corruption.
1271 *
1272 * There is also no race when direct I/O is issued on the page under migration,
1273 * because then pte is replaced with migration swap entry and direct I/O code
1274 * will wait in the page fault for migration to complete.
1275 */
1276static int unmap_and_move_huge_page(new_page_t get_new_page,
1277                                free_page_t put_new_page, unsigned long private,
1278                                struct page *hpage, int force,
1279                                enum migrate_mode mode, int reason,
1280                                struct list_head *ret)
1281{
1282        int rc = -EAGAIN;
1283        int page_was_mapped = 0;
1284        struct page *new_hpage;
1285        struct anon_vma *anon_vma = NULL;
1286        struct address_space *mapping = NULL;
1287
1288        /*
1289         * Migratability of hugepages depends on architectures and their size.
1290         * This check is necessary because some callers of hugepage migration
1291         * like soft offline and memory hotremove don't walk through page
1292         * tables or check whether the hugepage is pmd-based or not before
1293         * kicking migration.
1294         */
1295        if (!hugepage_migration_supported(page_hstate(hpage))) {
1296                list_move_tail(&hpage->lru, ret);
1297                return -ENOSYS;
1298        }
1299
1300        if (page_count(hpage) == 1) {
1301                /* page was freed from under us. So we are done. */
1302                putback_active_hugepage(hpage);
1303                return MIGRATEPAGE_SUCCESS;
1304        }
1305
1306        new_hpage = get_new_page(hpage, private);
1307        if (!new_hpage)
1308                return -ENOMEM;
1309
1310        if (!trylock_page(hpage)) {
1311                if (!force)
1312                        goto out;
1313                switch (mode) {
1314                case MIGRATE_SYNC:
1315                case MIGRATE_SYNC_NO_COPY:
1316                        break;
1317                default:
1318                        goto out;
1319                }
1320                lock_page(hpage);
1321        }
1322
1323        /*
1324         * Check for pages which are in the process of being freed.  Without
1325         * page_mapping() set, hugetlbfs specific move page routine will not
1326         * be called and we could leak usage counts for subpools.
1327         */
1328        if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
1329                rc = -EBUSY;
1330                goto out_unlock;
1331        }
1332
1333        if (PageAnon(hpage))
1334                anon_vma = page_get_anon_vma(hpage);
1335
1336        if (unlikely(!trylock_page(new_hpage)))
1337                goto put_anon;
1338
1339        if (page_mapped(hpage)) {
1340                bool mapping_locked = false;
1341                enum ttu_flags ttu = 0;
1342
1343                if (!PageAnon(hpage)) {
1344                        /*
1345                         * In shared mappings, try_to_unmap could potentially
1346                         * call huge_pmd_unshare.  Because of this, take
1347                         * semaphore in write mode here and set TTU_RMAP_LOCKED
1348                         * to let lower levels know we have taken the lock.
1349                         */
1350                        mapping = hugetlb_page_mapping_lock_write(hpage);
1351                        if (unlikely(!mapping))
1352                                goto unlock_put_anon;
1353
1354                        mapping_locked = true;
1355                        ttu |= TTU_RMAP_LOCKED;
1356                }
1357
1358                try_to_migrate(hpage, ttu);
1359                page_was_mapped = 1;
1360
1361                if (mapping_locked)
1362                        i_mmap_unlock_write(mapping);
1363        }
1364
1365        if (!page_mapped(hpage))
1366                rc = move_to_new_page(new_hpage, hpage, mode);
1367
1368        if (page_was_mapped)
1369                remove_migration_ptes(hpage,
1370                        rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1371
1372unlock_put_anon:
1373        unlock_page(new_hpage);
1374
1375put_anon:
1376        if (anon_vma)
1377                put_anon_vma(anon_vma);
1378
1379        if (rc == MIGRATEPAGE_SUCCESS) {
1380                move_hugetlb_state(hpage, new_hpage, reason);
1381                put_new_page = NULL;
1382        }
1383
1384out_unlock:
1385        unlock_page(hpage);
1386out:
1387        if (rc == MIGRATEPAGE_SUCCESS)
1388                putback_active_hugepage(hpage);
1389        else if (rc != -EAGAIN)
1390                list_move_tail(&hpage->lru, ret);
1391
1392        /*
1393         * If migration was not successful and there's a freeing callback, use
1394         * it.  Otherwise, put_page() will drop the reference grabbed during
1395         * isolation.
1396         */
1397        if (put_new_page)
1398                put_new_page(new_hpage, private);
1399        else
1400                putback_active_hugepage(new_hpage);
1401
1402        return rc;
1403}
1404
1405static inline int try_split_thp(struct page *page, struct page **page2,
1406                                struct list_head *from)
1407{
1408        int rc = 0;
1409
1410        lock_page(page);
1411        rc = split_huge_page_to_list(page, from);
1412        unlock_page(page);
1413        if (!rc)
1414                list_safe_reset_next(page, *page2, lru);
1415
1416        return rc;
1417}
1418
1419/*
1420 * migrate_pages - migrate the pages specified in a list, to the free pages
1421 *                 supplied as the target for the page migration
1422 *
1423 * @from:               The list of pages to be migrated.
1424 * @get_new_page:       The function used to allocate free pages to be used
1425 *                      as the target of the page migration.
1426 * @put_new_page:       The function used to free target pages if migration
1427 *                      fails, or NULL if no special handling is necessary.
1428 * @private:            Private data to be passed on to get_new_page()
1429 * @mode:               The migration mode that specifies the constraints for
1430 *                      page migration, if any.
1431 * @reason:             The reason for page migration.
1432 * @ret_succeeded:      Set to the number of pages migrated successfully if
1433 *                      the caller passes a non-NULL pointer.
1434 *
1435 * The function returns after 10 attempts or if no pages are movable any more
1436 * because the list has become empty or no retryable pages exist any more.
1437 * It is caller's responsibility to call putback_movable_pages() to return pages
1438 * to the LRU or free list only if ret != 0.
1439 *
1440 * Returns the number of pages that were not migrated, or an error code.
1441 */
1442int migrate_pages(struct list_head *from, new_page_t get_new_page,
1443                free_page_t put_new_page, unsigned long private,
1444                enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1445{
1446        int retry = 1;
1447        int thp_retry = 1;
1448        int nr_failed = 0;
1449        int nr_succeeded = 0;
1450        int nr_thp_succeeded = 0;
1451        int nr_thp_failed = 0;
1452        int nr_thp_split = 0;
1453        int pass = 0;
1454        bool is_thp = false;
1455        struct page *page;
1456        struct page *page2;
1457        int swapwrite = current->flags & PF_SWAPWRITE;
1458        int rc, nr_subpages;
1459        LIST_HEAD(ret_pages);
1460        bool nosplit = (reason == MR_NUMA_MISPLACED);
1461
1462        trace_mm_migrate_pages_start(mode, reason);
1463
1464        if (!swapwrite)
1465                current->flags |= PF_SWAPWRITE;
1466
1467        for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1468                retry = 0;
1469                thp_retry = 0;
1470
1471                list_for_each_entry_safe(page, page2, from, lru) {
1472retry:
1473                        /*
1474                         * THP statistics is based on the source huge page.
1475                         * Capture required information that might get lost
1476                         * during migration.
1477                         */
1478                        is_thp = PageTransHuge(page) && !PageHuge(page);
1479                        nr_subpages = thp_nr_pages(page);
1480                        cond_resched();
1481
1482                        if (PageHuge(page))
1483                                rc = unmap_and_move_huge_page(get_new_page,
1484                                                put_new_page, private, page,
1485                                                pass > 2, mode, reason,
1486                                                &ret_pages);
1487                        else
1488                                rc = unmap_and_move(get_new_page, put_new_page,
1489                                                private, page, pass > 2, mode,
1490                                                reason, &ret_pages);
1491                        /*
1492                         * The rules are:
1493                         *      Success: non hugetlb page will be freed, hugetlb
1494                         *               page will be put back
1495                         *      -EAGAIN: stay on the from list
1496                         *      -ENOMEM: stay on the from list
1497                         *      Other errno: put on ret_pages list then splice to
1498                         *                   from list
1499                         */
1500                        switch(rc) {
1501                        /*
1502                         * THP migration might be unsupported or the
1503                         * allocation could've failed so we should
1504                         * retry on the same page with the THP split
1505                         * to base pages.
1506                         *
1507                         * Head page is retried immediately and tail
1508                         * pages are added to the tail of the list so
1509                         * we encounter them after the rest of the list
1510                         * is processed.
1511                         */
1512                        case -ENOSYS:
1513                                /* THP migration is unsupported */
1514                                if (is_thp) {
1515                                        if (!try_split_thp(page, &page2, from)) {
1516                                                nr_thp_split++;
1517                                                goto retry;
1518                                        }
1519
1520                                        nr_thp_failed++;
1521                                        nr_failed += nr_subpages;
1522                                        break;
1523                                }
1524
1525                                /* Hugetlb migration is unsupported */
1526                                nr_failed++;
1527                                break;
1528                        case -ENOMEM:
1529                                /*
1530                                 * When memory is low, don't bother to try to migrate
1531                                 * other pages, just exit.
1532                                 * THP NUMA faulting doesn't split THP to retry.
1533                                 */
1534                                if (is_thp && !nosplit) {
1535                                        if (!try_split_thp(page, &page2, from)) {
1536                                                nr_thp_split++;
1537                                                goto retry;
1538                                        }
1539
1540                                        nr_thp_failed++;
1541                                        nr_failed += nr_subpages;
1542                                        goto out;
1543                                }
1544                                nr_failed++;
1545                                goto out;
1546                        case -EAGAIN:
1547                                if (is_thp) {
1548                                        thp_retry++;
1549                                        break;
1550                                }
1551                                retry++;
1552                                break;
1553                        case MIGRATEPAGE_SUCCESS:
1554                                if (is_thp) {
1555                                        nr_thp_succeeded++;
1556                                        nr_succeeded += nr_subpages;
1557                                        break;
1558                                }
1559                                nr_succeeded++;
1560                                break;
1561                        default:
1562                                /*
1563                                 * Permanent failure (-EBUSY, etc.):
1564                                 * unlike -EAGAIN case, the failed page is
1565                                 * removed from migration page list and not
1566                                 * retried in the next outer loop.
1567                                 */
1568                                if (is_thp) {
1569                                        nr_thp_failed++;
1570                                        nr_failed += nr_subpages;
1571                                        break;
1572                                }
1573                                nr_failed++;
1574                                break;
1575                        }
1576                }
1577        }
1578        nr_failed += retry + thp_retry;
1579        nr_thp_failed += thp_retry;
1580        rc = nr_failed;
1581out:
1582        /*
1583         * Put the permanent failure page back to migration list, they
1584         * will be put back to the right list by the caller.
1585         */
1586        list_splice(&ret_pages, from);
1587
1588        count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1589        count_vm_events(PGMIGRATE_FAIL, nr_failed);
1590        count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1591        count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1592        count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1593        trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1594                               nr_thp_failed, nr_thp_split, mode, reason);
1595
1596        if (!swapwrite)
1597                current->flags &= ~PF_SWAPWRITE;
1598
1599        if (ret_succeeded)
1600                *ret_succeeded = nr_succeeded;
1601
1602        return rc;
1603}
1604
1605struct page *alloc_migration_target(struct page *page, unsigned long private)
1606{
1607        struct migration_target_control *mtc;
1608        gfp_t gfp_mask;
1609        unsigned int order = 0;
1610        struct page *new_page = NULL;
1611        int nid;
1612        int zidx;
1613
1614        mtc = (struct migration_target_control *)private;
1615        gfp_mask = mtc->gfp_mask;
1616        nid = mtc->nid;
1617        if (nid == NUMA_NO_NODE)
1618                nid = page_to_nid(page);
1619
1620        if (PageHuge(page)) {
1621                struct hstate *h = page_hstate(compound_head(page));
1622
1623                gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1624                return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1625        }
1626
1627        if (PageTransHuge(page)) {
1628                /*
1629                 * clear __GFP_RECLAIM to make the migration callback
1630                 * consistent with regular THP allocations.
1631                 */
1632                gfp_mask &= ~__GFP_RECLAIM;
1633                gfp_mask |= GFP_TRANSHUGE;
1634                order = HPAGE_PMD_ORDER;
1635        }
1636        zidx = zone_idx(page_zone(page));
1637        if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1638                gfp_mask |= __GFP_HIGHMEM;
1639
1640        new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
1641
1642        if (new_page && PageTransHuge(new_page))
1643                prep_transhuge_page(new_page);
1644
1645        return new_page;
1646}
1647
1648#ifdef CONFIG_NUMA
1649
1650static int store_status(int __user *status, int start, int value, int nr)
1651{
1652        while (nr-- > 0) {
1653                if (put_user(value, status + start))
1654                        return -EFAULT;
1655                start++;
1656        }
1657
1658        return 0;
1659}
1660
1661static int do_move_pages_to_node(struct mm_struct *mm,
1662                struct list_head *pagelist, int node)
1663{
1664        int err;
1665        struct migration_target_control mtc = {
1666                .nid = node,
1667                .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1668        };
1669
1670        err = migrate_pages(pagelist, alloc_migration_target, NULL,
1671                (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1672        if (err)
1673                putback_movable_pages(pagelist);
1674        return err;
1675}
1676
1677/*
1678 * Resolves the given address to a struct page, isolates it from the LRU and
1679 * puts it to the given pagelist.
1680 * Returns:
1681 *     errno - if the page cannot be found/isolated
1682 *     0 - when it doesn't have to be migrated because it is already on the
1683 *         target node
1684 *     1 - when it has been queued
1685 */
1686static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1687                int node, struct list_head *pagelist, bool migrate_all)
1688{
1689        struct vm_area_struct *vma;
1690        struct page *page;
1691        unsigned int follflags;
1692        int err;
1693
1694        mmap_read_lock(mm);
1695        err = -EFAULT;
1696        vma = find_vma(mm, addr);
1697        if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1698                goto out;
1699
1700        /* FOLL_DUMP to ignore special (like zero) pages */
1701        follflags = FOLL_GET | FOLL_DUMP;
1702        page = follow_page(vma, addr, follflags);
1703
1704        err = PTR_ERR(page);
1705        if (IS_ERR(page))
1706                goto out;
1707
1708        err = -ENOENT;
1709        if (!page)
1710                goto out;
1711
1712        err = 0;
1713        if (page_to_nid(page) == node)
1714                goto out_putpage;
1715
1716        err = -EACCES;
1717        if (page_mapcount(page) > 1 && !migrate_all)
1718                goto out_putpage;
1719
1720        if (PageHuge(page)) {
1721                if (PageHead(page)) {
1722                        isolate_huge_page(page, pagelist);
1723                        err = 1;
1724                }
1725        } else {
1726                struct page *head;
1727
1728                head = compound_head(page);
1729                err = isolate_lru_page(head);
1730                if (err)
1731                        goto out_putpage;
1732
1733                err = 1;
1734                list_add_tail(&head->lru, pagelist);
1735                mod_node_page_state(page_pgdat(head),
1736                        NR_ISOLATED_ANON + page_is_file_lru(head),
1737                        thp_nr_pages(head));
1738        }
1739out_putpage:
1740        /*
1741         * Either remove the duplicate refcount from
1742         * isolate_lru_page() or drop the page ref if it was
1743         * not isolated.
1744         */
1745        put_page(page);
1746out:
1747        mmap_read_unlock(mm);
1748        return err;
1749}
1750
1751static int move_pages_and_store_status(struct mm_struct *mm, int node,
1752                struct list_head *pagelist, int __user *status,
1753                int start, int i, unsigned long nr_pages)
1754{
1755        int err;
1756
1757        if (list_empty(pagelist))
1758                return 0;
1759
1760        err = do_move_pages_to_node(mm, pagelist, node);
1761        if (err) {
1762                /*
1763                 * Positive err means the number of failed
1764                 * pages to migrate.  Since we are going to
1765                 * abort and return the number of non-migrated
1766                 * pages, so need to include the rest of the
1767                 * nr_pages that have not been attempted as
1768                 * well.
1769                 */
1770                if (err > 0)
1771                        err += nr_pages - i - 1;
1772                return err;
1773        }
1774        return store_status(status, start, node, i - start);
1775}
1776
1777/*
1778 * Migrate an array of page address onto an array of nodes and fill
1779 * the corresponding array of status.
1780 */
1781static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1782                         unsigned long nr_pages,
1783                         const void __user * __user *pages,
1784                         const int __user *nodes,
1785                         int __user *status, int flags)
1786{
1787        int current_node = NUMA_NO_NODE;
1788        LIST_HEAD(pagelist);
1789        int start, i;
1790        int err = 0, err1;
1791
1792        lru_cache_disable();
1793
1794        for (i = start = 0; i < nr_pages; i++) {
1795                const void __user *p;
1796                unsigned long addr;
1797                int node;
1798
1799                err = -EFAULT;
1800                if (get_user(p, pages + i))
1801                        goto out_flush;
1802                if (get_user(node, nodes + i))
1803                        goto out_flush;
1804                addr = (unsigned long)untagged_addr(p);
1805
1806                err = -ENODEV;
1807                if (node < 0 || node >= MAX_NUMNODES)
1808                        goto out_flush;
1809                if (!node_state(node, N_MEMORY))
1810                        goto out_flush;
1811
1812                err = -EACCES;
1813                if (!node_isset(node, task_nodes))
1814                        goto out_flush;
1815
1816                if (current_node == NUMA_NO_NODE) {
1817                        current_node = node;
1818                        start = i;
1819                } else if (node != current_node) {
1820                        err = move_pages_and_store_status(mm, current_node,
1821                                        &pagelist, status, start, i, nr_pages);
1822                        if (err)
1823                                goto out;
1824                        start = i;
1825                        current_node = node;
1826                }
1827
1828                /*
1829                 * Errors in the page lookup or isolation are not fatal and we simply
1830                 * report them via status
1831                 */
1832                err = add_page_for_migration(mm, addr, current_node,
1833                                &pagelist, flags & MPOL_MF_MOVE_ALL);
1834
1835                if (err > 0) {
1836                        /* The page is successfully queued for migration */
1837                        continue;
1838                }
1839
1840                /*
1841                 * If the page is already on the target node (!err), store the
1842                 * node, otherwise, store the err.
1843                 */
1844                err = store_status(status, i, err ? : current_node, 1);
1845                if (err)
1846                        goto out_flush;
1847
1848                err = move_pages_and_store_status(mm, current_node, &pagelist,
1849                                status, start, i, nr_pages);
1850                if (err)
1851                        goto out;
1852                current_node = NUMA_NO_NODE;
1853        }
1854out_flush:
1855        /* Make sure we do not overwrite the existing error */
1856        err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1857                                status, start, i, nr_pages);
1858        if (err >= 0)
1859                err = err1;
1860out:
1861        lru_cache_enable();
1862        return err;
1863}
1864
1865/*
1866 * Determine the nodes of an array of pages and store it in an array of status.
1867 */
1868static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1869                                const void __user **pages, int *status)
1870{
1871        unsigned long i;
1872
1873        mmap_read_lock(mm);
1874
1875        for (i = 0; i < nr_pages; i++) {
1876                unsigned long addr = (unsigned long)(*pages);
1877                struct vm_area_struct *vma;
1878                struct page *page;
1879                int err = -EFAULT;
1880
1881                vma = vma_lookup(mm, addr);
1882                if (!vma)
1883                        goto set_status;
1884
1885                /* FOLL_DUMP to ignore special (like zero) pages */
1886                page = follow_page(vma, addr, FOLL_DUMP);
1887
1888                err = PTR_ERR(page);
1889                if (IS_ERR(page))
1890                        goto set_status;
1891
1892                err = page ? page_to_nid(page) : -ENOENT;
1893set_status:
1894                *status = err;
1895
1896                pages++;
1897                status++;
1898        }
1899
1900        mmap_read_unlock(mm);
1901}
1902
1903static int get_compat_pages_array(const void __user *chunk_pages[],
1904                                  const void __user * __user *pages,
1905                                  unsigned long chunk_nr)
1906{
1907        compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
1908        compat_uptr_t p;
1909        int i;
1910
1911        for (i = 0; i < chunk_nr; i++) {
1912                if (get_user(p, pages32 + i))
1913                        return -EFAULT;
1914                chunk_pages[i] = compat_ptr(p);
1915        }
1916
1917        return 0;
1918}
1919
1920/*
1921 * Determine the nodes of a user array of pages and store it in
1922 * a user array of status.
1923 */
1924static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1925                         const void __user * __user *pages,
1926                         int __user *status)
1927{
1928#define DO_PAGES_STAT_CHUNK_NR 16
1929        const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1930        int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1931
1932        while (nr_pages) {
1933                unsigned long chunk_nr;
1934
1935                chunk_nr = nr_pages;
1936                if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1937                        chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1938
1939                if (in_compat_syscall()) {
1940                        if (get_compat_pages_array(chunk_pages, pages,
1941                                                   chunk_nr))
1942                                break;
1943                } else {
1944                        if (copy_from_user(chunk_pages, pages,
1945                                      chunk_nr * sizeof(*chunk_pages)))
1946                                break;
1947                }
1948
1949                do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1950
1951                if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1952                        break;
1953
1954                pages += chunk_nr;
1955                status += chunk_nr;
1956                nr_pages -= chunk_nr;
1957        }
1958        return nr_pages ? -EFAULT : 0;
1959}
1960
1961static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1962{
1963        struct task_struct *task;
1964        struct mm_struct *mm;
1965
1966        /*
1967         * There is no need to check if current process has the right to modify
1968         * the specified process when they are same.
1969         */
1970        if (!pid) {
1971                mmget(current->mm);
1972                *mem_nodes = cpuset_mems_allowed(current);
1973                return current->mm;
1974        }
1975
1976        /* Find the mm_struct */
1977        rcu_read_lock();
1978        task = find_task_by_vpid(pid);
1979        if (!task) {
1980                rcu_read_unlock();
1981                return ERR_PTR(-ESRCH);
1982        }
1983        get_task_struct(task);
1984
1985        /*
1986         * Check if this process has the right to modify the specified
1987         * process. Use the regular "ptrace_may_access()" checks.
1988         */
1989        if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1990                rcu_read_unlock();
1991                mm = ERR_PTR(-EPERM);
1992                goto out;
1993        }
1994        rcu_read_unlock();
1995
1996        mm = ERR_PTR(security_task_movememory(task));
1997        if (IS_ERR(mm))
1998                goto out;
1999        *mem_nodes = cpuset_mems_allowed(task);
2000        mm = get_task_mm(task);
2001out:
2002        put_task_struct(task);
2003        if (!mm)
2004                mm = ERR_PTR(-EINVAL);
2005        return mm;
2006}
2007
2008/*
2009 * Move a list of pages in the address space of the currently executing
2010 * process.
2011 */
2012static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
2013                             const void __user * __user *pages,
2014                             const int __user *nodes,
2015                             int __user *status, int flags)
2016{
2017        struct mm_struct *mm;
2018        int err;
2019        nodemask_t task_nodes;
2020
2021        /* Check flags */
2022        if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
2023                return -EINVAL;
2024
2025        if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2026                return -EPERM;
2027
2028        mm = find_mm_struct(pid, &task_nodes);
2029        if (IS_ERR(mm))
2030                return PTR_ERR(mm);
2031
2032        if (nodes)
2033                err = do_pages_move(mm, task_nodes, nr_pages, pages,
2034                                    nodes, status, flags);
2035        else
2036                err = do_pages_stat(mm, nr_pages, pages, status);
2037
2038        mmput(mm);
2039        return err;
2040}
2041
2042SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2043                const void __user * __user *, pages,
2044                const int __user *, nodes,
2045                int __user *, status, int, flags)
2046{
2047        return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2048}
2049
2050#ifdef CONFIG_NUMA_BALANCING
2051/*
2052 * Returns true if this is a safe migration target node for misplaced NUMA
2053 * pages. Currently it only checks the watermarks which crude
2054 */
2055static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2056                                   unsigned long nr_migrate_pages)
2057{
2058        int z;
2059
2060        for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2061                struct zone *zone = pgdat->node_zones + z;
2062
2063                if (!populated_zone(zone))
2064                        continue;
2065
2066                /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2067                if (!zone_watermark_ok(zone, 0,
2068                                       high_wmark_pages(zone) +
2069                                       nr_migrate_pages,
2070                                       ZONE_MOVABLE, 0))
2071                        continue;
2072                return true;
2073        }
2074        return false;
2075}
2076
2077static struct page *alloc_misplaced_dst_page(struct page *page,
2078                                           unsigned long data)
2079{
2080        int nid = (int) data;
2081        struct page *newpage;
2082
2083        newpage = __alloc_pages_node(nid,
2084                                         (GFP_HIGHUSER_MOVABLE |
2085                                          __GFP_THISNODE | __GFP_NOMEMALLOC |
2086                                          __GFP_NORETRY | __GFP_NOWARN) &
2087                                         ~__GFP_RECLAIM, 0);
2088
2089        return newpage;
2090}
2091
2092static struct page *alloc_misplaced_dst_page_thp(struct page *page,
2093                                                 unsigned long data)
2094{
2095        int nid = (int) data;
2096        struct page *newpage;
2097
2098        newpage = alloc_pages_node(nid, (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2099                                   HPAGE_PMD_ORDER);
2100        if (!newpage)
2101                goto out;
2102
2103        prep_transhuge_page(newpage);
2104
2105out:
2106        return newpage;
2107}
2108
2109static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2110{
2111        int page_lru;
2112        int nr_pages = thp_nr_pages(page);
2113
2114        VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2115
2116        /* Do not migrate THP mapped by multiple processes */
2117        if (PageTransHuge(page) && total_mapcount(page) > 1)
2118                return 0;
2119
2120        /* Avoid migrating to a node that is nearly full */
2121        if (!migrate_balanced_pgdat(pgdat, nr_pages))
2122                return 0;
2123
2124        if (isolate_lru_page(page))
2125                return 0;
2126
2127        page_lru = page_is_file_lru(page);
2128        mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2129                            nr_pages);
2130
2131        /*
2132         * Isolating the page has taken another reference, so the
2133         * caller's reference can be safely dropped without the page
2134         * disappearing underneath us during migration.
2135         */
2136        put_page(page);
2137        return 1;
2138}
2139
2140/*
2141 * Attempt to migrate a misplaced page to the specified destination
2142 * node. Caller is expected to have an elevated reference count on
2143 * the page that will be dropped by this function before returning.
2144 */
2145int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2146                           int node)
2147{
2148        pg_data_t *pgdat = NODE_DATA(node);
2149        int isolated;
2150        int nr_remaining;
2151        LIST_HEAD(migratepages);
2152        new_page_t *new;
2153        bool compound;
2154        int nr_pages = thp_nr_pages(page);
2155
2156        /*
2157         * PTE mapped THP or HugeTLB page can't reach here so the page could
2158         * be either base page or THP.  And it must be head page if it is
2159         * THP.
2160         */
2161        compound = PageTransHuge(page);
2162
2163        if (compound)
2164                new = alloc_misplaced_dst_page_thp;
2165        else
2166                new = alloc_misplaced_dst_page;
2167
2168        /*
2169         * Don't migrate file pages that are mapped in multiple processes
2170         * with execute permissions as they are probably shared libraries.
2171         */
2172        if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2173            (vma->vm_flags & VM_EXEC))
2174                goto out;
2175
2176        /*
2177         * Also do not migrate dirty pages as not all filesystems can move
2178         * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2179         */
2180        if (page_is_file_lru(page) && PageDirty(page))
2181                goto out;
2182
2183        isolated = numamigrate_isolate_page(pgdat, page);
2184        if (!isolated)
2185                goto out;
2186
2187        list_add(&page->lru, &migratepages);
2188        nr_remaining = migrate_pages(&migratepages, *new, NULL, node,
2189                                     MIGRATE_ASYNC, MR_NUMA_MISPLACED, NULL);
2190        if (nr_remaining) {
2191                if (!list_empty(&migratepages)) {
2192                        list_del(&page->lru);
2193                        mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2194                                        page_is_file_lru(page), -nr_pages);
2195                        putback_lru_page(page);
2196                }
2197                isolated = 0;
2198        } else
2199                count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_pages);
2200        BUG_ON(!list_empty(&migratepages));
2201        return isolated;
2202
2203out:
2204        put_page(page);
2205        return 0;
2206}
2207#endif /* CONFIG_NUMA_BALANCING */
2208#endif /* CONFIG_NUMA */
2209
2210#ifdef CONFIG_DEVICE_PRIVATE
2211static int migrate_vma_collect_skip(unsigned long start,
2212                                    unsigned long end,
2213                                    struct mm_walk *walk)
2214{
2215        struct migrate_vma *migrate = walk->private;
2216        unsigned long addr;
2217
2218        for (addr = start; addr < end; addr += PAGE_SIZE) {
2219                migrate->dst[migrate->npages] = 0;
2220                migrate->src[migrate->npages++] = 0;
2221        }
2222
2223        return 0;
2224}
2225
2226static int migrate_vma_collect_hole(unsigned long start,
2227                                    unsigned long end,
2228                                    __always_unused int depth,
2229                                    struct mm_walk *walk)
2230{
2231        struct migrate_vma *migrate = walk->private;
2232        unsigned long addr;
2233
2234        /* Only allow populating anonymous memory. */
2235        if (!vma_is_anonymous(walk->vma))
2236                return migrate_vma_collect_skip(start, end, walk);
2237
2238        for (addr = start; addr < end; addr += PAGE_SIZE) {
2239                migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2240                migrate->dst[migrate->npages] = 0;
2241                migrate->npages++;
2242                migrate->cpages++;
2243        }
2244
2245        return 0;
2246}
2247
2248static int migrate_vma_collect_pmd(pmd_t *pmdp,
2249                                   unsigned long start,
2250                                   unsigned long end,
2251                                   struct mm_walk *walk)
2252{
2253        struct migrate_vma *migrate = walk->private;
2254        struct vm_area_struct *vma = walk->vma;
2255        struct mm_struct *mm = vma->vm_mm;
2256        unsigned long addr = start, unmapped = 0;
2257        spinlock_t *ptl;
2258        pte_t *ptep;
2259
2260again:
2261        if (pmd_none(*pmdp))
2262                return migrate_vma_collect_hole(start, end, -1, walk);
2263
2264        if (pmd_trans_huge(*pmdp)) {
2265                struct page *page;
2266
2267                ptl = pmd_lock(mm, pmdp);
2268                if (unlikely(!pmd_trans_huge(*pmdp))) {
2269                        spin_unlock(ptl);
2270                        goto again;
2271                }
2272
2273                page = pmd_page(*pmdp);
2274                if (is_huge_zero_page(page)) {
2275                        spin_unlock(ptl);
2276                        split_huge_pmd(vma, pmdp, addr);
2277                        if (pmd_trans_unstable(pmdp))
2278                                return migrate_vma_collect_skip(start, end,
2279                                                                walk);
2280                } else {
2281                        int ret;
2282
2283                        get_page(page);
2284                        spin_unlock(ptl);
2285                        if (unlikely(!trylock_page(page)))
2286                                return migrate_vma_collect_skip(start, end,
2287                                                                walk);
2288                        ret = split_huge_page(page);
2289                        unlock_page(page);
2290                        put_page(page);
2291                        if (ret)
2292                                return migrate_vma_collect_skip(start, end,
2293                                                                walk);
2294                        if (pmd_none(*pmdp))
2295                                return migrate_vma_collect_hole(start, end, -1,
2296                                                                walk);
2297                }
2298        }
2299
2300        if (unlikely(pmd_bad(*pmdp)))
2301                return migrate_vma_collect_skip(start, end, walk);
2302
2303        ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2304        arch_enter_lazy_mmu_mode();
2305
2306        for (; addr < end; addr += PAGE_SIZE, ptep++) {
2307                unsigned long mpfn = 0, pfn;
2308                struct page *page;
2309                swp_entry_t entry;
2310                pte_t pte;
2311
2312                pte = *ptep;
2313
2314                if (pte_none(pte)) {
2315                        if (vma_is_anonymous(vma)) {
2316                                mpfn = MIGRATE_PFN_MIGRATE;
2317                                migrate->cpages++;
2318                        }
2319                        goto next;
2320                }
2321
2322                if (!pte_present(pte)) {
2323                        /*
2324                         * Only care about unaddressable device page special
2325                         * page table entry. Other special swap entries are not
2326                         * migratable, and we ignore regular swapped page.
2327                         */
2328                        entry = pte_to_swp_entry(pte);
2329                        if (!is_device_private_entry(entry))
2330                                goto next;
2331
2332                        page = pfn_swap_entry_to_page(entry);
2333                        if (!(migrate->flags &
2334                                MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2335                            page->pgmap->owner != migrate->pgmap_owner)
2336                                goto next;
2337
2338                        mpfn = migrate_pfn(page_to_pfn(page)) |
2339                                        MIGRATE_PFN_MIGRATE;
2340                        if (is_writable_device_private_entry(entry))
2341                                mpfn |= MIGRATE_PFN_WRITE;
2342                } else {
2343                        if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2344                                goto next;
2345                        pfn = pte_pfn(pte);
2346                        if (is_zero_pfn(pfn)) {
2347                                mpfn = MIGRATE_PFN_MIGRATE;
2348                                migrate->cpages++;
2349                                goto next;
2350                        }
2351                        page = vm_normal_page(migrate->vma, addr, pte);
2352                        mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2353                        mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2354                }
2355
2356                /* FIXME support THP */
2357                if (!page || !page->mapping || PageTransCompound(page)) {
2358                        mpfn = 0;
2359                        goto next;
2360                }
2361
2362                /*
2363                 * By getting a reference on the page we pin it and that blocks
2364                 * any kind of migration. Side effect is that it "freezes" the
2365                 * pte.
2366                 *
2367                 * We drop this reference after isolating the page from the lru
2368                 * for non device page (device page are not on the lru and thus
2369                 * can't be dropped from it).
2370                 */
2371                get_page(page);
2372                migrate->cpages++;
2373
2374                /*
2375                 * Optimize for the common case where page is only mapped once
2376                 * in one process. If we can lock the page, then we can safely
2377                 * set up a special migration page table entry now.
2378                 */
2379                if (trylock_page(page)) {
2380                        pte_t swp_pte;
2381
2382                        mpfn |= MIGRATE_PFN_LOCKED;
2383                        ptep_get_and_clear(mm, addr, ptep);
2384
2385                        /* Setup special migration page table entry */
2386                        if (mpfn & MIGRATE_PFN_WRITE)
2387                                entry = make_writable_migration_entry(
2388                                                        page_to_pfn(page));
2389                        else
2390                                entry = make_readable_migration_entry(
2391                                                        page_to_pfn(page));
2392                        swp_pte = swp_entry_to_pte(entry);
2393                        if (pte_present(pte)) {
2394                                if (pte_soft_dirty(pte))
2395                                        swp_pte = pte_swp_mksoft_dirty(swp_pte);
2396                                if (pte_uffd_wp(pte))
2397                                        swp_pte = pte_swp_mkuffd_wp(swp_pte);
2398                        } else {
2399                                if (pte_swp_soft_dirty(pte))
2400                                        swp_pte = pte_swp_mksoft_dirty(swp_pte);
2401                                if (pte_swp_uffd_wp(pte))
2402                                        swp_pte = pte_swp_mkuffd_wp(swp_pte);
2403                        }
2404                        set_pte_at(mm, addr, ptep, swp_pte);
2405
2406                        /*
2407                         * This is like regular unmap: we remove the rmap and
2408                         * drop page refcount. Page won't be freed, as we took
2409                         * a reference just above.
2410                         */
2411                        page_remove_rmap(page, false);
2412                        put_page(page);
2413
2414                        if (pte_present(pte))
2415                                unmapped++;
2416                }
2417
2418next:
2419                migrate->dst[migrate->npages] = 0;
2420                migrate->src[migrate->npages++] = mpfn;
2421        }
2422        arch_leave_lazy_mmu_mode();
2423        pte_unmap_unlock(ptep - 1, ptl);
2424
2425        /* Only flush the TLB if we actually modified any entries */
2426        if (unmapped)
2427                flush_tlb_range(walk->vma, start, end);
2428
2429        return 0;
2430}
2431
2432static const struct mm_walk_ops migrate_vma_walk_ops = {
2433        .pmd_entry              = migrate_vma_collect_pmd,
2434        .pte_hole               = migrate_vma_collect_hole,
2435};
2436
2437/*
2438 * migrate_vma_collect() - collect pages over a range of virtual addresses
2439 * @migrate: migrate struct containing all migration information
2440 *
2441 * This will walk the CPU page table. For each virtual address backed by a
2442 * valid page, it updates the src array and takes a reference on the page, in
2443 * order to pin the page until we lock it and unmap it.
2444 */
2445static void migrate_vma_collect(struct migrate_vma *migrate)
2446{
2447        struct mmu_notifier_range range;
2448
2449        /*
2450         * Note that the pgmap_owner is passed to the mmu notifier callback so
2451         * that the registered device driver can skip invalidating device
2452         * private page mappings that won't be migrated.
2453         */
2454        mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
2455                migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end,
2456                migrate->pgmap_owner);
2457        mmu_notifier_invalidate_range_start(&range);
2458
2459        walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2460                        &migrate_vma_walk_ops, migrate);
2461
2462        mmu_notifier_invalidate_range_end(&range);
2463        migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2464}
2465
2466/*
2467 * migrate_vma_check_page() - check if page is pinned or not
2468 * @page: struct page to check
2469 *
2470 * Pinned pages cannot be migrated. This is the same test as in
2471 * migrate_page_move_mapping(), except that here we allow migration of a
2472 * ZONE_DEVICE page.
2473 */
2474static bool migrate_vma_check_page(struct page *page)
2475{
2476        /*
2477         * One extra ref because caller holds an extra reference, either from
2478         * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2479         * a device page.
2480         */
2481        int extra = 1;
2482
2483        /*
2484         * FIXME support THP (transparent huge page), it is bit more complex to
2485         * check them than regular pages, because they can be mapped with a pmd
2486         * or with a pte (split pte mapping).
2487         */
2488        if (PageCompound(page))
2489                return false;
2490
2491        /* Page from ZONE_DEVICE have one extra reference */
2492        if (is_zone_device_page(page)) {
2493                /*
2494                 * Private page can never be pin as they have no valid pte and
2495                 * GUP will fail for those. Yet if there is a pending migration
2496                 * a thread might try to wait on the pte migration entry and
2497                 * will bump the page reference count. Sadly there is no way to
2498                 * differentiate a regular pin from migration wait. Hence to
2499                 * avoid 2 racing thread trying to migrate back to CPU to enter
2500                 * infinite loop (one stopping migration because the other is
2501                 * waiting on pte migration entry). We always return true here.
2502                 *
2503                 * FIXME proper solution is to rework migration_entry_wait() so
2504                 * it does not need to take a reference on page.
2505                 */
2506                return is_device_private_page(page);
2507        }
2508
2509        /* For file back page */
2510        if (page_mapping(page))
2511                extra += 1 + page_has_private(page);
2512
2513        if ((page_count(page) - extra) > page_mapcount(page))
2514                return false;
2515
2516        return true;
2517}
2518
2519/*
2520 * migrate_vma_prepare() - lock pages and isolate them from the lru
2521 * @migrate: migrate struct containing all migration information
2522 *
2523 * This locks pages that have been collected by migrate_vma_collect(). Once each
2524 * page is locked it is isolated from the lru (for non-device pages). Finally,
2525 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2526 * migrated by concurrent kernel threads.
2527 */
2528static void migrate_vma_prepare(struct migrate_vma *migrate)
2529{
2530        const unsigned long npages = migrate->npages;
2531        const unsigned long start = migrate->start;
2532        unsigned long addr, i, restore = 0;
2533        bool allow_drain = true;
2534
2535        lru_add_drain();
2536
2537        for (i = 0; (i < npages) && migrate->cpages; i++) {
2538                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2539                bool remap = true;
2540
2541                if (!page)
2542                        continue;
2543
2544                if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2545                        /*
2546                         * Because we are migrating several pages there can be
2547                         * a deadlock between 2 concurrent migration where each
2548                         * are waiting on each other page lock.
2549                         *
2550                         * Make migrate_vma() a best effort thing and backoff
2551                         * for any page we can not lock right away.
2552                         */
2553                        if (!trylock_page(page)) {
2554                                migrate->src[i] = 0;
2555                                migrate->cpages--;
2556                                put_page(page);
2557                                continue;
2558                        }
2559                        remap = false;
2560                        migrate->src[i] |= MIGRATE_PFN_LOCKED;
2561                }
2562
2563                /* ZONE_DEVICE pages are not on LRU */
2564                if (!is_zone_device_page(page)) {
2565                        if (!PageLRU(page) && allow_drain) {
2566                                /* Drain CPU's pagevec */
2567                                lru_add_drain_all();
2568                                allow_drain = false;
2569                        }
2570
2571                        if (isolate_lru_page(page)) {
2572                                if (remap) {
2573                                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2574                                        migrate->cpages--;
2575                                        restore++;
2576                                } else {
2577                                        migrate->src[i] = 0;
2578                                        unlock_page(page);
2579                                        migrate->cpages--;
2580                                        put_page(page);
2581                                }
2582                                continue;
2583                        }
2584
2585                        /* Drop the reference we took in collect */
2586                        put_page(page);
2587                }
2588
2589                if (!migrate_vma_check_page(page)) {
2590                        if (remap) {
2591                                migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2592                                migrate->cpages--;
2593                                restore++;
2594
2595                                if (!is_zone_device_page(page)) {
2596                                        get_page(page);
2597                                        putback_lru_page(page);
2598                                }
2599                        } else {
2600                                migrate->src[i] = 0;
2601                                unlock_page(page);
2602                                migrate->cpages--;
2603
2604                                if (!is_zone_device_page(page))
2605                                        putback_lru_page(page);
2606                                else
2607                                        put_page(page);
2608                        }
2609                }
2610        }
2611
2612        for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2613                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2614
2615                if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2616                        continue;
2617
2618                remove_migration_pte(page, migrate->vma, addr, page);
2619
2620                migrate->src[i] = 0;
2621                unlock_page(page);
2622                put_page(page);
2623                restore--;
2624        }
2625}
2626
2627/*
2628 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2629 * @migrate: migrate struct containing all migration information
2630 *
2631 * Replace page mapping (CPU page table pte) with a special migration pte entry
2632 * and check again if it has been pinned. Pinned pages are restored because we
2633 * cannot migrate them.
2634 *
2635 * This is the last step before we call the device driver callback to allocate
2636 * destination memory and copy contents of original page over to new page.
2637 */
2638static void migrate_vma_unmap(struct migrate_vma *migrate)
2639{
2640        const unsigned long npages = migrate->npages;
2641        const unsigned long start = migrate->start;
2642        unsigned long addr, i, restore = 0;
2643
2644        for (i = 0; i < npages; i++) {
2645                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2646
2647                if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2648                        continue;
2649
2650                if (page_mapped(page)) {
2651                        try_to_migrate(page, 0);
2652                        if (page_mapped(page))
2653                                goto restore;
2654                }
2655
2656                if (migrate_vma_check_page(page))
2657                        continue;
2658
2659restore:
2660                migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2661                migrate->cpages--;
2662                restore++;
2663        }
2664
2665        for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2666                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2667
2668                if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2669                        continue;
2670
2671                remove_migration_ptes(page, page, false);
2672
2673                migrate->src[i] = 0;
2674                unlock_page(page);
2675                restore--;
2676
2677                if (is_zone_device_page(page))
2678                        put_page(page);
2679                else
2680                        putback_lru_page(page);
2681        }
2682}
2683
2684/**
2685 * migrate_vma_setup() - prepare to migrate a range of memory
2686 * @args: contains the vma, start, and pfns arrays for the migration
2687 *
2688 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2689 * without an error.
2690 *
2691 * Prepare to migrate a range of memory virtual address range by collecting all
2692 * the pages backing each virtual address in the range, saving them inside the
2693 * src array.  Then lock those pages and unmap them. Once the pages are locked
2694 * and unmapped, check whether each page is pinned or not.  Pages that aren't
2695 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2696 * corresponding src array entry.  Then restores any pages that are pinned, by
2697 * remapping and unlocking those pages.
2698 *
2699 * The caller should then allocate destination memory and copy source memory to
2700 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2701 * flag set).  Once these are allocated and copied, the caller must update each
2702 * corresponding entry in the dst array with the pfn value of the destination
2703 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2704 * (destination pages must have their struct pages locked, via lock_page()).
2705 *
2706 * Note that the caller does not have to migrate all the pages that are marked
2707 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2708 * device memory to system memory.  If the caller cannot migrate a device page
2709 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2710 * consequences for the userspace process, so it must be avoided if at all
2711 * possible.
2712 *
2713 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2714 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2715 * allowing the caller to allocate device memory for those unbacked virtual
2716 * addresses.  For this the caller simply has to allocate device memory and
2717 * properly set the destination entry like for regular migration.  Note that
2718 * this can still fail, and thus inside the device driver you must check if the
2719 * migration was successful for those entries after calling migrate_vma_pages(),
2720 * just like for regular migration.
2721 *
2722 * After that, the callers must call migrate_vma_pages() to go over each entry
2723 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2724 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2725 * then migrate_vma_pages() to migrate struct page information from the source
2726 * struct page to the destination struct page.  If it fails to migrate the
2727 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2728 * src array.
2729 *
2730 * At this point all successfully migrated pages have an entry in the src
2731 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2732 * array entry with MIGRATE_PFN_VALID flag set.
2733 *
2734 * Once migrate_vma_pages() returns the caller may inspect which pages were
2735 * successfully migrated, and which were not.  Successfully migrated pages will
2736 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2737 *
2738 * It is safe to update device page table after migrate_vma_pages() because
2739 * both destination and source page are still locked, and the mmap_lock is held
2740 * in read mode (hence no one can unmap the range being migrated).
2741 *
2742 * Once the caller is done cleaning up things and updating its page table (if it
2743 * chose to do so, this is not an obligation) it finally calls
2744 * migrate_vma_finalize() to update the CPU page table to point to new pages
2745 * for successfully migrated pages or otherwise restore the CPU page table to
2746 * point to the original source pages.
2747 */
2748int migrate_vma_setup(struct migrate_vma *args)
2749{
2750        long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2751
2752        args->start &= PAGE_MASK;
2753        args->end &= PAGE_MASK;
2754        if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2755            (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2756                return -EINVAL;
2757        if (nr_pages <= 0)
2758                return -EINVAL;
2759        if (args->start < args->vma->vm_start ||
2760            args->start >= args->vma->vm_end)
2761                return -EINVAL;
2762        if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2763                return -EINVAL;
2764        if (!args->src || !args->dst)
2765                return -EINVAL;
2766
2767        memset(args->src, 0, sizeof(*args->src) * nr_pages);
2768        args->cpages = 0;
2769        args->npages = 0;
2770
2771        migrate_vma_collect(args);
2772
2773        if (args->cpages)
2774                migrate_vma_prepare(args);
2775        if (args->cpages)
2776                migrate_vma_unmap(args);
2777
2778        /*
2779         * At this point pages are locked and unmapped, and thus they have
2780         * stable content and can safely be copied to destination memory that
2781         * is allocated by the drivers.
2782         */
2783        return 0;
2784
2785}
2786EXPORT_SYMBOL(migrate_vma_setup);
2787
2788/*
2789 * This code closely matches the code in:
2790 *   __handle_mm_fault()
2791 *     handle_pte_fault()
2792 *       do_anonymous_page()
2793 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2794 * private page.
2795 */
2796static void migrate_vma_insert_page(struct migrate_vma *migrate,
2797                                    unsigned long addr,
2798                                    struct page *page,
2799                                    unsigned long *src)
2800{
2801        struct vm_area_struct *vma = migrate->vma;
2802        struct mm_struct *mm = vma->vm_mm;
2803        bool flush = false;
2804        spinlock_t *ptl;
2805        pte_t entry;
2806        pgd_t *pgdp;
2807        p4d_t *p4dp;
2808        pud_t *pudp;
2809        pmd_t *pmdp;
2810        pte_t *ptep;
2811
2812        /* Only allow populating anonymous memory */
2813        if (!vma_is_anonymous(vma))
2814                goto abort;
2815
2816        pgdp = pgd_offset(mm, addr);
2817        p4dp = p4d_alloc(mm, pgdp, addr);
2818        if (!p4dp)
2819                goto abort;
2820        pudp = pud_alloc(mm, p4dp, addr);
2821        if (!pudp)
2822                goto abort;
2823        pmdp = pmd_alloc(mm, pudp, addr);
2824        if (!pmdp)
2825                goto abort;
2826
2827        if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2828                goto abort;
2829
2830        /*
2831         * Use pte_alloc() instead of pte_alloc_map().  We can't run
2832         * pte_offset_map() on pmds where a huge pmd might be created
2833         * from a different thread.
2834         *
2835         * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2836         * parallel threads are excluded by other means.
2837         *
2838         * Here we only have mmap_read_lock(mm).
2839         */
2840        if (pte_alloc(mm, pmdp))
2841                goto abort;
2842
2843        /* See the comment in pte_alloc_one_map() */
2844        if (unlikely(pmd_trans_unstable(pmdp)))
2845                goto abort;
2846
2847        if (unlikely(anon_vma_prepare(vma)))
2848                goto abort;
2849        if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2850                goto abort;
2851
2852        /*
2853         * The memory barrier inside __SetPageUptodate makes sure that
2854         * preceding stores to the page contents become visible before
2855         * the set_pte_at() write.
2856         */
2857        __SetPageUptodate(page);
2858
2859        if (is_zone_device_page(page)) {
2860                if (is_device_private_page(page)) {
2861                        swp_entry_t swp_entry;
2862
2863                        if (vma->vm_flags & VM_WRITE)
2864                                swp_entry = make_writable_device_private_entry(
2865                                                        page_to_pfn(page));
2866                        else
2867                                swp_entry = make_readable_device_private_entry(
2868                                                        page_to_pfn(page));
2869                        entry = swp_entry_to_pte(swp_entry);
2870                } else {
2871                        /*
2872                         * For now we only support migrating to un-addressable
2873                         * device memory.
2874                         */
2875                        pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2876                        goto abort;
2877                }
2878        } else {
2879                entry = mk_pte(page, vma->vm_page_prot);
2880                if (vma->vm_flags & VM_WRITE)
2881                        entry = pte_mkwrite(pte_mkdirty(entry));
2882        }
2883
2884        ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2885
2886        if (check_stable_address_space(mm))
2887                goto unlock_abort;
2888
2889        if (pte_present(*ptep)) {
2890                unsigned long pfn = pte_pfn(*ptep);
2891
2892                if (!is_zero_pfn(pfn))
2893                        goto unlock_abort;
2894                flush = true;
2895        } else if (!pte_none(*ptep))
2896                goto unlock_abort;
2897
2898        /*
2899         * Check for userfaultfd but do not deliver the fault. Instead,
2900         * just back off.
2901         */
2902        if (userfaultfd_missing(vma))
2903                goto unlock_abort;
2904
2905        inc_mm_counter(mm, MM_ANONPAGES);
2906        page_add_new_anon_rmap(page, vma, addr, false);
2907        if (!is_zone_device_page(page))
2908                lru_cache_add_inactive_or_unevictable(page, vma);
2909        get_page(page);
2910
2911        if (flush) {
2912                flush_cache_page(vma, addr, pte_pfn(*ptep));
2913                ptep_clear_flush_notify(vma, addr, ptep);
2914                set_pte_at_notify(mm, addr, ptep, entry);
2915                update_mmu_cache(vma, addr, ptep);
2916        } else {
2917                /* No need to invalidate - it was non-present before */
2918                set_pte_at(mm, addr, ptep, entry);
2919                update_mmu_cache(vma, addr, ptep);
2920        }
2921
2922        pte_unmap_unlock(ptep, ptl);
2923        *src = MIGRATE_PFN_MIGRATE;
2924        return;
2925
2926unlock_abort:
2927        pte_unmap_unlock(ptep, ptl);
2928abort:
2929        *src &= ~MIGRATE_PFN_MIGRATE;
2930}
2931
2932/**
2933 * migrate_vma_pages() - migrate meta-data from src page to dst page
2934 * @migrate: migrate struct containing all migration information
2935 *
2936 * This migrates struct page meta-data from source struct page to destination
2937 * struct page. This effectively finishes the migration from source page to the
2938 * destination page.
2939 */
2940void migrate_vma_pages(struct migrate_vma *migrate)
2941{
2942        const unsigned long npages = migrate->npages;
2943        const unsigned long start = migrate->start;
2944        struct mmu_notifier_range range;
2945        unsigned long addr, i;
2946        bool notified = false;
2947
2948        for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2949                struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2950                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2951                struct address_space *mapping;
2952                int r;
2953
2954                if (!newpage) {
2955                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2956                        continue;
2957                }
2958
2959                if (!page) {
2960                        if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2961                                continue;
2962                        if (!notified) {
2963                                notified = true;
2964
2965                                mmu_notifier_range_init_owner(&range,
2966                                        MMU_NOTIFY_MIGRATE, 0, migrate->vma,
2967                                        migrate->vma->vm_mm, addr, migrate->end,
2968                                        migrate->pgmap_owner);
2969                                mmu_notifier_invalidate_range_start(&range);
2970                        }
2971                        migrate_vma_insert_page(migrate, addr, newpage,
2972                                                &migrate->src[i]);
2973                        continue;
2974                }
2975
2976                mapping = page_mapping(page);
2977
2978                if (is_zone_device_page(newpage)) {
2979                        if (is_device_private_page(newpage)) {
2980                                /*
2981                                 * For now only support private anonymous when
2982                                 * migrating to un-addressable device memory.
2983                                 */
2984                                if (mapping) {
2985                                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2986                                        continue;
2987                                }
2988                        } else {
2989                                /*
2990                                 * Other types of ZONE_DEVICE page are not
2991                                 * supported.
2992                                 */
2993                                migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2994                                continue;
2995                        }
2996                }
2997
2998                r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2999                if (r != MIGRATEPAGE_SUCCESS)
3000                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3001        }
3002
3003        /*
3004         * No need to double call mmu_notifier->invalidate_range() callback as
3005         * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3006         * did already call it.
3007         */
3008        if (notified)
3009                mmu_notifier_invalidate_range_only_end(&range);
3010}
3011EXPORT_SYMBOL(migrate_vma_pages);
3012
3013/**
3014 * migrate_vma_finalize() - restore CPU page table entry
3015 * @migrate: migrate struct containing all migration information
3016 *
3017 * This replaces the special migration pte entry with either a mapping to the
3018 * new page if migration was successful for that page, or to the original page
3019 * otherwise.
3020 *
3021 * This also unlocks the pages and puts them back on the lru, or drops the extra
3022 * refcount, for device pages.
3023 */
3024void migrate_vma_finalize(struct migrate_vma *migrate)
3025{
3026        const unsigned long npages = migrate->npages;
3027        unsigned long i;
3028
3029        for (i = 0; i < npages; i++) {
3030                struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3031                struct page *page = migrate_pfn_to_page(migrate->src[i]);
3032
3033                if (!page) {
3034                        if (newpage) {
3035                                unlock_page(newpage);
3036                                put_page(newpage);
3037                        }
3038                        continue;
3039                }
3040
3041                if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3042                        if (newpage) {
3043                                unlock_page(newpage);
3044                                put_page(newpage);
3045                        }
3046                        newpage = page;
3047                }
3048
3049                remove_migration_ptes(page, newpage, false);
3050                unlock_page(page);
3051
3052                if (is_zone_device_page(page))
3053                        put_page(page);
3054                else
3055                        putback_lru_page(page);
3056
3057                if (newpage != page) {
3058                        unlock_page(newpage);
3059                        if (is_zone_device_page(newpage))
3060                                put_page(newpage);
3061                        else
3062                                putback_lru_page(newpage);
3063                }
3064        }
3065}
3066EXPORT_SYMBOL(migrate_vma_finalize);
3067#endif /* CONFIG_DEVICE_PRIVATE */
3068
3069#if defined(CONFIG_HOTPLUG_CPU)
3070/* Disable reclaim-based migration. */
3071static void __disable_all_migrate_targets(void)
3072{
3073        int node;
3074
3075        for_each_online_node(node)
3076                node_demotion[node] = NUMA_NO_NODE;
3077}
3078
3079static void disable_all_migrate_targets(void)
3080{
3081        __disable_all_migrate_targets();
3082
3083        /*
3084         * Ensure that the "disable" is visible across the system.
3085         * Readers will see either a combination of before+disable
3086         * state or disable+after.  They will never see before and
3087         * after state together.
3088         *
3089         * The before+after state together might have cycles and
3090         * could cause readers to do things like loop until this
3091         * function finishes.  This ensures they can only see a
3092         * single "bad" read and would, for instance, only loop
3093         * once.
3094         */
3095        synchronize_rcu();
3096}
3097
3098/*
3099 * Find an automatic demotion target for 'node'.
3100 * Failing here is OK.  It might just indicate
3101 * being at the end of a chain.
3102 */
3103static int establish_migrate_target(int node, nodemask_t *used)
3104{
3105        int migration_target;
3106
3107        /*
3108         * Can not set a migration target on a
3109         * node with it already set.
3110         *
3111         * No need for READ_ONCE() here since this
3112         * in the write path for node_demotion[].
3113         * This should be the only thread writing.
3114         */
3115        if (node_demotion[node] != NUMA_NO_NODE)
3116                return NUMA_NO_NODE;
3117
3118        migration_target = find_next_best_node(node, used);
3119        if (migration_target == NUMA_NO_NODE)
3120                return NUMA_NO_NODE;
3121
3122        node_demotion[node] = migration_target;
3123
3124        return migration_target;
3125}
3126
3127/*
3128 * When memory fills up on a node, memory contents can be
3129 * automatically migrated to another node instead of
3130 * discarded at reclaim.
3131 *
3132 * Establish a "migration path" which will start at nodes
3133 * with CPUs and will follow the priorities used to build the
3134 * page allocator zonelists.
3135 *
3136 * The difference here is that cycles must be avoided.  If
3137 * node0 migrates to node1, then neither node1, nor anything
3138 * node1 migrates to can migrate to node0.
3139 *
3140 * This function can run simultaneously with readers of
3141 * node_demotion[].  However, it can not run simultaneously
3142 * with itself.  Exclusion is provided by memory hotplug events
3143 * being single-threaded.
3144 */
3145static void __set_migration_target_nodes(void)
3146{
3147        nodemask_t next_pass    = NODE_MASK_NONE;
3148        nodemask_t this_pass    = NODE_MASK_NONE;
3149        nodemask_t used_targets = NODE_MASK_NONE;
3150        int node;
3151
3152        /*
3153         * Avoid any oddities like cycles that could occur
3154         * from changes in the topology.  This will leave
3155         * a momentary gap when migration is disabled.
3156         */
3157        disable_all_migrate_targets();
3158
3159        /*
3160         * Allocations go close to CPUs, first.  Assume that
3161         * the migration path starts at the nodes with CPUs.
3162         */
3163        next_pass = node_states[N_CPU];
3164again:
3165        this_pass = next_pass;
3166        next_pass = NODE_MASK_NONE;
3167        /*
3168         * To avoid cycles in the migration "graph", ensure
3169         * that migration sources are not future targets by
3170         * setting them in 'used_targets'.  Do this only
3171         * once per pass so that multiple source nodes can
3172         * share a target node.
3173         *
3174         * 'used_targets' will become unavailable in future
3175         * passes.  This limits some opportunities for
3176         * multiple source nodes to share a destination.
3177         */
3178        nodes_or(used_targets, used_targets, this_pass);
3179        for_each_node_mask(node, this_pass) {
3180                int target_node = establish_migrate_target(node, &used_targets);
3181
3182                if (target_node == NUMA_NO_NODE)
3183                        continue;
3184
3185                /*
3186                 * Visit targets from this pass in the next pass.
3187                 * Eventually, every node will have been part of
3188                 * a pass, and will become set in 'used_targets'.
3189                 */
3190                node_set(target_node, next_pass);
3191        }
3192        /*
3193         * 'next_pass' contains nodes which became migration
3194         * targets in this pass.  Make additional passes until
3195         * no more migrations targets are available.
3196         */
3197        if (!nodes_empty(next_pass))
3198                goto again;
3199}
3200
3201/*
3202 * For callers that do not hold get_online_mems() already.
3203 */
3204static void set_migration_target_nodes(void)
3205{
3206        get_online_mems();
3207        __set_migration_target_nodes();
3208        put_online_mems();
3209}
3210
3211/*
3212 * This leaves migrate-on-reclaim transiently disabled between
3213 * the MEM_GOING_OFFLINE and MEM_OFFLINE events.  This runs
3214 * whether reclaim-based migration is enabled or not, which
3215 * ensures that the user can turn reclaim-based migration at
3216 * any time without needing to recalculate migration targets.
3217 *
3218 * These callbacks already hold get_online_mems().  That is why
3219 * __set_migration_target_nodes() can be used as opposed to
3220 * set_migration_target_nodes().
3221 */
3222static int __meminit migrate_on_reclaim_callback(struct notifier_block *self,
3223                                                 unsigned long action, void *_arg)
3224{
3225        struct memory_notify *arg = _arg;
3226
3227        /*
3228         * Only update the node migration order when a node is
3229         * changing status, like online->offline.  This avoids
3230         * the overhead of synchronize_rcu() in most cases.
3231         */
3232        if (arg->status_change_nid < 0)
3233                return notifier_from_errno(0);
3234
3235        switch (action) {
3236        case MEM_GOING_OFFLINE:
3237                /*
3238                 * Make sure there are not transient states where
3239                 * an offline node is a migration target.  This
3240                 * will leave migration disabled until the offline
3241                 * completes and the MEM_OFFLINE case below runs.
3242                 */
3243                disable_all_migrate_targets();
3244                break;
3245        case MEM_OFFLINE:
3246        case MEM_ONLINE:
3247                /*
3248                 * Recalculate the target nodes once the node
3249                 * reaches its final state (online or offline).
3250                 */
3251                __set_migration_target_nodes();
3252                break;
3253        case MEM_CANCEL_OFFLINE:
3254                /*
3255                 * MEM_GOING_OFFLINE disabled all the migration
3256                 * targets.  Reenable them.
3257                 */
3258                __set_migration_target_nodes();
3259                break;
3260        case MEM_GOING_ONLINE:
3261        case MEM_CANCEL_ONLINE:
3262                break;
3263        }
3264
3265        return notifier_from_errno(0);
3266}
3267
3268/*
3269 * React to hotplug events that might affect the migration targets
3270 * like events that online or offline NUMA nodes.
3271 *
3272 * The ordering is also currently dependent on which nodes have
3273 * CPUs.  That means we need CPU on/offline notification too.
3274 */
3275static int migration_online_cpu(unsigned int cpu)
3276{
3277        set_migration_target_nodes();
3278        return 0;
3279}
3280
3281static int migration_offline_cpu(unsigned int cpu)
3282{
3283        set_migration_target_nodes();
3284        return 0;
3285}
3286
3287static int __init migrate_on_reclaim_init(void)
3288{
3289        int ret;
3290
3291        ret = cpuhp_setup_state_nocalls(CPUHP_MM_DEMOTION_DEAD, "mm/demotion:offline",
3292                                        NULL, migration_offline_cpu);
3293        /*
3294         * In the unlikely case that this fails, the automatic
3295         * migration targets may become suboptimal for nodes
3296         * where N_CPU changes.  With such a small impact in a
3297         * rare case, do not bother trying to do anything special.
3298         */
3299        WARN_ON(ret < 0);
3300        ret = cpuhp_setup_state(CPUHP_AP_MM_DEMOTION_ONLINE, "mm/demotion:online",
3301                                migration_online_cpu, NULL);
3302        WARN_ON(ret < 0);
3303
3304        hotplug_memory_notifier(migrate_on_reclaim_callback, 100);
3305        return 0;
3306}
3307late_initcall(migrate_on_reclaim_init);
3308#endif /* CONFIG_HOTPLUG_CPU */
3309