linux/mm/oom_kill.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/oom_kill.c
   4 * 
   5 *  Copyright (C)  1998,2000  Rik van Riel
   6 *      Thanks go out to Claus Fischer for some serious inspiration and
   7 *      for goading me into coding this file...
   8 *  Copyright (C)  2010  Google, Inc.
   9 *      Rewritten by David Rientjes
  10 *
  11 *  The routines in this file are used to kill a process when
  12 *  we're seriously out of memory. This gets called from __alloc_pages()
  13 *  in mm/page_alloc.c when we really run out of memory.
  14 *
  15 *  Since we won't call these routines often (on a well-configured
  16 *  machine) this file will double as a 'coding guide' and a signpost
  17 *  for newbie kernel hackers. It features several pointers to major
  18 *  kernel subsystems and hints as to where to find out what things do.
  19 */
  20
  21#include <linux/oom.h>
  22#include <linux/mm.h>
  23#include <linux/err.h>
  24#include <linux/gfp.h>
  25#include <linux/sched.h>
  26#include <linux/sched/mm.h>
  27#include <linux/sched/coredump.h>
  28#include <linux/sched/task.h>
  29#include <linux/sched/debug.h>
  30#include <linux/swap.h>
  31#include <linux/syscalls.h>
  32#include <linux/timex.h>
  33#include <linux/jiffies.h>
  34#include <linux/cpuset.h>
  35#include <linux/export.h>
  36#include <linux/notifier.h>
  37#include <linux/memcontrol.h>
  38#include <linux/mempolicy.h>
  39#include <linux/security.h>
  40#include <linux/ptrace.h>
  41#include <linux/freezer.h>
  42#include <linux/ftrace.h>
  43#include <linux/ratelimit.h>
  44#include <linux/kthread.h>
  45#include <linux/init.h>
  46#include <linux/mmu_notifier.h>
  47
  48#include <asm/tlb.h>
  49#include "internal.h"
  50#include "slab.h"
  51
  52#define CREATE_TRACE_POINTS
  53#include <trace/events/oom.h>
  54
  55int sysctl_panic_on_oom;
  56int sysctl_oom_kill_allocating_task;
  57int sysctl_oom_dump_tasks = 1;
  58
  59/*
  60 * Serializes oom killer invocations (out_of_memory()) from all contexts to
  61 * prevent from over eager oom killing (e.g. when the oom killer is invoked
  62 * from different domains).
  63 *
  64 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
  65 * and mark_oom_victim
  66 */
  67DEFINE_MUTEX(oom_lock);
  68/* Serializes oom_score_adj and oom_score_adj_min updates */
  69DEFINE_MUTEX(oom_adj_mutex);
  70
  71static inline bool is_memcg_oom(struct oom_control *oc)
  72{
  73        return oc->memcg != NULL;
  74}
  75
  76#ifdef CONFIG_NUMA
  77/**
  78 * oom_cpuset_eligible() - check task eligibility for kill
  79 * @start: task struct of which task to consider
  80 * @oc: pointer to struct oom_control
  81 *
  82 * Task eligibility is determined by whether or not a candidate task, @tsk,
  83 * shares the same mempolicy nodes as current if it is bound by such a policy
  84 * and whether or not it has the same set of allowed cpuset nodes.
  85 *
  86 * This function is assuming oom-killer context and 'current' has triggered
  87 * the oom-killer.
  88 */
  89static bool oom_cpuset_eligible(struct task_struct *start,
  90                                struct oom_control *oc)
  91{
  92        struct task_struct *tsk;
  93        bool ret = false;
  94        const nodemask_t *mask = oc->nodemask;
  95
  96        if (is_memcg_oom(oc))
  97                return true;
  98
  99        rcu_read_lock();
 100        for_each_thread(start, tsk) {
 101                if (mask) {
 102                        /*
 103                         * If this is a mempolicy constrained oom, tsk's
 104                         * cpuset is irrelevant.  Only return true if its
 105                         * mempolicy intersects current, otherwise it may be
 106                         * needlessly killed.
 107                         */
 108                        ret = mempolicy_in_oom_domain(tsk, mask);
 109                } else {
 110                        /*
 111                         * This is not a mempolicy constrained oom, so only
 112                         * check the mems of tsk's cpuset.
 113                         */
 114                        ret = cpuset_mems_allowed_intersects(current, tsk);
 115                }
 116                if (ret)
 117                        break;
 118        }
 119        rcu_read_unlock();
 120
 121        return ret;
 122}
 123#else
 124static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
 125{
 126        return true;
 127}
 128#endif /* CONFIG_NUMA */
 129
 130/*
 131 * The process p may have detached its own ->mm while exiting or through
 132 * kthread_use_mm(), but one or more of its subthreads may still have a valid
 133 * pointer.  Return p, or any of its subthreads with a valid ->mm, with
 134 * task_lock() held.
 135 */
 136struct task_struct *find_lock_task_mm(struct task_struct *p)
 137{
 138        struct task_struct *t;
 139
 140        rcu_read_lock();
 141
 142        for_each_thread(p, t) {
 143                task_lock(t);
 144                if (likely(t->mm))
 145                        goto found;
 146                task_unlock(t);
 147        }
 148        t = NULL;
 149found:
 150        rcu_read_unlock();
 151
 152        return t;
 153}
 154
 155/*
 156 * order == -1 means the oom kill is required by sysrq, otherwise only
 157 * for display purposes.
 158 */
 159static inline bool is_sysrq_oom(struct oom_control *oc)
 160{
 161        return oc->order == -1;
 162}
 163
 164/* return true if the task is not adequate as candidate victim task. */
 165static bool oom_unkillable_task(struct task_struct *p)
 166{
 167        if (is_global_init(p))
 168                return true;
 169        if (p->flags & PF_KTHREAD)
 170                return true;
 171        return false;
 172}
 173
 174/*
 175 * Check whether unreclaimable slab amount is greater than
 176 * all user memory(LRU pages).
 177 * dump_unreclaimable_slab() could help in the case that
 178 * oom due to too much unreclaimable slab used by kernel.
 179*/
 180static bool should_dump_unreclaim_slab(void)
 181{
 182        unsigned long nr_lru;
 183
 184        nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
 185                 global_node_page_state(NR_INACTIVE_ANON) +
 186                 global_node_page_state(NR_ACTIVE_FILE) +
 187                 global_node_page_state(NR_INACTIVE_FILE) +
 188                 global_node_page_state(NR_ISOLATED_ANON) +
 189                 global_node_page_state(NR_ISOLATED_FILE) +
 190                 global_node_page_state(NR_UNEVICTABLE);
 191
 192        return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
 193}
 194
 195/**
 196 * oom_badness - heuristic function to determine which candidate task to kill
 197 * @p: task struct of which task we should calculate
 198 * @totalpages: total present RAM allowed for page allocation
 199 *
 200 * The heuristic for determining which task to kill is made to be as simple and
 201 * predictable as possible.  The goal is to return the highest value for the
 202 * task consuming the most memory to avoid subsequent oom failures.
 203 */
 204long oom_badness(struct task_struct *p, unsigned long totalpages)
 205{
 206        long points;
 207        long adj;
 208
 209        if (oom_unkillable_task(p))
 210                return LONG_MIN;
 211
 212        p = find_lock_task_mm(p);
 213        if (!p)
 214                return LONG_MIN;
 215
 216        /*
 217         * Do not even consider tasks which are explicitly marked oom
 218         * unkillable or have been already oom reaped or the are in
 219         * the middle of vfork
 220         */
 221        adj = (long)p->signal->oom_score_adj;
 222        if (adj == OOM_SCORE_ADJ_MIN ||
 223                        test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
 224                        in_vfork(p)) {
 225                task_unlock(p);
 226                return LONG_MIN;
 227        }
 228
 229        /*
 230         * The baseline for the badness score is the proportion of RAM that each
 231         * task's rss, pagetable and swap space use.
 232         */
 233        points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
 234                mm_pgtables_bytes(p->mm) / PAGE_SIZE;
 235        task_unlock(p);
 236
 237        /* Normalize to oom_score_adj units */
 238        adj *= totalpages / 1000;
 239        points += adj;
 240
 241        return points;
 242}
 243
 244static const char * const oom_constraint_text[] = {
 245        [CONSTRAINT_NONE] = "CONSTRAINT_NONE",
 246        [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
 247        [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
 248        [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
 249};
 250
 251/*
 252 * Determine the type of allocation constraint.
 253 */
 254static enum oom_constraint constrained_alloc(struct oom_control *oc)
 255{
 256        struct zone *zone;
 257        struct zoneref *z;
 258        enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
 259        bool cpuset_limited = false;
 260        int nid;
 261
 262        if (is_memcg_oom(oc)) {
 263                oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
 264                return CONSTRAINT_MEMCG;
 265        }
 266
 267        /* Default to all available memory */
 268        oc->totalpages = totalram_pages() + total_swap_pages;
 269
 270        if (!IS_ENABLED(CONFIG_NUMA))
 271                return CONSTRAINT_NONE;
 272
 273        if (!oc->zonelist)
 274                return CONSTRAINT_NONE;
 275        /*
 276         * Reach here only when __GFP_NOFAIL is used. So, we should avoid
 277         * to kill current.We have to random task kill in this case.
 278         * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
 279         */
 280        if (oc->gfp_mask & __GFP_THISNODE)
 281                return CONSTRAINT_NONE;
 282
 283        /*
 284         * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
 285         * the page allocator means a mempolicy is in effect.  Cpuset policy
 286         * is enforced in get_page_from_freelist().
 287         */
 288        if (oc->nodemask &&
 289            !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
 290                oc->totalpages = total_swap_pages;
 291                for_each_node_mask(nid, *oc->nodemask)
 292                        oc->totalpages += node_present_pages(nid);
 293                return CONSTRAINT_MEMORY_POLICY;
 294        }
 295
 296        /* Check this allocation failure is caused by cpuset's wall function */
 297        for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
 298                        highest_zoneidx, oc->nodemask)
 299                if (!cpuset_zone_allowed(zone, oc->gfp_mask))
 300                        cpuset_limited = true;
 301
 302        if (cpuset_limited) {
 303                oc->totalpages = total_swap_pages;
 304                for_each_node_mask(nid, cpuset_current_mems_allowed)
 305                        oc->totalpages += node_present_pages(nid);
 306                return CONSTRAINT_CPUSET;
 307        }
 308        return CONSTRAINT_NONE;
 309}
 310
 311static int oom_evaluate_task(struct task_struct *task, void *arg)
 312{
 313        struct oom_control *oc = arg;
 314        long points;
 315
 316        if (oom_unkillable_task(task))
 317                goto next;
 318
 319        /* p may not have freeable memory in nodemask */
 320        if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
 321                goto next;
 322
 323        /*
 324         * This task already has access to memory reserves and is being killed.
 325         * Don't allow any other task to have access to the reserves unless
 326         * the task has MMF_OOM_SKIP because chances that it would release
 327         * any memory is quite low.
 328         */
 329        if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
 330                if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
 331                        goto next;
 332                goto abort;
 333        }
 334
 335        /*
 336         * If task is allocating a lot of memory and has been marked to be
 337         * killed first if it triggers an oom, then select it.
 338         */
 339        if (oom_task_origin(task)) {
 340                points = LONG_MAX;
 341                goto select;
 342        }
 343
 344        points = oom_badness(task, oc->totalpages);
 345        if (points == LONG_MIN || points < oc->chosen_points)
 346                goto next;
 347
 348select:
 349        if (oc->chosen)
 350                put_task_struct(oc->chosen);
 351        get_task_struct(task);
 352        oc->chosen = task;
 353        oc->chosen_points = points;
 354next:
 355        return 0;
 356abort:
 357        if (oc->chosen)
 358                put_task_struct(oc->chosen);
 359        oc->chosen = (void *)-1UL;
 360        return 1;
 361}
 362
 363/*
 364 * Simple selection loop. We choose the process with the highest number of
 365 * 'points'. In case scan was aborted, oc->chosen is set to -1.
 366 */
 367static void select_bad_process(struct oom_control *oc)
 368{
 369        oc->chosen_points = LONG_MIN;
 370
 371        if (is_memcg_oom(oc))
 372                mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
 373        else {
 374                struct task_struct *p;
 375
 376                rcu_read_lock();
 377                for_each_process(p)
 378                        if (oom_evaluate_task(p, oc))
 379                                break;
 380                rcu_read_unlock();
 381        }
 382}
 383
 384static int dump_task(struct task_struct *p, void *arg)
 385{
 386        struct oom_control *oc = arg;
 387        struct task_struct *task;
 388
 389        if (oom_unkillable_task(p))
 390                return 0;
 391
 392        /* p may not have freeable memory in nodemask */
 393        if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
 394                return 0;
 395
 396        task = find_lock_task_mm(p);
 397        if (!task) {
 398                /*
 399                 * All of p's threads have already detached their mm's. There's
 400                 * no need to report them; they can't be oom killed anyway.
 401                 */
 402                return 0;
 403        }
 404
 405        pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu         %5hd %s\n",
 406                task->pid, from_kuid(&init_user_ns, task_uid(task)),
 407                task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
 408                mm_pgtables_bytes(task->mm),
 409                get_mm_counter(task->mm, MM_SWAPENTS),
 410                task->signal->oom_score_adj, task->comm);
 411        task_unlock(task);
 412
 413        return 0;
 414}
 415
 416/**
 417 * dump_tasks - dump current memory state of all system tasks
 418 * @oc: pointer to struct oom_control
 419 *
 420 * Dumps the current memory state of all eligible tasks.  Tasks not in the same
 421 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
 422 * are not shown.
 423 * State information includes task's pid, uid, tgid, vm size, rss,
 424 * pgtables_bytes, swapents, oom_score_adj value, and name.
 425 */
 426static void dump_tasks(struct oom_control *oc)
 427{
 428        pr_info("Tasks state (memory values in pages):\n");
 429        pr_info("[  pid  ]   uid  tgid total_vm      rss pgtables_bytes swapents oom_score_adj name\n");
 430
 431        if (is_memcg_oom(oc))
 432                mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
 433        else {
 434                struct task_struct *p;
 435
 436                rcu_read_lock();
 437                for_each_process(p)
 438                        dump_task(p, oc);
 439                rcu_read_unlock();
 440        }
 441}
 442
 443static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim)
 444{
 445        /* one line summary of the oom killer context. */
 446        pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
 447                        oom_constraint_text[oc->constraint],
 448                        nodemask_pr_args(oc->nodemask));
 449        cpuset_print_current_mems_allowed();
 450        mem_cgroup_print_oom_context(oc->memcg, victim);
 451        pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
 452                from_kuid(&init_user_ns, task_uid(victim)));
 453}
 454
 455static void dump_header(struct oom_control *oc, struct task_struct *p)
 456{
 457        pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
 458                current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
 459                        current->signal->oom_score_adj);
 460        if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
 461                pr_warn("COMPACTION is disabled!!!\n");
 462
 463        dump_stack();
 464        if (is_memcg_oom(oc))
 465                mem_cgroup_print_oom_meminfo(oc->memcg);
 466        else {
 467                show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
 468                if (should_dump_unreclaim_slab())
 469                        dump_unreclaimable_slab();
 470        }
 471        if (sysctl_oom_dump_tasks)
 472                dump_tasks(oc);
 473        if (p)
 474                dump_oom_summary(oc, p);
 475}
 476
 477/*
 478 * Number of OOM victims in flight
 479 */
 480static atomic_t oom_victims = ATOMIC_INIT(0);
 481static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
 482
 483static bool oom_killer_disabled __read_mostly;
 484
 485#define K(x) ((x) << (PAGE_SHIFT-10))
 486
 487/*
 488 * task->mm can be NULL if the task is the exited group leader.  So to
 489 * determine whether the task is using a particular mm, we examine all the
 490 * task's threads: if one of those is using this mm then this task was also
 491 * using it.
 492 */
 493bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
 494{
 495        struct task_struct *t;
 496
 497        for_each_thread(p, t) {
 498                struct mm_struct *t_mm = READ_ONCE(t->mm);
 499                if (t_mm)
 500                        return t_mm == mm;
 501        }
 502        return false;
 503}
 504
 505#ifdef CONFIG_MMU
 506/*
 507 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
 508 * victim (if that is possible) to help the OOM killer to move on.
 509 */
 510static struct task_struct *oom_reaper_th;
 511static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
 512static struct task_struct *oom_reaper_list;
 513static DEFINE_SPINLOCK(oom_reaper_lock);
 514
 515bool __oom_reap_task_mm(struct mm_struct *mm)
 516{
 517        struct vm_area_struct *vma;
 518        bool ret = true;
 519
 520        /*
 521         * Tell all users of get_user/copy_from_user etc... that the content
 522         * is no longer stable. No barriers really needed because unmapping
 523         * should imply barriers already and the reader would hit a page fault
 524         * if it stumbled over a reaped memory.
 525         */
 526        set_bit(MMF_UNSTABLE, &mm->flags);
 527
 528        for (vma = mm->mmap ; vma; vma = vma->vm_next) {
 529                if (!can_madv_lru_vma(vma))
 530                        continue;
 531
 532                /*
 533                 * Only anonymous pages have a good chance to be dropped
 534                 * without additional steps which we cannot afford as we
 535                 * are OOM already.
 536                 *
 537                 * We do not even care about fs backed pages because all
 538                 * which are reclaimable have already been reclaimed and
 539                 * we do not want to block exit_mmap by keeping mm ref
 540                 * count elevated without a good reason.
 541                 */
 542                if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
 543                        struct mmu_notifier_range range;
 544                        struct mmu_gather tlb;
 545
 546                        mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
 547                                                vma, mm, vma->vm_start,
 548                                                vma->vm_end);
 549                        tlb_gather_mmu(&tlb, mm);
 550                        if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
 551                                tlb_finish_mmu(&tlb);
 552                                ret = false;
 553                                continue;
 554                        }
 555                        unmap_page_range(&tlb, vma, range.start, range.end, NULL);
 556                        mmu_notifier_invalidate_range_end(&range);
 557                        tlb_finish_mmu(&tlb);
 558                }
 559        }
 560
 561        return ret;
 562}
 563
 564/*
 565 * Reaps the address space of the give task.
 566 *
 567 * Returns true on success and false if none or part of the address space
 568 * has been reclaimed and the caller should retry later.
 569 */
 570static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
 571{
 572        bool ret = true;
 573
 574        if (!mmap_read_trylock(mm)) {
 575                trace_skip_task_reaping(tsk->pid);
 576                return false;
 577        }
 578
 579        /*
 580         * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
 581         * work on the mm anymore. The check for MMF_OOM_SKIP must run
 582         * under mmap_lock for reading because it serializes against the
 583         * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
 584         */
 585        if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
 586                trace_skip_task_reaping(tsk->pid);
 587                goto out_unlock;
 588        }
 589
 590        trace_start_task_reaping(tsk->pid);
 591
 592        /* failed to reap part of the address space. Try again later */
 593        ret = __oom_reap_task_mm(mm);
 594        if (!ret)
 595                goto out_finish;
 596
 597        pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
 598                        task_pid_nr(tsk), tsk->comm,
 599                        K(get_mm_counter(mm, MM_ANONPAGES)),
 600                        K(get_mm_counter(mm, MM_FILEPAGES)),
 601                        K(get_mm_counter(mm, MM_SHMEMPAGES)));
 602out_finish:
 603        trace_finish_task_reaping(tsk->pid);
 604out_unlock:
 605        mmap_read_unlock(mm);
 606
 607        return ret;
 608}
 609
 610#define MAX_OOM_REAP_RETRIES 10
 611static void oom_reap_task(struct task_struct *tsk)
 612{
 613        int attempts = 0;
 614        struct mm_struct *mm = tsk->signal->oom_mm;
 615
 616        /* Retry the mmap_read_trylock(mm) a few times */
 617        while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
 618                schedule_timeout_idle(HZ/10);
 619
 620        if (attempts <= MAX_OOM_REAP_RETRIES ||
 621            test_bit(MMF_OOM_SKIP, &mm->flags))
 622                goto done;
 623
 624        pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
 625                task_pid_nr(tsk), tsk->comm);
 626        sched_show_task(tsk);
 627        debug_show_all_locks();
 628
 629done:
 630        tsk->oom_reaper_list = NULL;
 631
 632        /*
 633         * Hide this mm from OOM killer because it has been either reaped or
 634         * somebody can't call mmap_write_unlock(mm).
 635         */
 636        set_bit(MMF_OOM_SKIP, &mm->flags);
 637
 638        /* Drop a reference taken by wake_oom_reaper */
 639        put_task_struct(tsk);
 640}
 641
 642static int oom_reaper(void *unused)
 643{
 644        while (true) {
 645                struct task_struct *tsk = NULL;
 646
 647                wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
 648                spin_lock(&oom_reaper_lock);
 649                if (oom_reaper_list != NULL) {
 650                        tsk = oom_reaper_list;
 651                        oom_reaper_list = tsk->oom_reaper_list;
 652                }
 653                spin_unlock(&oom_reaper_lock);
 654
 655                if (tsk)
 656                        oom_reap_task(tsk);
 657        }
 658
 659        return 0;
 660}
 661
 662static void wake_oom_reaper(struct task_struct *tsk)
 663{
 664        /* mm is already queued? */
 665        if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
 666                return;
 667
 668        get_task_struct(tsk);
 669
 670        spin_lock(&oom_reaper_lock);
 671        tsk->oom_reaper_list = oom_reaper_list;
 672        oom_reaper_list = tsk;
 673        spin_unlock(&oom_reaper_lock);
 674        trace_wake_reaper(tsk->pid);
 675        wake_up(&oom_reaper_wait);
 676}
 677
 678static int __init oom_init(void)
 679{
 680        oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
 681        return 0;
 682}
 683subsys_initcall(oom_init)
 684#else
 685static inline void wake_oom_reaper(struct task_struct *tsk)
 686{
 687}
 688#endif /* CONFIG_MMU */
 689
 690/**
 691 * mark_oom_victim - mark the given task as OOM victim
 692 * @tsk: task to mark
 693 *
 694 * Has to be called with oom_lock held and never after
 695 * oom has been disabled already.
 696 *
 697 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
 698 * under task_lock or operate on the current).
 699 */
 700static void mark_oom_victim(struct task_struct *tsk)
 701{
 702        struct mm_struct *mm = tsk->mm;
 703
 704        WARN_ON(oom_killer_disabled);
 705        /* OOM killer might race with memcg OOM */
 706        if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
 707                return;
 708
 709        /* oom_mm is bound to the signal struct life time. */
 710        if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
 711                mmgrab(tsk->signal->oom_mm);
 712                set_bit(MMF_OOM_VICTIM, &mm->flags);
 713        }
 714
 715        /*
 716         * Make sure that the task is woken up from uninterruptible sleep
 717         * if it is frozen because OOM killer wouldn't be able to free
 718         * any memory and livelock. freezing_slow_path will tell the freezer
 719         * that TIF_MEMDIE tasks should be ignored.
 720         */
 721        __thaw_task(tsk);
 722        atomic_inc(&oom_victims);
 723        trace_mark_victim(tsk->pid);
 724}
 725
 726/**
 727 * exit_oom_victim - note the exit of an OOM victim
 728 */
 729void exit_oom_victim(void)
 730{
 731        clear_thread_flag(TIF_MEMDIE);
 732
 733        if (!atomic_dec_return(&oom_victims))
 734                wake_up_all(&oom_victims_wait);
 735}
 736
 737/**
 738 * oom_killer_enable - enable OOM killer
 739 */
 740void oom_killer_enable(void)
 741{
 742        oom_killer_disabled = false;
 743        pr_info("OOM killer enabled.\n");
 744}
 745
 746/**
 747 * oom_killer_disable - disable OOM killer
 748 * @timeout: maximum timeout to wait for oom victims in jiffies
 749 *
 750 * Forces all page allocations to fail rather than trigger OOM killer.
 751 * Will block and wait until all OOM victims are killed or the given
 752 * timeout expires.
 753 *
 754 * The function cannot be called when there are runnable user tasks because
 755 * the userspace would see unexpected allocation failures as a result. Any
 756 * new usage of this function should be consulted with MM people.
 757 *
 758 * Returns true if successful and false if the OOM killer cannot be
 759 * disabled.
 760 */
 761bool oom_killer_disable(signed long timeout)
 762{
 763        signed long ret;
 764
 765        /*
 766         * Make sure to not race with an ongoing OOM killer. Check that the
 767         * current is not killed (possibly due to sharing the victim's memory).
 768         */
 769        if (mutex_lock_killable(&oom_lock))
 770                return false;
 771        oom_killer_disabled = true;
 772        mutex_unlock(&oom_lock);
 773
 774        ret = wait_event_interruptible_timeout(oom_victims_wait,
 775                        !atomic_read(&oom_victims), timeout);
 776        if (ret <= 0) {
 777                oom_killer_enable();
 778                return false;
 779        }
 780        pr_info("OOM killer disabled.\n");
 781
 782        return true;
 783}
 784
 785static inline bool __task_will_free_mem(struct task_struct *task)
 786{
 787        struct signal_struct *sig = task->signal;
 788
 789        /*
 790         * A coredumping process may sleep for an extended period in exit_mm(),
 791         * so the oom killer cannot assume that the process will promptly exit
 792         * and release memory.
 793         */
 794        if (sig->flags & SIGNAL_GROUP_COREDUMP)
 795                return false;
 796
 797        if (sig->flags & SIGNAL_GROUP_EXIT)
 798                return true;
 799
 800        if (thread_group_empty(task) && (task->flags & PF_EXITING))
 801                return true;
 802
 803        return false;
 804}
 805
 806/*
 807 * Checks whether the given task is dying or exiting and likely to
 808 * release its address space. This means that all threads and processes
 809 * sharing the same mm have to be killed or exiting.
 810 * Caller has to make sure that task->mm is stable (hold task_lock or
 811 * it operates on the current).
 812 */
 813static bool task_will_free_mem(struct task_struct *task)
 814{
 815        struct mm_struct *mm = task->mm;
 816        struct task_struct *p;
 817        bool ret = true;
 818
 819        /*
 820         * Skip tasks without mm because it might have passed its exit_mm and
 821         * exit_oom_victim. oom_reaper could have rescued that but do not rely
 822         * on that for now. We can consider find_lock_task_mm in future.
 823         */
 824        if (!mm)
 825                return false;
 826
 827        if (!__task_will_free_mem(task))
 828                return false;
 829
 830        /*
 831         * This task has already been drained by the oom reaper so there are
 832         * only small chances it will free some more
 833         */
 834        if (test_bit(MMF_OOM_SKIP, &mm->flags))
 835                return false;
 836
 837        if (atomic_read(&mm->mm_users) <= 1)
 838                return true;
 839
 840        /*
 841         * Make sure that all tasks which share the mm with the given tasks
 842         * are dying as well to make sure that a) nobody pins its mm and
 843         * b) the task is also reapable by the oom reaper.
 844         */
 845        rcu_read_lock();
 846        for_each_process(p) {
 847                if (!process_shares_mm(p, mm))
 848                        continue;
 849                if (same_thread_group(task, p))
 850                        continue;
 851                ret = __task_will_free_mem(p);
 852                if (!ret)
 853                        break;
 854        }
 855        rcu_read_unlock();
 856
 857        return ret;
 858}
 859
 860static void __oom_kill_process(struct task_struct *victim, const char *message)
 861{
 862        struct task_struct *p;
 863        struct mm_struct *mm;
 864        bool can_oom_reap = true;
 865
 866        p = find_lock_task_mm(victim);
 867        if (!p) {
 868                pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
 869                        message, task_pid_nr(victim), victim->comm);
 870                put_task_struct(victim);
 871                return;
 872        } else if (victim != p) {
 873                get_task_struct(p);
 874                put_task_struct(victim);
 875                victim = p;
 876        }
 877
 878        /* Get a reference to safely compare mm after task_unlock(victim) */
 879        mm = victim->mm;
 880        mmgrab(mm);
 881
 882        /* Raise event before sending signal: task reaper must see this */
 883        count_vm_event(OOM_KILL);
 884        memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
 885
 886        /*
 887         * We should send SIGKILL before granting access to memory reserves
 888         * in order to prevent the OOM victim from depleting the memory
 889         * reserves from the user space under its control.
 890         */
 891        do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
 892        mark_oom_victim(victim);
 893        pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
 894                message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
 895                K(get_mm_counter(mm, MM_ANONPAGES)),
 896                K(get_mm_counter(mm, MM_FILEPAGES)),
 897                K(get_mm_counter(mm, MM_SHMEMPAGES)),
 898                from_kuid(&init_user_ns, task_uid(victim)),
 899                mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
 900        task_unlock(victim);
 901
 902        /*
 903         * Kill all user processes sharing victim->mm in other thread groups, if
 904         * any.  They don't get access to memory reserves, though, to avoid
 905         * depletion of all memory.  This prevents mm->mmap_lock livelock when an
 906         * oom killed thread cannot exit because it requires the semaphore and
 907         * its contended by another thread trying to allocate memory itself.
 908         * That thread will now get access to memory reserves since it has a
 909         * pending fatal signal.
 910         */
 911        rcu_read_lock();
 912        for_each_process(p) {
 913                if (!process_shares_mm(p, mm))
 914                        continue;
 915                if (same_thread_group(p, victim))
 916                        continue;
 917                if (is_global_init(p)) {
 918                        can_oom_reap = false;
 919                        set_bit(MMF_OOM_SKIP, &mm->flags);
 920                        pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
 921                                        task_pid_nr(victim), victim->comm,
 922                                        task_pid_nr(p), p->comm);
 923                        continue;
 924                }
 925                /*
 926                 * No kthread_use_mm() user needs to read from the userspace so
 927                 * we are ok to reap it.
 928                 */
 929                if (unlikely(p->flags & PF_KTHREAD))
 930                        continue;
 931                do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
 932        }
 933        rcu_read_unlock();
 934
 935        if (can_oom_reap)
 936                wake_oom_reaper(victim);
 937
 938        mmdrop(mm);
 939        put_task_struct(victim);
 940}
 941#undef K
 942
 943/*
 944 * Kill provided task unless it's secured by setting
 945 * oom_score_adj to OOM_SCORE_ADJ_MIN.
 946 */
 947static int oom_kill_memcg_member(struct task_struct *task, void *message)
 948{
 949        if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
 950            !is_global_init(task)) {
 951                get_task_struct(task);
 952                __oom_kill_process(task, message);
 953        }
 954        return 0;
 955}
 956
 957static void oom_kill_process(struct oom_control *oc, const char *message)
 958{
 959        struct task_struct *victim = oc->chosen;
 960        struct mem_cgroup *oom_group;
 961        static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
 962                                              DEFAULT_RATELIMIT_BURST);
 963
 964        /*
 965         * If the task is already exiting, don't alarm the sysadmin or kill
 966         * its children or threads, just give it access to memory reserves
 967         * so it can die quickly
 968         */
 969        task_lock(victim);
 970        if (task_will_free_mem(victim)) {
 971                mark_oom_victim(victim);
 972                wake_oom_reaper(victim);
 973                task_unlock(victim);
 974                put_task_struct(victim);
 975                return;
 976        }
 977        task_unlock(victim);
 978
 979        if (__ratelimit(&oom_rs))
 980                dump_header(oc, victim);
 981
 982        /*
 983         * Do we need to kill the entire memory cgroup?
 984         * Or even one of the ancestor memory cgroups?
 985         * Check this out before killing the victim task.
 986         */
 987        oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
 988
 989        __oom_kill_process(victim, message);
 990
 991        /*
 992         * If necessary, kill all tasks in the selected memory cgroup.
 993         */
 994        if (oom_group) {
 995                mem_cgroup_print_oom_group(oom_group);
 996                mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
 997                                      (void *)message);
 998                mem_cgroup_put(oom_group);
 999        }
1000}
1001
1002/*
1003 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1004 */
1005static void check_panic_on_oom(struct oom_control *oc)
1006{
1007        if (likely(!sysctl_panic_on_oom))
1008                return;
1009        if (sysctl_panic_on_oom != 2) {
1010                /*
1011                 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1012                 * does not panic for cpuset, mempolicy, or memcg allocation
1013                 * failures.
1014                 */
1015                if (oc->constraint != CONSTRAINT_NONE)
1016                        return;
1017        }
1018        /* Do not panic for oom kills triggered by sysrq */
1019        if (is_sysrq_oom(oc))
1020                return;
1021        dump_header(oc, NULL);
1022        panic("Out of memory: %s panic_on_oom is enabled\n",
1023                sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1024}
1025
1026static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1027
1028int register_oom_notifier(struct notifier_block *nb)
1029{
1030        return blocking_notifier_chain_register(&oom_notify_list, nb);
1031}
1032EXPORT_SYMBOL_GPL(register_oom_notifier);
1033
1034int unregister_oom_notifier(struct notifier_block *nb)
1035{
1036        return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1037}
1038EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1039
1040/**
1041 * out_of_memory - kill the "best" process when we run out of memory
1042 * @oc: pointer to struct oom_control
1043 *
1044 * If we run out of memory, we have the choice between either
1045 * killing a random task (bad), letting the system crash (worse)
1046 * OR try to be smart about which process to kill. Note that we
1047 * don't have to be perfect here, we just have to be good.
1048 */
1049bool out_of_memory(struct oom_control *oc)
1050{
1051        unsigned long freed = 0;
1052
1053        if (oom_killer_disabled)
1054                return false;
1055
1056        if (!is_memcg_oom(oc)) {
1057                blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1058                if (freed > 0)
1059                        /* Got some memory back in the last second. */
1060                        return true;
1061        }
1062
1063        /*
1064         * If current has a pending SIGKILL or is exiting, then automatically
1065         * select it.  The goal is to allow it to allocate so that it may
1066         * quickly exit and free its memory.
1067         */
1068        if (task_will_free_mem(current)) {
1069                mark_oom_victim(current);
1070                wake_oom_reaper(current);
1071                return true;
1072        }
1073
1074        /*
1075         * The OOM killer does not compensate for IO-less reclaim.
1076         * pagefault_out_of_memory lost its gfp context so we have to
1077         * make sure exclude 0 mask - all other users should have at least
1078         * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to
1079         * invoke the OOM killer even if it is a GFP_NOFS allocation.
1080         */
1081        if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1082                return true;
1083
1084        /*
1085         * Check if there were limitations on the allocation (only relevant for
1086         * NUMA and memcg) that may require different handling.
1087         */
1088        oc->constraint = constrained_alloc(oc);
1089        if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1090                oc->nodemask = NULL;
1091        check_panic_on_oom(oc);
1092
1093        if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1094            current->mm && !oom_unkillable_task(current) &&
1095            oom_cpuset_eligible(current, oc) &&
1096            current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1097                get_task_struct(current);
1098                oc->chosen = current;
1099                oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1100                return true;
1101        }
1102
1103        select_bad_process(oc);
1104        /* Found nothing?!?! */
1105        if (!oc->chosen) {
1106                dump_header(oc, NULL);
1107                pr_warn("Out of memory and no killable processes...\n");
1108                /*
1109                 * If we got here due to an actual allocation at the
1110                 * system level, we cannot survive this and will enter
1111                 * an endless loop in the allocator. Bail out now.
1112                 */
1113                if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1114                        panic("System is deadlocked on memory\n");
1115        }
1116        if (oc->chosen && oc->chosen != (void *)-1UL)
1117                oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1118                                 "Memory cgroup out of memory");
1119        return !!oc->chosen;
1120}
1121
1122/*
1123 * The pagefault handler calls here because it is out of memory, so kill a
1124 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1125 * killing is already in progress so do nothing.
1126 */
1127void pagefault_out_of_memory(void)
1128{
1129        struct oom_control oc = {
1130                .zonelist = NULL,
1131                .nodemask = NULL,
1132                .memcg = NULL,
1133                .gfp_mask = 0,
1134                .order = 0,
1135        };
1136
1137        if (mem_cgroup_oom_synchronize(true))
1138                return;
1139
1140        if (!mutex_trylock(&oom_lock))
1141                return;
1142        out_of_memory(&oc);
1143        mutex_unlock(&oom_lock);
1144}
1145
1146SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags)
1147{
1148#ifdef CONFIG_MMU
1149        struct mm_struct *mm = NULL;
1150        struct task_struct *task;
1151        struct task_struct *p;
1152        unsigned int f_flags;
1153        bool reap = false;
1154        struct pid *pid;
1155        long ret = 0;
1156
1157        if (flags)
1158                return -EINVAL;
1159
1160        pid = pidfd_get_pid(pidfd, &f_flags);
1161        if (IS_ERR(pid))
1162                return PTR_ERR(pid);
1163
1164        task = get_pid_task(pid, PIDTYPE_TGID);
1165        if (!task) {
1166                ret = -ESRCH;
1167                goto put_pid;
1168        }
1169
1170        /*
1171         * Make sure to choose a thread which still has a reference to mm
1172         * during the group exit
1173         */
1174        p = find_lock_task_mm(task);
1175        if (!p) {
1176                ret = -ESRCH;
1177                goto put_task;
1178        }
1179
1180        if (mmget_not_zero(p->mm)) {
1181                mm = p->mm;
1182                if (task_will_free_mem(p))
1183                        reap = true;
1184                else {
1185                        /* Error only if the work has not been done already */
1186                        if (!test_bit(MMF_OOM_SKIP, &mm->flags))
1187                                ret = -EINVAL;
1188                }
1189        }
1190        task_unlock(p);
1191
1192        if (!reap)
1193                goto drop_mm;
1194
1195        if (mmap_read_lock_killable(mm)) {
1196                ret = -EINTR;
1197                goto drop_mm;
1198        }
1199        if (!__oom_reap_task_mm(mm))
1200                ret = -EAGAIN;
1201        mmap_read_unlock(mm);
1202
1203drop_mm:
1204        if (mm)
1205                mmput(mm);
1206put_task:
1207        put_task_struct(task);
1208put_pid:
1209        put_pid(pid);
1210        return ret;
1211#else
1212        return -ENOSYS;
1213#endif /* CONFIG_MMU */
1214}
1215