linux/mm/page-writeback.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/page-writeback.c
   4 *
   5 * Copyright (C) 2002, Linus Torvalds.
   6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
   7 *
   8 * Contains functions related to writing back dirty pages at the
   9 * address_space level.
  10 *
  11 * 10Apr2002    Andrew Morton
  12 *              Initial version
  13 */
  14
  15#include <linux/kernel.h>
  16#include <linux/export.h>
  17#include <linux/spinlock.h>
  18#include <linux/fs.h>
  19#include <linux/mm.h>
  20#include <linux/swap.h>
  21#include <linux/slab.h>
  22#include <linux/pagemap.h>
  23#include <linux/writeback.h>
  24#include <linux/init.h>
  25#include <linux/backing-dev.h>
  26#include <linux/task_io_accounting_ops.h>
  27#include <linux/blkdev.h>
  28#include <linux/mpage.h>
  29#include <linux/rmap.h>
  30#include <linux/percpu.h>
  31#include <linux/smp.h>
  32#include <linux/sysctl.h>
  33#include <linux/cpu.h>
  34#include <linux/syscalls.h>
  35#include <linux/pagevec.h>
  36#include <linux/timer.h>
  37#include <linux/sched/rt.h>
  38#include <linux/sched/signal.h>
  39#include <linux/mm_inline.h>
  40#include <trace/events/writeback.h>
  41
  42#include "internal.h"
  43
  44/*
  45 * Sleep at most 200ms at a time in balance_dirty_pages().
  46 */
  47#define MAX_PAUSE               max(HZ/5, 1)
  48
  49/*
  50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
  51 * by raising pause time to max_pause when falls below it.
  52 */
  53#define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
  54
  55/*
  56 * Estimate write bandwidth at 200ms intervals.
  57 */
  58#define BANDWIDTH_INTERVAL      max(HZ/5, 1)
  59
  60#define RATELIMIT_CALC_SHIFT    10
  61
  62/*
  63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  64 * will look to see if it needs to force writeback or throttling.
  65 */
  66static long ratelimit_pages = 32;
  67
  68/* The following parameters are exported via /proc/sys/vm */
  69
  70/*
  71 * Start background writeback (via writeback threads) at this percentage
  72 */
  73int dirty_background_ratio = 10;
  74
  75/*
  76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  77 * dirty_background_ratio * the amount of dirtyable memory
  78 */
  79unsigned long dirty_background_bytes;
  80
  81/*
  82 * free highmem will not be subtracted from the total free memory
  83 * for calculating free ratios if vm_highmem_is_dirtyable is true
  84 */
  85int vm_highmem_is_dirtyable;
  86
  87/*
  88 * The generator of dirty data starts writeback at this percentage
  89 */
  90int vm_dirty_ratio = 20;
  91
  92/*
  93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  94 * vm_dirty_ratio * the amount of dirtyable memory
  95 */
  96unsigned long vm_dirty_bytes;
  97
  98/*
  99 * The interval between `kupdate'-style writebacks
 100 */
 101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
 102
 103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
 104
 105/*
 106 * The longest time for which data is allowed to remain dirty
 107 */
 108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
 109
 110/*
 111 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 112 * a full sync is triggered after this time elapses without any disk activity.
 113 */
 114int laptop_mode;
 115
 116EXPORT_SYMBOL(laptop_mode);
 117
 118/* End of sysctl-exported parameters */
 119
 120struct wb_domain global_wb_domain;
 121
 122/* consolidated parameters for balance_dirty_pages() and its subroutines */
 123struct dirty_throttle_control {
 124#ifdef CONFIG_CGROUP_WRITEBACK
 125        struct wb_domain        *dom;
 126        struct dirty_throttle_control *gdtc;    /* only set in memcg dtc's */
 127#endif
 128        struct bdi_writeback    *wb;
 129        struct fprop_local_percpu *wb_completions;
 130
 131        unsigned long           avail;          /* dirtyable */
 132        unsigned long           dirty;          /* file_dirty + write + nfs */
 133        unsigned long           thresh;         /* dirty threshold */
 134        unsigned long           bg_thresh;      /* dirty background threshold */
 135
 136        unsigned long           wb_dirty;       /* per-wb counterparts */
 137        unsigned long           wb_thresh;
 138        unsigned long           wb_bg_thresh;
 139
 140        unsigned long           pos_ratio;
 141};
 142
 143/*
 144 * Length of period for aging writeout fractions of bdis. This is an
 145 * arbitrarily chosen number. The longer the period, the slower fractions will
 146 * reflect changes in current writeout rate.
 147 */
 148#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
 149
 150#ifdef CONFIG_CGROUP_WRITEBACK
 151
 152#define GDTC_INIT(__wb)         .wb = (__wb),                           \
 153                                .dom = &global_wb_domain,               \
 154                                .wb_completions = &(__wb)->completions
 155
 156#define GDTC_INIT_NO_WB         .dom = &global_wb_domain
 157
 158#define MDTC_INIT(__wb, __gdtc) .wb = (__wb),                           \
 159                                .dom = mem_cgroup_wb_domain(__wb),      \
 160                                .wb_completions = &(__wb)->memcg_completions, \
 161                                .gdtc = __gdtc
 162
 163static bool mdtc_valid(struct dirty_throttle_control *dtc)
 164{
 165        return dtc->dom;
 166}
 167
 168static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 169{
 170        return dtc->dom;
 171}
 172
 173static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 174{
 175        return mdtc->gdtc;
 176}
 177
 178static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 179{
 180        return &wb->memcg_completions;
 181}
 182
 183static void wb_min_max_ratio(struct bdi_writeback *wb,
 184                             unsigned long *minp, unsigned long *maxp)
 185{
 186        unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
 187        unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 188        unsigned long long min = wb->bdi->min_ratio;
 189        unsigned long long max = wb->bdi->max_ratio;
 190
 191        /*
 192         * @wb may already be clean by the time control reaches here and
 193         * the total may not include its bw.
 194         */
 195        if (this_bw < tot_bw) {
 196                if (min) {
 197                        min *= this_bw;
 198                        min = div64_ul(min, tot_bw);
 199                }
 200                if (max < 100) {
 201                        max *= this_bw;
 202                        max = div64_ul(max, tot_bw);
 203                }
 204        }
 205
 206        *minp = min;
 207        *maxp = max;
 208}
 209
 210#else   /* CONFIG_CGROUP_WRITEBACK */
 211
 212#define GDTC_INIT(__wb)         .wb = (__wb),                           \
 213                                .wb_completions = &(__wb)->completions
 214#define GDTC_INIT_NO_WB
 215#define MDTC_INIT(__wb, __gdtc)
 216
 217static bool mdtc_valid(struct dirty_throttle_control *dtc)
 218{
 219        return false;
 220}
 221
 222static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 223{
 224        return &global_wb_domain;
 225}
 226
 227static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 228{
 229        return NULL;
 230}
 231
 232static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 233{
 234        return NULL;
 235}
 236
 237static void wb_min_max_ratio(struct bdi_writeback *wb,
 238                             unsigned long *minp, unsigned long *maxp)
 239{
 240        *minp = wb->bdi->min_ratio;
 241        *maxp = wb->bdi->max_ratio;
 242}
 243
 244#endif  /* CONFIG_CGROUP_WRITEBACK */
 245
 246/*
 247 * In a memory zone, there is a certain amount of pages we consider
 248 * available for the page cache, which is essentially the number of
 249 * free and reclaimable pages, minus some zone reserves to protect
 250 * lowmem and the ability to uphold the zone's watermarks without
 251 * requiring writeback.
 252 *
 253 * This number of dirtyable pages is the base value of which the
 254 * user-configurable dirty ratio is the effective number of pages that
 255 * are allowed to be actually dirtied.  Per individual zone, or
 256 * globally by using the sum of dirtyable pages over all zones.
 257 *
 258 * Because the user is allowed to specify the dirty limit globally as
 259 * absolute number of bytes, calculating the per-zone dirty limit can
 260 * require translating the configured limit into a percentage of
 261 * global dirtyable memory first.
 262 */
 263
 264/**
 265 * node_dirtyable_memory - number of dirtyable pages in a node
 266 * @pgdat: the node
 267 *
 268 * Return: the node's number of pages potentially available for dirty
 269 * page cache.  This is the base value for the per-node dirty limits.
 270 */
 271static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
 272{
 273        unsigned long nr_pages = 0;
 274        int z;
 275
 276        for (z = 0; z < MAX_NR_ZONES; z++) {
 277                struct zone *zone = pgdat->node_zones + z;
 278
 279                if (!populated_zone(zone))
 280                        continue;
 281
 282                nr_pages += zone_page_state(zone, NR_FREE_PAGES);
 283        }
 284
 285        /*
 286         * Pages reserved for the kernel should not be considered
 287         * dirtyable, to prevent a situation where reclaim has to
 288         * clean pages in order to balance the zones.
 289         */
 290        nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
 291
 292        nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
 293        nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
 294
 295        return nr_pages;
 296}
 297
 298static unsigned long highmem_dirtyable_memory(unsigned long total)
 299{
 300#ifdef CONFIG_HIGHMEM
 301        int node;
 302        unsigned long x = 0;
 303        int i;
 304
 305        for_each_node_state(node, N_HIGH_MEMORY) {
 306                for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
 307                        struct zone *z;
 308                        unsigned long nr_pages;
 309
 310                        if (!is_highmem_idx(i))
 311                                continue;
 312
 313                        z = &NODE_DATA(node)->node_zones[i];
 314                        if (!populated_zone(z))
 315                                continue;
 316
 317                        nr_pages = zone_page_state(z, NR_FREE_PAGES);
 318                        /* watch for underflows */
 319                        nr_pages -= min(nr_pages, high_wmark_pages(z));
 320                        nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
 321                        nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
 322                        x += nr_pages;
 323                }
 324        }
 325
 326        /*
 327         * Unreclaimable memory (kernel memory or anonymous memory
 328         * without swap) can bring down the dirtyable pages below
 329         * the zone's dirty balance reserve and the above calculation
 330         * will underflow.  However we still want to add in nodes
 331         * which are below threshold (negative values) to get a more
 332         * accurate calculation but make sure that the total never
 333         * underflows.
 334         */
 335        if ((long)x < 0)
 336                x = 0;
 337
 338        /*
 339         * Make sure that the number of highmem pages is never larger
 340         * than the number of the total dirtyable memory. This can only
 341         * occur in very strange VM situations but we want to make sure
 342         * that this does not occur.
 343         */
 344        return min(x, total);
 345#else
 346        return 0;
 347#endif
 348}
 349
 350/**
 351 * global_dirtyable_memory - number of globally dirtyable pages
 352 *
 353 * Return: the global number of pages potentially available for dirty
 354 * page cache.  This is the base value for the global dirty limits.
 355 */
 356static unsigned long global_dirtyable_memory(void)
 357{
 358        unsigned long x;
 359
 360        x = global_zone_page_state(NR_FREE_PAGES);
 361        /*
 362         * Pages reserved for the kernel should not be considered
 363         * dirtyable, to prevent a situation where reclaim has to
 364         * clean pages in order to balance the zones.
 365         */
 366        x -= min(x, totalreserve_pages);
 367
 368        x += global_node_page_state(NR_INACTIVE_FILE);
 369        x += global_node_page_state(NR_ACTIVE_FILE);
 370
 371        if (!vm_highmem_is_dirtyable)
 372                x -= highmem_dirtyable_memory(x);
 373
 374        return x + 1;   /* Ensure that we never return 0 */
 375}
 376
 377/**
 378 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
 379 * @dtc: dirty_throttle_control of interest
 380 *
 381 * Calculate @dtc->thresh and ->bg_thresh considering
 382 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
 383 * must ensure that @dtc->avail is set before calling this function.  The
 384 * dirty limits will be lifted by 1/4 for real-time tasks.
 385 */
 386static void domain_dirty_limits(struct dirty_throttle_control *dtc)
 387{
 388        const unsigned long available_memory = dtc->avail;
 389        struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
 390        unsigned long bytes = vm_dirty_bytes;
 391        unsigned long bg_bytes = dirty_background_bytes;
 392        /* convert ratios to per-PAGE_SIZE for higher precision */
 393        unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
 394        unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
 395        unsigned long thresh;
 396        unsigned long bg_thresh;
 397        struct task_struct *tsk;
 398
 399        /* gdtc is !NULL iff @dtc is for memcg domain */
 400        if (gdtc) {
 401                unsigned long global_avail = gdtc->avail;
 402
 403                /*
 404                 * The byte settings can't be applied directly to memcg
 405                 * domains.  Convert them to ratios by scaling against
 406                 * globally available memory.  As the ratios are in
 407                 * per-PAGE_SIZE, they can be obtained by dividing bytes by
 408                 * number of pages.
 409                 */
 410                if (bytes)
 411                        ratio = min(DIV_ROUND_UP(bytes, global_avail),
 412                                    PAGE_SIZE);
 413                if (bg_bytes)
 414                        bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
 415                                       PAGE_SIZE);
 416                bytes = bg_bytes = 0;
 417        }
 418
 419        if (bytes)
 420                thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
 421        else
 422                thresh = (ratio * available_memory) / PAGE_SIZE;
 423
 424        if (bg_bytes)
 425                bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
 426        else
 427                bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
 428
 429        if (bg_thresh >= thresh)
 430                bg_thresh = thresh / 2;
 431        tsk = current;
 432        if (rt_task(tsk)) {
 433                bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
 434                thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
 435        }
 436        dtc->thresh = thresh;
 437        dtc->bg_thresh = bg_thresh;
 438
 439        /* we should eventually report the domain in the TP */
 440        if (!gdtc)
 441                trace_global_dirty_state(bg_thresh, thresh);
 442}
 443
 444/**
 445 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 446 * @pbackground: out parameter for bg_thresh
 447 * @pdirty: out parameter for thresh
 448 *
 449 * Calculate bg_thresh and thresh for global_wb_domain.  See
 450 * domain_dirty_limits() for details.
 451 */
 452void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
 453{
 454        struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
 455
 456        gdtc.avail = global_dirtyable_memory();
 457        domain_dirty_limits(&gdtc);
 458
 459        *pbackground = gdtc.bg_thresh;
 460        *pdirty = gdtc.thresh;
 461}
 462
 463/**
 464 * node_dirty_limit - maximum number of dirty pages allowed in a node
 465 * @pgdat: the node
 466 *
 467 * Return: the maximum number of dirty pages allowed in a node, based
 468 * on the node's dirtyable memory.
 469 */
 470static unsigned long node_dirty_limit(struct pglist_data *pgdat)
 471{
 472        unsigned long node_memory = node_dirtyable_memory(pgdat);
 473        struct task_struct *tsk = current;
 474        unsigned long dirty;
 475
 476        if (vm_dirty_bytes)
 477                dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
 478                        node_memory / global_dirtyable_memory();
 479        else
 480                dirty = vm_dirty_ratio * node_memory / 100;
 481
 482        if (rt_task(tsk))
 483                dirty += dirty / 4;
 484
 485        return dirty;
 486}
 487
 488/**
 489 * node_dirty_ok - tells whether a node is within its dirty limits
 490 * @pgdat: the node to check
 491 *
 492 * Return: %true when the dirty pages in @pgdat are within the node's
 493 * dirty limit, %false if the limit is exceeded.
 494 */
 495bool node_dirty_ok(struct pglist_data *pgdat)
 496{
 497        unsigned long limit = node_dirty_limit(pgdat);
 498        unsigned long nr_pages = 0;
 499
 500        nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
 501        nr_pages += node_page_state(pgdat, NR_WRITEBACK);
 502
 503        return nr_pages <= limit;
 504}
 505
 506int dirty_background_ratio_handler(struct ctl_table *table, int write,
 507                void *buffer, size_t *lenp, loff_t *ppos)
 508{
 509        int ret;
 510
 511        ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 512        if (ret == 0 && write)
 513                dirty_background_bytes = 0;
 514        return ret;
 515}
 516
 517int dirty_background_bytes_handler(struct ctl_table *table, int write,
 518                void *buffer, size_t *lenp, loff_t *ppos)
 519{
 520        int ret;
 521
 522        ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 523        if (ret == 0 && write)
 524                dirty_background_ratio = 0;
 525        return ret;
 526}
 527
 528int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
 529                size_t *lenp, loff_t *ppos)
 530{
 531        int old_ratio = vm_dirty_ratio;
 532        int ret;
 533
 534        ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 535        if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
 536                writeback_set_ratelimit();
 537                vm_dirty_bytes = 0;
 538        }
 539        return ret;
 540}
 541
 542int dirty_bytes_handler(struct ctl_table *table, int write,
 543                void *buffer, size_t *lenp, loff_t *ppos)
 544{
 545        unsigned long old_bytes = vm_dirty_bytes;
 546        int ret;
 547
 548        ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 549        if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
 550                writeback_set_ratelimit();
 551                vm_dirty_ratio = 0;
 552        }
 553        return ret;
 554}
 555
 556static unsigned long wp_next_time(unsigned long cur_time)
 557{
 558        cur_time += VM_COMPLETIONS_PERIOD_LEN;
 559        /* 0 has a special meaning... */
 560        if (!cur_time)
 561                return 1;
 562        return cur_time;
 563}
 564
 565static void wb_domain_writeout_inc(struct wb_domain *dom,
 566                                   struct fprop_local_percpu *completions,
 567                                   unsigned int max_prop_frac)
 568{
 569        __fprop_inc_percpu_max(&dom->completions, completions,
 570                               max_prop_frac);
 571        /* First event after period switching was turned off? */
 572        if (unlikely(!dom->period_time)) {
 573                /*
 574                 * We can race with other __bdi_writeout_inc calls here but
 575                 * it does not cause any harm since the resulting time when
 576                 * timer will fire and what is in writeout_period_time will be
 577                 * roughly the same.
 578                 */
 579                dom->period_time = wp_next_time(jiffies);
 580                mod_timer(&dom->period_timer, dom->period_time);
 581        }
 582}
 583
 584/*
 585 * Increment @wb's writeout completion count and the global writeout
 586 * completion count. Called from test_clear_page_writeback().
 587 */
 588static inline void __wb_writeout_inc(struct bdi_writeback *wb)
 589{
 590        struct wb_domain *cgdom;
 591
 592        inc_wb_stat(wb, WB_WRITTEN);
 593        wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
 594                               wb->bdi->max_prop_frac);
 595
 596        cgdom = mem_cgroup_wb_domain(wb);
 597        if (cgdom)
 598                wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
 599                                       wb->bdi->max_prop_frac);
 600}
 601
 602void wb_writeout_inc(struct bdi_writeback *wb)
 603{
 604        unsigned long flags;
 605
 606        local_irq_save(flags);
 607        __wb_writeout_inc(wb);
 608        local_irq_restore(flags);
 609}
 610EXPORT_SYMBOL_GPL(wb_writeout_inc);
 611
 612/*
 613 * On idle system, we can be called long after we scheduled because we use
 614 * deferred timers so count with missed periods.
 615 */
 616static void writeout_period(struct timer_list *t)
 617{
 618        struct wb_domain *dom = from_timer(dom, t, period_timer);
 619        int miss_periods = (jiffies - dom->period_time) /
 620                                                 VM_COMPLETIONS_PERIOD_LEN;
 621
 622        if (fprop_new_period(&dom->completions, miss_periods + 1)) {
 623                dom->period_time = wp_next_time(dom->period_time +
 624                                miss_periods * VM_COMPLETIONS_PERIOD_LEN);
 625                mod_timer(&dom->period_timer, dom->period_time);
 626        } else {
 627                /*
 628                 * Aging has zeroed all fractions. Stop wasting CPU on period
 629                 * updates.
 630                 */
 631                dom->period_time = 0;
 632        }
 633}
 634
 635int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
 636{
 637        memset(dom, 0, sizeof(*dom));
 638
 639        spin_lock_init(&dom->lock);
 640
 641        timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
 642
 643        dom->dirty_limit_tstamp = jiffies;
 644
 645        return fprop_global_init(&dom->completions, gfp);
 646}
 647
 648#ifdef CONFIG_CGROUP_WRITEBACK
 649void wb_domain_exit(struct wb_domain *dom)
 650{
 651        del_timer_sync(&dom->period_timer);
 652        fprop_global_destroy(&dom->completions);
 653}
 654#endif
 655
 656/*
 657 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 658 * registered backing devices, which, for obvious reasons, can not
 659 * exceed 100%.
 660 */
 661static unsigned int bdi_min_ratio;
 662
 663int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
 664{
 665        int ret = 0;
 666
 667        spin_lock_bh(&bdi_lock);
 668        if (min_ratio > bdi->max_ratio) {
 669                ret = -EINVAL;
 670        } else {
 671                min_ratio -= bdi->min_ratio;
 672                if (bdi_min_ratio + min_ratio < 100) {
 673                        bdi_min_ratio += min_ratio;
 674                        bdi->min_ratio += min_ratio;
 675                } else {
 676                        ret = -EINVAL;
 677                }
 678        }
 679        spin_unlock_bh(&bdi_lock);
 680
 681        return ret;
 682}
 683
 684int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
 685{
 686        int ret = 0;
 687
 688        if (max_ratio > 100)
 689                return -EINVAL;
 690
 691        spin_lock_bh(&bdi_lock);
 692        if (bdi->min_ratio > max_ratio) {
 693                ret = -EINVAL;
 694        } else {
 695                bdi->max_ratio = max_ratio;
 696                bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
 697        }
 698        spin_unlock_bh(&bdi_lock);
 699
 700        return ret;
 701}
 702EXPORT_SYMBOL(bdi_set_max_ratio);
 703
 704static unsigned long dirty_freerun_ceiling(unsigned long thresh,
 705                                           unsigned long bg_thresh)
 706{
 707        return (thresh + bg_thresh) / 2;
 708}
 709
 710static unsigned long hard_dirty_limit(struct wb_domain *dom,
 711                                      unsigned long thresh)
 712{
 713        return max(thresh, dom->dirty_limit);
 714}
 715
 716/*
 717 * Memory which can be further allocated to a memcg domain is capped by
 718 * system-wide clean memory excluding the amount being used in the domain.
 719 */
 720static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
 721                            unsigned long filepages, unsigned long headroom)
 722{
 723        struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
 724        unsigned long clean = filepages - min(filepages, mdtc->dirty);
 725        unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
 726        unsigned long other_clean = global_clean - min(global_clean, clean);
 727
 728        mdtc->avail = filepages + min(headroom, other_clean);
 729}
 730
 731/**
 732 * __wb_calc_thresh - @wb's share of dirty throttling threshold
 733 * @dtc: dirty_throttle_context of interest
 734 *
 735 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 736 * when sleeping max_pause per page is not enough to keep the dirty pages under
 737 * control. For example, when the device is completely stalled due to some error
 738 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 739 * In the other normal situations, it acts more gently by throttling the tasks
 740 * more (rather than completely block them) when the wb dirty pages go high.
 741 *
 742 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
 743 * - starving fast devices
 744 * - piling up dirty pages (that will take long time to sync) on slow devices
 745 *
 746 * The wb's share of dirty limit will be adapting to its throughput and
 747 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 748 *
 749 * Return: @wb's dirty limit in pages. The term "dirty" in the context of
 750 * dirty balancing includes all PG_dirty and PG_writeback pages.
 751 */
 752static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
 753{
 754        struct wb_domain *dom = dtc_dom(dtc);
 755        unsigned long thresh = dtc->thresh;
 756        u64 wb_thresh;
 757        unsigned long numerator, denominator;
 758        unsigned long wb_min_ratio, wb_max_ratio;
 759
 760        /*
 761         * Calculate this BDI's share of the thresh ratio.
 762         */
 763        fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
 764                              &numerator, &denominator);
 765
 766        wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
 767        wb_thresh *= numerator;
 768        wb_thresh = div64_ul(wb_thresh, denominator);
 769
 770        wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
 771
 772        wb_thresh += (thresh * wb_min_ratio) / 100;
 773        if (wb_thresh > (thresh * wb_max_ratio) / 100)
 774                wb_thresh = thresh * wb_max_ratio / 100;
 775
 776        return wb_thresh;
 777}
 778
 779unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
 780{
 781        struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
 782                                               .thresh = thresh };
 783        return __wb_calc_thresh(&gdtc);
 784}
 785
 786/*
 787 *                           setpoint - dirty 3
 788 *        f(dirty) := 1.0 + (----------------)
 789 *                           limit - setpoint
 790 *
 791 * it's a 3rd order polynomial that subjects to
 792 *
 793 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 794 * (2) f(setpoint) = 1.0 => the balance point
 795 * (3) f(limit)    = 0   => the hard limit
 796 * (4) df/dx      <= 0   => negative feedback control
 797 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 798 *     => fast response on large errors; small oscillation near setpoint
 799 */
 800static long long pos_ratio_polynom(unsigned long setpoint,
 801                                          unsigned long dirty,
 802                                          unsigned long limit)
 803{
 804        long long pos_ratio;
 805        long x;
 806
 807        x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
 808                      (limit - setpoint) | 1);
 809        pos_ratio = x;
 810        pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 811        pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 812        pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
 813
 814        return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
 815}
 816
 817/*
 818 * Dirty position control.
 819 *
 820 * (o) global/bdi setpoints
 821 *
 822 * We want the dirty pages be balanced around the global/wb setpoints.
 823 * When the number of dirty pages is higher/lower than the setpoint, the
 824 * dirty position control ratio (and hence task dirty ratelimit) will be
 825 * decreased/increased to bring the dirty pages back to the setpoint.
 826 *
 827 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 828 *
 829 *     if (dirty < setpoint) scale up   pos_ratio
 830 *     if (dirty > setpoint) scale down pos_ratio
 831 *
 832 *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
 833 *     if (wb_dirty > wb_setpoint) scale down pos_ratio
 834 *
 835 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 836 *
 837 * (o) global control line
 838 *
 839 *     ^ pos_ratio
 840 *     |
 841 *     |            |<===== global dirty control scope ======>|
 842 * 2.0  * * * * * * *
 843 *     |            .*
 844 *     |            . *
 845 *     |            .   *
 846 *     |            .     *
 847 *     |            .        *
 848 *     |            .            *
 849 * 1.0 ................................*
 850 *     |            .                  .     *
 851 *     |            .                  .          *
 852 *     |            .                  .              *
 853 *     |            .                  .                 *
 854 *     |            .                  .                    *
 855 *   0 +------------.------------------.----------------------*------------->
 856 *           freerun^          setpoint^                 limit^   dirty pages
 857 *
 858 * (o) wb control line
 859 *
 860 *     ^ pos_ratio
 861 *     |
 862 *     |            *
 863 *     |              *
 864 *     |                *
 865 *     |                  *
 866 *     |                    * |<=========== span ============>|
 867 * 1.0 .......................*
 868 *     |                      . *
 869 *     |                      .   *
 870 *     |                      .     *
 871 *     |                      .       *
 872 *     |                      .         *
 873 *     |                      .           *
 874 *     |                      .             *
 875 *     |                      .               *
 876 *     |                      .                 *
 877 *     |                      .                   *
 878 *     |                      .                     *
 879 * 1/4 ...............................................* * * * * * * * * * * *
 880 *     |                      .                         .
 881 *     |                      .                           .
 882 *     |                      .                             .
 883 *   0 +----------------------.-------------------------------.------------->
 884 *                wb_setpoint^                    x_intercept^
 885 *
 886 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
 887 * be smoothly throttled down to normal if it starts high in situations like
 888 * - start writing to a slow SD card and a fast disk at the same time. The SD
 889 *   card's wb_dirty may rush to many times higher than wb_setpoint.
 890 * - the wb dirty thresh drops quickly due to change of JBOD workload
 891 */
 892static void wb_position_ratio(struct dirty_throttle_control *dtc)
 893{
 894        struct bdi_writeback *wb = dtc->wb;
 895        unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
 896        unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
 897        unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
 898        unsigned long wb_thresh = dtc->wb_thresh;
 899        unsigned long x_intercept;
 900        unsigned long setpoint;         /* dirty pages' target balance point */
 901        unsigned long wb_setpoint;
 902        unsigned long span;
 903        long long pos_ratio;            /* for scaling up/down the rate limit */
 904        long x;
 905
 906        dtc->pos_ratio = 0;
 907
 908        if (unlikely(dtc->dirty >= limit))
 909                return;
 910
 911        /*
 912         * global setpoint
 913         *
 914         * See comment for pos_ratio_polynom().
 915         */
 916        setpoint = (freerun + limit) / 2;
 917        pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
 918
 919        /*
 920         * The strictlimit feature is a tool preventing mistrusted filesystems
 921         * from growing a large number of dirty pages before throttling. For
 922         * such filesystems balance_dirty_pages always checks wb counters
 923         * against wb limits. Even if global "nr_dirty" is under "freerun".
 924         * This is especially important for fuse which sets bdi->max_ratio to
 925         * 1% by default. Without strictlimit feature, fuse writeback may
 926         * consume arbitrary amount of RAM because it is accounted in
 927         * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
 928         *
 929         * Here, in wb_position_ratio(), we calculate pos_ratio based on
 930         * two values: wb_dirty and wb_thresh. Let's consider an example:
 931         * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
 932         * limits are set by default to 10% and 20% (background and throttle).
 933         * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
 934         * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
 935         * about ~6K pages (as the average of background and throttle wb
 936         * limits). The 3rd order polynomial will provide positive feedback if
 937         * wb_dirty is under wb_setpoint and vice versa.
 938         *
 939         * Note, that we cannot use global counters in these calculations
 940         * because we want to throttle process writing to a strictlimit wb
 941         * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
 942         * in the example above).
 943         */
 944        if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
 945                long long wb_pos_ratio;
 946
 947                if (dtc->wb_dirty < 8) {
 948                        dtc->pos_ratio = min_t(long long, pos_ratio * 2,
 949                                           2 << RATELIMIT_CALC_SHIFT);
 950                        return;
 951                }
 952
 953                if (dtc->wb_dirty >= wb_thresh)
 954                        return;
 955
 956                wb_setpoint = dirty_freerun_ceiling(wb_thresh,
 957                                                    dtc->wb_bg_thresh);
 958
 959                if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
 960                        return;
 961
 962                wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
 963                                                 wb_thresh);
 964
 965                /*
 966                 * Typically, for strictlimit case, wb_setpoint << setpoint
 967                 * and pos_ratio >> wb_pos_ratio. In the other words global
 968                 * state ("dirty") is not limiting factor and we have to
 969                 * make decision based on wb counters. But there is an
 970                 * important case when global pos_ratio should get precedence:
 971                 * global limits are exceeded (e.g. due to activities on other
 972                 * wb's) while given strictlimit wb is below limit.
 973                 *
 974                 * "pos_ratio * wb_pos_ratio" would work for the case above,
 975                 * but it would look too non-natural for the case of all
 976                 * activity in the system coming from a single strictlimit wb
 977                 * with bdi->max_ratio == 100%.
 978                 *
 979                 * Note that min() below somewhat changes the dynamics of the
 980                 * control system. Normally, pos_ratio value can be well over 3
 981                 * (when globally we are at freerun and wb is well below wb
 982                 * setpoint). Now the maximum pos_ratio in the same situation
 983                 * is 2. We might want to tweak this if we observe the control
 984                 * system is too slow to adapt.
 985                 */
 986                dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
 987                return;
 988        }
 989
 990        /*
 991         * We have computed basic pos_ratio above based on global situation. If
 992         * the wb is over/under its share of dirty pages, we want to scale
 993         * pos_ratio further down/up. That is done by the following mechanism.
 994         */
 995
 996        /*
 997         * wb setpoint
 998         *
 999         *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1000         *
1001         *                        x_intercept - wb_dirty
1002         *                     := --------------------------
1003         *                        x_intercept - wb_setpoint
1004         *
1005         * The main wb control line is a linear function that subjects to
1006         *
1007         * (1) f(wb_setpoint) = 1.0
1008         * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1009         *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1010         *
1011         * For single wb case, the dirty pages are observed to fluctuate
1012         * regularly within range
1013         *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1014         * for various filesystems, where (2) can yield in a reasonable 12.5%
1015         * fluctuation range for pos_ratio.
1016         *
1017         * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1018         * own size, so move the slope over accordingly and choose a slope that
1019         * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1020         */
1021        if (unlikely(wb_thresh > dtc->thresh))
1022                wb_thresh = dtc->thresh;
1023        /*
1024         * It's very possible that wb_thresh is close to 0 not because the
1025         * device is slow, but that it has remained inactive for long time.
1026         * Honour such devices a reasonable good (hopefully IO efficient)
1027         * threshold, so that the occasional writes won't be blocked and active
1028         * writes can rampup the threshold quickly.
1029         */
1030        wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1031        /*
1032         * scale global setpoint to wb's:
1033         *      wb_setpoint = setpoint * wb_thresh / thresh
1034         */
1035        x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1036        wb_setpoint = setpoint * (u64)x >> 16;
1037        /*
1038         * Use span=(8*write_bw) in single wb case as indicated by
1039         * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1040         *
1041         *        wb_thresh                    thresh - wb_thresh
1042         * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1043         *         thresh                           thresh
1044         */
1045        span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1046        x_intercept = wb_setpoint + span;
1047
1048        if (dtc->wb_dirty < x_intercept - span / 4) {
1049                pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1050                                      (x_intercept - wb_setpoint) | 1);
1051        } else
1052                pos_ratio /= 4;
1053
1054        /*
1055         * wb reserve area, safeguard against dirty pool underrun and disk idle
1056         * It may push the desired control point of global dirty pages higher
1057         * than setpoint.
1058         */
1059        x_intercept = wb_thresh / 2;
1060        if (dtc->wb_dirty < x_intercept) {
1061                if (dtc->wb_dirty > x_intercept / 8)
1062                        pos_ratio = div_u64(pos_ratio * x_intercept,
1063                                            dtc->wb_dirty);
1064                else
1065                        pos_ratio *= 8;
1066        }
1067
1068        dtc->pos_ratio = pos_ratio;
1069}
1070
1071static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1072                                      unsigned long elapsed,
1073                                      unsigned long written)
1074{
1075        const unsigned long period = roundup_pow_of_two(3 * HZ);
1076        unsigned long avg = wb->avg_write_bandwidth;
1077        unsigned long old = wb->write_bandwidth;
1078        u64 bw;
1079
1080        /*
1081         * bw = written * HZ / elapsed
1082         *
1083         *                   bw * elapsed + write_bandwidth * (period - elapsed)
1084         * write_bandwidth = ---------------------------------------------------
1085         *                                          period
1086         *
1087         * @written may have decreased due to account_page_redirty().
1088         * Avoid underflowing @bw calculation.
1089         */
1090        bw = written - min(written, wb->written_stamp);
1091        bw *= HZ;
1092        if (unlikely(elapsed > period)) {
1093                bw = div64_ul(bw, elapsed);
1094                avg = bw;
1095                goto out;
1096        }
1097        bw += (u64)wb->write_bandwidth * (period - elapsed);
1098        bw >>= ilog2(period);
1099
1100        /*
1101         * one more level of smoothing, for filtering out sudden spikes
1102         */
1103        if (avg > old && old >= (unsigned long)bw)
1104                avg -= (avg - old) >> 3;
1105
1106        if (avg < old && old <= (unsigned long)bw)
1107                avg += (old - avg) >> 3;
1108
1109out:
1110        /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1111        avg = max(avg, 1LU);
1112        if (wb_has_dirty_io(wb)) {
1113                long delta = avg - wb->avg_write_bandwidth;
1114                WARN_ON_ONCE(atomic_long_add_return(delta,
1115                                        &wb->bdi->tot_write_bandwidth) <= 0);
1116        }
1117        wb->write_bandwidth = bw;
1118        WRITE_ONCE(wb->avg_write_bandwidth, avg);
1119}
1120
1121static void update_dirty_limit(struct dirty_throttle_control *dtc)
1122{
1123        struct wb_domain *dom = dtc_dom(dtc);
1124        unsigned long thresh = dtc->thresh;
1125        unsigned long limit = dom->dirty_limit;
1126
1127        /*
1128         * Follow up in one step.
1129         */
1130        if (limit < thresh) {
1131                limit = thresh;
1132                goto update;
1133        }
1134
1135        /*
1136         * Follow down slowly. Use the higher one as the target, because thresh
1137         * may drop below dirty. This is exactly the reason to introduce
1138         * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1139         */
1140        thresh = max(thresh, dtc->dirty);
1141        if (limit > thresh) {
1142                limit -= (limit - thresh) >> 5;
1143                goto update;
1144        }
1145        return;
1146update:
1147        dom->dirty_limit = limit;
1148}
1149
1150static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1151                                      unsigned long now)
1152{
1153        struct wb_domain *dom = dtc_dom(dtc);
1154
1155        /*
1156         * check locklessly first to optimize away locking for the most time
1157         */
1158        if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1159                return;
1160
1161        spin_lock(&dom->lock);
1162        if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1163                update_dirty_limit(dtc);
1164                dom->dirty_limit_tstamp = now;
1165        }
1166        spin_unlock(&dom->lock);
1167}
1168
1169/*
1170 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1171 *
1172 * Normal wb tasks will be curbed at or below it in long term.
1173 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1174 */
1175static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1176                                      unsigned long dirtied,
1177                                      unsigned long elapsed)
1178{
1179        struct bdi_writeback *wb = dtc->wb;
1180        unsigned long dirty = dtc->dirty;
1181        unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1182        unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1183        unsigned long setpoint = (freerun + limit) / 2;
1184        unsigned long write_bw = wb->avg_write_bandwidth;
1185        unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1186        unsigned long dirty_rate;
1187        unsigned long task_ratelimit;
1188        unsigned long balanced_dirty_ratelimit;
1189        unsigned long step;
1190        unsigned long x;
1191        unsigned long shift;
1192
1193        /*
1194         * The dirty rate will match the writeout rate in long term, except
1195         * when dirty pages are truncated by userspace or re-dirtied by FS.
1196         */
1197        dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1198
1199        /*
1200         * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1201         */
1202        task_ratelimit = (u64)dirty_ratelimit *
1203                                        dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1204        task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1205
1206        /*
1207         * A linear estimation of the "balanced" throttle rate. The theory is,
1208         * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1209         * dirty_rate will be measured to be (N * task_ratelimit). So the below
1210         * formula will yield the balanced rate limit (write_bw / N).
1211         *
1212         * Note that the expanded form is not a pure rate feedback:
1213         *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
1214         * but also takes pos_ratio into account:
1215         *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1216         *
1217         * (1) is not realistic because pos_ratio also takes part in balancing
1218         * the dirty rate.  Consider the state
1219         *      pos_ratio = 0.5                                              (3)
1220         *      rate = 2 * (write_bw / N)                                    (4)
1221         * If (1) is used, it will stuck in that state! Because each dd will
1222         * be throttled at
1223         *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
1224         * yielding
1225         *      dirty_rate = N * task_ratelimit = write_bw                   (6)
1226         * put (6) into (1) we get
1227         *      rate_(i+1) = rate_(i)                                        (7)
1228         *
1229         * So we end up using (2) to always keep
1230         *      rate_(i+1) ~= (write_bw / N)                                 (8)
1231         * regardless of the value of pos_ratio. As long as (8) is satisfied,
1232         * pos_ratio is able to drive itself to 1.0, which is not only where
1233         * the dirty count meet the setpoint, but also where the slope of
1234         * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1235         */
1236        balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1237                                           dirty_rate | 1);
1238        /*
1239         * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1240         */
1241        if (unlikely(balanced_dirty_ratelimit > write_bw))
1242                balanced_dirty_ratelimit = write_bw;
1243
1244        /*
1245         * We could safely do this and return immediately:
1246         *
1247         *      wb->dirty_ratelimit = balanced_dirty_ratelimit;
1248         *
1249         * However to get a more stable dirty_ratelimit, the below elaborated
1250         * code makes use of task_ratelimit to filter out singular points and
1251         * limit the step size.
1252         *
1253         * The below code essentially only uses the relative value of
1254         *
1255         *      task_ratelimit - dirty_ratelimit
1256         *      = (pos_ratio - 1) * dirty_ratelimit
1257         *
1258         * which reflects the direction and size of dirty position error.
1259         */
1260
1261        /*
1262         * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1263         * task_ratelimit is on the same side of dirty_ratelimit, too.
1264         * For example, when
1265         * - dirty_ratelimit > balanced_dirty_ratelimit
1266         * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1267         * lowering dirty_ratelimit will help meet both the position and rate
1268         * control targets. Otherwise, don't update dirty_ratelimit if it will
1269         * only help meet the rate target. After all, what the users ultimately
1270         * feel and care are stable dirty rate and small position error.
1271         *
1272         * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1273         * and filter out the singular points of balanced_dirty_ratelimit. Which
1274         * keeps jumping around randomly and can even leap far away at times
1275         * due to the small 200ms estimation period of dirty_rate (we want to
1276         * keep that period small to reduce time lags).
1277         */
1278        step = 0;
1279
1280        /*
1281         * For strictlimit case, calculations above were based on wb counters
1282         * and limits (starting from pos_ratio = wb_position_ratio() and up to
1283         * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1284         * Hence, to calculate "step" properly, we have to use wb_dirty as
1285         * "dirty" and wb_setpoint as "setpoint".
1286         *
1287         * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1288         * it's possible that wb_thresh is close to zero due to inactivity
1289         * of backing device.
1290         */
1291        if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1292                dirty = dtc->wb_dirty;
1293                if (dtc->wb_dirty < 8)
1294                        setpoint = dtc->wb_dirty + 1;
1295                else
1296                        setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1297        }
1298
1299        if (dirty < setpoint) {
1300                x = min3(wb->balanced_dirty_ratelimit,
1301                         balanced_dirty_ratelimit, task_ratelimit);
1302                if (dirty_ratelimit < x)
1303                        step = x - dirty_ratelimit;
1304        } else {
1305                x = max3(wb->balanced_dirty_ratelimit,
1306                         balanced_dirty_ratelimit, task_ratelimit);
1307                if (dirty_ratelimit > x)
1308                        step = dirty_ratelimit - x;
1309        }
1310
1311        /*
1312         * Don't pursue 100% rate matching. It's impossible since the balanced
1313         * rate itself is constantly fluctuating. So decrease the track speed
1314         * when it gets close to the target. Helps eliminate pointless tremors.
1315         */
1316        shift = dirty_ratelimit / (2 * step + 1);
1317        if (shift < BITS_PER_LONG)
1318                step = DIV_ROUND_UP(step >> shift, 8);
1319        else
1320                step = 0;
1321
1322        if (dirty_ratelimit < balanced_dirty_ratelimit)
1323                dirty_ratelimit += step;
1324        else
1325                dirty_ratelimit -= step;
1326
1327        WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
1328        wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1329
1330        trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1331}
1332
1333static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1334                                  struct dirty_throttle_control *mdtc,
1335                                  bool update_ratelimit)
1336{
1337        struct bdi_writeback *wb = gdtc->wb;
1338        unsigned long now = jiffies;
1339        unsigned long elapsed;
1340        unsigned long dirtied;
1341        unsigned long written;
1342
1343        spin_lock(&wb->list_lock);
1344
1345        /*
1346         * Lockless checks for elapsed time are racy and delayed update after
1347         * IO completion doesn't do it at all (to make sure written pages are
1348         * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1349         * division errors.
1350         */
1351        elapsed = max(now - wb->bw_time_stamp, 1UL);
1352        dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1353        written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1354
1355        if (update_ratelimit) {
1356                domain_update_dirty_limit(gdtc, now);
1357                wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1358
1359                /*
1360                 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1361                 * compiler has no way to figure that out.  Help it.
1362                 */
1363                if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1364                        domain_update_dirty_limit(mdtc, now);
1365                        wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1366                }
1367        }
1368        wb_update_write_bandwidth(wb, elapsed, written);
1369
1370        wb->dirtied_stamp = dirtied;
1371        wb->written_stamp = written;
1372        WRITE_ONCE(wb->bw_time_stamp, now);
1373        spin_unlock(&wb->list_lock);
1374}
1375
1376void wb_update_bandwidth(struct bdi_writeback *wb)
1377{
1378        struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1379
1380        __wb_update_bandwidth(&gdtc, NULL, false);
1381}
1382
1383/* Interval after which we consider wb idle and don't estimate bandwidth */
1384#define WB_BANDWIDTH_IDLE_JIF (HZ)
1385
1386static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1387{
1388        unsigned long now = jiffies;
1389        unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1390
1391        if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1392            !atomic_read(&wb->writeback_inodes)) {
1393                spin_lock(&wb->list_lock);
1394                wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1395                wb->written_stamp = wb_stat(wb, WB_WRITTEN);
1396                WRITE_ONCE(wb->bw_time_stamp, now);
1397                spin_unlock(&wb->list_lock);
1398        }
1399}
1400
1401/*
1402 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1403 * will look to see if it needs to start dirty throttling.
1404 *
1405 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1406 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1407 * (the number of pages we may dirty without exceeding the dirty limits).
1408 */
1409static unsigned long dirty_poll_interval(unsigned long dirty,
1410                                         unsigned long thresh)
1411{
1412        if (thresh > dirty)
1413                return 1UL << (ilog2(thresh - dirty) >> 1);
1414
1415        return 1;
1416}
1417
1418static unsigned long wb_max_pause(struct bdi_writeback *wb,
1419                                  unsigned long wb_dirty)
1420{
1421        unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
1422        unsigned long t;
1423
1424        /*
1425         * Limit pause time for small memory systems. If sleeping for too long
1426         * time, a small pool of dirty/writeback pages may go empty and disk go
1427         * idle.
1428         *
1429         * 8 serves as the safety ratio.
1430         */
1431        t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1432        t++;
1433
1434        return min_t(unsigned long, t, MAX_PAUSE);
1435}
1436
1437static long wb_min_pause(struct bdi_writeback *wb,
1438                         long max_pause,
1439                         unsigned long task_ratelimit,
1440                         unsigned long dirty_ratelimit,
1441                         int *nr_dirtied_pause)
1442{
1443        long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1444        long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
1445        long t;         /* target pause */
1446        long pause;     /* estimated next pause */
1447        int pages;      /* target nr_dirtied_pause */
1448
1449        /* target for 10ms pause on 1-dd case */
1450        t = max(1, HZ / 100);
1451
1452        /*
1453         * Scale up pause time for concurrent dirtiers in order to reduce CPU
1454         * overheads.
1455         *
1456         * (N * 10ms) on 2^N concurrent tasks.
1457         */
1458        if (hi > lo)
1459                t += (hi - lo) * (10 * HZ) / 1024;
1460
1461        /*
1462         * This is a bit convoluted. We try to base the next nr_dirtied_pause
1463         * on the much more stable dirty_ratelimit. However the next pause time
1464         * will be computed based on task_ratelimit and the two rate limits may
1465         * depart considerably at some time. Especially if task_ratelimit goes
1466         * below dirty_ratelimit/2 and the target pause is max_pause, the next
1467         * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1468         * result task_ratelimit won't be executed faithfully, which could
1469         * eventually bring down dirty_ratelimit.
1470         *
1471         * We apply two rules to fix it up:
1472         * 1) try to estimate the next pause time and if necessary, use a lower
1473         *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1474         *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1475         * 2) limit the target pause time to max_pause/2, so that the normal
1476         *    small fluctuations of task_ratelimit won't trigger rule (1) and
1477         *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1478         */
1479        t = min(t, 1 + max_pause / 2);
1480        pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1481
1482        /*
1483         * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1484         * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1485         * When the 16 consecutive reads are often interrupted by some dirty
1486         * throttling pause during the async writes, cfq will go into idles
1487         * (deadline is fine). So push nr_dirtied_pause as high as possible
1488         * until reaches DIRTY_POLL_THRESH=32 pages.
1489         */
1490        if (pages < DIRTY_POLL_THRESH) {
1491                t = max_pause;
1492                pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1493                if (pages > DIRTY_POLL_THRESH) {
1494                        pages = DIRTY_POLL_THRESH;
1495                        t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1496                }
1497        }
1498
1499        pause = HZ * pages / (task_ratelimit + 1);
1500        if (pause > max_pause) {
1501                t = max_pause;
1502                pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1503        }
1504
1505        *nr_dirtied_pause = pages;
1506        /*
1507         * The minimal pause time will normally be half the target pause time.
1508         */
1509        return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1510}
1511
1512static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1513{
1514        struct bdi_writeback *wb = dtc->wb;
1515        unsigned long wb_reclaimable;
1516
1517        /*
1518         * wb_thresh is not treated as some limiting factor as
1519         * dirty_thresh, due to reasons
1520         * - in JBOD setup, wb_thresh can fluctuate a lot
1521         * - in a system with HDD and USB key, the USB key may somehow
1522         *   go into state (wb_dirty >> wb_thresh) either because
1523         *   wb_dirty starts high, or because wb_thresh drops low.
1524         *   In this case we don't want to hard throttle the USB key
1525         *   dirtiers for 100 seconds until wb_dirty drops under
1526         *   wb_thresh. Instead the auxiliary wb control line in
1527         *   wb_position_ratio() will let the dirtier task progress
1528         *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1529         */
1530        dtc->wb_thresh = __wb_calc_thresh(dtc);
1531        dtc->wb_bg_thresh = dtc->thresh ?
1532                div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1533
1534        /*
1535         * In order to avoid the stacked BDI deadlock we need
1536         * to ensure we accurately count the 'dirty' pages when
1537         * the threshold is low.
1538         *
1539         * Otherwise it would be possible to get thresh+n pages
1540         * reported dirty, even though there are thresh-m pages
1541         * actually dirty; with m+n sitting in the percpu
1542         * deltas.
1543         */
1544        if (dtc->wb_thresh < 2 * wb_stat_error()) {
1545                wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1546                dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1547        } else {
1548                wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1549                dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1550        }
1551}
1552
1553/*
1554 * balance_dirty_pages() must be called by processes which are generating dirty
1555 * data.  It looks at the number of dirty pages in the machine and will force
1556 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1557 * If we're over `background_thresh' then the writeback threads are woken to
1558 * perform some writeout.
1559 */
1560static void balance_dirty_pages(struct bdi_writeback *wb,
1561                                unsigned long pages_dirtied)
1562{
1563        struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1564        struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1565        struct dirty_throttle_control * const gdtc = &gdtc_stor;
1566        struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1567                                                     &mdtc_stor : NULL;
1568        struct dirty_throttle_control *sdtc;
1569        unsigned long nr_reclaimable;   /* = file_dirty */
1570        long period;
1571        long pause;
1572        long max_pause;
1573        long min_pause;
1574        int nr_dirtied_pause;
1575        bool dirty_exceeded = false;
1576        unsigned long task_ratelimit;
1577        unsigned long dirty_ratelimit;
1578        struct backing_dev_info *bdi = wb->bdi;
1579        bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1580        unsigned long start_time = jiffies;
1581
1582        for (;;) {
1583                unsigned long now = jiffies;
1584                unsigned long dirty, thresh, bg_thresh;
1585                unsigned long m_dirty = 0;      /* stop bogus uninit warnings */
1586                unsigned long m_thresh = 0;
1587                unsigned long m_bg_thresh = 0;
1588
1589                nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
1590                gdtc->avail = global_dirtyable_memory();
1591                gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1592
1593                domain_dirty_limits(gdtc);
1594
1595                if (unlikely(strictlimit)) {
1596                        wb_dirty_limits(gdtc);
1597
1598                        dirty = gdtc->wb_dirty;
1599                        thresh = gdtc->wb_thresh;
1600                        bg_thresh = gdtc->wb_bg_thresh;
1601                } else {
1602                        dirty = gdtc->dirty;
1603                        thresh = gdtc->thresh;
1604                        bg_thresh = gdtc->bg_thresh;
1605                }
1606
1607                if (mdtc) {
1608                        unsigned long filepages, headroom, writeback;
1609
1610                        /*
1611                         * If @wb belongs to !root memcg, repeat the same
1612                         * basic calculations for the memcg domain.
1613                         */
1614                        mem_cgroup_wb_stats(wb, &filepages, &headroom,
1615                                            &mdtc->dirty, &writeback);
1616                        mdtc->dirty += writeback;
1617                        mdtc_calc_avail(mdtc, filepages, headroom);
1618
1619                        domain_dirty_limits(mdtc);
1620
1621                        if (unlikely(strictlimit)) {
1622                                wb_dirty_limits(mdtc);
1623                                m_dirty = mdtc->wb_dirty;
1624                                m_thresh = mdtc->wb_thresh;
1625                                m_bg_thresh = mdtc->wb_bg_thresh;
1626                        } else {
1627                                m_dirty = mdtc->dirty;
1628                                m_thresh = mdtc->thresh;
1629                                m_bg_thresh = mdtc->bg_thresh;
1630                        }
1631                }
1632
1633                /*
1634                 * Throttle it only when the background writeback cannot
1635                 * catch-up. This avoids (excessively) small writeouts
1636                 * when the wb limits are ramping up in case of !strictlimit.
1637                 *
1638                 * In strictlimit case make decision based on the wb counters
1639                 * and limits. Small writeouts when the wb limits are ramping
1640                 * up are the price we consciously pay for strictlimit-ing.
1641                 *
1642                 * If memcg domain is in effect, @dirty should be under
1643                 * both global and memcg freerun ceilings.
1644                 */
1645                if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1646                    (!mdtc ||
1647                     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1648                        unsigned long intv;
1649                        unsigned long m_intv;
1650
1651free_running:
1652                        intv = dirty_poll_interval(dirty, thresh);
1653                        m_intv = ULONG_MAX;
1654
1655                        current->dirty_paused_when = now;
1656                        current->nr_dirtied = 0;
1657                        if (mdtc)
1658                                m_intv = dirty_poll_interval(m_dirty, m_thresh);
1659                        current->nr_dirtied_pause = min(intv, m_intv);
1660                        break;
1661                }
1662
1663                if (unlikely(!writeback_in_progress(wb)))
1664                        wb_start_background_writeback(wb);
1665
1666                mem_cgroup_flush_foreign(wb);
1667
1668                /*
1669                 * Calculate global domain's pos_ratio and select the
1670                 * global dtc by default.
1671                 */
1672                if (!strictlimit) {
1673                        wb_dirty_limits(gdtc);
1674
1675                        if ((current->flags & PF_LOCAL_THROTTLE) &&
1676                            gdtc->wb_dirty <
1677                            dirty_freerun_ceiling(gdtc->wb_thresh,
1678                                                  gdtc->wb_bg_thresh))
1679                                /*
1680                                 * LOCAL_THROTTLE tasks must not be throttled
1681                                 * when below the per-wb freerun ceiling.
1682                                 */
1683                                goto free_running;
1684                }
1685
1686                dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1687                        ((gdtc->dirty > gdtc->thresh) || strictlimit);
1688
1689                wb_position_ratio(gdtc);
1690                sdtc = gdtc;
1691
1692                if (mdtc) {
1693                        /*
1694                         * If memcg domain is in effect, calculate its
1695                         * pos_ratio.  @wb should satisfy constraints from
1696                         * both global and memcg domains.  Choose the one
1697                         * w/ lower pos_ratio.
1698                         */
1699                        if (!strictlimit) {
1700                                wb_dirty_limits(mdtc);
1701
1702                                if ((current->flags & PF_LOCAL_THROTTLE) &&
1703                                    mdtc->wb_dirty <
1704                                    dirty_freerun_ceiling(mdtc->wb_thresh,
1705                                                          mdtc->wb_bg_thresh))
1706                                        /*
1707                                         * LOCAL_THROTTLE tasks must not be
1708                                         * throttled when below the per-wb
1709                                         * freerun ceiling.
1710                                         */
1711                                        goto free_running;
1712                        }
1713                        dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1714                                ((mdtc->dirty > mdtc->thresh) || strictlimit);
1715
1716                        wb_position_ratio(mdtc);
1717                        if (mdtc->pos_ratio < gdtc->pos_ratio)
1718                                sdtc = mdtc;
1719                }
1720
1721                if (dirty_exceeded && !wb->dirty_exceeded)
1722                        wb->dirty_exceeded = 1;
1723
1724                if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
1725                                           BANDWIDTH_INTERVAL))
1726                        __wb_update_bandwidth(gdtc, mdtc, true);
1727
1728                /* throttle according to the chosen dtc */
1729                dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
1730                task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1731                                                        RATELIMIT_CALC_SHIFT;
1732                max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1733                min_pause = wb_min_pause(wb, max_pause,
1734                                         task_ratelimit, dirty_ratelimit,
1735                                         &nr_dirtied_pause);
1736
1737                if (unlikely(task_ratelimit == 0)) {
1738                        period = max_pause;
1739                        pause = max_pause;
1740                        goto pause;
1741                }
1742                period = HZ * pages_dirtied / task_ratelimit;
1743                pause = period;
1744                if (current->dirty_paused_when)
1745                        pause -= now - current->dirty_paused_when;
1746                /*
1747                 * For less than 1s think time (ext3/4 may block the dirtier
1748                 * for up to 800ms from time to time on 1-HDD; so does xfs,
1749                 * however at much less frequency), try to compensate it in
1750                 * future periods by updating the virtual time; otherwise just
1751                 * do a reset, as it may be a light dirtier.
1752                 */
1753                if (pause < min_pause) {
1754                        trace_balance_dirty_pages(wb,
1755                                                  sdtc->thresh,
1756                                                  sdtc->bg_thresh,
1757                                                  sdtc->dirty,
1758                                                  sdtc->wb_thresh,
1759                                                  sdtc->wb_dirty,
1760                                                  dirty_ratelimit,
1761                                                  task_ratelimit,
1762                                                  pages_dirtied,
1763                                                  period,
1764                                                  min(pause, 0L),
1765                                                  start_time);
1766                        if (pause < -HZ) {
1767                                current->dirty_paused_when = now;
1768                                current->nr_dirtied = 0;
1769                        } else if (period) {
1770                                current->dirty_paused_when += period;
1771                                current->nr_dirtied = 0;
1772                        } else if (current->nr_dirtied_pause <= pages_dirtied)
1773                                current->nr_dirtied_pause += pages_dirtied;
1774                        break;
1775                }
1776                if (unlikely(pause > max_pause)) {
1777                        /* for occasional dropped task_ratelimit */
1778                        now += min(pause - max_pause, max_pause);
1779                        pause = max_pause;
1780                }
1781
1782pause:
1783                trace_balance_dirty_pages(wb,
1784                                          sdtc->thresh,
1785                                          sdtc->bg_thresh,
1786                                          sdtc->dirty,
1787                                          sdtc->wb_thresh,
1788                                          sdtc->wb_dirty,
1789                                          dirty_ratelimit,
1790                                          task_ratelimit,
1791                                          pages_dirtied,
1792                                          period,
1793                                          pause,
1794                                          start_time);
1795                __set_current_state(TASK_KILLABLE);
1796                wb->dirty_sleep = now;
1797                io_schedule_timeout(pause);
1798
1799                current->dirty_paused_when = now + pause;
1800                current->nr_dirtied = 0;
1801                current->nr_dirtied_pause = nr_dirtied_pause;
1802
1803                /*
1804                 * This is typically equal to (dirty < thresh) and can also
1805                 * keep "1000+ dd on a slow USB stick" under control.
1806                 */
1807                if (task_ratelimit)
1808                        break;
1809
1810                /*
1811                 * In the case of an unresponsive NFS server and the NFS dirty
1812                 * pages exceeds dirty_thresh, give the other good wb's a pipe
1813                 * to go through, so that tasks on them still remain responsive.
1814                 *
1815                 * In theory 1 page is enough to keep the consumer-producer
1816                 * pipe going: the flusher cleans 1 page => the task dirties 1
1817                 * more page. However wb_dirty has accounting errors.  So use
1818                 * the larger and more IO friendly wb_stat_error.
1819                 */
1820                if (sdtc->wb_dirty <= wb_stat_error())
1821                        break;
1822
1823                if (fatal_signal_pending(current))
1824                        break;
1825        }
1826
1827        if (!dirty_exceeded && wb->dirty_exceeded)
1828                wb->dirty_exceeded = 0;
1829
1830        if (writeback_in_progress(wb))
1831                return;
1832
1833        /*
1834         * In laptop mode, we wait until hitting the higher threshold before
1835         * starting background writeout, and then write out all the way down
1836         * to the lower threshold.  So slow writers cause minimal disk activity.
1837         *
1838         * In normal mode, we start background writeout at the lower
1839         * background_thresh, to keep the amount of dirty memory low.
1840         */
1841        if (laptop_mode)
1842                return;
1843
1844        if (nr_reclaimable > gdtc->bg_thresh)
1845                wb_start_background_writeback(wb);
1846}
1847
1848static DEFINE_PER_CPU(int, bdp_ratelimits);
1849
1850/*
1851 * Normal tasks are throttled by
1852 *      loop {
1853 *              dirty tsk->nr_dirtied_pause pages;
1854 *              take a snap in balance_dirty_pages();
1855 *      }
1856 * However there is a worst case. If every task exit immediately when dirtied
1857 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1858 * called to throttle the page dirties. The solution is to save the not yet
1859 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1860 * randomly into the running tasks. This works well for the above worst case,
1861 * as the new task will pick up and accumulate the old task's leaked dirty
1862 * count and eventually get throttled.
1863 */
1864DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1865
1866/**
1867 * balance_dirty_pages_ratelimited - balance dirty memory state
1868 * @mapping: address_space which was dirtied
1869 *
1870 * Processes which are dirtying memory should call in here once for each page
1871 * which was newly dirtied.  The function will periodically check the system's
1872 * dirty state and will initiate writeback if needed.
1873 *
1874 * Once we're over the dirty memory limit we decrease the ratelimiting
1875 * by a lot, to prevent individual processes from overshooting the limit
1876 * by (ratelimit_pages) each.
1877 */
1878void balance_dirty_pages_ratelimited(struct address_space *mapping)
1879{
1880        struct inode *inode = mapping->host;
1881        struct backing_dev_info *bdi = inode_to_bdi(inode);
1882        struct bdi_writeback *wb = NULL;
1883        int ratelimit;
1884        int *p;
1885
1886        if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
1887                return;
1888
1889        if (inode_cgwb_enabled(inode))
1890                wb = wb_get_create_current(bdi, GFP_KERNEL);
1891        if (!wb)
1892                wb = &bdi->wb;
1893
1894        ratelimit = current->nr_dirtied_pause;
1895        if (wb->dirty_exceeded)
1896                ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1897
1898        preempt_disable();
1899        /*
1900         * This prevents one CPU to accumulate too many dirtied pages without
1901         * calling into balance_dirty_pages(), which can happen when there are
1902         * 1000+ tasks, all of them start dirtying pages at exactly the same
1903         * time, hence all honoured too large initial task->nr_dirtied_pause.
1904         */
1905        p =  this_cpu_ptr(&bdp_ratelimits);
1906        if (unlikely(current->nr_dirtied >= ratelimit))
1907                *p = 0;
1908        else if (unlikely(*p >= ratelimit_pages)) {
1909                *p = 0;
1910                ratelimit = 0;
1911        }
1912        /*
1913         * Pick up the dirtied pages by the exited tasks. This avoids lots of
1914         * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1915         * the dirty throttling and livelock other long-run dirtiers.
1916         */
1917        p = this_cpu_ptr(&dirty_throttle_leaks);
1918        if (*p > 0 && current->nr_dirtied < ratelimit) {
1919                unsigned long nr_pages_dirtied;
1920                nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1921                *p -= nr_pages_dirtied;
1922                current->nr_dirtied += nr_pages_dirtied;
1923        }
1924        preempt_enable();
1925
1926        if (unlikely(current->nr_dirtied >= ratelimit))
1927                balance_dirty_pages(wb, current->nr_dirtied);
1928
1929        wb_put(wb);
1930}
1931EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1932
1933/**
1934 * wb_over_bg_thresh - does @wb need to be written back?
1935 * @wb: bdi_writeback of interest
1936 *
1937 * Determines whether background writeback should keep writing @wb or it's
1938 * clean enough.
1939 *
1940 * Return: %true if writeback should continue.
1941 */
1942bool wb_over_bg_thresh(struct bdi_writeback *wb)
1943{
1944        struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1945        struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1946        struct dirty_throttle_control * const gdtc = &gdtc_stor;
1947        struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1948                                                     &mdtc_stor : NULL;
1949        unsigned long reclaimable;
1950        unsigned long thresh;
1951
1952        /*
1953         * Similar to balance_dirty_pages() but ignores pages being written
1954         * as we're trying to decide whether to put more under writeback.
1955         */
1956        gdtc->avail = global_dirtyable_memory();
1957        gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
1958        domain_dirty_limits(gdtc);
1959
1960        if (gdtc->dirty > gdtc->bg_thresh)
1961                return true;
1962
1963        thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh);
1964        if (thresh < 2 * wb_stat_error())
1965                reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1966        else
1967                reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1968
1969        if (reclaimable > thresh)
1970                return true;
1971
1972        if (mdtc) {
1973                unsigned long filepages, headroom, writeback;
1974
1975                mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1976                                    &writeback);
1977                mdtc_calc_avail(mdtc, filepages, headroom);
1978                domain_dirty_limits(mdtc);      /* ditto, ignore writeback */
1979
1980                if (mdtc->dirty > mdtc->bg_thresh)
1981                        return true;
1982
1983                thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh);
1984                if (thresh < 2 * wb_stat_error())
1985                        reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1986                else
1987                        reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1988
1989                if (reclaimable > thresh)
1990                        return true;
1991        }
1992
1993        return false;
1994}
1995
1996/*
1997 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1998 */
1999int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
2000                void *buffer, size_t *length, loff_t *ppos)
2001{
2002        unsigned int old_interval = dirty_writeback_interval;
2003        int ret;
2004
2005        ret = proc_dointvec(table, write, buffer, length, ppos);
2006
2007        /*
2008         * Writing 0 to dirty_writeback_interval will disable periodic writeback
2009         * and a different non-zero value will wakeup the writeback threads.
2010         * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2011         * iterate over all bdis and wbs.
2012         * The reason we do this is to make the change take effect immediately.
2013         */
2014        if (!ret && write && dirty_writeback_interval &&
2015                dirty_writeback_interval != old_interval)
2016                wakeup_flusher_threads(WB_REASON_PERIODIC);
2017
2018        return ret;
2019}
2020
2021void laptop_mode_timer_fn(struct timer_list *t)
2022{
2023        struct backing_dev_info *backing_dev_info =
2024                from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2025
2026        wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2027}
2028
2029/*
2030 * We've spun up the disk and we're in laptop mode: schedule writeback
2031 * of all dirty data a few seconds from now.  If the flush is already scheduled
2032 * then push it back - the user is still using the disk.
2033 */
2034void laptop_io_completion(struct backing_dev_info *info)
2035{
2036        mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2037}
2038
2039/*
2040 * We're in laptop mode and we've just synced. The sync's writes will have
2041 * caused another writeback to be scheduled by laptop_io_completion.
2042 * Nothing needs to be written back anymore, so we unschedule the writeback.
2043 */
2044void laptop_sync_completion(void)
2045{
2046        struct backing_dev_info *bdi;
2047
2048        rcu_read_lock();
2049
2050        list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2051                del_timer(&bdi->laptop_mode_wb_timer);
2052
2053        rcu_read_unlock();
2054}
2055
2056/*
2057 * If ratelimit_pages is too high then we can get into dirty-data overload
2058 * if a large number of processes all perform writes at the same time.
2059 *
2060 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2061 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2062 * thresholds.
2063 */
2064
2065void writeback_set_ratelimit(void)
2066{
2067        struct wb_domain *dom = &global_wb_domain;
2068        unsigned long background_thresh;
2069        unsigned long dirty_thresh;
2070
2071        global_dirty_limits(&background_thresh, &dirty_thresh);
2072        dom->dirty_limit = dirty_thresh;
2073        ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2074        if (ratelimit_pages < 16)
2075                ratelimit_pages = 16;
2076}
2077
2078static int page_writeback_cpu_online(unsigned int cpu)
2079{
2080        writeback_set_ratelimit();
2081        return 0;
2082}
2083
2084/*
2085 * Called early on to tune the page writeback dirty limits.
2086 *
2087 * We used to scale dirty pages according to how total memory
2088 * related to pages that could be allocated for buffers.
2089 *
2090 * However, that was when we used "dirty_ratio" to scale with
2091 * all memory, and we don't do that any more. "dirty_ratio"
2092 * is now applied to total non-HIGHPAGE memory, and as such we can't
2093 * get into the old insane situation any more where we had
2094 * large amounts of dirty pages compared to a small amount of
2095 * non-HIGHMEM memory.
2096 *
2097 * But we might still want to scale the dirty_ratio by how
2098 * much memory the box has..
2099 */
2100void __init page_writeback_init(void)
2101{
2102        BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2103
2104        cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2105                          page_writeback_cpu_online, NULL);
2106        cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2107                          page_writeback_cpu_online);
2108}
2109
2110/**
2111 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2112 * @mapping: address space structure to write
2113 * @start: starting page index
2114 * @end: ending page index (inclusive)
2115 *
2116 * This function scans the page range from @start to @end (inclusive) and tags
2117 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2118 * that write_cache_pages (or whoever calls this function) will then use
2119 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2120 * used to avoid livelocking of writeback by a process steadily creating new
2121 * dirty pages in the file (thus it is important for this function to be quick
2122 * so that it can tag pages faster than a dirtying process can create them).
2123 */
2124void tag_pages_for_writeback(struct address_space *mapping,
2125                             pgoff_t start, pgoff_t end)
2126{
2127        XA_STATE(xas, &mapping->i_pages, start);
2128        unsigned int tagged = 0;
2129        void *page;
2130
2131        xas_lock_irq(&xas);
2132        xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2133                xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2134                if (++tagged % XA_CHECK_SCHED)
2135                        continue;
2136
2137                xas_pause(&xas);
2138                xas_unlock_irq(&xas);
2139                cond_resched();
2140                xas_lock_irq(&xas);
2141        }
2142        xas_unlock_irq(&xas);
2143}
2144EXPORT_SYMBOL(tag_pages_for_writeback);
2145
2146/**
2147 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2148 * @mapping: address space structure to write
2149 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2150 * @writepage: function called for each page
2151 * @data: data passed to writepage function
2152 *
2153 * If a page is already under I/O, write_cache_pages() skips it, even
2154 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2155 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2156 * and msync() need to guarantee that all the data which was dirty at the time
2157 * the call was made get new I/O started against them.  If wbc->sync_mode is
2158 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2159 * existing IO to complete.
2160 *
2161 * To avoid livelocks (when other process dirties new pages), we first tag
2162 * pages which should be written back with TOWRITE tag and only then start
2163 * writing them. For data-integrity sync we have to be careful so that we do
2164 * not miss some pages (e.g., because some other process has cleared TOWRITE
2165 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2166 * by the process clearing the DIRTY tag (and submitting the page for IO).
2167 *
2168 * To avoid deadlocks between range_cyclic writeback and callers that hold
2169 * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2170 * we do not loop back to the start of the file. Doing so causes a page
2171 * lock/page writeback access order inversion - we should only ever lock
2172 * multiple pages in ascending page->index order, and looping back to the start
2173 * of the file violates that rule and causes deadlocks.
2174 *
2175 * Return: %0 on success, negative error code otherwise
2176 */
2177int write_cache_pages(struct address_space *mapping,
2178                      struct writeback_control *wbc, writepage_t writepage,
2179                      void *data)
2180{
2181        int ret = 0;
2182        int done = 0;
2183        int error;
2184        struct pagevec pvec;
2185        int nr_pages;
2186        pgoff_t index;
2187        pgoff_t end;            /* Inclusive */
2188        pgoff_t done_index;
2189        int range_whole = 0;
2190        xa_mark_t tag;
2191
2192        pagevec_init(&pvec);
2193        if (wbc->range_cyclic) {
2194                index = mapping->writeback_index; /* prev offset */
2195                end = -1;
2196        } else {
2197                index = wbc->range_start >> PAGE_SHIFT;
2198                end = wbc->range_end >> PAGE_SHIFT;
2199                if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2200                        range_whole = 1;
2201        }
2202        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2203                tag_pages_for_writeback(mapping, index, end);
2204                tag = PAGECACHE_TAG_TOWRITE;
2205        } else {
2206                tag = PAGECACHE_TAG_DIRTY;
2207        }
2208        done_index = index;
2209        while (!done && (index <= end)) {
2210                int i;
2211
2212                nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2213                                tag);
2214                if (nr_pages == 0)
2215                        break;
2216
2217                for (i = 0; i < nr_pages; i++) {
2218                        struct page *page = pvec.pages[i];
2219
2220                        done_index = page->index;
2221
2222                        lock_page(page);
2223
2224                        /*
2225                         * Page truncated or invalidated. We can freely skip it
2226                         * then, even for data integrity operations: the page
2227                         * has disappeared concurrently, so there could be no
2228                         * real expectation of this data integrity operation
2229                         * even if there is now a new, dirty page at the same
2230                         * pagecache address.
2231                         */
2232                        if (unlikely(page->mapping != mapping)) {
2233continue_unlock:
2234                                unlock_page(page);
2235                                continue;
2236                        }
2237
2238                        if (!PageDirty(page)) {
2239                                /* someone wrote it for us */
2240                                goto continue_unlock;
2241                        }
2242
2243                        if (PageWriteback(page)) {
2244                                if (wbc->sync_mode != WB_SYNC_NONE)
2245                                        wait_on_page_writeback(page);
2246                                else
2247                                        goto continue_unlock;
2248                        }
2249
2250                        BUG_ON(PageWriteback(page));
2251                        if (!clear_page_dirty_for_io(page))
2252                                goto continue_unlock;
2253
2254                        trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2255                        error = (*writepage)(page, wbc, data);
2256                        if (unlikely(error)) {
2257                                /*
2258                                 * Handle errors according to the type of
2259                                 * writeback. There's no need to continue for
2260                                 * background writeback. Just push done_index
2261                                 * past this page so media errors won't choke
2262                                 * writeout for the entire file. For integrity
2263                                 * writeback, we must process the entire dirty
2264                                 * set regardless of errors because the fs may
2265                                 * still have state to clear for each page. In
2266                                 * that case we continue processing and return
2267                                 * the first error.
2268                                 */
2269                                if (error == AOP_WRITEPAGE_ACTIVATE) {
2270                                        unlock_page(page);
2271                                        error = 0;
2272                                } else if (wbc->sync_mode != WB_SYNC_ALL) {
2273                                        ret = error;
2274                                        done_index = page->index + 1;
2275                                        done = 1;
2276                                        break;
2277                                }
2278                                if (!ret)
2279                                        ret = error;
2280                        }
2281
2282                        /*
2283                         * We stop writing back only if we are not doing
2284                         * integrity sync. In case of integrity sync we have to
2285                         * keep going until we have written all the pages
2286                         * we tagged for writeback prior to entering this loop.
2287                         */
2288                        if (--wbc->nr_to_write <= 0 &&
2289                            wbc->sync_mode == WB_SYNC_NONE) {
2290                                done = 1;
2291                                break;
2292                        }
2293                }
2294                pagevec_release(&pvec);
2295                cond_resched();
2296        }
2297
2298        /*
2299         * If we hit the last page and there is more work to be done: wrap
2300         * back the index back to the start of the file for the next
2301         * time we are called.
2302         */
2303        if (wbc->range_cyclic && !done)
2304                done_index = 0;
2305        if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2306                mapping->writeback_index = done_index;
2307
2308        return ret;
2309}
2310EXPORT_SYMBOL(write_cache_pages);
2311
2312/*
2313 * Function used by generic_writepages to call the real writepage
2314 * function and set the mapping flags on error
2315 */
2316static int __writepage(struct page *page, struct writeback_control *wbc,
2317                       void *data)
2318{
2319        struct address_space *mapping = data;
2320        int ret = mapping->a_ops->writepage(page, wbc);
2321        mapping_set_error(mapping, ret);
2322        return ret;
2323}
2324
2325/**
2326 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2327 * @mapping: address space structure to write
2328 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2329 *
2330 * This is a library function, which implements the writepages()
2331 * address_space_operation.
2332 *
2333 * Return: %0 on success, negative error code otherwise
2334 */
2335int generic_writepages(struct address_space *mapping,
2336                       struct writeback_control *wbc)
2337{
2338        struct blk_plug plug;
2339        int ret;
2340
2341        /* deal with chardevs and other special file */
2342        if (!mapping->a_ops->writepage)
2343                return 0;
2344
2345        blk_start_plug(&plug);
2346        ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2347        blk_finish_plug(&plug);
2348        return ret;
2349}
2350
2351EXPORT_SYMBOL(generic_writepages);
2352
2353int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2354{
2355        int ret;
2356        struct bdi_writeback *wb;
2357
2358        if (wbc->nr_to_write <= 0)
2359                return 0;
2360        wb = inode_to_wb_wbc(mapping->host, wbc);
2361        wb_bandwidth_estimate_start(wb);
2362        while (1) {
2363                if (mapping->a_ops->writepages)
2364                        ret = mapping->a_ops->writepages(mapping, wbc);
2365                else
2366                        ret = generic_writepages(mapping, wbc);
2367                if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2368                        break;
2369                cond_resched();
2370                congestion_wait(BLK_RW_ASYNC, HZ/50);
2371        }
2372        /*
2373         * Usually few pages are written by now from those we've just submitted
2374         * but if there's constant writeback being submitted, this makes sure
2375         * writeback bandwidth is updated once in a while.
2376         */
2377        if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2378                                   BANDWIDTH_INTERVAL))
2379                wb_update_bandwidth(wb);
2380        return ret;
2381}
2382
2383/**
2384 * write_one_page - write out a single page and wait on I/O
2385 * @page: the page to write
2386 *
2387 * The page must be locked by the caller and will be unlocked upon return.
2388 *
2389 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2390 * function returns.
2391 *
2392 * Return: %0 on success, negative error code otherwise
2393 */
2394int write_one_page(struct page *page)
2395{
2396        struct address_space *mapping = page->mapping;
2397        int ret = 0;
2398        struct writeback_control wbc = {
2399                .sync_mode = WB_SYNC_ALL,
2400                .nr_to_write = 1,
2401        };
2402
2403        BUG_ON(!PageLocked(page));
2404
2405        wait_on_page_writeback(page);
2406
2407        if (clear_page_dirty_for_io(page)) {
2408                get_page(page);
2409                ret = mapping->a_ops->writepage(page, &wbc);
2410                if (ret == 0)
2411                        wait_on_page_writeback(page);
2412                put_page(page);
2413        } else {
2414                unlock_page(page);
2415        }
2416
2417        if (!ret)
2418                ret = filemap_check_errors(mapping);
2419        return ret;
2420}
2421EXPORT_SYMBOL(write_one_page);
2422
2423/*
2424 * For address_spaces which do not use buffers nor write back.
2425 */
2426int __set_page_dirty_no_writeback(struct page *page)
2427{
2428        if (!PageDirty(page))
2429                return !TestSetPageDirty(page);
2430        return 0;
2431}
2432EXPORT_SYMBOL(__set_page_dirty_no_writeback);
2433
2434/*
2435 * Helper function for set_page_dirty family.
2436 *
2437 * Caller must hold lock_page_memcg().
2438 *
2439 * NOTE: This relies on being atomic wrt interrupts.
2440 */
2441static void account_page_dirtied(struct page *page,
2442                struct address_space *mapping)
2443{
2444        struct inode *inode = mapping->host;
2445
2446        trace_writeback_dirty_page(page, mapping);
2447
2448        if (mapping_can_writeback(mapping)) {
2449                struct bdi_writeback *wb;
2450
2451                inode_attach_wb(inode, page);
2452                wb = inode_to_wb(inode);
2453
2454                __inc_lruvec_page_state(page, NR_FILE_DIRTY);
2455                __inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2456                __inc_node_page_state(page, NR_DIRTIED);
2457                inc_wb_stat(wb, WB_RECLAIMABLE);
2458                inc_wb_stat(wb, WB_DIRTIED);
2459                task_io_account_write(PAGE_SIZE);
2460                current->nr_dirtied++;
2461                __this_cpu_inc(bdp_ratelimits);
2462
2463                mem_cgroup_track_foreign_dirty(page, wb);
2464        }
2465}
2466
2467/*
2468 * Helper function for deaccounting dirty page without writeback.
2469 *
2470 * Caller must hold lock_page_memcg().
2471 */
2472void account_page_cleaned(struct page *page, struct address_space *mapping,
2473                          struct bdi_writeback *wb)
2474{
2475        if (mapping_can_writeback(mapping)) {
2476                dec_lruvec_page_state(page, NR_FILE_DIRTY);
2477                dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2478                dec_wb_stat(wb, WB_RECLAIMABLE);
2479                task_io_account_cancelled_write(PAGE_SIZE);
2480        }
2481}
2482
2483/*
2484 * Mark the page dirty, and set it dirty in the page cache, and mark the inode
2485 * dirty.
2486 *
2487 * If warn is true, then emit a warning if the page is not uptodate and has
2488 * not been truncated.
2489 *
2490 * The caller must hold lock_page_memcg().
2491 */
2492void __set_page_dirty(struct page *page, struct address_space *mapping,
2493                             int warn)
2494{
2495        unsigned long flags;
2496
2497        xa_lock_irqsave(&mapping->i_pages, flags);
2498        if (page->mapping) {    /* Race with truncate? */
2499                WARN_ON_ONCE(warn && !PageUptodate(page));
2500                account_page_dirtied(page, mapping);
2501                __xa_set_mark(&mapping->i_pages, page_index(page),
2502                                PAGECACHE_TAG_DIRTY);
2503        }
2504        xa_unlock_irqrestore(&mapping->i_pages, flags);
2505}
2506
2507/*
2508 * For address_spaces which do not use buffers.  Just tag the page as dirty in
2509 * the xarray.
2510 *
2511 * This is also used when a single buffer is being dirtied: we want to set the
2512 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2513 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2514 *
2515 * The caller must ensure this doesn't race with truncation.  Most will simply
2516 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2517 * the pte lock held, which also locks out truncation.
2518 */
2519int __set_page_dirty_nobuffers(struct page *page)
2520{
2521        lock_page_memcg(page);
2522        if (!TestSetPageDirty(page)) {
2523                struct address_space *mapping = page_mapping(page);
2524
2525                if (!mapping) {
2526                        unlock_page_memcg(page);
2527                        return 1;
2528                }
2529                __set_page_dirty(page, mapping, !PagePrivate(page));
2530                unlock_page_memcg(page);
2531
2532                if (mapping->host) {
2533                        /* !PageAnon && !swapper_space */
2534                        __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2535                }
2536                return 1;
2537        }
2538        unlock_page_memcg(page);
2539        return 0;
2540}
2541EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2542
2543/*
2544 * Call this whenever redirtying a page, to de-account the dirty counters
2545 * (NR_DIRTIED, WB_DIRTIED, tsk->nr_dirtied), so that they match the written
2546 * counters (NR_WRITTEN, WB_WRITTEN) in long term. The mismatches will lead to
2547 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2548 * control.
2549 */
2550void account_page_redirty(struct page *page)
2551{
2552        struct address_space *mapping = page->mapping;
2553
2554        if (mapping && mapping_can_writeback(mapping)) {
2555                struct inode *inode = mapping->host;
2556                struct bdi_writeback *wb;
2557                struct wb_lock_cookie cookie = {};
2558
2559                wb = unlocked_inode_to_wb_begin(inode, &cookie);
2560                current->nr_dirtied--;
2561                dec_node_page_state(page, NR_DIRTIED);
2562                dec_wb_stat(wb, WB_DIRTIED);
2563                unlocked_inode_to_wb_end(inode, &cookie);
2564        }
2565}
2566EXPORT_SYMBOL(account_page_redirty);
2567
2568/*
2569 * When a writepage implementation decides that it doesn't want to write this
2570 * page for some reason, it should redirty the locked page via
2571 * redirty_page_for_writepage() and it should then unlock the page and return 0
2572 */
2573int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2574{
2575        int ret;
2576
2577        wbc->pages_skipped++;
2578        ret = __set_page_dirty_nobuffers(page);
2579        account_page_redirty(page);
2580        return ret;
2581}
2582EXPORT_SYMBOL(redirty_page_for_writepage);
2583
2584/*
2585 * Dirty a page.
2586 *
2587 * For pages with a mapping this should be done under the page lock for the
2588 * benefit of asynchronous memory errors who prefer a consistent dirty state.
2589 * This rule can be broken in some special cases, but should be better not to.
2590 */
2591int set_page_dirty(struct page *page)
2592{
2593        struct address_space *mapping = page_mapping(page);
2594
2595        page = compound_head(page);
2596        if (likely(mapping)) {
2597                /*
2598                 * readahead/lru_deactivate_page could remain
2599                 * PG_readahead/PG_reclaim due to race with end_page_writeback
2600                 * About readahead, if the page is written, the flags would be
2601                 * reset. So no problem.
2602                 * About lru_deactivate_page, if the page is redirty, the flag
2603                 * will be reset. So no problem. but if the page is used by readahead
2604                 * it will confuse readahead and make it restart the size rampup
2605                 * process. But it's a trivial problem.
2606                 */
2607                if (PageReclaim(page))
2608                        ClearPageReclaim(page);
2609                return mapping->a_ops->set_page_dirty(page);
2610        }
2611        if (!PageDirty(page)) {
2612                if (!TestSetPageDirty(page))
2613                        return 1;
2614        }
2615        return 0;
2616}
2617EXPORT_SYMBOL(set_page_dirty);
2618
2619/*
2620 * set_page_dirty() is racy if the caller has no reference against
2621 * page->mapping->host, and if the page is unlocked.  This is because another
2622 * CPU could truncate the page off the mapping and then free the mapping.
2623 *
2624 * Usually, the page _is_ locked, or the caller is a user-space process which
2625 * holds a reference on the inode by having an open file.
2626 *
2627 * In other cases, the page should be locked before running set_page_dirty().
2628 */
2629int set_page_dirty_lock(struct page *page)
2630{
2631        int ret;
2632
2633        lock_page(page);
2634        ret = set_page_dirty(page);
2635        unlock_page(page);
2636        return ret;
2637}
2638EXPORT_SYMBOL(set_page_dirty_lock);
2639
2640/*
2641 * This cancels just the dirty bit on the kernel page itself, it does NOT
2642 * actually remove dirty bits on any mmap's that may be around. It also
2643 * leaves the page tagged dirty, so any sync activity will still find it on
2644 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2645 * look at the dirty bits in the VM.
2646 *
2647 * Doing this should *normally* only ever be done when a page is truncated,
2648 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2649 * this when it notices that somebody has cleaned out all the buffers on a
2650 * page without actually doing it through the VM. Can you say "ext3 is
2651 * horribly ugly"? Thought you could.
2652 */
2653void __cancel_dirty_page(struct page *page)
2654{
2655        struct address_space *mapping = page_mapping(page);
2656
2657        if (mapping_can_writeback(mapping)) {
2658                struct inode *inode = mapping->host;
2659                struct bdi_writeback *wb;
2660                struct wb_lock_cookie cookie = {};
2661
2662                lock_page_memcg(page);
2663                wb = unlocked_inode_to_wb_begin(inode, &cookie);
2664
2665                if (TestClearPageDirty(page))
2666                        account_page_cleaned(page, mapping, wb);
2667
2668                unlocked_inode_to_wb_end(inode, &cookie);
2669                unlock_page_memcg(page);
2670        } else {
2671                ClearPageDirty(page);
2672        }
2673}
2674EXPORT_SYMBOL(__cancel_dirty_page);
2675
2676/*
2677 * Clear a page's dirty flag, while caring for dirty memory accounting.
2678 * Returns true if the page was previously dirty.
2679 *
2680 * This is for preparing to put the page under writeout.  We leave the page
2681 * tagged as dirty in the xarray so that a concurrent write-for-sync
2682 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2683 * implementation will run either set_page_writeback() or set_page_dirty(),
2684 * at which stage we bring the page's dirty flag and xarray dirty tag
2685 * back into sync.
2686 *
2687 * This incoherency between the page's dirty flag and xarray tag is
2688 * unfortunate, but it only exists while the page is locked.
2689 */
2690int clear_page_dirty_for_io(struct page *page)
2691{
2692        struct address_space *mapping = page_mapping(page);
2693        int ret = 0;
2694
2695        VM_BUG_ON_PAGE(!PageLocked(page), page);
2696
2697        if (mapping && mapping_can_writeback(mapping)) {
2698                struct inode *inode = mapping->host;
2699                struct bdi_writeback *wb;
2700                struct wb_lock_cookie cookie = {};
2701
2702                /*
2703                 * Yes, Virginia, this is indeed insane.
2704                 *
2705                 * We use this sequence to make sure that
2706                 *  (a) we account for dirty stats properly
2707                 *  (b) we tell the low-level filesystem to
2708                 *      mark the whole page dirty if it was
2709                 *      dirty in a pagetable. Only to then
2710                 *  (c) clean the page again and return 1 to
2711                 *      cause the writeback.
2712                 *
2713                 * This way we avoid all nasty races with the
2714                 * dirty bit in multiple places and clearing
2715                 * them concurrently from different threads.
2716                 *
2717                 * Note! Normally the "set_page_dirty(page)"
2718                 * has no effect on the actual dirty bit - since
2719                 * that will already usually be set. But we
2720                 * need the side effects, and it can help us
2721                 * avoid races.
2722                 *
2723                 * We basically use the page "master dirty bit"
2724                 * as a serialization point for all the different
2725                 * threads doing their things.
2726                 */
2727                if (page_mkclean(page))
2728                        set_page_dirty(page);
2729                /*
2730                 * We carefully synchronise fault handlers against
2731                 * installing a dirty pte and marking the page dirty
2732                 * at this point.  We do this by having them hold the
2733                 * page lock while dirtying the page, and pages are
2734                 * always locked coming in here, so we get the desired
2735                 * exclusion.
2736                 */
2737                wb = unlocked_inode_to_wb_begin(inode, &cookie);
2738                if (TestClearPageDirty(page)) {
2739                        dec_lruvec_page_state(page, NR_FILE_DIRTY);
2740                        dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2741                        dec_wb_stat(wb, WB_RECLAIMABLE);
2742                        ret = 1;
2743                }
2744                unlocked_inode_to_wb_end(inode, &cookie);
2745                return ret;
2746        }
2747        return TestClearPageDirty(page);
2748}
2749EXPORT_SYMBOL(clear_page_dirty_for_io);
2750
2751static void wb_inode_writeback_start(struct bdi_writeback *wb)
2752{
2753        atomic_inc(&wb->writeback_inodes);
2754}
2755
2756static void wb_inode_writeback_end(struct bdi_writeback *wb)
2757{
2758        atomic_dec(&wb->writeback_inodes);
2759        /*
2760         * Make sure estimate of writeback throughput gets updated after
2761         * writeback completed. We delay the update by BANDWIDTH_INTERVAL
2762         * (which is the interval other bandwidth updates use for batching) so
2763         * that if multiple inodes end writeback at a similar time, they get
2764         * batched into one bandwidth update.
2765         */
2766        queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
2767}
2768
2769int test_clear_page_writeback(struct page *page)
2770{
2771        struct address_space *mapping = page_mapping(page);
2772        int ret;
2773
2774        lock_page_memcg(page);
2775        if (mapping && mapping_use_writeback_tags(mapping)) {
2776                struct inode *inode = mapping->host;
2777                struct backing_dev_info *bdi = inode_to_bdi(inode);
2778                unsigned long flags;
2779
2780                xa_lock_irqsave(&mapping->i_pages, flags);
2781                ret = TestClearPageWriteback(page);
2782                if (ret) {
2783                        __xa_clear_mark(&mapping->i_pages, page_index(page),
2784                                                PAGECACHE_TAG_WRITEBACK);
2785                        if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
2786                                struct bdi_writeback *wb = inode_to_wb(inode);
2787
2788                                dec_wb_stat(wb, WB_WRITEBACK);
2789                                __wb_writeout_inc(wb);
2790                                if (!mapping_tagged(mapping,
2791                                                    PAGECACHE_TAG_WRITEBACK))
2792                                        wb_inode_writeback_end(wb);
2793                        }
2794                }
2795
2796                if (mapping->host && !mapping_tagged(mapping,
2797                                                     PAGECACHE_TAG_WRITEBACK))
2798                        sb_clear_inode_writeback(mapping->host);
2799
2800                xa_unlock_irqrestore(&mapping->i_pages, flags);
2801        } else {
2802                ret = TestClearPageWriteback(page);
2803        }
2804        if (ret) {
2805                dec_lruvec_page_state(page, NR_WRITEBACK);
2806                dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2807                inc_node_page_state(page, NR_WRITTEN);
2808        }
2809        unlock_page_memcg(page);
2810        return ret;
2811}
2812
2813int __test_set_page_writeback(struct page *page, bool keep_write)
2814{
2815        struct address_space *mapping = page_mapping(page);
2816        int ret, access_ret;
2817
2818        lock_page_memcg(page);
2819        if (mapping && mapping_use_writeback_tags(mapping)) {
2820                XA_STATE(xas, &mapping->i_pages, page_index(page));
2821                struct inode *inode = mapping->host;
2822                struct backing_dev_info *bdi = inode_to_bdi(inode);
2823                unsigned long flags;
2824
2825                xas_lock_irqsave(&xas, flags);
2826                xas_load(&xas);
2827                ret = TestSetPageWriteback(page);
2828                if (!ret) {
2829                        bool on_wblist;
2830
2831                        on_wblist = mapping_tagged(mapping,
2832                                                   PAGECACHE_TAG_WRITEBACK);
2833
2834                        xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
2835                        if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
2836                                struct bdi_writeback *wb = inode_to_wb(inode);
2837
2838                                inc_wb_stat(wb, WB_WRITEBACK);
2839                                if (!on_wblist)
2840                                        wb_inode_writeback_start(wb);
2841                        }
2842
2843                        /*
2844                         * We can come through here when swapping anonymous
2845                         * pages, so we don't necessarily have an inode to track
2846                         * for sync.
2847                         */
2848                        if (mapping->host && !on_wblist)
2849                                sb_mark_inode_writeback(mapping->host);
2850                }
2851                if (!PageDirty(page))
2852                        xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
2853                if (!keep_write)
2854                        xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
2855                xas_unlock_irqrestore(&xas, flags);
2856        } else {
2857                ret = TestSetPageWriteback(page);
2858        }
2859        if (!ret) {
2860                inc_lruvec_page_state(page, NR_WRITEBACK);
2861                inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2862        }
2863        unlock_page_memcg(page);
2864        access_ret = arch_make_page_accessible(page);
2865        /*
2866         * If writeback has been triggered on a page that cannot be made
2867         * accessible, it is too late to recover here.
2868         */
2869        VM_BUG_ON_PAGE(access_ret != 0, page);
2870
2871        return ret;
2872
2873}
2874EXPORT_SYMBOL(__test_set_page_writeback);
2875
2876/*
2877 * Wait for a page to complete writeback
2878 */
2879void wait_on_page_writeback(struct page *page)
2880{
2881        while (PageWriteback(page)) {
2882                trace_wait_on_page_writeback(page, page_mapping(page));
2883                wait_on_page_bit(page, PG_writeback);
2884        }
2885}
2886EXPORT_SYMBOL_GPL(wait_on_page_writeback);
2887
2888/*
2889 * Wait for a page to complete writeback.  Returns -EINTR if we get a
2890 * fatal signal while waiting.
2891 */
2892int wait_on_page_writeback_killable(struct page *page)
2893{
2894        while (PageWriteback(page)) {
2895                trace_wait_on_page_writeback(page, page_mapping(page));
2896                if (wait_on_page_bit_killable(page, PG_writeback))
2897                        return -EINTR;
2898        }
2899
2900        return 0;
2901}
2902EXPORT_SYMBOL_GPL(wait_on_page_writeback_killable);
2903
2904/**
2905 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2906 * @page:       The page to wait on.
2907 *
2908 * This function determines if the given page is related to a backing device
2909 * that requires page contents to be held stable during writeback.  If so, then
2910 * it will wait for any pending writeback to complete.
2911 */
2912void wait_for_stable_page(struct page *page)
2913{
2914        page = thp_head(page);
2915        if (page->mapping->host->i_sb->s_iflags & SB_I_STABLE_WRITES)
2916                wait_on_page_writeback(page);
2917}
2918EXPORT_SYMBOL_GPL(wait_for_stable_page);
2919