linux/mm/rmap.c
<<
>>
Prefs
   1/*
   2 * mm/rmap.c - physical to virtual reverse mappings
   3 *
   4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
   5 * Released under the General Public License (GPL).
   6 *
   7 * Simple, low overhead reverse mapping scheme.
   8 * Please try to keep this thing as modular as possible.
   9 *
  10 * Provides methods for unmapping each kind of mapped page:
  11 * the anon methods track anonymous pages, and
  12 * the file methods track pages belonging to an inode.
  13 *
  14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17 * Contributions by Hugh Dickins 2003, 2004
  18 */
  19
  20/*
  21 * Lock ordering in mm:
  22 *
  23 * inode->i_rwsem       (while writing or truncating, not reading or faulting)
  24 *   mm->mmap_lock
  25 *     mapping->invalidate_lock (in filemap_fault)
  26 *       page->flags PG_locked (lock_page)   * (see hugetlbfs below)
  27 *         hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
  28 *           mapping->i_mmap_rwsem
  29 *             hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
  30 *             anon_vma->rwsem
  31 *               mm->page_table_lock or pte_lock
  32 *                 swap_lock (in swap_duplicate, swap_info_get)
  33 *                   mmlist_lock (in mmput, drain_mmlist and others)
  34 *                   mapping->private_lock (in __set_page_dirty_buffers)
  35 *                     lock_page_memcg move_lock (in __set_page_dirty_buffers)
  36 *                       i_pages lock (widely used)
  37 *                         lruvec->lru_lock (in lock_page_lruvec_irq)
  38 *                   inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  39 *                   bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
  40 *                     sb_lock (within inode_lock in fs/fs-writeback.c)
  41 *                     i_pages lock (widely used, in set_page_dirty,
  42 *                               in arch-dependent flush_dcache_mmap_lock,
  43 *                               within bdi.wb->list_lock in __sync_single_inode)
  44 *
  45 * anon_vma->rwsem,mapping->i_mmap_rwsem   (memory_failure, collect_procs_anon)
  46 *   ->tasklist_lock
  47 *     pte map lock
  48 *
  49 * * hugetlbfs PageHuge() pages take locks in this order:
  50 *         mapping->i_mmap_rwsem
  51 *           hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
  52 *             page->flags PG_locked (lock_page)
  53 */
  54
  55#include <linux/mm.h>
  56#include <linux/sched/mm.h>
  57#include <linux/sched/task.h>
  58#include <linux/pagemap.h>
  59#include <linux/swap.h>
  60#include <linux/swapops.h>
  61#include <linux/slab.h>
  62#include <linux/init.h>
  63#include <linux/ksm.h>
  64#include <linux/rmap.h>
  65#include <linux/rcupdate.h>
  66#include <linux/export.h>
  67#include <linux/memcontrol.h>
  68#include <linux/mmu_notifier.h>
  69#include <linux/migrate.h>
  70#include <linux/hugetlb.h>
  71#include <linux/huge_mm.h>
  72#include <linux/backing-dev.h>
  73#include <linux/page_idle.h>
  74#include <linux/memremap.h>
  75#include <linux/userfaultfd_k.h>
  76
  77#include <asm/tlbflush.h>
  78
  79#include <trace/events/tlb.h>
  80
  81#include "internal.h"
  82
  83static struct kmem_cache *anon_vma_cachep;
  84static struct kmem_cache *anon_vma_chain_cachep;
  85
  86static inline struct anon_vma *anon_vma_alloc(void)
  87{
  88        struct anon_vma *anon_vma;
  89
  90        anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  91        if (anon_vma) {
  92                atomic_set(&anon_vma->refcount, 1);
  93                anon_vma->degree = 1;   /* Reference for first vma */
  94                anon_vma->parent = anon_vma;
  95                /*
  96                 * Initialise the anon_vma root to point to itself. If called
  97                 * from fork, the root will be reset to the parents anon_vma.
  98                 */
  99                anon_vma->root = anon_vma;
 100        }
 101
 102        return anon_vma;
 103}
 104
 105static inline void anon_vma_free(struct anon_vma *anon_vma)
 106{
 107        VM_BUG_ON(atomic_read(&anon_vma->refcount));
 108
 109        /*
 110         * Synchronize against page_lock_anon_vma_read() such that
 111         * we can safely hold the lock without the anon_vma getting
 112         * freed.
 113         *
 114         * Relies on the full mb implied by the atomic_dec_and_test() from
 115         * put_anon_vma() against the acquire barrier implied by
 116         * down_read_trylock() from page_lock_anon_vma_read(). This orders:
 117         *
 118         * page_lock_anon_vma_read()    VS      put_anon_vma()
 119         *   down_read_trylock()                  atomic_dec_and_test()
 120         *   LOCK                                 MB
 121         *   atomic_read()                        rwsem_is_locked()
 122         *
 123         * LOCK should suffice since the actual taking of the lock must
 124         * happen _before_ what follows.
 125         */
 126        might_sleep();
 127        if (rwsem_is_locked(&anon_vma->root->rwsem)) {
 128                anon_vma_lock_write(anon_vma);
 129                anon_vma_unlock_write(anon_vma);
 130        }
 131
 132        kmem_cache_free(anon_vma_cachep, anon_vma);
 133}
 134
 135static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
 136{
 137        return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
 138}
 139
 140static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
 141{
 142        kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
 143}
 144
 145static void anon_vma_chain_link(struct vm_area_struct *vma,
 146                                struct anon_vma_chain *avc,
 147                                struct anon_vma *anon_vma)
 148{
 149        avc->vma = vma;
 150        avc->anon_vma = anon_vma;
 151        list_add(&avc->same_vma, &vma->anon_vma_chain);
 152        anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
 153}
 154
 155/**
 156 * __anon_vma_prepare - attach an anon_vma to a memory region
 157 * @vma: the memory region in question
 158 *
 159 * This makes sure the memory mapping described by 'vma' has
 160 * an 'anon_vma' attached to it, so that we can associate the
 161 * anonymous pages mapped into it with that anon_vma.
 162 *
 163 * The common case will be that we already have one, which
 164 * is handled inline by anon_vma_prepare(). But if
 165 * not we either need to find an adjacent mapping that we
 166 * can re-use the anon_vma from (very common when the only
 167 * reason for splitting a vma has been mprotect()), or we
 168 * allocate a new one.
 169 *
 170 * Anon-vma allocations are very subtle, because we may have
 171 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
 172 * and that may actually touch the rwsem even in the newly
 173 * allocated vma (it depends on RCU to make sure that the
 174 * anon_vma isn't actually destroyed).
 175 *
 176 * As a result, we need to do proper anon_vma locking even
 177 * for the new allocation. At the same time, we do not want
 178 * to do any locking for the common case of already having
 179 * an anon_vma.
 180 *
 181 * This must be called with the mmap_lock held for reading.
 182 */
 183int __anon_vma_prepare(struct vm_area_struct *vma)
 184{
 185        struct mm_struct *mm = vma->vm_mm;
 186        struct anon_vma *anon_vma, *allocated;
 187        struct anon_vma_chain *avc;
 188
 189        might_sleep();
 190
 191        avc = anon_vma_chain_alloc(GFP_KERNEL);
 192        if (!avc)
 193                goto out_enomem;
 194
 195        anon_vma = find_mergeable_anon_vma(vma);
 196        allocated = NULL;
 197        if (!anon_vma) {
 198                anon_vma = anon_vma_alloc();
 199                if (unlikely(!anon_vma))
 200                        goto out_enomem_free_avc;
 201                allocated = anon_vma;
 202        }
 203
 204        anon_vma_lock_write(anon_vma);
 205        /* page_table_lock to protect against threads */
 206        spin_lock(&mm->page_table_lock);
 207        if (likely(!vma->anon_vma)) {
 208                vma->anon_vma = anon_vma;
 209                anon_vma_chain_link(vma, avc, anon_vma);
 210                /* vma reference or self-parent link for new root */
 211                anon_vma->degree++;
 212                allocated = NULL;
 213                avc = NULL;
 214        }
 215        spin_unlock(&mm->page_table_lock);
 216        anon_vma_unlock_write(anon_vma);
 217
 218        if (unlikely(allocated))
 219                put_anon_vma(allocated);
 220        if (unlikely(avc))
 221                anon_vma_chain_free(avc);
 222
 223        return 0;
 224
 225 out_enomem_free_avc:
 226        anon_vma_chain_free(avc);
 227 out_enomem:
 228        return -ENOMEM;
 229}
 230
 231/*
 232 * This is a useful helper function for locking the anon_vma root as
 233 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
 234 * have the same vma.
 235 *
 236 * Such anon_vma's should have the same root, so you'd expect to see
 237 * just a single mutex_lock for the whole traversal.
 238 */
 239static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
 240{
 241        struct anon_vma *new_root = anon_vma->root;
 242        if (new_root != root) {
 243                if (WARN_ON_ONCE(root))
 244                        up_write(&root->rwsem);
 245                root = new_root;
 246                down_write(&root->rwsem);
 247        }
 248        return root;
 249}
 250
 251static inline void unlock_anon_vma_root(struct anon_vma *root)
 252{
 253        if (root)
 254                up_write(&root->rwsem);
 255}
 256
 257/*
 258 * Attach the anon_vmas from src to dst.
 259 * Returns 0 on success, -ENOMEM on failure.
 260 *
 261 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
 262 * anon_vma_fork(). The first three want an exact copy of src, while the last
 263 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
 264 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
 265 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
 266 *
 267 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
 268 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
 269 * This prevents degradation of anon_vma hierarchy to endless linear chain in
 270 * case of constantly forking task. On the other hand, an anon_vma with more
 271 * than one child isn't reused even if there was no alive vma, thus rmap
 272 * walker has a good chance of avoiding scanning the whole hierarchy when it
 273 * searches where page is mapped.
 274 */
 275int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
 276{
 277        struct anon_vma_chain *avc, *pavc;
 278        struct anon_vma *root = NULL;
 279
 280        list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
 281                struct anon_vma *anon_vma;
 282
 283                avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
 284                if (unlikely(!avc)) {
 285                        unlock_anon_vma_root(root);
 286                        root = NULL;
 287                        avc = anon_vma_chain_alloc(GFP_KERNEL);
 288                        if (!avc)
 289                                goto enomem_failure;
 290                }
 291                anon_vma = pavc->anon_vma;
 292                root = lock_anon_vma_root(root, anon_vma);
 293                anon_vma_chain_link(dst, avc, anon_vma);
 294
 295                /*
 296                 * Reuse existing anon_vma if its degree lower than two,
 297                 * that means it has no vma and only one anon_vma child.
 298                 *
 299                 * Do not chose parent anon_vma, otherwise first child
 300                 * will always reuse it. Root anon_vma is never reused:
 301                 * it has self-parent reference and at least one child.
 302                 */
 303                if (!dst->anon_vma && src->anon_vma &&
 304                    anon_vma != src->anon_vma && anon_vma->degree < 2)
 305                        dst->anon_vma = anon_vma;
 306        }
 307        if (dst->anon_vma)
 308                dst->anon_vma->degree++;
 309        unlock_anon_vma_root(root);
 310        return 0;
 311
 312 enomem_failure:
 313        /*
 314         * dst->anon_vma is dropped here otherwise its degree can be incorrectly
 315         * decremented in unlink_anon_vmas().
 316         * We can safely do this because callers of anon_vma_clone() don't care
 317         * about dst->anon_vma if anon_vma_clone() failed.
 318         */
 319        dst->anon_vma = NULL;
 320        unlink_anon_vmas(dst);
 321        return -ENOMEM;
 322}
 323
 324/*
 325 * Attach vma to its own anon_vma, as well as to the anon_vmas that
 326 * the corresponding VMA in the parent process is attached to.
 327 * Returns 0 on success, non-zero on failure.
 328 */
 329int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
 330{
 331        struct anon_vma_chain *avc;
 332        struct anon_vma *anon_vma;
 333        int error;
 334
 335        /* Don't bother if the parent process has no anon_vma here. */
 336        if (!pvma->anon_vma)
 337                return 0;
 338
 339        /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
 340        vma->anon_vma = NULL;
 341
 342        /*
 343         * First, attach the new VMA to the parent VMA's anon_vmas,
 344         * so rmap can find non-COWed pages in child processes.
 345         */
 346        error = anon_vma_clone(vma, pvma);
 347        if (error)
 348                return error;
 349
 350        /* An existing anon_vma has been reused, all done then. */
 351        if (vma->anon_vma)
 352                return 0;
 353
 354        /* Then add our own anon_vma. */
 355        anon_vma = anon_vma_alloc();
 356        if (!anon_vma)
 357                goto out_error;
 358        avc = anon_vma_chain_alloc(GFP_KERNEL);
 359        if (!avc)
 360                goto out_error_free_anon_vma;
 361
 362        /*
 363         * The root anon_vma's rwsem is the lock actually used when we
 364         * lock any of the anon_vmas in this anon_vma tree.
 365         */
 366        anon_vma->root = pvma->anon_vma->root;
 367        anon_vma->parent = pvma->anon_vma;
 368        /*
 369         * With refcounts, an anon_vma can stay around longer than the
 370         * process it belongs to. The root anon_vma needs to be pinned until
 371         * this anon_vma is freed, because the lock lives in the root.
 372         */
 373        get_anon_vma(anon_vma->root);
 374        /* Mark this anon_vma as the one where our new (COWed) pages go. */
 375        vma->anon_vma = anon_vma;
 376        anon_vma_lock_write(anon_vma);
 377        anon_vma_chain_link(vma, avc, anon_vma);
 378        anon_vma->parent->degree++;
 379        anon_vma_unlock_write(anon_vma);
 380
 381        return 0;
 382
 383 out_error_free_anon_vma:
 384        put_anon_vma(anon_vma);
 385 out_error:
 386        unlink_anon_vmas(vma);
 387        return -ENOMEM;
 388}
 389
 390void unlink_anon_vmas(struct vm_area_struct *vma)
 391{
 392        struct anon_vma_chain *avc, *next;
 393        struct anon_vma *root = NULL;
 394
 395        /*
 396         * Unlink each anon_vma chained to the VMA.  This list is ordered
 397         * from newest to oldest, ensuring the root anon_vma gets freed last.
 398         */
 399        list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 400                struct anon_vma *anon_vma = avc->anon_vma;
 401
 402                root = lock_anon_vma_root(root, anon_vma);
 403                anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
 404
 405                /*
 406                 * Leave empty anon_vmas on the list - we'll need
 407                 * to free them outside the lock.
 408                 */
 409                if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
 410                        anon_vma->parent->degree--;
 411                        continue;
 412                }
 413
 414                list_del(&avc->same_vma);
 415                anon_vma_chain_free(avc);
 416        }
 417        if (vma->anon_vma) {
 418                vma->anon_vma->degree--;
 419
 420                /*
 421                 * vma would still be needed after unlink, and anon_vma will be prepared
 422                 * when handle fault.
 423                 */
 424                vma->anon_vma = NULL;
 425        }
 426        unlock_anon_vma_root(root);
 427
 428        /*
 429         * Iterate the list once more, it now only contains empty and unlinked
 430         * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
 431         * needing to write-acquire the anon_vma->root->rwsem.
 432         */
 433        list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 434                struct anon_vma *anon_vma = avc->anon_vma;
 435
 436                VM_WARN_ON(anon_vma->degree);
 437                put_anon_vma(anon_vma);
 438
 439                list_del(&avc->same_vma);
 440                anon_vma_chain_free(avc);
 441        }
 442}
 443
 444static void anon_vma_ctor(void *data)
 445{
 446        struct anon_vma *anon_vma = data;
 447
 448        init_rwsem(&anon_vma->rwsem);
 449        atomic_set(&anon_vma->refcount, 0);
 450        anon_vma->rb_root = RB_ROOT_CACHED;
 451}
 452
 453void __init anon_vma_init(void)
 454{
 455        anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
 456                        0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
 457                        anon_vma_ctor);
 458        anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
 459                        SLAB_PANIC|SLAB_ACCOUNT);
 460}
 461
 462/*
 463 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
 464 *
 465 * Since there is no serialization what so ever against page_remove_rmap()
 466 * the best this function can do is return a refcount increased anon_vma
 467 * that might have been relevant to this page.
 468 *
 469 * The page might have been remapped to a different anon_vma or the anon_vma
 470 * returned may already be freed (and even reused).
 471 *
 472 * In case it was remapped to a different anon_vma, the new anon_vma will be a
 473 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
 474 * ensure that any anon_vma obtained from the page will still be valid for as
 475 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
 476 *
 477 * All users of this function must be very careful when walking the anon_vma
 478 * chain and verify that the page in question is indeed mapped in it
 479 * [ something equivalent to page_mapped_in_vma() ].
 480 *
 481 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
 482 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
 483 * if there is a mapcount, we can dereference the anon_vma after observing
 484 * those.
 485 */
 486struct anon_vma *page_get_anon_vma(struct page *page)
 487{
 488        struct anon_vma *anon_vma = NULL;
 489        unsigned long anon_mapping;
 490
 491        rcu_read_lock();
 492        anon_mapping = (unsigned long)READ_ONCE(page->mapping);
 493        if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 494                goto out;
 495        if (!page_mapped(page))
 496                goto out;
 497
 498        anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 499        if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 500                anon_vma = NULL;
 501                goto out;
 502        }
 503
 504        /*
 505         * If this page is still mapped, then its anon_vma cannot have been
 506         * freed.  But if it has been unmapped, we have no security against the
 507         * anon_vma structure being freed and reused (for another anon_vma:
 508         * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
 509         * above cannot corrupt).
 510         */
 511        if (!page_mapped(page)) {
 512                rcu_read_unlock();
 513                put_anon_vma(anon_vma);
 514                return NULL;
 515        }
 516out:
 517        rcu_read_unlock();
 518
 519        return anon_vma;
 520}
 521
 522/*
 523 * Similar to page_get_anon_vma() except it locks the anon_vma.
 524 *
 525 * Its a little more complex as it tries to keep the fast path to a single
 526 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
 527 * reference like with page_get_anon_vma() and then block on the mutex.
 528 */
 529struct anon_vma *page_lock_anon_vma_read(struct page *page)
 530{
 531        struct anon_vma *anon_vma = NULL;
 532        struct anon_vma *root_anon_vma;
 533        unsigned long anon_mapping;
 534
 535        rcu_read_lock();
 536        anon_mapping = (unsigned long)READ_ONCE(page->mapping);
 537        if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 538                goto out;
 539        if (!page_mapped(page))
 540                goto out;
 541
 542        anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 543        root_anon_vma = READ_ONCE(anon_vma->root);
 544        if (down_read_trylock(&root_anon_vma->rwsem)) {
 545                /*
 546                 * If the page is still mapped, then this anon_vma is still
 547                 * its anon_vma, and holding the mutex ensures that it will
 548                 * not go away, see anon_vma_free().
 549                 */
 550                if (!page_mapped(page)) {
 551                        up_read(&root_anon_vma->rwsem);
 552                        anon_vma = NULL;
 553                }
 554                goto out;
 555        }
 556
 557        /* trylock failed, we got to sleep */
 558        if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 559                anon_vma = NULL;
 560                goto out;
 561        }
 562
 563        if (!page_mapped(page)) {
 564                rcu_read_unlock();
 565                put_anon_vma(anon_vma);
 566                return NULL;
 567        }
 568
 569        /* we pinned the anon_vma, its safe to sleep */
 570        rcu_read_unlock();
 571        anon_vma_lock_read(anon_vma);
 572
 573        if (atomic_dec_and_test(&anon_vma->refcount)) {
 574                /*
 575                 * Oops, we held the last refcount, release the lock
 576                 * and bail -- can't simply use put_anon_vma() because
 577                 * we'll deadlock on the anon_vma_lock_write() recursion.
 578                 */
 579                anon_vma_unlock_read(anon_vma);
 580                __put_anon_vma(anon_vma);
 581                anon_vma = NULL;
 582        }
 583
 584        return anon_vma;
 585
 586out:
 587        rcu_read_unlock();
 588        return anon_vma;
 589}
 590
 591void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
 592{
 593        anon_vma_unlock_read(anon_vma);
 594}
 595
 596#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
 597/*
 598 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
 599 * important if a PTE was dirty when it was unmapped that it's flushed
 600 * before any IO is initiated on the page to prevent lost writes. Similarly,
 601 * it must be flushed before freeing to prevent data leakage.
 602 */
 603void try_to_unmap_flush(void)
 604{
 605        struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 606
 607        if (!tlb_ubc->flush_required)
 608                return;
 609
 610        arch_tlbbatch_flush(&tlb_ubc->arch);
 611        tlb_ubc->flush_required = false;
 612        tlb_ubc->writable = false;
 613}
 614
 615/* Flush iff there are potentially writable TLB entries that can race with IO */
 616void try_to_unmap_flush_dirty(void)
 617{
 618        struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 619
 620        if (tlb_ubc->writable)
 621                try_to_unmap_flush();
 622}
 623
 624static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
 625{
 626        struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 627
 628        arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
 629        tlb_ubc->flush_required = true;
 630
 631        /*
 632         * Ensure compiler does not re-order the setting of tlb_flush_batched
 633         * before the PTE is cleared.
 634         */
 635        barrier();
 636        mm->tlb_flush_batched = true;
 637
 638        /*
 639         * If the PTE was dirty then it's best to assume it's writable. The
 640         * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
 641         * before the page is queued for IO.
 642         */
 643        if (writable)
 644                tlb_ubc->writable = true;
 645}
 646
 647/*
 648 * Returns true if the TLB flush should be deferred to the end of a batch of
 649 * unmap operations to reduce IPIs.
 650 */
 651static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
 652{
 653        bool should_defer = false;
 654
 655        if (!(flags & TTU_BATCH_FLUSH))
 656                return false;
 657
 658        /* If remote CPUs need to be flushed then defer batch the flush */
 659        if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
 660                should_defer = true;
 661        put_cpu();
 662
 663        return should_defer;
 664}
 665
 666/*
 667 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
 668 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
 669 * operation such as mprotect or munmap to race between reclaim unmapping
 670 * the page and flushing the page. If this race occurs, it potentially allows
 671 * access to data via a stale TLB entry. Tracking all mm's that have TLB
 672 * batching in flight would be expensive during reclaim so instead track
 673 * whether TLB batching occurred in the past and if so then do a flush here
 674 * if required. This will cost one additional flush per reclaim cycle paid
 675 * by the first operation at risk such as mprotect and mumap.
 676 *
 677 * This must be called under the PTL so that an access to tlb_flush_batched
 678 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
 679 * via the PTL.
 680 */
 681void flush_tlb_batched_pending(struct mm_struct *mm)
 682{
 683        if (data_race(mm->tlb_flush_batched)) {
 684                flush_tlb_mm(mm);
 685
 686                /*
 687                 * Do not allow the compiler to re-order the clearing of
 688                 * tlb_flush_batched before the tlb is flushed.
 689                 */
 690                barrier();
 691                mm->tlb_flush_batched = false;
 692        }
 693}
 694#else
 695static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
 696{
 697}
 698
 699static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
 700{
 701        return false;
 702}
 703#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
 704
 705/*
 706 * At what user virtual address is page expected in vma?
 707 * Caller should check the page is actually part of the vma.
 708 */
 709unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
 710{
 711        if (PageAnon(page)) {
 712                struct anon_vma *page__anon_vma = page_anon_vma(page);
 713                /*
 714                 * Note: swapoff's unuse_vma() is more efficient with this
 715                 * check, and needs it to match anon_vma when KSM is active.
 716                 */
 717                if (!vma->anon_vma || !page__anon_vma ||
 718                    vma->anon_vma->root != page__anon_vma->root)
 719                        return -EFAULT;
 720        } else if (!vma->vm_file) {
 721                return -EFAULT;
 722        } else if (vma->vm_file->f_mapping != compound_head(page)->mapping) {
 723                return -EFAULT;
 724        }
 725
 726        return vma_address(page, vma);
 727}
 728
 729pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
 730{
 731        pgd_t *pgd;
 732        p4d_t *p4d;
 733        pud_t *pud;
 734        pmd_t *pmd = NULL;
 735        pmd_t pmde;
 736
 737        pgd = pgd_offset(mm, address);
 738        if (!pgd_present(*pgd))
 739                goto out;
 740
 741        p4d = p4d_offset(pgd, address);
 742        if (!p4d_present(*p4d))
 743                goto out;
 744
 745        pud = pud_offset(p4d, address);
 746        if (!pud_present(*pud))
 747                goto out;
 748
 749        pmd = pmd_offset(pud, address);
 750        /*
 751         * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
 752         * without holding anon_vma lock for write.  So when looking for a
 753         * genuine pmde (in which to find pte), test present and !THP together.
 754         */
 755        pmde = *pmd;
 756        barrier();
 757        if (!pmd_present(pmde) || pmd_trans_huge(pmde))
 758                pmd = NULL;
 759out:
 760        return pmd;
 761}
 762
 763struct page_referenced_arg {
 764        int mapcount;
 765        int referenced;
 766        unsigned long vm_flags;
 767        struct mem_cgroup *memcg;
 768};
 769/*
 770 * arg: page_referenced_arg will be passed
 771 */
 772static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
 773                        unsigned long address, void *arg)
 774{
 775        struct page_referenced_arg *pra = arg;
 776        struct page_vma_mapped_walk pvmw = {
 777                .page = page,
 778                .vma = vma,
 779                .address = address,
 780        };
 781        int referenced = 0;
 782
 783        while (page_vma_mapped_walk(&pvmw)) {
 784                address = pvmw.address;
 785
 786                if (vma->vm_flags & VM_LOCKED) {
 787                        page_vma_mapped_walk_done(&pvmw);
 788                        pra->vm_flags |= VM_LOCKED;
 789                        return false; /* To break the loop */
 790                }
 791
 792                if (pvmw.pte) {
 793                        if (ptep_clear_flush_young_notify(vma, address,
 794                                                pvmw.pte)) {
 795                                /*
 796                                 * Don't treat a reference through
 797                                 * a sequentially read mapping as such.
 798                                 * If the page has been used in another mapping,
 799                                 * we will catch it; if this other mapping is
 800                                 * already gone, the unmap path will have set
 801                                 * PG_referenced or activated the page.
 802                                 */
 803                                if (likely(!(vma->vm_flags & VM_SEQ_READ)))
 804                                        referenced++;
 805                        }
 806                } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
 807                        if (pmdp_clear_flush_young_notify(vma, address,
 808                                                pvmw.pmd))
 809                                referenced++;
 810                } else {
 811                        /* unexpected pmd-mapped page? */
 812                        WARN_ON_ONCE(1);
 813                }
 814
 815                pra->mapcount--;
 816        }
 817
 818        if (referenced)
 819                clear_page_idle(page);
 820        if (test_and_clear_page_young(page))
 821                referenced++;
 822
 823        if (referenced) {
 824                pra->referenced++;
 825                pra->vm_flags |= vma->vm_flags;
 826        }
 827
 828        if (!pra->mapcount)
 829                return false; /* To break the loop */
 830
 831        return true;
 832}
 833
 834static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
 835{
 836        struct page_referenced_arg *pra = arg;
 837        struct mem_cgroup *memcg = pra->memcg;
 838
 839        if (!mm_match_cgroup(vma->vm_mm, memcg))
 840                return true;
 841
 842        return false;
 843}
 844
 845/**
 846 * page_referenced - test if the page was referenced
 847 * @page: the page to test
 848 * @is_locked: caller holds lock on the page
 849 * @memcg: target memory cgroup
 850 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
 851 *
 852 * Quick test_and_clear_referenced for all mappings to a page,
 853 * returns the number of ptes which referenced the page.
 854 */
 855int page_referenced(struct page *page,
 856                    int is_locked,
 857                    struct mem_cgroup *memcg,
 858                    unsigned long *vm_flags)
 859{
 860        int we_locked = 0;
 861        struct page_referenced_arg pra = {
 862                .mapcount = total_mapcount(page),
 863                .memcg = memcg,
 864        };
 865        struct rmap_walk_control rwc = {
 866                .rmap_one = page_referenced_one,
 867                .arg = (void *)&pra,
 868                .anon_lock = page_lock_anon_vma_read,
 869        };
 870
 871        *vm_flags = 0;
 872        if (!pra.mapcount)
 873                return 0;
 874
 875        if (!page_rmapping(page))
 876                return 0;
 877
 878        if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
 879                we_locked = trylock_page(page);
 880                if (!we_locked)
 881                        return 1;
 882        }
 883
 884        /*
 885         * If we are reclaiming on behalf of a cgroup, skip
 886         * counting on behalf of references from different
 887         * cgroups
 888         */
 889        if (memcg) {
 890                rwc.invalid_vma = invalid_page_referenced_vma;
 891        }
 892
 893        rmap_walk(page, &rwc);
 894        *vm_flags = pra.vm_flags;
 895
 896        if (we_locked)
 897                unlock_page(page);
 898
 899        return pra.referenced;
 900}
 901
 902static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
 903                            unsigned long address, void *arg)
 904{
 905        struct page_vma_mapped_walk pvmw = {
 906                .page = page,
 907                .vma = vma,
 908                .address = address,
 909                .flags = PVMW_SYNC,
 910        };
 911        struct mmu_notifier_range range;
 912        int *cleaned = arg;
 913
 914        /*
 915         * We have to assume the worse case ie pmd for invalidation. Note that
 916         * the page can not be free from this function.
 917         */
 918        mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
 919                                0, vma, vma->vm_mm, address,
 920                                vma_address_end(page, vma));
 921        mmu_notifier_invalidate_range_start(&range);
 922
 923        while (page_vma_mapped_walk(&pvmw)) {
 924                int ret = 0;
 925
 926                address = pvmw.address;
 927                if (pvmw.pte) {
 928                        pte_t entry;
 929                        pte_t *pte = pvmw.pte;
 930
 931                        if (!pte_dirty(*pte) && !pte_write(*pte))
 932                                continue;
 933
 934                        flush_cache_page(vma, address, pte_pfn(*pte));
 935                        entry = ptep_clear_flush(vma, address, pte);
 936                        entry = pte_wrprotect(entry);
 937                        entry = pte_mkclean(entry);
 938                        set_pte_at(vma->vm_mm, address, pte, entry);
 939                        ret = 1;
 940                } else {
 941#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 942                        pmd_t *pmd = pvmw.pmd;
 943                        pmd_t entry;
 944
 945                        if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
 946                                continue;
 947
 948                        flush_cache_page(vma, address, page_to_pfn(page));
 949                        entry = pmdp_invalidate(vma, address, pmd);
 950                        entry = pmd_wrprotect(entry);
 951                        entry = pmd_mkclean(entry);
 952                        set_pmd_at(vma->vm_mm, address, pmd, entry);
 953                        ret = 1;
 954#else
 955                        /* unexpected pmd-mapped page? */
 956                        WARN_ON_ONCE(1);
 957#endif
 958                }
 959
 960                /*
 961                 * No need to call mmu_notifier_invalidate_range() as we are
 962                 * downgrading page table protection not changing it to point
 963                 * to a new page.
 964                 *
 965                 * See Documentation/vm/mmu_notifier.rst
 966                 */
 967                if (ret)
 968                        (*cleaned)++;
 969        }
 970
 971        mmu_notifier_invalidate_range_end(&range);
 972
 973        return true;
 974}
 975
 976static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
 977{
 978        if (vma->vm_flags & VM_SHARED)
 979                return false;
 980
 981        return true;
 982}
 983
 984int page_mkclean(struct page *page)
 985{
 986        int cleaned = 0;
 987        struct address_space *mapping;
 988        struct rmap_walk_control rwc = {
 989                .arg = (void *)&cleaned,
 990                .rmap_one = page_mkclean_one,
 991                .invalid_vma = invalid_mkclean_vma,
 992        };
 993
 994        BUG_ON(!PageLocked(page));
 995
 996        if (!page_mapped(page))
 997                return 0;
 998
 999        mapping = page_mapping(page);
1000        if (!mapping)
1001                return 0;
1002
1003        rmap_walk(page, &rwc);
1004
1005        return cleaned;
1006}
1007EXPORT_SYMBOL_GPL(page_mkclean);
1008
1009/**
1010 * page_move_anon_rmap - move a page to our anon_vma
1011 * @page:       the page to move to our anon_vma
1012 * @vma:        the vma the page belongs to
1013 *
1014 * When a page belongs exclusively to one process after a COW event,
1015 * that page can be moved into the anon_vma that belongs to just that
1016 * process, so the rmap code will not search the parent or sibling
1017 * processes.
1018 */
1019void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1020{
1021        struct anon_vma *anon_vma = vma->anon_vma;
1022
1023        page = compound_head(page);
1024
1025        VM_BUG_ON_PAGE(!PageLocked(page), page);
1026        VM_BUG_ON_VMA(!anon_vma, vma);
1027
1028        anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1029        /*
1030         * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1031         * simultaneously, so a concurrent reader (eg page_referenced()'s
1032         * PageAnon()) will not see one without the other.
1033         */
1034        WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1035}
1036
1037/**
1038 * __page_set_anon_rmap - set up new anonymous rmap
1039 * @page:       Page or Hugepage to add to rmap
1040 * @vma:        VM area to add page to.
1041 * @address:    User virtual address of the mapping     
1042 * @exclusive:  the page is exclusively owned by the current process
1043 */
1044static void __page_set_anon_rmap(struct page *page,
1045        struct vm_area_struct *vma, unsigned long address, int exclusive)
1046{
1047        struct anon_vma *anon_vma = vma->anon_vma;
1048
1049        BUG_ON(!anon_vma);
1050
1051        if (PageAnon(page))
1052                return;
1053
1054        /*
1055         * If the page isn't exclusively mapped into this vma,
1056         * we must use the _oldest_ possible anon_vma for the
1057         * page mapping!
1058         */
1059        if (!exclusive)
1060                anon_vma = anon_vma->root;
1061
1062        /*
1063         * page_idle does a lockless/optimistic rmap scan on page->mapping.
1064         * Make sure the compiler doesn't split the stores of anon_vma and
1065         * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1066         * could mistake the mapping for a struct address_space and crash.
1067         */
1068        anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1069        WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1070        page->index = linear_page_index(vma, address);
1071}
1072
1073/**
1074 * __page_check_anon_rmap - sanity check anonymous rmap addition
1075 * @page:       the page to add the mapping to
1076 * @vma:        the vm area in which the mapping is added
1077 * @address:    the user virtual address mapped
1078 */
1079static void __page_check_anon_rmap(struct page *page,
1080        struct vm_area_struct *vma, unsigned long address)
1081{
1082        /*
1083         * The page's anon-rmap details (mapping and index) are guaranteed to
1084         * be set up correctly at this point.
1085         *
1086         * We have exclusion against page_add_anon_rmap because the caller
1087         * always holds the page locked.
1088         *
1089         * We have exclusion against page_add_new_anon_rmap because those pages
1090         * are initially only visible via the pagetables, and the pte is locked
1091         * over the call to page_add_new_anon_rmap.
1092         */
1093        VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page);
1094        VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1095                       page);
1096}
1097
1098/**
1099 * page_add_anon_rmap - add pte mapping to an anonymous page
1100 * @page:       the page to add the mapping to
1101 * @vma:        the vm area in which the mapping is added
1102 * @address:    the user virtual address mapped
1103 * @compound:   charge the page as compound or small page
1104 *
1105 * The caller needs to hold the pte lock, and the page must be locked in
1106 * the anon_vma case: to serialize mapping,index checking after setting,
1107 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1108 * (but PageKsm is never downgraded to PageAnon).
1109 */
1110void page_add_anon_rmap(struct page *page,
1111        struct vm_area_struct *vma, unsigned long address, bool compound)
1112{
1113        do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1114}
1115
1116/*
1117 * Special version of the above for do_swap_page, which often runs
1118 * into pages that are exclusively owned by the current process.
1119 * Everybody else should continue to use page_add_anon_rmap above.
1120 */
1121void do_page_add_anon_rmap(struct page *page,
1122        struct vm_area_struct *vma, unsigned long address, int flags)
1123{
1124        bool compound = flags & RMAP_COMPOUND;
1125        bool first;
1126
1127        if (unlikely(PageKsm(page)))
1128                lock_page_memcg(page);
1129        else
1130                VM_BUG_ON_PAGE(!PageLocked(page), page);
1131
1132        if (compound) {
1133                atomic_t *mapcount;
1134                VM_BUG_ON_PAGE(!PageLocked(page), page);
1135                VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1136                mapcount = compound_mapcount_ptr(page);
1137                first = atomic_inc_and_test(mapcount);
1138        } else {
1139                first = atomic_inc_and_test(&page->_mapcount);
1140        }
1141
1142        if (first) {
1143                int nr = compound ? thp_nr_pages(page) : 1;
1144                /*
1145                 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1146                 * these counters are not modified in interrupt context, and
1147                 * pte lock(a spinlock) is held, which implies preemption
1148                 * disabled.
1149                 */
1150                if (compound)
1151                        __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1152                __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1153        }
1154
1155        if (unlikely(PageKsm(page))) {
1156                unlock_page_memcg(page);
1157                return;
1158        }
1159
1160        /* address might be in next vma when migration races vma_adjust */
1161        if (first)
1162                __page_set_anon_rmap(page, vma, address,
1163                                flags & RMAP_EXCLUSIVE);
1164        else
1165                __page_check_anon_rmap(page, vma, address);
1166}
1167
1168/**
1169 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1170 * @page:       the page to add the mapping to
1171 * @vma:        the vm area in which the mapping is added
1172 * @address:    the user virtual address mapped
1173 * @compound:   charge the page as compound or small page
1174 *
1175 * Same as page_add_anon_rmap but must only be called on *new* pages.
1176 * This means the inc-and-test can be bypassed.
1177 * Page does not have to be locked.
1178 */
1179void page_add_new_anon_rmap(struct page *page,
1180        struct vm_area_struct *vma, unsigned long address, bool compound)
1181{
1182        int nr = compound ? thp_nr_pages(page) : 1;
1183
1184        VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1185        __SetPageSwapBacked(page);
1186        if (compound) {
1187                VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1188                /* increment count (starts at -1) */
1189                atomic_set(compound_mapcount_ptr(page), 0);
1190                if (hpage_pincount_available(page))
1191                        atomic_set(compound_pincount_ptr(page), 0);
1192
1193                __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1194        } else {
1195                /* Anon THP always mapped first with PMD */
1196                VM_BUG_ON_PAGE(PageTransCompound(page), page);
1197                /* increment count (starts at -1) */
1198                atomic_set(&page->_mapcount, 0);
1199        }
1200        __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1201        __page_set_anon_rmap(page, vma, address, 1);
1202}
1203
1204/**
1205 * page_add_file_rmap - add pte mapping to a file page
1206 * @page: the page to add the mapping to
1207 * @compound: charge the page as compound or small page
1208 *
1209 * The caller needs to hold the pte lock.
1210 */
1211void page_add_file_rmap(struct page *page, bool compound)
1212{
1213        int i, nr = 1;
1214
1215        VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1216        lock_page_memcg(page);
1217        if (compound && PageTransHuge(page)) {
1218                int nr_pages = thp_nr_pages(page);
1219
1220                for (i = 0, nr = 0; i < nr_pages; i++) {
1221                        if (atomic_inc_and_test(&page[i]._mapcount))
1222                                nr++;
1223                }
1224                if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1225                        goto out;
1226                if (PageSwapBacked(page))
1227                        __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1228                                                nr_pages);
1229                else
1230                        __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1231                                                nr_pages);
1232        } else {
1233                if (PageTransCompound(page) && page_mapping(page)) {
1234                        struct page *head = compound_head(page);
1235
1236                        VM_WARN_ON_ONCE(!PageLocked(page));
1237
1238                        SetPageDoubleMap(head);
1239                        if (PageMlocked(page))
1240                                clear_page_mlock(head);
1241                }
1242                if (!atomic_inc_and_test(&page->_mapcount))
1243                        goto out;
1244        }
1245        __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1246out:
1247        unlock_page_memcg(page);
1248}
1249
1250static void page_remove_file_rmap(struct page *page, bool compound)
1251{
1252        int i, nr = 1;
1253
1254        VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1255
1256        /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1257        if (unlikely(PageHuge(page))) {
1258                /* hugetlb pages are always mapped with pmds */
1259                atomic_dec(compound_mapcount_ptr(page));
1260                return;
1261        }
1262
1263        /* page still mapped by someone else? */
1264        if (compound && PageTransHuge(page)) {
1265                int nr_pages = thp_nr_pages(page);
1266
1267                for (i = 0, nr = 0; i < nr_pages; i++) {
1268                        if (atomic_add_negative(-1, &page[i]._mapcount))
1269                                nr++;
1270                }
1271                if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1272                        return;
1273                if (PageSwapBacked(page))
1274                        __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1275                                                -nr_pages);
1276                else
1277                        __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1278                                                -nr_pages);
1279        } else {
1280                if (!atomic_add_negative(-1, &page->_mapcount))
1281                        return;
1282        }
1283
1284        /*
1285         * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1286         * these counters are not modified in interrupt context, and
1287         * pte lock(a spinlock) is held, which implies preemption disabled.
1288         */
1289        __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1290
1291        if (unlikely(PageMlocked(page)))
1292                clear_page_mlock(page);
1293}
1294
1295static void page_remove_anon_compound_rmap(struct page *page)
1296{
1297        int i, nr;
1298
1299        if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1300                return;
1301
1302        /* Hugepages are not counted in NR_ANON_PAGES for now. */
1303        if (unlikely(PageHuge(page)))
1304                return;
1305
1306        if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1307                return;
1308
1309        __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
1310
1311        if (TestClearPageDoubleMap(page)) {
1312                /*
1313                 * Subpages can be mapped with PTEs too. Check how many of
1314                 * them are still mapped.
1315                 */
1316                for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1317                        if (atomic_add_negative(-1, &page[i]._mapcount))
1318                                nr++;
1319                }
1320
1321                /*
1322                 * Queue the page for deferred split if at least one small
1323                 * page of the compound page is unmapped, but at least one
1324                 * small page is still mapped.
1325                 */
1326                if (nr && nr < thp_nr_pages(page))
1327                        deferred_split_huge_page(page);
1328        } else {
1329                nr = thp_nr_pages(page);
1330        }
1331
1332        if (unlikely(PageMlocked(page)))
1333                clear_page_mlock(page);
1334
1335        if (nr)
1336                __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
1337}
1338
1339/**
1340 * page_remove_rmap - take down pte mapping from a page
1341 * @page:       page to remove mapping from
1342 * @compound:   uncharge the page as compound or small page
1343 *
1344 * The caller needs to hold the pte lock.
1345 */
1346void page_remove_rmap(struct page *page, bool compound)
1347{
1348        lock_page_memcg(page);
1349
1350        if (!PageAnon(page)) {
1351                page_remove_file_rmap(page, compound);
1352                goto out;
1353        }
1354
1355        if (compound) {
1356                page_remove_anon_compound_rmap(page);
1357                goto out;
1358        }
1359
1360        /* page still mapped by someone else? */
1361        if (!atomic_add_negative(-1, &page->_mapcount))
1362                goto out;
1363
1364        /*
1365         * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1366         * these counters are not modified in interrupt context, and
1367         * pte lock(a spinlock) is held, which implies preemption disabled.
1368         */
1369        __dec_lruvec_page_state(page, NR_ANON_MAPPED);
1370
1371        if (unlikely(PageMlocked(page)))
1372                clear_page_mlock(page);
1373
1374        if (PageTransCompound(page))
1375                deferred_split_huge_page(compound_head(page));
1376
1377        /*
1378         * It would be tidy to reset the PageAnon mapping here,
1379         * but that might overwrite a racing page_add_anon_rmap
1380         * which increments mapcount after us but sets mapping
1381         * before us: so leave the reset to free_unref_page,
1382         * and remember that it's only reliable while mapped.
1383         * Leaving it set also helps swapoff to reinstate ptes
1384         * faster for those pages still in swapcache.
1385         */
1386out:
1387        unlock_page_memcg(page);
1388}
1389
1390/*
1391 * @arg: enum ttu_flags will be passed to this argument
1392 */
1393static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1394                     unsigned long address, void *arg)
1395{
1396        struct mm_struct *mm = vma->vm_mm;
1397        struct page_vma_mapped_walk pvmw = {
1398                .page = page,
1399                .vma = vma,
1400                .address = address,
1401        };
1402        pte_t pteval;
1403        struct page *subpage;
1404        bool ret = true;
1405        struct mmu_notifier_range range;
1406        enum ttu_flags flags = (enum ttu_flags)(long)arg;
1407
1408        /*
1409         * When racing against e.g. zap_pte_range() on another cpu,
1410         * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1411         * try_to_unmap() may return before page_mapped() has become false,
1412         * if page table locking is skipped: use TTU_SYNC to wait for that.
1413         */
1414        if (flags & TTU_SYNC)
1415                pvmw.flags = PVMW_SYNC;
1416
1417        if (flags & TTU_SPLIT_HUGE_PMD)
1418                split_huge_pmd_address(vma, address, false, page);
1419
1420        /*
1421         * For THP, we have to assume the worse case ie pmd for invalidation.
1422         * For hugetlb, it could be much worse if we need to do pud
1423         * invalidation in the case of pmd sharing.
1424         *
1425         * Note that the page can not be free in this function as call of
1426         * try_to_unmap() must hold a reference on the page.
1427         */
1428        range.end = PageKsm(page) ?
1429                        address + PAGE_SIZE : vma_address_end(page, vma);
1430        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1431                                address, range.end);
1432        if (PageHuge(page)) {
1433                /*
1434                 * If sharing is possible, start and end will be adjusted
1435                 * accordingly.
1436                 */
1437                adjust_range_if_pmd_sharing_possible(vma, &range.start,
1438                                                     &range.end);
1439        }
1440        mmu_notifier_invalidate_range_start(&range);
1441
1442        while (page_vma_mapped_walk(&pvmw)) {
1443                /*
1444                 * If the page is mlock()d, we cannot swap it out.
1445                 */
1446                if (!(flags & TTU_IGNORE_MLOCK) &&
1447                    (vma->vm_flags & VM_LOCKED)) {
1448                        /*
1449                         * PTE-mapped THP are never marked as mlocked: so do
1450                         * not set it on a DoubleMap THP, nor on an Anon THP
1451                         * (which may still be PTE-mapped after DoubleMap was
1452                         * cleared).  But stop unmapping even in those cases.
1453                         */
1454                        if (!PageTransCompound(page) || (PageHead(page) &&
1455                             !PageDoubleMap(page) && !PageAnon(page)))
1456                                mlock_vma_page(page);
1457                        page_vma_mapped_walk_done(&pvmw);
1458                        ret = false;
1459                        break;
1460                }
1461
1462                /* Unexpected PMD-mapped THP? */
1463                VM_BUG_ON_PAGE(!pvmw.pte, page);
1464
1465                subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1466                address = pvmw.address;
1467
1468                if (PageHuge(page) && !PageAnon(page)) {
1469                        /*
1470                         * To call huge_pmd_unshare, i_mmap_rwsem must be
1471                         * held in write mode.  Caller needs to explicitly
1472                         * do this outside rmap routines.
1473                         */
1474                        VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1475                        if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1476                                /*
1477                                 * huge_pmd_unshare unmapped an entire PMD
1478                                 * page.  There is no way of knowing exactly
1479                                 * which PMDs may be cached for this mm, so
1480                                 * we must flush them all.  start/end were
1481                                 * already adjusted above to cover this range.
1482                                 */
1483                                flush_cache_range(vma, range.start, range.end);
1484                                flush_tlb_range(vma, range.start, range.end);
1485                                mmu_notifier_invalidate_range(mm, range.start,
1486                                                              range.end);
1487
1488                                /*
1489                                 * The ref count of the PMD page was dropped
1490                                 * which is part of the way map counting
1491                                 * is done for shared PMDs.  Return 'true'
1492                                 * here.  When there is no other sharing,
1493                                 * huge_pmd_unshare returns false and we will
1494                                 * unmap the actual page and drop map count
1495                                 * to zero.
1496                                 */
1497                                page_vma_mapped_walk_done(&pvmw);
1498                                break;
1499                        }
1500                }
1501
1502                /* Nuke the page table entry. */
1503                flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1504                if (should_defer_flush(mm, flags)) {
1505                        /*
1506                         * We clear the PTE but do not flush so potentially
1507                         * a remote CPU could still be writing to the page.
1508                         * If the entry was previously clean then the
1509                         * architecture must guarantee that a clear->dirty
1510                         * transition on a cached TLB entry is written through
1511                         * and traps if the PTE is unmapped.
1512                         */
1513                        pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1514
1515                        set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1516                } else {
1517                        pteval = ptep_clear_flush(vma, address, pvmw.pte);
1518                }
1519
1520                /* Move the dirty bit to the page. Now the pte is gone. */
1521                if (pte_dirty(pteval))
1522                        set_page_dirty(page);
1523
1524                /* Update high watermark before we lower rss */
1525                update_hiwater_rss(mm);
1526
1527                if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1528                        pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1529                        if (PageHuge(page)) {
1530                                hugetlb_count_sub(compound_nr(page), mm);
1531                                set_huge_swap_pte_at(mm, address,
1532                                                     pvmw.pte, pteval,
1533                                                     vma_mmu_pagesize(vma));
1534                        } else {
1535                                dec_mm_counter(mm, mm_counter(page));
1536                                set_pte_at(mm, address, pvmw.pte, pteval);
1537                        }
1538
1539                } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1540                        /*
1541                         * The guest indicated that the page content is of no
1542                         * interest anymore. Simply discard the pte, vmscan
1543                         * will take care of the rest.
1544                         * A future reference will then fault in a new zero
1545                         * page. When userfaultfd is active, we must not drop
1546                         * this page though, as its main user (postcopy
1547                         * migration) will not expect userfaults on already
1548                         * copied pages.
1549                         */
1550                        dec_mm_counter(mm, mm_counter(page));
1551                        /* We have to invalidate as we cleared the pte */
1552                        mmu_notifier_invalidate_range(mm, address,
1553                                                      address + PAGE_SIZE);
1554                } else if (PageAnon(page)) {
1555                        swp_entry_t entry = { .val = page_private(subpage) };
1556                        pte_t swp_pte;
1557                        /*
1558                         * Store the swap location in the pte.
1559                         * See handle_pte_fault() ...
1560                         */
1561                        if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1562                                WARN_ON_ONCE(1);
1563                                ret = false;
1564                                /* We have to invalidate as we cleared the pte */
1565                                mmu_notifier_invalidate_range(mm, address,
1566                                                        address + PAGE_SIZE);
1567                                page_vma_mapped_walk_done(&pvmw);
1568                                break;
1569                        }
1570
1571                        /* MADV_FREE page check */
1572                        if (!PageSwapBacked(page)) {
1573                                if (!PageDirty(page)) {
1574                                        /* Invalidate as we cleared the pte */
1575                                        mmu_notifier_invalidate_range(mm,
1576                                                address, address + PAGE_SIZE);
1577                                        dec_mm_counter(mm, MM_ANONPAGES);
1578                                        goto discard;
1579                                }
1580
1581                                /*
1582                                 * If the page was redirtied, it cannot be
1583                                 * discarded. Remap the page to page table.
1584                                 */
1585                                set_pte_at(mm, address, pvmw.pte, pteval);
1586                                SetPageSwapBacked(page);
1587                                ret = false;
1588                                page_vma_mapped_walk_done(&pvmw);
1589                                break;
1590                        }
1591
1592                        if (swap_duplicate(entry) < 0) {
1593                                set_pte_at(mm, address, pvmw.pte, pteval);
1594                                ret = false;
1595                                page_vma_mapped_walk_done(&pvmw);
1596                                break;
1597                        }
1598                        if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1599                                set_pte_at(mm, address, pvmw.pte, pteval);
1600                                ret = false;
1601                                page_vma_mapped_walk_done(&pvmw);
1602                                break;
1603                        }
1604                        if (list_empty(&mm->mmlist)) {
1605                                spin_lock(&mmlist_lock);
1606                                if (list_empty(&mm->mmlist))
1607                                        list_add(&mm->mmlist, &init_mm.mmlist);
1608                                spin_unlock(&mmlist_lock);
1609                        }
1610                        dec_mm_counter(mm, MM_ANONPAGES);
1611                        inc_mm_counter(mm, MM_SWAPENTS);
1612                        swp_pte = swp_entry_to_pte(entry);
1613                        if (pte_soft_dirty(pteval))
1614                                swp_pte = pte_swp_mksoft_dirty(swp_pte);
1615                        if (pte_uffd_wp(pteval))
1616                                swp_pte = pte_swp_mkuffd_wp(swp_pte);
1617                        set_pte_at(mm, address, pvmw.pte, swp_pte);
1618                        /* Invalidate as we cleared the pte */
1619                        mmu_notifier_invalidate_range(mm, address,
1620                                                      address + PAGE_SIZE);
1621                } else {
1622                        /*
1623                         * This is a locked file-backed page, thus it cannot
1624                         * be removed from the page cache and replaced by a new
1625                         * page before mmu_notifier_invalidate_range_end, so no
1626                         * concurrent thread might update its page table to
1627                         * point at new page while a device still is using this
1628                         * page.
1629                         *
1630                         * See Documentation/vm/mmu_notifier.rst
1631                         */
1632                        dec_mm_counter(mm, mm_counter_file(page));
1633                }
1634discard:
1635                /*
1636                 * No need to call mmu_notifier_invalidate_range() it has be
1637                 * done above for all cases requiring it to happen under page
1638                 * table lock before mmu_notifier_invalidate_range_end()
1639                 *
1640                 * See Documentation/vm/mmu_notifier.rst
1641                 */
1642                page_remove_rmap(subpage, PageHuge(page));
1643                put_page(page);
1644        }
1645
1646        mmu_notifier_invalidate_range_end(&range);
1647
1648        return ret;
1649}
1650
1651static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1652{
1653        return vma_is_temporary_stack(vma);
1654}
1655
1656static int page_not_mapped(struct page *page)
1657{
1658        return !page_mapped(page);
1659}
1660
1661/**
1662 * try_to_unmap - try to remove all page table mappings to a page
1663 * @page: the page to get unmapped
1664 * @flags: action and flags
1665 *
1666 * Tries to remove all the page table entries which are mapping this
1667 * page, used in the pageout path.  Caller must hold the page lock.
1668 *
1669 * It is the caller's responsibility to check if the page is still
1670 * mapped when needed (use TTU_SYNC to prevent accounting races).
1671 */
1672void try_to_unmap(struct page *page, enum ttu_flags flags)
1673{
1674        struct rmap_walk_control rwc = {
1675                .rmap_one = try_to_unmap_one,
1676                .arg = (void *)flags,
1677                .done = page_not_mapped,
1678                .anon_lock = page_lock_anon_vma_read,
1679        };
1680
1681        if (flags & TTU_RMAP_LOCKED)
1682                rmap_walk_locked(page, &rwc);
1683        else
1684                rmap_walk(page, &rwc);
1685}
1686
1687/*
1688 * @arg: enum ttu_flags will be passed to this argument.
1689 *
1690 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1691 * containing migration entries.
1692 */
1693static bool try_to_migrate_one(struct page *page, struct vm_area_struct *vma,
1694                     unsigned long address, void *arg)
1695{
1696        struct mm_struct *mm = vma->vm_mm;
1697        struct page_vma_mapped_walk pvmw = {
1698                .page = page,
1699                .vma = vma,
1700                .address = address,
1701        };
1702        pte_t pteval;
1703        struct page *subpage;
1704        bool ret = true;
1705        struct mmu_notifier_range range;
1706        enum ttu_flags flags = (enum ttu_flags)(long)arg;
1707
1708        /*
1709         * When racing against e.g. zap_pte_range() on another cpu,
1710         * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1711         * try_to_migrate() may return before page_mapped() has become false,
1712         * if page table locking is skipped: use TTU_SYNC to wait for that.
1713         */
1714        if (flags & TTU_SYNC)
1715                pvmw.flags = PVMW_SYNC;
1716
1717        /*
1718         * unmap_page() in mm/huge_memory.c is the only user of migration with
1719         * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1720         */
1721        if (flags & TTU_SPLIT_HUGE_PMD)
1722                split_huge_pmd_address(vma, address, true, page);
1723
1724        /*
1725         * For THP, we have to assume the worse case ie pmd for invalidation.
1726         * For hugetlb, it could be much worse if we need to do pud
1727         * invalidation in the case of pmd sharing.
1728         *
1729         * Note that the page can not be free in this function as call of
1730         * try_to_unmap() must hold a reference on the page.
1731         */
1732        range.end = PageKsm(page) ?
1733                        address + PAGE_SIZE : vma_address_end(page, vma);
1734        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1735                                address, range.end);
1736        if (PageHuge(page)) {
1737                /*
1738                 * If sharing is possible, start and end will be adjusted
1739                 * accordingly.
1740                 */
1741                adjust_range_if_pmd_sharing_possible(vma, &range.start,
1742                                                     &range.end);
1743        }
1744        mmu_notifier_invalidate_range_start(&range);
1745
1746        while (page_vma_mapped_walk(&pvmw)) {
1747#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1748                /* PMD-mapped THP migration entry */
1749                if (!pvmw.pte) {
1750                        VM_BUG_ON_PAGE(PageHuge(page) ||
1751                                       !PageTransCompound(page), page);
1752
1753                        set_pmd_migration_entry(&pvmw, page);
1754                        continue;
1755                }
1756#endif
1757
1758                /* Unexpected PMD-mapped THP? */
1759                VM_BUG_ON_PAGE(!pvmw.pte, page);
1760
1761                subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1762                address = pvmw.address;
1763
1764                if (PageHuge(page) && !PageAnon(page)) {
1765                        /*
1766                         * To call huge_pmd_unshare, i_mmap_rwsem must be
1767                         * held in write mode.  Caller needs to explicitly
1768                         * do this outside rmap routines.
1769                         */
1770                        VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1771                        if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1772                                /*
1773                                 * huge_pmd_unshare unmapped an entire PMD
1774                                 * page.  There is no way of knowing exactly
1775                                 * which PMDs may be cached for this mm, so
1776                                 * we must flush them all.  start/end were
1777                                 * already adjusted above to cover this range.
1778                                 */
1779                                flush_cache_range(vma, range.start, range.end);
1780                                flush_tlb_range(vma, range.start, range.end);
1781                                mmu_notifier_invalidate_range(mm, range.start,
1782                                                              range.end);
1783
1784                                /*
1785                                 * The ref count of the PMD page was dropped
1786                                 * which is part of the way map counting
1787                                 * is done for shared PMDs.  Return 'true'
1788                                 * here.  When there is no other sharing,
1789                                 * huge_pmd_unshare returns false and we will
1790                                 * unmap the actual page and drop map count
1791                                 * to zero.
1792                                 */
1793                                page_vma_mapped_walk_done(&pvmw);
1794                                break;
1795                        }
1796                }
1797
1798                /* Nuke the page table entry. */
1799                flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1800                pteval = ptep_clear_flush(vma, address, pvmw.pte);
1801
1802                /* Move the dirty bit to the page. Now the pte is gone. */
1803                if (pte_dirty(pteval))
1804                        set_page_dirty(page);
1805
1806                /* Update high watermark before we lower rss */
1807                update_hiwater_rss(mm);
1808
1809                if (is_zone_device_page(page)) {
1810                        swp_entry_t entry;
1811                        pte_t swp_pte;
1812
1813                        /*
1814                         * Store the pfn of the page in a special migration
1815                         * pte. do_swap_page() will wait until the migration
1816                         * pte is removed and then restart fault handling.
1817                         */
1818                        entry = make_readable_migration_entry(
1819                                                        page_to_pfn(page));
1820                        swp_pte = swp_entry_to_pte(entry);
1821
1822                        /*
1823                         * pteval maps a zone device page and is therefore
1824                         * a swap pte.
1825                         */
1826                        if (pte_swp_soft_dirty(pteval))
1827                                swp_pte = pte_swp_mksoft_dirty(swp_pte);
1828                        if (pte_swp_uffd_wp(pteval))
1829                                swp_pte = pte_swp_mkuffd_wp(swp_pte);
1830                        set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1831                        /*
1832                         * No need to invalidate here it will synchronize on
1833                         * against the special swap migration pte.
1834                         *
1835                         * The assignment to subpage above was computed from a
1836                         * swap PTE which results in an invalid pointer.
1837                         * Since only PAGE_SIZE pages can currently be
1838                         * migrated, just set it to page. This will need to be
1839                         * changed when hugepage migrations to device private
1840                         * memory are supported.
1841                         */
1842                        subpage = page;
1843                } else if (PageHWPoison(page)) {
1844                        pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1845                        if (PageHuge(page)) {
1846                                hugetlb_count_sub(compound_nr(page), mm);
1847                                set_huge_swap_pte_at(mm, address,
1848                                                     pvmw.pte, pteval,
1849                                                     vma_mmu_pagesize(vma));
1850                        } else {
1851                                dec_mm_counter(mm, mm_counter(page));
1852                                set_pte_at(mm, address, pvmw.pte, pteval);
1853                        }
1854
1855                } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1856                        /*
1857                         * The guest indicated that the page content is of no
1858                         * interest anymore. Simply discard the pte, vmscan
1859                         * will take care of the rest.
1860                         * A future reference will then fault in a new zero
1861                         * page. When userfaultfd is active, we must not drop
1862                         * this page though, as its main user (postcopy
1863                         * migration) will not expect userfaults on already
1864                         * copied pages.
1865                         */
1866                        dec_mm_counter(mm, mm_counter(page));
1867                        /* We have to invalidate as we cleared the pte */
1868                        mmu_notifier_invalidate_range(mm, address,
1869                                                      address + PAGE_SIZE);
1870                } else {
1871                        swp_entry_t entry;
1872                        pte_t swp_pte;
1873
1874                        if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1875                                set_pte_at(mm, address, pvmw.pte, pteval);
1876                                ret = false;
1877                                page_vma_mapped_walk_done(&pvmw);
1878                                break;
1879                        }
1880
1881                        /*
1882                         * Store the pfn of the page in a special migration
1883                         * pte. do_swap_page() will wait until the migration
1884                         * pte is removed and then restart fault handling.
1885                         */
1886                        if (pte_write(pteval))
1887                                entry = make_writable_migration_entry(
1888                                                        page_to_pfn(subpage));
1889                        else
1890                                entry = make_readable_migration_entry(
1891                                                        page_to_pfn(subpage));
1892
1893                        swp_pte = swp_entry_to_pte(entry);
1894                        if (pte_soft_dirty(pteval))
1895                                swp_pte = pte_swp_mksoft_dirty(swp_pte);
1896                        if (pte_uffd_wp(pteval))
1897                                swp_pte = pte_swp_mkuffd_wp(swp_pte);
1898                        set_pte_at(mm, address, pvmw.pte, swp_pte);
1899                        /*
1900                         * No need to invalidate here it will synchronize on
1901                         * against the special swap migration pte.
1902                         */
1903                }
1904
1905                /*
1906                 * No need to call mmu_notifier_invalidate_range() it has be
1907                 * done above for all cases requiring it to happen under page
1908                 * table lock before mmu_notifier_invalidate_range_end()
1909                 *
1910                 * See Documentation/vm/mmu_notifier.rst
1911                 */
1912                page_remove_rmap(subpage, PageHuge(page));
1913                put_page(page);
1914        }
1915
1916        mmu_notifier_invalidate_range_end(&range);
1917
1918        return ret;
1919}
1920
1921/**
1922 * try_to_migrate - try to replace all page table mappings with swap entries
1923 * @page: the page to replace page table entries for
1924 * @flags: action and flags
1925 *
1926 * Tries to remove all the page table entries which are mapping this page and
1927 * replace them with special swap entries. Caller must hold the page lock.
1928 */
1929void try_to_migrate(struct page *page, enum ttu_flags flags)
1930{
1931        struct rmap_walk_control rwc = {
1932                .rmap_one = try_to_migrate_one,
1933                .arg = (void *)flags,
1934                .done = page_not_mapped,
1935                .anon_lock = page_lock_anon_vma_read,
1936        };
1937
1938        /*
1939         * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
1940         * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags.
1941         */
1942        if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
1943                                        TTU_SYNC)))
1944                return;
1945
1946        if (is_zone_device_page(page) && !is_device_private_page(page))
1947                return;
1948
1949        /*
1950         * During exec, a temporary VMA is setup and later moved.
1951         * The VMA is moved under the anon_vma lock but not the
1952         * page tables leading to a race where migration cannot
1953         * find the migration ptes. Rather than increasing the
1954         * locking requirements of exec(), migration skips
1955         * temporary VMAs until after exec() completes.
1956         */
1957        if (!PageKsm(page) && PageAnon(page))
1958                rwc.invalid_vma = invalid_migration_vma;
1959
1960        if (flags & TTU_RMAP_LOCKED)
1961                rmap_walk_locked(page, &rwc);
1962        else
1963                rmap_walk(page, &rwc);
1964}
1965
1966/*
1967 * Walks the vma's mapping a page and mlocks the page if any locked vma's are
1968 * found. Once one is found the page is locked and the scan can be terminated.
1969 */
1970static bool page_mlock_one(struct page *page, struct vm_area_struct *vma,
1971                                 unsigned long address, void *unused)
1972{
1973        struct page_vma_mapped_walk pvmw = {
1974                .page = page,
1975                .vma = vma,
1976                .address = address,
1977        };
1978
1979        /* An un-locked vma doesn't have any pages to lock, continue the scan */
1980        if (!(vma->vm_flags & VM_LOCKED))
1981                return true;
1982
1983        while (page_vma_mapped_walk(&pvmw)) {
1984                /*
1985                 * Need to recheck under the ptl to serialise with
1986                 * __munlock_pagevec_fill() after VM_LOCKED is cleared in
1987                 * munlock_vma_pages_range().
1988                 */
1989                if (vma->vm_flags & VM_LOCKED) {
1990                        /*
1991                         * PTE-mapped THP are never marked as mlocked; but
1992                         * this function is never called on a DoubleMap THP,
1993                         * nor on an Anon THP (which may still be PTE-mapped
1994                         * after DoubleMap was cleared).
1995                         */
1996                        mlock_vma_page(page);
1997                        /*
1998                         * No need to scan further once the page is marked
1999                         * as mlocked.
2000                         */
2001                        page_vma_mapped_walk_done(&pvmw);
2002                        return false;
2003                }
2004        }
2005
2006        return true;
2007}
2008
2009/**
2010 * page_mlock - try to mlock a page
2011 * @page: the page to be mlocked
2012 *
2013 * Called from munlock code. Checks all of the VMAs mapping the page and mlocks
2014 * the page if any are found. The page will be returned with PG_mlocked cleared
2015 * if it is not mapped by any locked vmas.
2016 */
2017void page_mlock(struct page *page)
2018{
2019        struct rmap_walk_control rwc = {
2020                .rmap_one = page_mlock_one,
2021                .done = page_not_mapped,
2022                .anon_lock = page_lock_anon_vma_read,
2023
2024        };
2025
2026        VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
2027        VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
2028
2029        /* Anon THP are only marked as mlocked when singly mapped */
2030        if (PageTransCompound(page) && PageAnon(page))
2031                return;
2032
2033        rmap_walk(page, &rwc);
2034}
2035
2036#ifdef CONFIG_DEVICE_PRIVATE
2037struct make_exclusive_args {
2038        struct mm_struct *mm;
2039        unsigned long address;
2040        void *owner;
2041        bool valid;
2042};
2043
2044static bool page_make_device_exclusive_one(struct page *page,
2045                struct vm_area_struct *vma, unsigned long address, void *priv)
2046{
2047        struct mm_struct *mm = vma->vm_mm;
2048        struct page_vma_mapped_walk pvmw = {
2049                .page = page,
2050                .vma = vma,
2051                .address = address,
2052        };
2053        struct make_exclusive_args *args = priv;
2054        pte_t pteval;
2055        struct page *subpage;
2056        bool ret = true;
2057        struct mmu_notifier_range range;
2058        swp_entry_t entry;
2059        pte_t swp_pte;
2060
2061        mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
2062                                      vma->vm_mm, address, min(vma->vm_end,
2063                                      address + page_size(page)), args->owner);
2064        mmu_notifier_invalidate_range_start(&range);
2065
2066        while (page_vma_mapped_walk(&pvmw)) {
2067                /* Unexpected PMD-mapped THP? */
2068                VM_BUG_ON_PAGE(!pvmw.pte, page);
2069
2070                if (!pte_present(*pvmw.pte)) {
2071                        ret = false;
2072                        page_vma_mapped_walk_done(&pvmw);
2073                        break;
2074                }
2075
2076                subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
2077                address = pvmw.address;
2078
2079                /* Nuke the page table entry. */
2080                flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2081                pteval = ptep_clear_flush(vma, address, pvmw.pte);
2082
2083                /* Move the dirty bit to the page. Now the pte is gone. */
2084                if (pte_dirty(pteval))
2085                        set_page_dirty(page);
2086
2087                /*
2088                 * Check that our target page is still mapped at the expected
2089                 * address.
2090                 */
2091                if (args->mm == mm && args->address == address &&
2092                    pte_write(pteval))
2093                        args->valid = true;
2094
2095                /*
2096                 * Store the pfn of the page in a special migration
2097                 * pte. do_swap_page() will wait until the migration
2098                 * pte is removed and then restart fault handling.
2099                 */
2100                if (pte_write(pteval))
2101                        entry = make_writable_device_exclusive_entry(
2102                                                        page_to_pfn(subpage));
2103                else
2104                        entry = make_readable_device_exclusive_entry(
2105                                                        page_to_pfn(subpage));
2106                swp_pte = swp_entry_to_pte(entry);
2107                if (pte_soft_dirty(pteval))
2108                        swp_pte = pte_swp_mksoft_dirty(swp_pte);
2109                if (pte_uffd_wp(pteval))
2110                        swp_pte = pte_swp_mkuffd_wp(swp_pte);
2111
2112                set_pte_at(mm, address, pvmw.pte, swp_pte);
2113
2114                /*
2115                 * There is a reference on the page for the swap entry which has
2116                 * been removed, so shouldn't take another.
2117                 */
2118                page_remove_rmap(subpage, false);
2119        }
2120
2121        mmu_notifier_invalidate_range_end(&range);
2122
2123        return ret;
2124}
2125
2126/**
2127 * page_make_device_exclusive - mark the page exclusively owned by a device
2128 * @page: the page to replace page table entries for
2129 * @mm: the mm_struct where the page is expected to be mapped
2130 * @address: address where the page is expected to be mapped
2131 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2132 *
2133 * Tries to remove all the page table entries which are mapping this page and
2134 * replace them with special device exclusive swap entries to grant a device
2135 * exclusive access to the page. Caller must hold the page lock.
2136 *
2137 * Returns false if the page is still mapped, or if it could not be unmapped
2138 * from the expected address. Otherwise returns true (success).
2139 */
2140static bool page_make_device_exclusive(struct page *page, struct mm_struct *mm,
2141                                unsigned long address, void *owner)
2142{
2143        struct make_exclusive_args args = {
2144                .mm = mm,
2145                .address = address,
2146                .owner = owner,
2147                .valid = false,
2148        };
2149        struct rmap_walk_control rwc = {
2150                .rmap_one = page_make_device_exclusive_one,
2151                .done = page_not_mapped,
2152                .anon_lock = page_lock_anon_vma_read,
2153                .arg = &args,
2154        };
2155
2156        /*
2157         * Restrict to anonymous pages for now to avoid potential writeback
2158         * issues. Also tail pages shouldn't be passed to rmap_walk so skip
2159         * those.
2160         */
2161        if (!PageAnon(page) || PageTail(page))
2162                return false;
2163
2164        rmap_walk(page, &rwc);
2165
2166        return args.valid && !page_mapcount(page);
2167}
2168
2169/**
2170 * make_device_exclusive_range() - Mark a range for exclusive use by a device
2171 * @mm: mm_struct of assoicated target process
2172 * @start: start of the region to mark for exclusive device access
2173 * @end: end address of region
2174 * @pages: returns the pages which were successfully marked for exclusive access
2175 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2176 *
2177 * Returns: number of pages found in the range by GUP. A page is marked for
2178 * exclusive access only if the page pointer is non-NULL.
2179 *
2180 * This function finds ptes mapping page(s) to the given address range, locks
2181 * them and replaces mappings with special swap entries preventing userspace CPU
2182 * access. On fault these entries are replaced with the original mapping after
2183 * calling MMU notifiers.
2184 *
2185 * A driver using this to program access from a device must use a mmu notifier
2186 * critical section to hold a device specific lock during programming. Once
2187 * programming is complete it should drop the page lock and reference after
2188 * which point CPU access to the page will revoke the exclusive access.
2189 */
2190int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2191                                unsigned long end, struct page **pages,
2192                                void *owner)
2193{
2194        long npages = (end - start) >> PAGE_SHIFT;
2195        long i;
2196
2197        npages = get_user_pages_remote(mm, start, npages,
2198                                       FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2199                                       pages, NULL, NULL);
2200        if (npages < 0)
2201                return npages;
2202
2203        for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2204                if (!trylock_page(pages[i])) {
2205                        put_page(pages[i]);
2206                        pages[i] = NULL;
2207                        continue;
2208                }
2209
2210                if (!page_make_device_exclusive(pages[i], mm, start, owner)) {
2211                        unlock_page(pages[i]);
2212                        put_page(pages[i]);
2213                        pages[i] = NULL;
2214                }
2215        }
2216
2217        return npages;
2218}
2219EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2220#endif
2221
2222void __put_anon_vma(struct anon_vma *anon_vma)
2223{
2224        struct anon_vma *root = anon_vma->root;
2225
2226        anon_vma_free(anon_vma);
2227        if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2228                anon_vma_free(root);
2229}
2230
2231static struct anon_vma *rmap_walk_anon_lock(struct page *page,
2232                                        struct rmap_walk_control *rwc)
2233{
2234        struct anon_vma *anon_vma;
2235
2236        if (rwc->anon_lock)
2237                return rwc->anon_lock(page);
2238
2239        /*
2240         * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
2241         * because that depends on page_mapped(); but not all its usages
2242         * are holding mmap_lock. Users without mmap_lock are required to
2243         * take a reference count to prevent the anon_vma disappearing
2244         */
2245        anon_vma = page_anon_vma(page);
2246        if (!anon_vma)
2247                return NULL;
2248
2249        anon_vma_lock_read(anon_vma);
2250        return anon_vma;
2251}
2252
2253/*
2254 * rmap_walk_anon - do something to anonymous page using the object-based
2255 * rmap method
2256 * @page: the page to be handled
2257 * @rwc: control variable according to each walk type
2258 *
2259 * Find all the mappings of a page using the mapping pointer and the vma chains
2260 * contained in the anon_vma struct it points to.
2261 *
2262 * When called from page_mlock(), the mmap_lock of the mm containing the vma
2263 * where the page was found will be held for write.  So, we won't recheck
2264 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
2265 * LOCKED.
2266 */
2267static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
2268                bool locked)
2269{
2270        struct anon_vma *anon_vma;
2271        pgoff_t pgoff_start, pgoff_end;
2272        struct anon_vma_chain *avc;
2273
2274        if (locked) {
2275                anon_vma = page_anon_vma(page);
2276                /* anon_vma disappear under us? */
2277                VM_BUG_ON_PAGE(!anon_vma, page);
2278        } else {
2279                anon_vma = rmap_walk_anon_lock(page, rwc);
2280        }
2281        if (!anon_vma)
2282                return;
2283
2284        pgoff_start = page_to_pgoff(page);
2285        pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
2286        anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2287                        pgoff_start, pgoff_end) {
2288                struct vm_area_struct *vma = avc->vma;
2289                unsigned long address = vma_address(page, vma);
2290
2291                VM_BUG_ON_VMA(address == -EFAULT, vma);
2292                cond_resched();
2293
2294                if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2295                        continue;
2296
2297                if (!rwc->rmap_one(page, vma, address, rwc->arg))
2298                        break;
2299                if (rwc->done && rwc->done(page))
2300                        break;
2301        }
2302
2303        if (!locked)
2304                anon_vma_unlock_read(anon_vma);
2305}
2306
2307/*
2308 * rmap_walk_file - do something to file page using the object-based rmap method
2309 * @page: the page to be handled
2310 * @rwc: control variable according to each walk type
2311 *
2312 * Find all the mappings of a page using the mapping pointer and the vma chains
2313 * contained in the address_space struct it points to.
2314 *
2315 * When called from page_mlock(), the mmap_lock of the mm containing the vma
2316 * where the page was found will be held for write.  So, we won't recheck
2317 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
2318 * LOCKED.
2319 */
2320static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
2321                bool locked)
2322{
2323        struct address_space *mapping = page_mapping(page);
2324        pgoff_t pgoff_start, pgoff_end;
2325        struct vm_area_struct *vma;
2326
2327        /*
2328         * The page lock not only makes sure that page->mapping cannot
2329         * suddenly be NULLified by truncation, it makes sure that the
2330         * structure at mapping cannot be freed and reused yet,
2331         * so we can safely take mapping->i_mmap_rwsem.
2332         */
2333        VM_BUG_ON_PAGE(!PageLocked(page), page);
2334
2335        if (!mapping)
2336                return;
2337
2338        pgoff_start = page_to_pgoff(page);
2339        pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
2340        if (!locked)
2341                i_mmap_lock_read(mapping);
2342        vma_interval_tree_foreach(vma, &mapping->i_mmap,
2343                        pgoff_start, pgoff_end) {
2344                unsigned long address = vma_address(page, vma);
2345
2346                VM_BUG_ON_VMA(address == -EFAULT, vma);
2347                cond_resched();
2348
2349                if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2350                        continue;
2351
2352                if (!rwc->rmap_one(page, vma, address, rwc->arg))
2353                        goto done;
2354                if (rwc->done && rwc->done(page))
2355                        goto done;
2356        }
2357
2358done:
2359        if (!locked)
2360                i_mmap_unlock_read(mapping);
2361}
2362
2363void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
2364{
2365        if (unlikely(PageKsm(page)))
2366                rmap_walk_ksm(page, rwc);
2367        else if (PageAnon(page))
2368                rmap_walk_anon(page, rwc, false);
2369        else
2370                rmap_walk_file(page, rwc, false);
2371}
2372
2373/* Like rmap_walk, but caller holds relevant rmap lock */
2374void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
2375{
2376        /* no ksm support for now */
2377        VM_BUG_ON_PAGE(PageKsm(page), page);
2378        if (PageAnon(page))
2379                rmap_walk_anon(page, rwc, true);
2380        else
2381                rmap_walk_file(page, rwc, true);
2382}
2383
2384#ifdef CONFIG_HUGETLB_PAGE
2385/*
2386 * The following two functions are for anonymous (private mapped) hugepages.
2387 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2388 * and no lru code, because we handle hugepages differently from common pages.
2389 */
2390void hugepage_add_anon_rmap(struct page *page,
2391                            struct vm_area_struct *vma, unsigned long address)
2392{
2393        struct anon_vma *anon_vma = vma->anon_vma;
2394        int first;
2395
2396        BUG_ON(!PageLocked(page));
2397        BUG_ON(!anon_vma);
2398        /* address might be in next vma when migration races vma_adjust */
2399        first = atomic_inc_and_test(compound_mapcount_ptr(page));
2400        if (first)
2401                __page_set_anon_rmap(page, vma, address, 0);
2402}
2403
2404void hugepage_add_new_anon_rmap(struct page *page,
2405                        struct vm_area_struct *vma, unsigned long address)
2406{
2407        BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2408        atomic_set(compound_mapcount_ptr(page), 0);
2409        if (hpage_pincount_available(page))
2410                atomic_set(compound_pincount_ptr(page), 0);
2411
2412        __page_set_anon_rmap(page, vma, address, 1);
2413}
2414#endif /* CONFIG_HUGETLB_PAGE */
2415