linux/mm/slab.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/mm/slab.c
   4 * Written by Mark Hemment, 1996/97.
   5 * (markhe@nextd.demon.co.uk)
   6 *
   7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
   8 *
   9 * Major cleanup, different bufctl logic, per-cpu arrays
  10 *      (c) 2000 Manfred Spraul
  11 *
  12 * Cleanup, make the head arrays unconditional, preparation for NUMA
  13 *      (c) 2002 Manfred Spraul
  14 *
  15 * An implementation of the Slab Allocator as described in outline in;
  16 *      UNIX Internals: The New Frontiers by Uresh Vahalia
  17 *      Pub: Prentice Hall      ISBN 0-13-101908-2
  18 * or with a little more detail in;
  19 *      The Slab Allocator: An Object-Caching Kernel Memory Allocator
  20 *      Jeff Bonwick (Sun Microsystems).
  21 *      Presented at: USENIX Summer 1994 Technical Conference
  22 *
  23 * The memory is organized in caches, one cache for each object type.
  24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  25 * Each cache consists out of many slabs (they are small (usually one
  26 * page long) and always contiguous), and each slab contains multiple
  27 * initialized objects.
  28 *
  29 * This means, that your constructor is used only for newly allocated
  30 * slabs and you must pass objects with the same initializations to
  31 * kmem_cache_free.
  32 *
  33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  34 * normal). If you need a special memory type, then must create a new
  35 * cache for that memory type.
  36 *
  37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  38 *   full slabs with 0 free objects
  39 *   partial slabs
  40 *   empty slabs with no allocated objects
  41 *
  42 * If partial slabs exist, then new allocations come from these slabs,
  43 * otherwise from empty slabs or new slabs are allocated.
  44 *
  45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  47 *
  48 * Each cache has a short per-cpu head array, most allocs
  49 * and frees go into that array, and if that array overflows, then 1/2
  50 * of the entries in the array are given back into the global cache.
  51 * The head array is strictly LIFO and should improve the cache hit rates.
  52 * On SMP, it additionally reduces the spinlock operations.
  53 *
  54 * The c_cpuarray may not be read with enabled local interrupts -
  55 * it's changed with a smp_call_function().
  56 *
  57 * SMP synchronization:
  58 *  constructors and destructors are called without any locking.
  59 *  Several members in struct kmem_cache and struct slab never change, they
  60 *      are accessed without any locking.
  61 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
  62 *      and local interrupts are disabled so slab code is preempt-safe.
  63 *  The non-constant members are protected with a per-cache irq spinlock.
  64 *
  65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  66 * in 2000 - many ideas in the current implementation are derived from
  67 * his patch.
  68 *
  69 * Further notes from the original documentation:
  70 *
  71 * 11 April '97.  Started multi-threading - markhe
  72 *      The global cache-chain is protected by the mutex 'slab_mutex'.
  73 *      The sem is only needed when accessing/extending the cache-chain, which
  74 *      can never happen inside an interrupt (kmem_cache_create(),
  75 *      kmem_cache_shrink() and kmem_cache_reap()).
  76 *
  77 *      At present, each engine can be growing a cache.  This should be blocked.
  78 *
  79 * 15 March 2005. NUMA slab allocator.
  80 *      Shai Fultheim <shai@scalex86.org>.
  81 *      Shobhit Dayal <shobhit@calsoftinc.com>
  82 *      Alok N Kataria <alokk@calsoftinc.com>
  83 *      Christoph Lameter <christoph@lameter.com>
  84 *
  85 *      Modified the slab allocator to be node aware on NUMA systems.
  86 *      Each node has its own list of partial, free and full slabs.
  87 *      All object allocations for a node occur from node specific slab lists.
  88 */
  89
  90#include        <linux/slab.h>
  91#include        <linux/mm.h>
  92#include        <linux/poison.h>
  93#include        <linux/swap.h>
  94#include        <linux/cache.h>
  95#include        <linux/interrupt.h>
  96#include        <linux/init.h>
  97#include        <linux/compiler.h>
  98#include        <linux/cpuset.h>
  99#include        <linux/proc_fs.h>
 100#include        <linux/seq_file.h>
 101#include        <linux/notifier.h>
 102#include        <linux/kallsyms.h>
 103#include        <linux/kfence.h>
 104#include        <linux/cpu.h>
 105#include        <linux/sysctl.h>
 106#include        <linux/module.h>
 107#include        <linux/rcupdate.h>
 108#include        <linux/string.h>
 109#include        <linux/uaccess.h>
 110#include        <linux/nodemask.h>
 111#include        <linux/kmemleak.h>
 112#include        <linux/mempolicy.h>
 113#include        <linux/mutex.h>
 114#include        <linux/fault-inject.h>
 115#include        <linux/rtmutex.h>
 116#include        <linux/reciprocal_div.h>
 117#include        <linux/debugobjects.h>
 118#include        <linux/memory.h>
 119#include        <linux/prefetch.h>
 120#include        <linux/sched/task_stack.h>
 121
 122#include        <net/sock.h>
 123
 124#include        <asm/cacheflush.h>
 125#include        <asm/tlbflush.h>
 126#include        <asm/page.h>
 127
 128#include <trace/events/kmem.h>
 129
 130#include        "internal.h"
 131
 132#include        "slab.h"
 133
 134/*
 135 * DEBUG        - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
 136 *                0 for faster, smaller code (especially in the critical paths).
 137 *
 138 * STATS        - 1 to collect stats for /proc/slabinfo.
 139 *                0 for faster, smaller code (especially in the critical paths).
 140 *
 141 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 142 */
 143
 144#ifdef CONFIG_DEBUG_SLAB
 145#define DEBUG           1
 146#define STATS           1
 147#define FORCED_DEBUG    1
 148#else
 149#define DEBUG           0
 150#define STATS           0
 151#define FORCED_DEBUG    0
 152#endif
 153
 154/* Shouldn't this be in a header file somewhere? */
 155#define BYTES_PER_WORD          sizeof(void *)
 156#define REDZONE_ALIGN           max(BYTES_PER_WORD, __alignof__(unsigned long long))
 157
 158#ifndef ARCH_KMALLOC_FLAGS
 159#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
 160#endif
 161
 162#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
 163                                <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
 164
 165#if FREELIST_BYTE_INDEX
 166typedef unsigned char freelist_idx_t;
 167#else
 168typedef unsigned short freelist_idx_t;
 169#endif
 170
 171#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
 172
 173/*
 174 * struct array_cache
 175 *
 176 * Purpose:
 177 * - LIFO ordering, to hand out cache-warm objects from _alloc
 178 * - reduce the number of linked list operations
 179 * - reduce spinlock operations
 180 *
 181 * The limit is stored in the per-cpu structure to reduce the data cache
 182 * footprint.
 183 *
 184 */
 185struct array_cache {
 186        unsigned int avail;
 187        unsigned int limit;
 188        unsigned int batchcount;
 189        unsigned int touched;
 190        void *entry[];  /*
 191                         * Must have this definition in here for the proper
 192                         * alignment of array_cache. Also simplifies accessing
 193                         * the entries.
 194                         */
 195};
 196
 197struct alien_cache {
 198        spinlock_t lock;
 199        struct array_cache ac;
 200};
 201
 202/*
 203 * Need this for bootstrapping a per node allocator.
 204 */
 205#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
 206static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
 207#define CACHE_CACHE 0
 208#define SIZE_NODE (MAX_NUMNODES)
 209
 210static int drain_freelist(struct kmem_cache *cache,
 211                        struct kmem_cache_node *n, int tofree);
 212static void free_block(struct kmem_cache *cachep, void **objpp, int len,
 213                        int node, struct list_head *list);
 214static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
 215static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
 216static void cache_reap(struct work_struct *unused);
 217
 218static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
 219                                                void **list);
 220static inline void fixup_slab_list(struct kmem_cache *cachep,
 221                                struct kmem_cache_node *n, struct page *page,
 222                                void **list);
 223static int slab_early_init = 1;
 224
 225#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
 226
 227static void kmem_cache_node_init(struct kmem_cache_node *parent)
 228{
 229        INIT_LIST_HEAD(&parent->slabs_full);
 230        INIT_LIST_HEAD(&parent->slabs_partial);
 231        INIT_LIST_HEAD(&parent->slabs_free);
 232        parent->total_slabs = 0;
 233        parent->free_slabs = 0;
 234        parent->shared = NULL;
 235        parent->alien = NULL;
 236        parent->colour_next = 0;
 237        spin_lock_init(&parent->list_lock);
 238        parent->free_objects = 0;
 239        parent->free_touched = 0;
 240}
 241
 242#define MAKE_LIST(cachep, listp, slab, nodeid)                          \
 243        do {                                                            \
 244                INIT_LIST_HEAD(listp);                                  \
 245                list_splice(&get_node(cachep, nodeid)->slab, listp);    \
 246        } while (0)
 247
 248#define MAKE_ALL_LISTS(cachep, ptr, nodeid)                             \
 249        do {                                                            \
 250        MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);  \
 251        MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
 252        MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);  \
 253        } while (0)
 254
 255#define CFLGS_OBJFREELIST_SLAB  ((slab_flags_t __force)0x40000000U)
 256#define CFLGS_OFF_SLAB          ((slab_flags_t __force)0x80000000U)
 257#define OBJFREELIST_SLAB(x)     ((x)->flags & CFLGS_OBJFREELIST_SLAB)
 258#define OFF_SLAB(x)     ((x)->flags & CFLGS_OFF_SLAB)
 259
 260#define BATCHREFILL_LIMIT       16
 261/*
 262 * Optimization question: fewer reaps means less probability for unnecessary
 263 * cpucache drain/refill cycles.
 264 *
 265 * OTOH the cpuarrays can contain lots of objects,
 266 * which could lock up otherwise freeable slabs.
 267 */
 268#define REAPTIMEOUT_AC          (2*HZ)
 269#define REAPTIMEOUT_NODE        (4*HZ)
 270
 271#if STATS
 272#define STATS_INC_ACTIVE(x)     ((x)->num_active++)
 273#define STATS_DEC_ACTIVE(x)     ((x)->num_active--)
 274#define STATS_INC_ALLOCED(x)    ((x)->num_allocations++)
 275#define STATS_INC_GROWN(x)      ((x)->grown++)
 276#define STATS_ADD_REAPED(x, y)  ((x)->reaped += (y))
 277#define STATS_SET_HIGH(x)                                               \
 278        do {                                                            \
 279                if ((x)->num_active > (x)->high_mark)                   \
 280                        (x)->high_mark = (x)->num_active;               \
 281        } while (0)
 282#define STATS_INC_ERR(x)        ((x)->errors++)
 283#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
 284#define STATS_INC_NODEFREES(x)  ((x)->node_frees++)
 285#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
 286#define STATS_SET_FREEABLE(x, i)                                        \
 287        do {                                                            \
 288                if ((x)->max_freeable < i)                              \
 289                        (x)->max_freeable = i;                          \
 290        } while (0)
 291#define STATS_INC_ALLOCHIT(x)   atomic_inc(&(x)->allochit)
 292#define STATS_INC_ALLOCMISS(x)  atomic_inc(&(x)->allocmiss)
 293#define STATS_INC_FREEHIT(x)    atomic_inc(&(x)->freehit)
 294#define STATS_INC_FREEMISS(x)   atomic_inc(&(x)->freemiss)
 295#else
 296#define STATS_INC_ACTIVE(x)     do { } while (0)
 297#define STATS_DEC_ACTIVE(x)     do { } while (0)
 298#define STATS_INC_ALLOCED(x)    do { } while (0)
 299#define STATS_INC_GROWN(x)      do { } while (0)
 300#define STATS_ADD_REAPED(x, y)  do { (void)(y); } while (0)
 301#define STATS_SET_HIGH(x)       do { } while (0)
 302#define STATS_INC_ERR(x)        do { } while (0)
 303#define STATS_INC_NODEALLOCS(x) do { } while (0)
 304#define STATS_INC_NODEFREES(x)  do { } while (0)
 305#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
 306#define STATS_SET_FREEABLE(x, i) do { } while (0)
 307#define STATS_INC_ALLOCHIT(x)   do { } while (0)
 308#define STATS_INC_ALLOCMISS(x)  do { } while (0)
 309#define STATS_INC_FREEHIT(x)    do { } while (0)
 310#define STATS_INC_FREEMISS(x)   do { } while (0)
 311#endif
 312
 313#if DEBUG
 314
 315/*
 316 * memory layout of objects:
 317 * 0            : objp
 318 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
 319 *              the end of an object is aligned with the end of the real
 320 *              allocation. Catches writes behind the end of the allocation.
 321 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
 322 *              redzone word.
 323 * cachep->obj_offset: The real object.
 324 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 325 * cachep->size - 1* BYTES_PER_WORD: last caller address
 326 *                                      [BYTES_PER_WORD long]
 327 */
 328static int obj_offset(struct kmem_cache *cachep)
 329{
 330        return cachep->obj_offset;
 331}
 332
 333static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
 334{
 335        BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 336        return (unsigned long long *) (objp + obj_offset(cachep) -
 337                                      sizeof(unsigned long long));
 338}
 339
 340static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
 341{
 342        BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 343        if (cachep->flags & SLAB_STORE_USER)
 344                return (unsigned long long *)(objp + cachep->size -
 345                                              sizeof(unsigned long long) -
 346                                              REDZONE_ALIGN);
 347        return (unsigned long long *) (objp + cachep->size -
 348                                       sizeof(unsigned long long));
 349}
 350
 351static void **dbg_userword(struct kmem_cache *cachep, void *objp)
 352{
 353        BUG_ON(!(cachep->flags & SLAB_STORE_USER));
 354        return (void **)(objp + cachep->size - BYTES_PER_WORD);
 355}
 356
 357#else
 358
 359#define obj_offset(x)                   0
 360#define dbg_redzone1(cachep, objp)      ({BUG(); (unsigned long long *)NULL;})
 361#define dbg_redzone2(cachep, objp)      ({BUG(); (unsigned long long *)NULL;})
 362#define dbg_userword(cachep, objp)      ({BUG(); (void **)NULL;})
 363
 364#endif
 365
 366/*
 367 * Do not go above this order unless 0 objects fit into the slab or
 368 * overridden on the command line.
 369 */
 370#define SLAB_MAX_ORDER_HI       1
 371#define SLAB_MAX_ORDER_LO       0
 372static int slab_max_order = SLAB_MAX_ORDER_LO;
 373static bool slab_max_order_set __initdata;
 374
 375static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
 376                                 unsigned int idx)
 377{
 378        return page->s_mem + cache->size * idx;
 379}
 380
 381#define BOOT_CPUCACHE_ENTRIES   1
 382/* internal cache of cache description objs */
 383static struct kmem_cache kmem_cache_boot = {
 384        .batchcount = 1,
 385        .limit = BOOT_CPUCACHE_ENTRIES,
 386        .shared = 1,
 387        .size = sizeof(struct kmem_cache),
 388        .name = "kmem_cache",
 389};
 390
 391static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
 392
 393static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
 394{
 395        return this_cpu_ptr(cachep->cpu_cache);
 396}
 397
 398/*
 399 * Calculate the number of objects and left-over bytes for a given buffer size.
 400 */
 401static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
 402                slab_flags_t flags, size_t *left_over)
 403{
 404        unsigned int num;
 405        size_t slab_size = PAGE_SIZE << gfporder;
 406
 407        /*
 408         * The slab management structure can be either off the slab or
 409         * on it. For the latter case, the memory allocated for a
 410         * slab is used for:
 411         *
 412         * - @buffer_size bytes for each object
 413         * - One freelist_idx_t for each object
 414         *
 415         * We don't need to consider alignment of freelist because
 416         * freelist will be at the end of slab page. The objects will be
 417         * at the correct alignment.
 418         *
 419         * If the slab management structure is off the slab, then the
 420         * alignment will already be calculated into the size. Because
 421         * the slabs are all pages aligned, the objects will be at the
 422         * correct alignment when allocated.
 423         */
 424        if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
 425                num = slab_size / buffer_size;
 426                *left_over = slab_size % buffer_size;
 427        } else {
 428                num = slab_size / (buffer_size + sizeof(freelist_idx_t));
 429                *left_over = slab_size %
 430                        (buffer_size + sizeof(freelist_idx_t));
 431        }
 432
 433        return num;
 434}
 435
 436#if DEBUG
 437#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
 438
 439static void __slab_error(const char *function, struct kmem_cache *cachep,
 440                        char *msg)
 441{
 442        pr_err("slab error in %s(): cache `%s': %s\n",
 443               function, cachep->name, msg);
 444        dump_stack();
 445        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 446}
 447#endif
 448
 449/*
 450 * By default on NUMA we use alien caches to stage the freeing of
 451 * objects allocated from other nodes. This causes massive memory
 452 * inefficiencies when using fake NUMA setup to split memory into a
 453 * large number of small nodes, so it can be disabled on the command
 454 * line
 455  */
 456
 457static int use_alien_caches __read_mostly = 1;
 458static int __init noaliencache_setup(char *s)
 459{
 460        use_alien_caches = 0;
 461        return 1;
 462}
 463__setup("noaliencache", noaliencache_setup);
 464
 465static int __init slab_max_order_setup(char *str)
 466{
 467        get_option(&str, &slab_max_order);
 468        slab_max_order = slab_max_order < 0 ? 0 :
 469                                min(slab_max_order, MAX_ORDER - 1);
 470        slab_max_order_set = true;
 471
 472        return 1;
 473}
 474__setup("slab_max_order=", slab_max_order_setup);
 475
 476#ifdef CONFIG_NUMA
 477/*
 478 * Special reaping functions for NUMA systems called from cache_reap().
 479 * These take care of doing round robin flushing of alien caches (containing
 480 * objects freed on different nodes from which they were allocated) and the
 481 * flushing of remote pcps by calling drain_node_pages.
 482 */
 483static DEFINE_PER_CPU(unsigned long, slab_reap_node);
 484
 485static void init_reap_node(int cpu)
 486{
 487        per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
 488                                                    node_online_map);
 489}
 490
 491static void next_reap_node(void)
 492{
 493        int node = __this_cpu_read(slab_reap_node);
 494
 495        node = next_node_in(node, node_online_map);
 496        __this_cpu_write(slab_reap_node, node);
 497}
 498
 499#else
 500#define init_reap_node(cpu) do { } while (0)
 501#define next_reap_node(void) do { } while (0)
 502#endif
 503
 504/*
 505 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 506 * via the workqueue/eventd.
 507 * Add the CPU number into the expiration time to minimize the possibility of
 508 * the CPUs getting into lockstep and contending for the global cache chain
 509 * lock.
 510 */
 511static void start_cpu_timer(int cpu)
 512{
 513        struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
 514
 515        if (reap_work->work.func == NULL) {
 516                init_reap_node(cpu);
 517                INIT_DEFERRABLE_WORK(reap_work, cache_reap);
 518                schedule_delayed_work_on(cpu, reap_work,
 519                                        __round_jiffies_relative(HZ, cpu));
 520        }
 521}
 522
 523static void init_arraycache(struct array_cache *ac, int limit, int batch)
 524{
 525        if (ac) {
 526                ac->avail = 0;
 527                ac->limit = limit;
 528                ac->batchcount = batch;
 529                ac->touched = 0;
 530        }
 531}
 532
 533static struct array_cache *alloc_arraycache(int node, int entries,
 534                                            int batchcount, gfp_t gfp)
 535{
 536        size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
 537        struct array_cache *ac = NULL;
 538
 539        ac = kmalloc_node(memsize, gfp, node);
 540        /*
 541         * The array_cache structures contain pointers to free object.
 542         * However, when such objects are allocated or transferred to another
 543         * cache the pointers are not cleared and they could be counted as
 544         * valid references during a kmemleak scan. Therefore, kmemleak must
 545         * not scan such objects.
 546         */
 547        kmemleak_no_scan(ac);
 548        init_arraycache(ac, entries, batchcount);
 549        return ac;
 550}
 551
 552static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
 553                                        struct page *page, void *objp)
 554{
 555        struct kmem_cache_node *n;
 556        int page_node;
 557        LIST_HEAD(list);
 558
 559        page_node = page_to_nid(page);
 560        n = get_node(cachep, page_node);
 561
 562        spin_lock(&n->list_lock);
 563        free_block(cachep, &objp, 1, page_node, &list);
 564        spin_unlock(&n->list_lock);
 565
 566        slabs_destroy(cachep, &list);
 567}
 568
 569/*
 570 * Transfer objects in one arraycache to another.
 571 * Locking must be handled by the caller.
 572 *
 573 * Return the number of entries transferred.
 574 */
 575static int transfer_objects(struct array_cache *to,
 576                struct array_cache *from, unsigned int max)
 577{
 578        /* Figure out how many entries to transfer */
 579        int nr = min3(from->avail, max, to->limit - to->avail);
 580
 581        if (!nr)
 582                return 0;
 583
 584        memcpy(to->entry + to->avail, from->entry + from->avail - nr,
 585                        sizeof(void *) *nr);
 586
 587        from->avail -= nr;
 588        to->avail += nr;
 589        return nr;
 590}
 591
 592/* &alien->lock must be held by alien callers. */
 593static __always_inline void __free_one(struct array_cache *ac, void *objp)
 594{
 595        /* Avoid trivial double-free. */
 596        if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
 597            WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp))
 598                return;
 599        ac->entry[ac->avail++] = objp;
 600}
 601
 602#ifndef CONFIG_NUMA
 603
 604#define drain_alien_cache(cachep, alien) do { } while (0)
 605#define reap_alien(cachep, n) do { } while (0)
 606
 607static inline struct alien_cache **alloc_alien_cache(int node,
 608                                                int limit, gfp_t gfp)
 609{
 610        return NULL;
 611}
 612
 613static inline void free_alien_cache(struct alien_cache **ac_ptr)
 614{
 615}
 616
 617static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 618{
 619        return 0;
 620}
 621
 622static inline void *alternate_node_alloc(struct kmem_cache *cachep,
 623                gfp_t flags)
 624{
 625        return NULL;
 626}
 627
 628static inline void *____cache_alloc_node(struct kmem_cache *cachep,
 629                 gfp_t flags, int nodeid)
 630{
 631        return NULL;
 632}
 633
 634static inline gfp_t gfp_exact_node(gfp_t flags)
 635{
 636        return flags & ~__GFP_NOFAIL;
 637}
 638
 639#else   /* CONFIG_NUMA */
 640
 641static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
 642static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
 643
 644static struct alien_cache *__alloc_alien_cache(int node, int entries,
 645                                                int batch, gfp_t gfp)
 646{
 647        size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
 648        struct alien_cache *alc = NULL;
 649
 650        alc = kmalloc_node(memsize, gfp, node);
 651        if (alc) {
 652                kmemleak_no_scan(alc);
 653                init_arraycache(&alc->ac, entries, batch);
 654                spin_lock_init(&alc->lock);
 655        }
 656        return alc;
 657}
 658
 659static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 660{
 661        struct alien_cache **alc_ptr;
 662        int i;
 663
 664        if (limit > 1)
 665                limit = 12;
 666        alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
 667        if (!alc_ptr)
 668                return NULL;
 669
 670        for_each_node(i) {
 671                if (i == node || !node_online(i))
 672                        continue;
 673                alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
 674                if (!alc_ptr[i]) {
 675                        for (i--; i >= 0; i--)
 676                                kfree(alc_ptr[i]);
 677                        kfree(alc_ptr);
 678                        return NULL;
 679                }
 680        }
 681        return alc_ptr;
 682}
 683
 684static void free_alien_cache(struct alien_cache **alc_ptr)
 685{
 686        int i;
 687
 688        if (!alc_ptr)
 689                return;
 690        for_each_node(i)
 691            kfree(alc_ptr[i]);
 692        kfree(alc_ptr);
 693}
 694
 695static void __drain_alien_cache(struct kmem_cache *cachep,
 696                                struct array_cache *ac, int node,
 697                                struct list_head *list)
 698{
 699        struct kmem_cache_node *n = get_node(cachep, node);
 700
 701        if (ac->avail) {
 702                spin_lock(&n->list_lock);
 703                /*
 704                 * Stuff objects into the remote nodes shared array first.
 705                 * That way we could avoid the overhead of putting the objects
 706                 * into the free lists and getting them back later.
 707                 */
 708                if (n->shared)
 709                        transfer_objects(n->shared, ac, ac->limit);
 710
 711                free_block(cachep, ac->entry, ac->avail, node, list);
 712                ac->avail = 0;
 713                spin_unlock(&n->list_lock);
 714        }
 715}
 716
 717/*
 718 * Called from cache_reap() to regularly drain alien caches round robin.
 719 */
 720static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
 721{
 722        int node = __this_cpu_read(slab_reap_node);
 723
 724        if (n->alien) {
 725                struct alien_cache *alc = n->alien[node];
 726                struct array_cache *ac;
 727
 728                if (alc) {
 729                        ac = &alc->ac;
 730                        if (ac->avail && spin_trylock_irq(&alc->lock)) {
 731                                LIST_HEAD(list);
 732
 733                                __drain_alien_cache(cachep, ac, node, &list);
 734                                spin_unlock_irq(&alc->lock);
 735                                slabs_destroy(cachep, &list);
 736                        }
 737                }
 738        }
 739}
 740
 741static void drain_alien_cache(struct kmem_cache *cachep,
 742                                struct alien_cache **alien)
 743{
 744        int i = 0;
 745        struct alien_cache *alc;
 746        struct array_cache *ac;
 747        unsigned long flags;
 748
 749        for_each_online_node(i) {
 750                alc = alien[i];
 751                if (alc) {
 752                        LIST_HEAD(list);
 753
 754                        ac = &alc->ac;
 755                        spin_lock_irqsave(&alc->lock, flags);
 756                        __drain_alien_cache(cachep, ac, i, &list);
 757                        spin_unlock_irqrestore(&alc->lock, flags);
 758                        slabs_destroy(cachep, &list);
 759                }
 760        }
 761}
 762
 763static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
 764                                int node, int page_node)
 765{
 766        struct kmem_cache_node *n;
 767        struct alien_cache *alien = NULL;
 768        struct array_cache *ac;
 769        LIST_HEAD(list);
 770
 771        n = get_node(cachep, node);
 772        STATS_INC_NODEFREES(cachep);
 773        if (n->alien && n->alien[page_node]) {
 774                alien = n->alien[page_node];
 775                ac = &alien->ac;
 776                spin_lock(&alien->lock);
 777                if (unlikely(ac->avail == ac->limit)) {
 778                        STATS_INC_ACOVERFLOW(cachep);
 779                        __drain_alien_cache(cachep, ac, page_node, &list);
 780                }
 781                __free_one(ac, objp);
 782                spin_unlock(&alien->lock);
 783                slabs_destroy(cachep, &list);
 784        } else {
 785                n = get_node(cachep, page_node);
 786                spin_lock(&n->list_lock);
 787                free_block(cachep, &objp, 1, page_node, &list);
 788                spin_unlock(&n->list_lock);
 789                slabs_destroy(cachep, &list);
 790        }
 791        return 1;
 792}
 793
 794static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 795{
 796        int page_node = page_to_nid(virt_to_page(objp));
 797        int node = numa_mem_id();
 798        /*
 799         * Make sure we are not freeing a object from another node to the array
 800         * cache on this cpu.
 801         */
 802        if (likely(node == page_node))
 803                return 0;
 804
 805        return __cache_free_alien(cachep, objp, node, page_node);
 806}
 807
 808/*
 809 * Construct gfp mask to allocate from a specific node but do not reclaim or
 810 * warn about failures.
 811 */
 812static inline gfp_t gfp_exact_node(gfp_t flags)
 813{
 814        return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
 815}
 816#endif
 817
 818static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
 819{
 820        struct kmem_cache_node *n;
 821
 822        /*
 823         * Set up the kmem_cache_node for cpu before we can
 824         * begin anything. Make sure some other cpu on this
 825         * node has not already allocated this
 826         */
 827        n = get_node(cachep, node);
 828        if (n) {
 829                spin_lock_irq(&n->list_lock);
 830                n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
 831                                cachep->num;
 832                spin_unlock_irq(&n->list_lock);
 833
 834                return 0;
 835        }
 836
 837        n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
 838        if (!n)
 839                return -ENOMEM;
 840
 841        kmem_cache_node_init(n);
 842        n->next_reap = jiffies + REAPTIMEOUT_NODE +
 843                    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
 844
 845        n->free_limit =
 846                (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
 847
 848        /*
 849         * The kmem_cache_nodes don't come and go as CPUs
 850         * come and go.  slab_mutex is sufficient
 851         * protection here.
 852         */
 853        cachep->node[node] = n;
 854
 855        return 0;
 856}
 857
 858#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
 859/*
 860 * Allocates and initializes node for a node on each slab cache, used for
 861 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
 862 * will be allocated off-node since memory is not yet online for the new node.
 863 * When hotplugging memory or a cpu, existing node are not replaced if
 864 * already in use.
 865 *
 866 * Must hold slab_mutex.
 867 */
 868static int init_cache_node_node(int node)
 869{
 870        int ret;
 871        struct kmem_cache *cachep;
 872
 873        list_for_each_entry(cachep, &slab_caches, list) {
 874                ret = init_cache_node(cachep, node, GFP_KERNEL);
 875                if (ret)
 876                        return ret;
 877        }
 878
 879        return 0;
 880}
 881#endif
 882
 883static int setup_kmem_cache_node(struct kmem_cache *cachep,
 884                                int node, gfp_t gfp, bool force_change)
 885{
 886        int ret = -ENOMEM;
 887        struct kmem_cache_node *n;
 888        struct array_cache *old_shared = NULL;
 889        struct array_cache *new_shared = NULL;
 890        struct alien_cache **new_alien = NULL;
 891        LIST_HEAD(list);
 892
 893        if (use_alien_caches) {
 894                new_alien = alloc_alien_cache(node, cachep->limit, gfp);
 895                if (!new_alien)
 896                        goto fail;
 897        }
 898
 899        if (cachep->shared) {
 900                new_shared = alloc_arraycache(node,
 901                        cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
 902                if (!new_shared)
 903                        goto fail;
 904        }
 905
 906        ret = init_cache_node(cachep, node, gfp);
 907        if (ret)
 908                goto fail;
 909
 910        n = get_node(cachep, node);
 911        spin_lock_irq(&n->list_lock);
 912        if (n->shared && force_change) {
 913                free_block(cachep, n->shared->entry,
 914                                n->shared->avail, node, &list);
 915                n->shared->avail = 0;
 916        }
 917
 918        if (!n->shared || force_change) {
 919                old_shared = n->shared;
 920                n->shared = new_shared;
 921                new_shared = NULL;
 922        }
 923
 924        if (!n->alien) {
 925                n->alien = new_alien;
 926                new_alien = NULL;
 927        }
 928
 929        spin_unlock_irq(&n->list_lock);
 930        slabs_destroy(cachep, &list);
 931
 932        /*
 933         * To protect lockless access to n->shared during irq disabled context.
 934         * If n->shared isn't NULL in irq disabled context, accessing to it is
 935         * guaranteed to be valid until irq is re-enabled, because it will be
 936         * freed after synchronize_rcu().
 937         */
 938        if (old_shared && force_change)
 939                synchronize_rcu();
 940
 941fail:
 942        kfree(old_shared);
 943        kfree(new_shared);
 944        free_alien_cache(new_alien);
 945
 946        return ret;
 947}
 948
 949#ifdef CONFIG_SMP
 950
 951static void cpuup_canceled(long cpu)
 952{
 953        struct kmem_cache *cachep;
 954        struct kmem_cache_node *n = NULL;
 955        int node = cpu_to_mem(cpu);
 956        const struct cpumask *mask = cpumask_of_node(node);
 957
 958        list_for_each_entry(cachep, &slab_caches, list) {
 959                struct array_cache *nc;
 960                struct array_cache *shared;
 961                struct alien_cache **alien;
 962                LIST_HEAD(list);
 963
 964                n = get_node(cachep, node);
 965                if (!n)
 966                        continue;
 967
 968                spin_lock_irq(&n->list_lock);
 969
 970                /* Free limit for this kmem_cache_node */
 971                n->free_limit -= cachep->batchcount;
 972
 973                /* cpu is dead; no one can alloc from it. */
 974                nc = per_cpu_ptr(cachep->cpu_cache, cpu);
 975                free_block(cachep, nc->entry, nc->avail, node, &list);
 976                nc->avail = 0;
 977
 978                if (!cpumask_empty(mask)) {
 979                        spin_unlock_irq(&n->list_lock);
 980                        goto free_slab;
 981                }
 982
 983                shared = n->shared;
 984                if (shared) {
 985                        free_block(cachep, shared->entry,
 986                                   shared->avail, node, &list);
 987                        n->shared = NULL;
 988                }
 989
 990                alien = n->alien;
 991                n->alien = NULL;
 992
 993                spin_unlock_irq(&n->list_lock);
 994
 995                kfree(shared);
 996                if (alien) {
 997                        drain_alien_cache(cachep, alien);
 998                        free_alien_cache(alien);
 999                }
1000
1001free_slab:
1002                slabs_destroy(cachep, &list);
1003        }
1004        /*
1005         * In the previous loop, all the objects were freed to
1006         * the respective cache's slabs,  now we can go ahead and
1007         * shrink each nodelist to its limit.
1008         */
1009        list_for_each_entry(cachep, &slab_caches, list) {
1010                n = get_node(cachep, node);
1011                if (!n)
1012                        continue;
1013                drain_freelist(cachep, n, INT_MAX);
1014        }
1015}
1016
1017static int cpuup_prepare(long cpu)
1018{
1019        struct kmem_cache *cachep;
1020        int node = cpu_to_mem(cpu);
1021        int err;
1022
1023        /*
1024         * We need to do this right in the beginning since
1025         * alloc_arraycache's are going to use this list.
1026         * kmalloc_node allows us to add the slab to the right
1027         * kmem_cache_node and not this cpu's kmem_cache_node
1028         */
1029        err = init_cache_node_node(node);
1030        if (err < 0)
1031                goto bad;
1032
1033        /*
1034         * Now we can go ahead with allocating the shared arrays and
1035         * array caches
1036         */
1037        list_for_each_entry(cachep, &slab_caches, list) {
1038                err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1039                if (err)
1040                        goto bad;
1041        }
1042
1043        return 0;
1044bad:
1045        cpuup_canceled(cpu);
1046        return -ENOMEM;
1047}
1048
1049int slab_prepare_cpu(unsigned int cpu)
1050{
1051        int err;
1052
1053        mutex_lock(&slab_mutex);
1054        err = cpuup_prepare(cpu);
1055        mutex_unlock(&slab_mutex);
1056        return err;
1057}
1058
1059/*
1060 * This is called for a failed online attempt and for a successful
1061 * offline.
1062 *
1063 * Even if all the cpus of a node are down, we don't free the
1064 * kmem_cache_node of any cache. This to avoid a race between cpu_down, and
1065 * a kmalloc allocation from another cpu for memory from the node of
1066 * the cpu going down.  The kmem_cache_node structure is usually allocated from
1067 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1068 */
1069int slab_dead_cpu(unsigned int cpu)
1070{
1071        mutex_lock(&slab_mutex);
1072        cpuup_canceled(cpu);
1073        mutex_unlock(&slab_mutex);
1074        return 0;
1075}
1076#endif
1077
1078static int slab_online_cpu(unsigned int cpu)
1079{
1080        start_cpu_timer(cpu);
1081        return 0;
1082}
1083
1084static int slab_offline_cpu(unsigned int cpu)
1085{
1086        /*
1087         * Shutdown cache reaper. Note that the slab_mutex is held so
1088         * that if cache_reap() is invoked it cannot do anything
1089         * expensive but will only modify reap_work and reschedule the
1090         * timer.
1091         */
1092        cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1093        /* Now the cache_reaper is guaranteed to be not running. */
1094        per_cpu(slab_reap_work, cpu).work.func = NULL;
1095        return 0;
1096}
1097
1098#if defined(CONFIG_NUMA)
1099/*
1100 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1101 * Returns -EBUSY if all objects cannot be drained so that the node is not
1102 * removed.
1103 *
1104 * Must hold slab_mutex.
1105 */
1106static int __meminit drain_cache_node_node(int node)
1107{
1108        struct kmem_cache *cachep;
1109        int ret = 0;
1110
1111        list_for_each_entry(cachep, &slab_caches, list) {
1112                struct kmem_cache_node *n;
1113
1114                n = get_node(cachep, node);
1115                if (!n)
1116                        continue;
1117
1118                drain_freelist(cachep, n, INT_MAX);
1119
1120                if (!list_empty(&n->slabs_full) ||
1121                    !list_empty(&n->slabs_partial)) {
1122                        ret = -EBUSY;
1123                        break;
1124                }
1125        }
1126        return ret;
1127}
1128
1129static int __meminit slab_memory_callback(struct notifier_block *self,
1130                                        unsigned long action, void *arg)
1131{
1132        struct memory_notify *mnb = arg;
1133        int ret = 0;
1134        int nid;
1135
1136        nid = mnb->status_change_nid;
1137        if (nid < 0)
1138                goto out;
1139
1140        switch (action) {
1141        case MEM_GOING_ONLINE:
1142                mutex_lock(&slab_mutex);
1143                ret = init_cache_node_node(nid);
1144                mutex_unlock(&slab_mutex);
1145                break;
1146        case MEM_GOING_OFFLINE:
1147                mutex_lock(&slab_mutex);
1148                ret = drain_cache_node_node(nid);
1149                mutex_unlock(&slab_mutex);
1150                break;
1151        case MEM_ONLINE:
1152        case MEM_OFFLINE:
1153        case MEM_CANCEL_ONLINE:
1154        case MEM_CANCEL_OFFLINE:
1155                break;
1156        }
1157out:
1158        return notifier_from_errno(ret);
1159}
1160#endif /* CONFIG_NUMA */
1161
1162/*
1163 * swap the static kmem_cache_node with kmalloced memory
1164 */
1165static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1166                                int nodeid)
1167{
1168        struct kmem_cache_node *ptr;
1169
1170        ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1171        BUG_ON(!ptr);
1172
1173        memcpy(ptr, list, sizeof(struct kmem_cache_node));
1174        /*
1175         * Do not assume that spinlocks can be initialized via memcpy:
1176         */
1177        spin_lock_init(&ptr->list_lock);
1178
1179        MAKE_ALL_LISTS(cachep, ptr, nodeid);
1180        cachep->node[nodeid] = ptr;
1181}
1182
1183/*
1184 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1185 * size of kmem_cache_node.
1186 */
1187static void __init set_up_node(struct kmem_cache *cachep, int index)
1188{
1189        int node;
1190
1191        for_each_online_node(node) {
1192                cachep->node[node] = &init_kmem_cache_node[index + node];
1193                cachep->node[node]->next_reap = jiffies +
1194                    REAPTIMEOUT_NODE +
1195                    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1196        }
1197}
1198
1199/*
1200 * Initialisation.  Called after the page allocator have been initialised and
1201 * before smp_init().
1202 */
1203void __init kmem_cache_init(void)
1204{
1205        int i;
1206
1207        kmem_cache = &kmem_cache_boot;
1208
1209        if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1210                use_alien_caches = 0;
1211
1212        for (i = 0; i < NUM_INIT_LISTS; i++)
1213                kmem_cache_node_init(&init_kmem_cache_node[i]);
1214
1215        /*
1216         * Fragmentation resistance on low memory - only use bigger
1217         * page orders on machines with more than 32MB of memory if
1218         * not overridden on the command line.
1219         */
1220        if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
1221                slab_max_order = SLAB_MAX_ORDER_HI;
1222
1223        /* Bootstrap is tricky, because several objects are allocated
1224         * from caches that do not exist yet:
1225         * 1) initialize the kmem_cache cache: it contains the struct
1226         *    kmem_cache structures of all caches, except kmem_cache itself:
1227         *    kmem_cache is statically allocated.
1228         *    Initially an __init data area is used for the head array and the
1229         *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1230         *    array at the end of the bootstrap.
1231         * 2) Create the first kmalloc cache.
1232         *    The struct kmem_cache for the new cache is allocated normally.
1233         *    An __init data area is used for the head array.
1234         * 3) Create the remaining kmalloc caches, with minimally sized
1235         *    head arrays.
1236         * 4) Replace the __init data head arrays for kmem_cache and the first
1237         *    kmalloc cache with kmalloc allocated arrays.
1238         * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1239         *    the other cache's with kmalloc allocated memory.
1240         * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1241         */
1242
1243        /* 1) create the kmem_cache */
1244
1245        /*
1246         * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1247         */
1248        create_boot_cache(kmem_cache, "kmem_cache",
1249                offsetof(struct kmem_cache, node) +
1250                                  nr_node_ids * sizeof(struct kmem_cache_node *),
1251                                  SLAB_HWCACHE_ALIGN, 0, 0);
1252        list_add(&kmem_cache->list, &slab_caches);
1253        slab_state = PARTIAL;
1254
1255        /*
1256         * Initialize the caches that provide memory for the  kmem_cache_node
1257         * structures first.  Without this, further allocations will bug.
1258         */
1259        kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
1260                                kmalloc_info[INDEX_NODE].name[KMALLOC_NORMAL],
1261                                kmalloc_info[INDEX_NODE].size,
1262                                ARCH_KMALLOC_FLAGS, 0,
1263                                kmalloc_info[INDEX_NODE].size);
1264        slab_state = PARTIAL_NODE;
1265        setup_kmalloc_cache_index_table();
1266
1267        slab_early_init = 0;
1268
1269        /* 5) Replace the bootstrap kmem_cache_node */
1270        {
1271                int nid;
1272
1273                for_each_online_node(nid) {
1274                        init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1275
1276                        init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
1277                                          &init_kmem_cache_node[SIZE_NODE + nid], nid);
1278                }
1279        }
1280
1281        create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1282}
1283
1284void __init kmem_cache_init_late(void)
1285{
1286        struct kmem_cache *cachep;
1287
1288        /* 6) resize the head arrays to their final sizes */
1289        mutex_lock(&slab_mutex);
1290        list_for_each_entry(cachep, &slab_caches, list)
1291                if (enable_cpucache(cachep, GFP_NOWAIT))
1292                        BUG();
1293        mutex_unlock(&slab_mutex);
1294
1295        /* Done! */
1296        slab_state = FULL;
1297
1298#ifdef CONFIG_NUMA
1299        /*
1300         * Register a memory hotplug callback that initializes and frees
1301         * node.
1302         */
1303        hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1304#endif
1305
1306        /*
1307         * The reap timers are started later, with a module init call: That part
1308         * of the kernel is not yet operational.
1309         */
1310}
1311
1312static int __init cpucache_init(void)
1313{
1314        int ret;
1315
1316        /*
1317         * Register the timers that return unneeded pages to the page allocator
1318         */
1319        ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1320                                slab_online_cpu, slab_offline_cpu);
1321        WARN_ON(ret < 0);
1322
1323        return 0;
1324}
1325__initcall(cpucache_init);
1326
1327static noinline void
1328slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1329{
1330#if DEBUG
1331        struct kmem_cache_node *n;
1332        unsigned long flags;
1333        int node;
1334        static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1335                                      DEFAULT_RATELIMIT_BURST);
1336
1337        if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1338                return;
1339
1340        pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1341                nodeid, gfpflags, &gfpflags);
1342        pr_warn("  cache: %s, object size: %d, order: %d\n",
1343                cachep->name, cachep->size, cachep->gfporder);
1344
1345        for_each_kmem_cache_node(cachep, node, n) {
1346                unsigned long total_slabs, free_slabs, free_objs;
1347
1348                spin_lock_irqsave(&n->list_lock, flags);
1349                total_slabs = n->total_slabs;
1350                free_slabs = n->free_slabs;
1351                free_objs = n->free_objects;
1352                spin_unlock_irqrestore(&n->list_lock, flags);
1353
1354                pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1355                        node, total_slabs - free_slabs, total_slabs,
1356                        (total_slabs * cachep->num) - free_objs,
1357                        total_slabs * cachep->num);
1358        }
1359#endif
1360}
1361
1362/*
1363 * Interface to system's page allocator. No need to hold the
1364 * kmem_cache_node ->list_lock.
1365 *
1366 * If we requested dmaable memory, we will get it. Even if we
1367 * did not request dmaable memory, we might get it, but that
1368 * would be relatively rare and ignorable.
1369 */
1370static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1371                                                                int nodeid)
1372{
1373        struct page *page;
1374
1375        flags |= cachep->allocflags;
1376
1377        page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1378        if (!page) {
1379                slab_out_of_memory(cachep, flags, nodeid);
1380                return NULL;
1381        }
1382
1383        account_slab_page(page, cachep->gfporder, cachep, flags);
1384        __SetPageSlab(page);
1385        /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1386        if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1387                SetPageSlabPfmemalloc(page);
1388
1389        return page;
1390}
1391
1392/*
1393 * Interface to system's page release.
1394 */
1395static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1396{
1397        int order = cachep->gfporder;
1398
1399        BUG_ON(!PageSlab(page));
1400        __ClearPageSlabPfmemalloc(page);
1401        __ClearPageSlab(page);
1402        page_mapcount_reset(page);
1403        /* In union with page->mapping where page allocator expects NULL */
1404        page->slab_cache = NULL;
1405
1406        if (current->reclaim_state)
1407                current->reclaim_state->reclaimed_slab += 1 << order;
1408        unaccount_slab_page(page, order, cachep);
1409        __free_pages(page, order);
1410}
1411
1412static void kmem_rcu_free(struct rcu_head *head)
1413{
1414        struct kmem_cache *cachep;
1415        struct page *page;
1416
1417        page = container_of(head, struct page, rcu_head);
1418        cachep = page->slab_cache;
1419
1420        kmem_freepages(cachep, page);
1421}
1422
1423#if DEBUG
1424static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1425{
1426        if (debug_pagealloc_enabled_static() && OFF_SLAB(cachep) &&
1427                (cachep->size % PAGE_SIZE) == 0)
1428                return true;
1429
1430        return false;
1431}
1432
1433#ifdef CONFIG_DEBUG_PAGEALLOC
1434static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
1435{
1436        if (!is_debug_pagealloc_cache(cachep))
1437                return;
1438
1439        __kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1440}
1441
1442#else
1443static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1444                                int map) {}
1445
1446#endif
1447
1448static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1449{
1450        int size = cachep->object_size;
1451        addr = &((char *)addr)[obj_offset(cachep)];
1452
1453        memset(addr, val, size);
1454        *(unsigned char *)(addr + size - 1) = POISON_END;
1455}
1456
1457static void dump_line(char *data, int offset, int limit)
1458{
1459        int i;
1460        unsigned char error = 0;
1461        int bad_count = 0;
1462
1463        pr_err("%03x: ", offset);
1464        for (i = 0; i < limit; i++) {
1465                if (data[offset + i] != POISON_FREE) {
1466                        error = data[offset + i];
1467                        bad_count++;
1468                }
1469        }
1470        print_hex_dump(KERN_CONT, "", 0, 16, 1,
1471                        &data[offset], limit, 1);
1472
1473        if (bad_count == 1) {
1474                error ^= POISON_FREE;
1475                if (!(error & (error - 1))) {
1476                        pr_err("Single bit error detected. Probably bad RAM.\n");
1477#ifdef CONFIG_X86
1478                        pr_err("Run memtest86+ or a similar memory test tool.\n");
1479#else
1480                        pr_err("Run a memory test tool.\n");
1481#endif
1482                }
1483        }
1484}
1485#endif
1486
1487#if DEBUG
1488
1489static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1490{
1491        int i, size;
1492        char *realobj;
1493
1494        if (cachep->flags & SLAB_RED_ZONE) {
1495                pr_err("Redzone: 0x%llx/0x%llx\n",
1496                       *dbg_redzone1(cachep, objp),
1497                       *dbg_redzone2(cachep, objp));
1498        }
1499
1500        if (cachep->flags & SLAB_STORE_USER)
1501                pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1502        realobj = (char *)objp + obj_offset(cachep);
1503        size = cachep->object_size;
1504        for (i = 0; i < size && lines; i += 16, lines--) {
1505                int limit;
1506                limit = 16;
1507                if (i + limit > size)
1508                        limit = size - i;
1509                dump_line(realobj, i, limit);
1510        }
1511}
1512
1513static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1514{
1515        char *realobj;
1516        int size, i;
1517        int lines = 0;
1518
1519        if (is_debug_pagealloc_cache(cachep))
1520                return;
1521
1522        realobj = (char *)objp + obj_offset(cachep);
1523        size = cachep->object_size;
1524
1525        for (i = 0; i < size; i++) {
1526                char exp = POISON_FREE;
1527                if (i == size - 1)
1528                        exp = POISON_END;
1529                if (realobj[i] != exp) {
1530                        int limit;
1531                        /* Mismatch ! */
1532                        /* Print header */
1533                        if (lines == 0) {
1534                                pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1535                                       print_tainted(), cachep->name,
1536                                       realobj, size);
1537                                print_objinfo(cachep, objp, 0);
1538                        }
1539                        /* Hexdump the affected line */
1540                        i = (i / 16) * 16;
1541                        limit = 16;
1542                        if (i + limit > size)
1543                                limit = size - i;
1544                        dump_line(realobj, i, limit);
1545                        i += 16;
1546                        lines++;
1547                        /* Limit to 5 lines */
1548                        if (lines > 5)
1549                                break;
1550                }
1551        }
1552        if (lines != 0) {
1553                /* Print some data about the neighboring objects, if they
1554                 * exist:
1555                 */
1556                struct page *page = virt_to_head_page(objp);
1557                unsigned int objnr;
1558
1559                objnr = obj_to_index(cachep, page, objp);
1560                if (objnr) {
1561                        objp = index_to_obj(cachep, page, objnr - 1);
1562                        realobj = (char *)objp + obj_offset(cachep);
1563                        pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1564                        print_objinfo(cachep, objp, 2);
1565                }
1566                if (objnr + 1 < cachep->num) {
1567                        objp = index_to_obj(cachep, page, objnr + 1);
1568                        realobj = (char *)objp + obj_offset(cachep);
1569                        pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1570                        print_objinfo(cachep, objp, 2);
1571                }
1572        }
1573}
1574#endif
1575
1576#if DEBUG
1577static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1578                                                struct page *page)
1579{
1580        int i;
1581
1582        if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1583                poison_obj(cachep, page->freelist - obj_offset(cachep),
1584                        POISON_FREE);
1585        }
1586
1587        for (i = 0; i < cachep->num; i++) {
1588                void *objp = index_to_obj(cachep, page, i);
1589
1590                if (cachep->flags & SLAB_POISON) {
1591                        check_poison_obj(cachep, objp);
1592                        slab_kernel_map(cachep, objp, 1);
1593                }
1594                if (cachep->flags & SLAB_RED_ZONE) {
1595                        if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1596                                slab_error(cachep, "start of a freed object was overwritten");
1597                        if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1598                                slab_error(cachep, "end of a freed object was overwritten");
1599                }
1600        }
1601}
1602#else
1603static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1604                                                struct page *page)
1605{
1606}
1607#endif
1608
1609/**
1610 * slab_destroy - destroy and release all objects in a slab
1611 * @cachep: cache pointer being destroyed
1612 * @page: page pointer being destroyed
1613 *
1614 * Destroy all the objs in a slab page, and release the mem back to the system.
1615 * Before calling the slab page must have been unlinked from the cache. The
1616 * kmem_cache_node ->list_lock is not held/needed.
1617 */
1618static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1619{
1620        void *freelist;
1621
1622        freelist = page->freelist;
1623        slab_destroy_debugcheck(cachep, page);
1624        if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1625                call_rcu(&page->rcu_head, kmem_rcu_free);
1626        else
1627                kmem_freepages(cachep, page);
1628
1629        /*
1630         * From now on, we don't use freelist
1631         * although actual page can be freed in rcu context
1632         */
1633        if (OFF_SLAB(cachep))
1634                kmem_cache_free(cachep->freelist_cache, freelist);
1635}
1636
1637/*
1638 * Update the size of the caches before calling slabs_destroy as it may
1639 * recursively call kfree.
1640 */
1641static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1642{
1643        struct page *page, *n;
1644
1645        list_for_each_entry_safe(page, n, list, slab_list) {
1646                list_del(&page->slab_list);
1647                slab_destroy(cachep, page);
1648        }
1649}
1650
1651/**
1652 * calculate_slab_order - calculate size (page order) of slabs
1653 * @cachep: pointer to the cache that is being created
1654 * @size: size of objects to be created in this cache.
1655 * @flags: slab allocation flags
1656 *
1657 * Also calculates the number of objects per slab.
1658 *
1659 * This could be made much more intelligent.  For now, try to avoid using
1660 * high order pages for slabs.  When the gfp() functions are more friendly
1661 * towards high-order requests, this should be changed.
1662 *
1663 * Return: number of left-over bytes in a slab
1664 */
1665static size_t calculate_slab_order(struct kmem_cache *cachep,
1666                                size_t size, slab_flags_t flags)
1667{
1668        size_t left_over = 0;
1669        int gfporder;
1670
1671        for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1672                unsigned int num;
1673                size_t remainder;
1674
1675                num = cache_estimate(gfporder, size, flags, &remainder);
1676                if (!num)
1677                        continue;
1678
1679                /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1680                if (num > SLAB_OBJ_MAX_NUM)
1681                        break;
1682
1683                if (flags & CFLGS_OFF_SLAB) {
1684                        struct kmem_cache *freelist_cache;
1685                        size_t freelist_size;
1686
1687                        freelist_size = num * sizeof(freelist_idx_t);
1688                        freelist_cache = kmalloc_slab(freelist_size, 0u);
1689                        if (!freelist_cache)
1690                                continue;
1691
1692                        /*
1693                         * Needed to avoid possible looping condition
1694                         * in cache_grow_begin()
1695                         */
1696                        if (OFF_SLAB(freelist_cache))
1697                                continue;
1698
1699                        /* check if off slab has enough benefit */
1700                        if (freelist_cache->size > cachep->size / 2)
1701                                continue;
1702                }
1703
1704                /* Found something acceptable - save it away */
1705                cachep->num = num;
1706                cachep->gfporder = gfporder;
1707                left_over = remainder;
1708
1709                /*
1710                 * A VFS-reclaimable slab tends to have most allocations
1711                 * as GFP_NOFS and we really don't want to have to be allocating
1712                 * higher-order pages when we are unable to shrink dcache.
1713                 */
1714                if (flags & SLAB_RECLAIM_ACCOUNT)
1715                        break;
1716
1717                /*
1718                 * Large number of objects is good, but very large slabs are
1719                 * currently bad for the gfp()s.
1720                 */
1721                if (gfporder >= slab_max_order)
1722                        break;
1723
1724                /*
1725                 * Acceptable internal fragmentation?
1726                 */
1727                if (left_over * 8 <= (PAGE_SIZE << gfporder))
1728                        break;
1729        }
1730        return left_over;
1731}
1732
1733static struct array_cache __percpu *alloc_kmem_cache_cpus(
1734                struct kmem_cache *cachep, int entries, int batchcount)
1735{
1736        int cpu;
1737        size_t size;
1738        struct array_cache __percpu *cpu_cache;
1739
1740        size = sizeof(void *) * entries + sizeof(struct array_cache);
1741        cpu_cache = __alloc_percpu(size, sizeof(void *));
1742
1743        if (!cpu_cache)
1744                return NULL;
1745
1746        for_each_possible_cpu(cpu) {
1747                init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1748                                entries, batchcount);
1749        }
1750
1751        return cpu_cache;
1752}
1753
1754static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1755{
1756        if (slab_state >= FULL)
1757                return enable_cpucache(cachep, gfp);
1758
1759        cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1760        if (!cachep->cpu_cache)
1761                return 1;
1762
1763        if (slab_state == DOWN) {
1764                /* Creation of first cache (kmem_cache). */
1765                set_up_node(kmem_cache, CACHE_CACHE);
1766        } else if (slab_state == PARTIAL) {
1767                /* For kmem_cache_node */
1768                set_up_node(cachep, SIZE_NODE);
1769        } else {
1770                int node;
1771
1772                for_each_online_node(node) {
1773                        cachep->node[node] = kmalloc_node(
1774                                sizeof(struct kmem_cache_node), gfp, node);
1775                        BUG_ON(!cachep->node[node]);
1776                        kmem_cache_node_init(cachep->node[node]);
1777                }
1778        }
1779
1780        cachep->node[numa_mem_id()]->next_reap =
1781                        jiffies + REAPTIMEOUT_NODE +
1782                        ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1783
1784        cpu_cache_get(cachep)->avail = 0;
1785        cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1786        cpu_cache_get(cachep)->batchcount = 1;
1787        cpu_cache_get(cachep)->touched = 0;
1788        cachep->batchcount = 1;
1789        cachep->limit = BOOT_CPUCACHE_ENTRIES;
1790        return 0;
1791}
1792
1793slab_flags_t kmem_cache_flags(unsigned int object_size,
1794        slab_flags_t flags, const char *name)
1795{
1796        return flags;
1797}
1798
1799struct kmem_cache *
1800__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1801                   slab_flags_t flags, void (*ctor)(void *))
1802{
1803        struct kmem_cache *cachep;
1804
1805        cachep = find_mergeable(size, align, flags, name, ctor);
1806        if (cachep) {
1807                cachep->refcount++;
1808
1809                /*
1810                 * Adjust the object sizes so that we clear
1811                 * the complete object on kzalloc.
1812                 */
1813                cachep->object_size = max_t(int, cachep->object_size, size);
1814        }
1815        return cachep;
1816}
1817
1818static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1819                        size_t size, slab_flags_t flags)
1820{
1821        size_t left;
1822
1823        cachep->num = 0;
1824
1825        /*
1826         * If slab auto-initialization on free is enabled, store the freelist
1827         * off-slab, so that its contents don't end up in one of the allocated
1828         * objects.
1829         */
1830        if (unlikely(slab_want_init_on_free(cachep)))
1831                return false;
1832
1833        if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1834                return false;
1835
1836        left = calculate_slab_order(cachep, size,
1837                        flags | CFLGS_OBJFREELIST_SLAB);
1838        if (!cachep->num)
1839                return false;
1840
1841        if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1842                return false;
1843
1844        cachep->colour = left / cachep->colour_off;
1845
1846        return true;
1847}
1848
1849static bool set_off_slab_cache(struct kmem_cache *cachep,
1850                        size_t size, slab_flags_t flags)
1851{
1852        size_t left;
1853
1854        cachep->num = 0;
1855
1856        /*
1857         * Always use on-slab management when SLAB_NOLEAKTRACE
1858         * to avoid recursive calls into kmemleak.
1859         */
1860        if (flags & SLAB_NOLEAKTRACE)
1861                return false;
1862
1863        /*
1864         * Size is large, assume best to place the slab management obj
1865         * off-slab (should allow better packing of objs).
1866         */
1867        left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1868        if (!cachep->num)
1869                return false;
1870
1871        /*
1872         * If the slab has been placed off-slab, and we have enough space then
1873         * move it on-slab. This is at the expense of any extra colouring.
1874         */
1875        if (left >= cachep->num * sizeof(freelist_idx_t))
1876                return false;
1877
1878        cachep->colour = left / cachep->colour_off;
1879
1880        return true;
1881}
1882
1883static bool set_on_slab_cache(struct kmem_cache *cachep,
1884                        size_t size, slab_flags_t flags)
1885{
1886        size_t left;
1887
1888        cachep->num = 0;
1889
1890        left = calculate_slab_order(cachep, size, flags);
1891        if (!cachep->num)
1892                return false;
1893
1894        cachep->colour = left / cachep->colour_off;
1895
1896        return true;
1897}
1898
1899/**
1900 * __kmem_cache_create - Create a cache.
1901 * @cachep: cache management descriptor
1902 * @flags: SLAB flags
1903 *
1904 * Returns a ptr to the cache on success, NULL on failure.
1905 * Cannot be called within a int, but can be interrupted.
1906 * The @ctor is run when new pages are allocated by the cache.
1907 *
1908 * The flags are
1909 *
1910 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1911 * to catch references to uninitialised memory.
1912 *
1913 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1914 * for buffer overruns.
1915 *
1916 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1917 * cacheline.  This can be beneficial if you're counting cycles as closely
1918 * as davem.
1919 *
1920 * Return: a pointer to the created cache or %NULL in case of error
1921 */
1922int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1923{
1924        size_t ralign = BYTES_PER_WORD;
1925        gfp_t gfp;
1926        int err;
1927        unsigned int size = cachep->size;
1928
1929#if DEBUG
1930#if FORCED_DEBUG
1931        /*
1932         * Enable redzoning and last user accounting, except for caches with
1933         * large objects, if the increased size would increase the object size
1934         * above the next power of two: caches with object sizes just above a
1935         * power of two have a significant amount of internal fragmentation.
1936         */
1937        if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
1938                                                2 * sizeof(unsigned long long)))
1939                flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1940        if (!(flags & SLAB_TYPESAFE_BY_RCU))
1941                flags |= SLAB_POISON;
1942#endif
1943#endif
1944
1945        /*
1946         * Check that size is in terms of words.  This is needed to avoid
1947         * unaligned accesses for some archs when redzoning is used, and makes
1948         * sure any on-slab bufctl's are also correctly aligned.
1949         */
1950        size = ALIGN(size, BYTES_PER_WORD);
1951
1952        if (flags & SLAB_RED_ZONE) {
1953                ralign = REDZONE_ALIGN;
1954                /* If redzoning, ensure that the second redzone is suitably
1955                 * aligned, by adjusting the object size accordingly. */
1956                size = ALIGN(size, REDZONE_ALIGN);
1957        }
1958
1959        /* 3) caller mandated alignment */
1960        if (ralign < cachep->align) {
1961                ralign = cachep->align;
1962        }
1963        /* disable debug if necessary */
1964        if (ralign > __alignof__(unsigned long long))
1965                flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1966        /*
1967         * 4) Store it.
1968         */
1969        cachep->align = ralign;
1970        cachep->colour_off = cache_line_size();
1971        /* Offset must be a multiple of the alignment. */
1972        if (cachep->colour_off < cachep->align)
1973                cachep->colour_off = cachep->align;
1974
1975        if (slab_is_available())
1976                gfp = GFP_KERNEL;
1977        else
1978                gfp = GFP_NOWAIT;
1979
1980#if DEBUG
1981
1982        /*
1983         * Both debugging options require word-alignment which is calculated
1984         * into align above.
1985         */
1986        if (flags & SLAB_RED_ZONE) {
1987                /* add space for red zone words */
1988                cachep->obj_offset += sizeof(unsigned long long);
1989                size += 2 * sizeof(unsigned long long);
1990        }
1991        if (flags & SLAB_STORE_USER) {
1992                /* user store requires one word storage behind the end of
1993                 * the real object. But if the second red zone needs to be
1994                 * aligned to 64 bits, we must allow that much space.
1995                 */
1996                if (flags & SLAB_RED_ZONE)
1997                        size += REDZONE_ALIGN;
1998                else
1999                        size += BYTES_PER_WORD;
2000        }
2001#endif
2002
2003        kasan_cache_create(cachep, &size, &flags);
2004
2005        size = ALIGN(size, cachep->align);
2006        /*
2007         * We should restrict the number of objects in a slab to implement
2008         * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2009         */
2010        if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2011                size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2012
2013#if DEBUG
2014        /*
2015         * To activate debug pagealloc, off-slab management is necessary
2016         * requirement. In early phase of initialization, small sized slab
2017         * doesn't get initialized so it would not be possible. So, we need
2018         * to check size >= 256. It guarantees that all necessary small
2019         * sized slab is initialized in current slab initialization sequence.
2020         */
2021        if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) &&
2022                size >= 256 && cachep->object_size > cache_line_size()) {
2023                if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2024                        size_t tmp_size = ALIGN(size, PAGE_SIZE);
2025
2026                        if (set_off_slab_cache(cachep, tmp_size, flags)) {
2027                                flags |= CFLGS_OFF_SLAB;
2028                                cachep->obj_offset += tmp_size - size;
2029                                size = tmp_size;
2030                                goto done;
2031                        }
2032                }
2033        }
2034#endif
2035
2036        if (set_objfreelist_slab_cache(cachep, size, flags)) {
2037                flags |= CFLGS_OBJFREELIST_SLAB;
2038                goto done;
2039        }
2040
2041        if (set_off_slab_cache(cachep, size, flags)) {
2042                flags |= CFLGS_OFF_SLAB;
2043                goto done;
2044        }
2045
2046        if (set_on_slab_cache(cachep, size, flags))
2047                goto done;
2048
2049        return -E2BIG;
2050
2051done:
2052        cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2053        cachep->flags = flags;
2054        cachep->allocflags = __GFP_COMP;
2055        if (flags & SLAB_CACHE_DMA)
2056                cachep->allocflags |= GFP_DMA;
2057        if (flags & SLAB_CACHE_DMA32)
2058                cachep->allocflags |= GFP_DMA32;
2059        if (flags & SLAB_RECLAIM_ACCOUNT)
2060                cachep->allocflags |= __GFP_RECLAIMABLE;
2061        cachep->size = size;
2062        cachep->reciprocal_buffer_size = reciprocal_value(size);
2063
2064#if DEBUG
2065        /*
2066         * If we're going to use the generic kernel_map_pages()
2067         * poisoning, then it's going to smash the contents of
2068         * the redzone and userword anyhow, so switch them off.
2069         */
2070        if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2071                (cachep->flags & SLAB_POISON) &&
2072                is_debug_pagealloc_cache(cachep))
2073                cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2074#endif
2075
2076        if (OFF_SLAB(cachep)) {
2077                cachep->freelist_cache =
2078                        kmalloc_slab(cachep->freelist_size, 0u);
2079        }
2080
2081        err = setup_cpu_cache(cachep, gfp);
2082        if (err) {
2083                __kmem_cache_release(cachep);
2084                return err;
2085        }
2086
2087        return 0;
2088}
2089
2090#if DEBUG
2091static void check_irq_off(void)
2092{
2093        BUG_ON(!irqs_disabled());
2094}
2095
2096static void check_irq_on(void)
2097{
2098        BUG_ON(irqs_disabled());
2099}
2100
2101static void check_mutex_acquired(void)
2102{
2103        BUG_ON(!mutex_is_locked(&slab_mutex));
2104}
2105
2106static void check_spinlock_acquired(struct kmem_cache *cachep)
2107{
2108#ifdef CONFIG_SMP
2109        check_irq_off();
2110        assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2111#endif
2112}
2113
2114static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2115{
2116#ifdef CONFIG_SMP
2117        check_irq_off();
2118        assert_spin_locked(&get_node(cachep, node)->list_lock);
2119#endif
2120}
2121
2122#else
2123#define check_irq_off() do { } while(0)
2124#define check_irq_on()  do { } while(0)
2125#define check_mutex_acquired()  do { } while(0)
2126#define check_spinlock_acquired(x) do { } while(0)
2127#define check_spinlock_acquired_node(x, y) do { } while(0)
2128#endif
2129
2130static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2131                                int node, bool free_all, struct list_head *list)
2132{
2133        int tofree;
2134
2135        if (!ac || !ac->avail)
2136                return;
2137
2138        tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2139        if (tofree > ac->avail)
2140                tofree = (ac->avail + 1) / 2;
2141
2142        free_block(cachep, ac->entry, tofree, node, list);
2143        ac->avail -= tofree;
2144        memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2145}
2146
2147static void do_drain(void *arg)
2148{
2149        struct kmem_cache *cachep = arg;
2150        struct array_cache *ac;
2151        int node = numa_mem_id();
2152        struct kmem_cache_node *n;
2153        LIST_HEAD(list);
2154
2155        check_irq_off();
2156        ac = cpu_cache_get(cachep);
2157        n = get_node(cachep, node);
2158        spin_lock(&n->list_lock);
2159        free_block(cachep, ac->entry, ac->avail, node, &list);
2160        spin_unlock(&n->list_lock);
2161        ac->avail = 0;
2162        slabs_destroy(cachep, &list);
2163}
2164
2165static void drain_cpu_caches(struct kmem_cache *cachep)
2166{
2167        struct kmem_cache_node *n;
2168        int node;
2169        LIST_HEAD(list);
2170
2171        on_each_cpu(do_drain, cachep, 1);
2172        check_irq_on();
2173        for_each_kmem_cache_node(cachep, node, n)
2174                if (n->alien)
2175                        drain_alien_cache(cachep, n->alien);
2176
2177        for_each_kmem_cache_node(cachep, node, n) {
2178                spin_lock_irq(&n->list_lock);
2179                drain_array_locked(cachep, n->shared, node, true, &list);
2180                spin_unlock_irq(&n->list_lock);
2181
2182                slabs_destroy(cachep, &list);
2183        }
2184}
2185
2186/*
2187 * Remove slabs from the list of free slabs.
2188 * Specify the number of slabs to drain in tofree.
2189 *
2190 * Returns the actual number of slabs released.
2191 */
2192static int drain_freelist(struct kmem_cache *cache,
2193                        struct kmem_cache_node *n, int tofree)
2194{
2195        struct list_head *p;
2196        int nr_freed;
2197        struct page *page;
2198
2199        nr_freed = 0;
2200        while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2201
2202                spin_lock_irq(&n->list_lock);
2203                p = n->slabs_free.prev;
2204                if (p == &n->slabs_free) {
2205                        spin_unlock_irq(&n->list_lock);
2206                        goto out;
2207                }
2208
2209                page = list_entry(p, struct page, slab_list);
2210                list_del(&page->slab_list);
2211                n->free_slabs--;
2212                n->total_slabs--;
2213                /*
2214                 * Safe to drop the lock. The slab is no longer linked
2215                 * to the cache.
2216                 */
2217                n->free_objects -= cache->num;
2218                spin_unlock_irq(&n->list_lock);
2219                slab_destroy(cache, page);
2220                nr_freed++;
2221        }
2222out:
2223        return nr_freed;
2224}
2225
2226bool __kmem_cache_empty(struct kmem_cache *s)
2227{
2228        int node;
2229        struct kmem_cache_node *n;
2230
2231        for_each_kmem_cache_node(s, node, n)
2232                if (!list_empty(&n->slabs_full) ||
2233                    !list_empty(&n->slabs_partial))
2234                        return false;
2235        return true;
2236}
2237
2238int __kmem_cache_shrink(struct kmem_cache *cachep)
2239{
2240        int ret = 0;
2241        int node;
2242        struct kmem_cache_node *n;
2243
2244        drain_cpu_caches(cachep);
2245
2246        check_irq_on();
2247        for_each_kmem_cache_node(cachep, node, n) {
2248                drain_freelist(cachep, n, INT_MAX);
2249
2250                ret += !list_empty(&n->slabs_full) ||
2251                        !list_empty(&n->slabs_partial);
2252        }
2253        return (ret ? 1 : 0);
2254}
2255
2256int __kmem_cache_shutdown(struct kmem_cache *cachep)
2257{
2258        return __kmem_cache_shrink(cachep);
2259}
2260
2261void __kmem_cache_release(struct kmem_cache *cachep)
2262{
2263        int i;
2264        struct kmem_cache_node *n;
2265
2266        cache_random_seq_destroy(cachep);
2267
2268        free_percpu(cachep->cpu_cache);
2269
2270        /* NUMA: free the node structures */
2271        for_each_kmem_cache_node(cachep, i, n) {
2272                kfree(n->shared);
2273                free_alien_cache(n->alien);
2274                kfree(n);
2275                cachep->node[i] = NULL;
2276        }
2277}
2278
2279/*
2280 * Get the memory for a slab management obj.
2281 *
2282 * For a slab cache when the slab descriptor is off-slab, the
2283 * slab descriptor can't come from the same cache which is being created,
2284 * Because if it is the case, that means we defer the creation of
2285 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2286 * And we eventually call down to __kmem_cache_create(), which
2287 * in turn looks up in the kmalloc_{dma,}_caches for the desired-size one.
2288 * This is a "chicken-and-egg" problem.
2289 *
2290 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2291 * which are all initialized during kmem_cache_init().
2292 */
2293static void *alloc_slabmgmt(struct kmem_cache *cachep,
2294                                   struct page *page, int colour_off,
2295                                   gfp_t local_flags, int nodeid)
2296{
2297        void *freelist;
2298        void *addr = page_address(page);
2299
2300        page->s_mem = addr + colour_off;
2301        page->active = 0;
2302
2303        if (OBJFREELIST_SLAB(cachep))
2304                freelist = NULL;
2305        else if (OFF_SLAB(cachep)) {
2306                /* Slab management obj is off-slab. */
2307                freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2308                                              local_flags, nodeid);
2309        } else {
2310                /* We will use last bytes at the slab for freelist */
2311                freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2312                                cachep->freelist_size;
2313        }
2314
2315        return freelist;
2316}
2317
2318static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2319{
2320        return ((freelist_idx_t *)page->freelist)[idx];
2321}
2322
2323static inline void set_free_obj(struct page *page,
2324                                        unsigned int idx, freelist_idx_t val)
2325{
2326        ((freelist_idx_t *)(page->freelist))[idx] = val;
2327}
2328
2329static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2330{
2331#if DEBUG
2332        int i;
2333
2334        for (i = 0; i < cachep->num; i++) {
2335                void *objp = index_to_obj(cachep, page, i);
2336
2337                if (cachep->flags & SLAB_STORE_USER)
2338                        *dbg_userword(cachep, objp) = NULL;
2339
2340                if (cachep->flags & SLAB_RED_ZONE) {
2341                        *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2342                        *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2343                }
2344                /*
2345                 * Constructors are not allowed to allocate memory from the same
2346                 * cache which they are a constructor for.  Otherwise, deadlock.
2347                 * They must also be threaded.
2348                 */
2349                if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2350                        kasan_unpoison_object_data(cachep,
2351                                                   objp + obj_offset(cachep));
2352                        cachep->ctor(objp + obj_offset(cachep));
2353                        kasan_poison_object_data(
2354                                cachep, objp + obj_offset(cachep));
2355                }
2356
2357                if (cachep->flags & SLAB_RED_ZONE) {
2358                        if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2359                                slab_error(cachep, "constructor overwrote the end of an object");
2360                        if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2361                                slab_error(cachep, "constructor overwrote the start of an object");
2362                }
2363                /* need to poison the objs? */
2364                if (cachep->flags & SLAB_POISON) {
2365                        poison_obj(cachep, objp, POISON_FREE);
2366                        slab_kernel_map(cachep, objp, 0);
2367                }
2368        }
2369#endif
2370}
2371
2372#ifdef CONFIG_SLAB_FREELIST_RANDOM
2373/* Hold information during a freelist initialization */
2374union freelist_init_state {
2375        struct {
2376                unsigned int pos;
2377                unsigned int *list;
2378                unsigned int count;
2379        };
2380        struct rnd_state rnd_state;
2381};
2382
2383/*
2384 * Initialize the state based on the randomization method available.
2385 * return true if the pre-computed list is available, false otherwise.
2386 */
2387static bool freelist_state_initialize(union freelist_init_state *state,
2388                                struct kmem_cache *cachep,
2389                                unsigned int count)
2390{
2391        bool ret;
2392        unsigned int rand;
2393
2394        /* Use best entropy available to define a random shift */
2395        rand = get_random_int();
2396
2397        /* Use a random state if the pre-computed list is not available */
2398        if (!cachep->random_seq) {
2399                prandom_seed_state(&state->rnd_state, rand);
2400                ret = false;
2401        } else {
2402                state->list = cachep->random_seq;
2403                state->count = count;
2404                state->pos = rand % count;
2405                ret = true;
2406        }
2407        return ret;
2408}
2409
2410/* Get the next entry on the list and randomize it using a random shift */
2411static freelist_idx_t next_random_slot(union freelist_init_state *state)
2412{
2413        if (state->pos >= state->count)
2414                state->pos = 0;
2415        return state->list[state->pos++];
2416}
2417
2418/* Swap two freelist entries */
2419static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2420{
2421        swap(((freelist_idx_t *)page->freelist)[a],
2422                ((freelist_idx_t *)page->freelist)[b]);
2423}
2424
2425/*
2426 * Shuffle the freelist initialization state based on pre-computed lists.
2427 * return true if the list was successfully shuffled, false otherwise.
2428 */
2429static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2430{
2431        unsigned int objfreelist = 0, i, rand, count = cachep->num;
2432        union freelist_init_state state;
2433        bool precomputed;
2434
2435        if (count < 2)
2436                return false;
2437
2438        precomputed = freelist_state_initialize(&state, cachep, count);
2439
2440        /* Take a random entry as the objfreelist */
2441        if (OBJFREELIST_SLAB(cachep)) {
2442                if (!precomputed)
2443                        objfreelist = count - 1;
2444                else
2445                        objfreelist = next_random_slot(&state);
2446                page->freelist = index_to_obj(cachep, page, objfreelist) +
2447                                                obj_offset(cachep);
2448                count--;
2449        }
2450
2451        /*
2452         * On early boot, generate the list dynamically.
2453         * Later use a pre-computed list for speed.
2454         */
2455        if (!precomputed) {
2456                for (i = 0; i < count; i++)
2457                        set_free_obj(page, i, i);
2458
2459                /* Fisher-Yates shuffle */
2460                for (i = count - 1; i > 0; i--) {
2461                        rand = prandom_u32_state(&state.rnd_state);
2462                        rand %= (i + 1);
2463                        swap_free_obj(page, i, rand);
2464                }
2465        } else {
2466                for (i = 0; i < count; i++)
2467                        set_free_obj(page, i, next_random_slot(&state));
2468        }
2469
2470        if (OBJFREELIST_SLAB(cachep))
2471                set_free_obj(page, cachep->num - 1, objfreelist);
2472
2473        return true;
2474}
2475#else
2476static inline bool shuffle_freelist(struct kmem_cache *cachep,
2477                                struct page *page)
2478{
2479        return false;
2480}
2481#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2482
2483static void cache_init_objs(struct kmem_cache *cachep,
2484                            struct page *page)
2485{
2486        int i;
2487        void *objp;
2488        bool shuffled;
2489
2490        cache_init_objs_debug(cachep, page);
2491
2492        /* Try to randomize the freelist if enabled */
2493        shuffled = shuffle_freelist(cachep, page);
2494
2495        if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2496                page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2497                                                obj_offset(cachep);
2498        }
2499
2500        for (i = 0; i < cachep->num; i++) {
2501                objp = index_to_obj(cachep, page, i);
2502                objp = kasan_init_slab_obj(cachep, objp);
2503
2504                /* constructor could break poison info */
2505                if (DEBUG == 0 && cachep->ctor) {
2506                        kasan_unpoison_object_data(cachep, objp);
2507                        cachep->ctor(objp);
2508                        kasan_poison_object_data(cachep, objp);
2509                }
2510
2511                if (!shuffled)
2512                        set_free_obj(page, i, i);
2513        }
2514}
2515
2516static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2517{
2518        void *objp;
2519
2520        objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2521        page->active++;
2522
2523        return objp;
2524}
2525
2526static void slab_put_obj(struct kmem_cache *cachep,
2527                        struct page *page, void *objp)
2528{
2529        unsigned int objnr = obj_to_index(cachep, page, objp);
2530#if DEBUG
2531        unsigned int i;
2532
2533        /* Verify double free bug */
2534        for (i = page->active; i < cachep->num; i++) {
2535                if (get_free_obj(page, i) == objnr) {
2536                        pr_err("slab: double free detected in cache '%s', objp %px\n",
2537                               cachep->name, objp);
2538                        BUG();
2539                }
2540        }
2541#endif
2542        page->active--;
2543        if (!page->freelist)
2544                page->freelist = objp + obj_offset(cachep);
2545
2546        set_free_obj(page, page->active, objnr);
2547}
2548
2549/*
2550 * Map pages beginning at addr to the given cache and slab. This is required
2551 * for the slab allocator to be able to lookup the cache and slab of a
2552 * virtual address for kfree, ksize, and slab debugging.
2553 */
2554static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2555                           void *freelist)
2556{
2557        page->slab_cache = cache;
2558        page->freelist = freelist;
2559}
2560
2561/*
2562 * Grow (by 1) the number of slabs within a cache.  This is called by
2563 * kmem_cache_alloc() when there are no active objs left in a cache.
2564 */
2565static struct page *cache_grow_begin(struct kmem_cache *cachep,
2566                                gfp_t flags, int nodeid)
2567{
2568        void *freelist;
2569        size_t offset;
2570        gfp_t local_flags;
2571        int page_node;
2572        struct kmem_cache_node *n;
2573        struct page *page;
2574
2575        /*
2576         * Be lazy and only check for valid flags here,  keeping it out of the
2577         * critical path in kmem_cache_alloc().
2578         */
2579        if (unlikely(flags & GFP_SLAB_BUG_MASK))
2580                flags = kmalloc_fix_flags(flags);
2581
2582        WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2583        local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2584
2585        check_irq_off();
2586        if (gfpflags_allow_blocking(local_flags))
2587                local_irq_enable();
2588
2589        /*
2590         * Get mem for the objs.  Attempt to allocate a physical page from
2591         * 'nodeid'.
2592         */
2593        page = kmem_getpages(cachep, local_flags, nodeid);
2594        if (!page)
2595                goto failed;
2596
2597        page_node = page_to_nid(page);
2598        n = get_node(cachep, page_node);
2599
2600        /* Get colour for the slab, and cal the next value. */
2601        n->colour_next++;
2602        if (n->colour_next >= cachep->colour)
2603                n->colour_next = 0;
2604
2605        offset = n->colour_next;
2606        if (offset >= cachep->colour)
2607                offset = 0;
2608
2609        offset *= cachep->colour_off;
2610
2611        /*
2612         * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
2613         * page_address() in the latter returns a non-tagged pointer,
2614         * as it should be for slab pages.
2615         */
2616        kasan_poison_slab(page);
2617
2618        /* Get slab management. */
2619        freelist = alloc_slabmgmt(cachep, page, offset,
2620                        local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2621        if (OFF_SLAB(cachep) && !freelist)
2622                goto opps1;
2623
2624        slab_map_pages(cachep, page, freelist);
2625
2626        cache_init_objs(cachep, page);
2627
2628        if (gfpflags_allow_blocking(local_flags))
2629                local_irq_disable();
2630
2631        return page;
2632
2633opps1:
2634        kmem_freepages(cachep, page);
2635failed:
2636        if (gfpflags_allow_blocking(local_flags))
2637                local_irq_disable();
2638        return NULL;
2639}
2640
2641static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2642{
2643        struct kmem_cache_node *n;
2644        void *list = NULL;
2645
2646        check_irq_off();
2647
2648        if (!page)
2649                return;
2650
2651        INIT_LIST_HEAD(&page->slab_list);
2652        n = get_node(cachep, page_to_nid(page));
2653
2654        spin_lock(&n->list_lock);
2655        n->total_slabs++;
2656        if (!page->active) {
2657                list_add_tail(&page->slab_list, &n->slabs_free);
2658                n->free_slabs++;
2659        } else
2660                fixup_slab_list(cachep, n, page, &list);
2661
2662        STATS_INC_GROWN(cachep);
2663        n->free_objects += cachep->num - page->active;
2664        spin_unlock(&n->list_lock);
2665
2666        fixup_objfreelist_debug(cachep, &list);
2667}
2668
2669#if DEBUG
2670
2671/*
2672 * Perform extra freeing checks:
2673 * - detect bad pointers.
2674 * - POISON/RED_ZONE checking
2675 */
2676static void kfree_debugcheck(const void *objp)
2677{
2678        if (!virt_addr_valid(objp)) {
2679                pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2680                       (unsigned long)objp);
2681                BUG();
2682        }
2683}
2684
2685static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2686{
2687        unsigned long long redzone1, redzone2;
2688
2689        redzone1 = *dbg_redzone1(cache, obj);
2690        redzone2 = *dbg_redzone2(cache, obj);
2691
2692        /*
2693         * Redzone is ok.
2694         */
2695        if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2696                return;
2697
2698        if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2699                slab_error(cache, "double free detected");
2700        else
2701                slab_error(cache, "memory outside object was overwritten");
2702
2703        pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2704               obj, redzone1, redzone2);
2705}
2706
2707static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2708                                   unsigned long caller)
2709{
2710        unsigned int objnr;
2711        struct page *page;
2712
2713        BUG_ON(virt_to_cache(objp) != cachep);
2714
2715        objp -= obj_offset(cachep);
2716        kfree_debugcheck(objp);
2717        page = virt_to_head_page(objp);
2718
2719        if (cachep->flags & SLAB_RED_ZONE) {
2720                verify_redzone_free(cachep, objp);
2721                *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2722                *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2723        }
2724        if (cachep->flags & SLAB_STORE_USER)
2725                *dbg_userword(cachep, objp) = (void *)caller;
2726
2727        objnr = obj_to_index(cachep, page, objp);
2728
2729        BUG_ON(objnr >= cachep->num);
2730        BUG_ON(objp != index_to_obj(cachep, page, objnr));
2731
2732        if (cachep->flags & SLAB_POISON) {
2733                poison_obj(cachep, objp, POISON_FREE);
2734                slab_kernel_map(cachep, objp, 0);
2735        }
2736        return objp;
2737}
2738
2739#else
2740#define kfree_debugcheck(x) do { } while(0)
2741#define cache_free_debugcheck(x, objp, z) (objp)
2742#endif
2743
2744static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2745                                                void **list)
2746{
2747#if DEBUG
2748        void *next = *list;
2749        void *objp;
2750
2751        while (next) {
2752                objp = next - obj_offset(cachep);
2753                next = *(void **)next;
2754                poison_obj(cachep, objp, POISON_FREE);
2755        }
2756#endif
2757}
2758
2759static inline void fixup_slab_list(struct kmem_cache *cachep,
2760                                struct kmem_cache_node *n, struct page *page,
2761                                void **list)
2762{
2763        /* move slabp to correct slabp list: */
2764        list_del(&page->slab_list);
2765        if (page->active == cachep->num) {
2766                list_add(&page->slab_list, &n->slabs_full);
2767                if (OBJFREELIST_SLAB(cachep)) {
2768#if DEBUG
2769                        /* Poisoning will be done without holding the lock */
2770                        if (cachep->flags & SLAB_POISON) {
2771                                void **objp = page->freelist;
2772
2773                                *objp = *list;
2774                                *list = objp;
2775                        }
2776#endif
2777                        page->freelist = NULL;
2778                }
2779        } else
2780                list_add(&page->slab_list, &n->slabs_partial);
2781}
2782
2783/* Try to find non-pfmemalloc slab if needed */
2784static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2785                                        struct page *page, bool pfmemalloc)
2786{
2787        if (!page)
2788                return NULL;
2789
2790        if (pfmemalloc)
2791                return page;
2792
2793        if (!PageSlabPfmemalloc(page))
2794                return page;
2795
2796        /* No need to keep pfmemalloc slab if we have enough free objects */
2797        if (n->free_objects > n->free_limit) {
2798                ClearPageSlabPfmemalloc(page);
2799                return page;
2800        }
2801
2802        /* Move pfmemalloc slab to the end of list to speed up next search */
2803        list_del(&page->slab_list);
2804        if (!page->active) {
2805                list_add_tail(&page->slab_list, &n->slabs_free);
2806                n->free_slabs++;
2807        } else
2808                list_add_tail(&page->slab_list, &n->slabs_partial);
2809
2810        list_for_each_entry(page, &n->slabs_partial, slab_list) {
2811                if (!PageSlabPfmemalloc(page))
2812                        return page;
2813        }
2814
2815        n->free_touched = 1;
2816        list_for_each_entry(page, &n->slabs_free, slab_list) {
2817                if (!PageSlabPfmemalloc(page)) {
2818                        n->free_slabs--;
2819                        return page;
2820                }
2821        }
2822
2823        return NULL;
2824}
2825
2826static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2827{
2828        struct page *page;
2829
2830        assert_spin_locked(&n->list_lock);
2831        page = list_first_entry_or_null(&n->slabs_partial, struct page,
2832                                        slab_list);
2833        if (!page) {
2834                n->free_touched = 1;
2835                page = list_first_entry_or_null(&n->slabs_free, struct page,
2836                                                slab_list);
2837                if (page)
2838                        n->free_slabs--;
2839        }
2840
2841        if (sk_memalloc_socks())
2842                page = get_valid_first_slab(n, page, pfmemalloc);
2843
2844        return page;
2845}
2846
2847static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2848                                struct kmem_cache_node *n, gfp_t flags)
2849{
2850        struct page *page;
2851        void *obj;
2852        void *list = NULL;
2853
2854        if (!gfp_pfmemalloc_allowed(flags))
2855                return NULL;
2856
2857        spin_lock(&n->list_lock);
2858        page = get_first_slab(n, true);
2859        if (!page) {
2860                spin_unlock(&n->list_lock);
2861                return NULL;
2862        }
2863
2864        obj = slab_get_obj(cachep, page);
2865        n->free_objects--;
2866
2867        fixup_slab_list(cachep, n, page, &list);
2868
2869        spin_unlock(&n->list_lock);
2870        fixup_objfreelist_debug(cachep, &list);
2871
2872        return obj;
2873}
2874
2875/*
2876 * Slab list should be fixed up by fixup_slab_list() for existing slab
2877 * or cache_grow_end() for new slab
2878 */
2879static __always_inline int alloc_block(struct kmem_cache *cachep,
2880                struct array_cache *ac, struct page *page, int batchcount)
2881{
2882        /*
2883         * There must be at least one object available for
2884         * allocation.
2885         */
2886        BUG_ON(page->active >= cachep->num);
2887
2888        while (page->active < cachep->num && batchcount--) {
2889                STATS_INC_ALLOCED(cachep);
2890                STATS_INC_ACTIVE(cachep);
2891                STATS_SET_HIGH(cachep);
2892
2893                ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2894        }
2895
2896        return batchcount;
2897}
2898
2899static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2900{
2901        int batchcount;
2902        struct kmem_cache_node *n;
2903        struct array_cache *ac, *shared;
2904        int node;
2905        void *list = NULL;
2906        struct page *page;
2907
2908        check_irq_off();
2909        node = numa_mem_id();
2910
2911        ac = cpu_cache_get(cachep);
2912        batchcount = ac->batchcount;
2913        if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2914                /*
2915                 * If there was little recent activity on this cache, then
2916                 * perform only a partial refill.  Otherwise we could generate
2917                 * refill bouncing.
2918                 */
2919                batchcount = BATCHREFILL_LIMIT;
2920        }
2921        n = get_node(cachep, node);
2922
2923        BUG_ON(ac->avail > 0 || !n);
2924        shared = READ_ONCE(n->shared);
2925        if (!n->free_objects && (!shared || !shared->avail))
2926                goto direct_grow;
2927
2928        spin_lock(&n->list_lock);
2929        shared = READ_ONCE(n->shared);
2930
2931        /* See if we can refill from the shared array */
2932        if (shared && transfer_objects(ac, shared, batchcount)) {
2933                shared->touched = 1;
2934                goto alloc_done;
2935        }
2936
2937        while (batchcount > 0) {
2938                /* Get slab alloc is to come from. */
2939                page = get_first_slab(n, false);
2940                if (!page)
2941                        goto must_grow;
2942
2943                check_spinlock_acquired(cachep);
2944
2945                batchcount = alloc_block(cachep, ac, page, batchcount);
2946                fixup_slab_list(cachep, n, page, &list);
2947        }
2948
2949must_grow:
2950        n->free_objects -= ac->avail;
2951alloc_done:
2952        spin_unlock(&n->list_lock);
2953        fixup_objfreelist_debug(cachep, &list);
2954
2955direct_grow:
2956        if (unlikely(!ac->avail)) {
2957                /* Check if we can use obj in pfmemalloc slab */
2958                if (sk_memalloc_socks()) {
2959                        void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2960
2961                        if (obj)
2962                                return obj;
2963                }
2964
2965                page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
2966
2967                /*
2968                 * cache_grow_begin() can reenable interrupts,
2969                 * then ac could change.
2970                 */
2971                ac = cpu_cache_get(cachep);
2972                if (!ac->avail && page)
2973                        alloc_block(cachep, ac, page, batchcount);
2974                cache_grow_end(cachep, page);
2975
2976                if (!ac->avail)
2977                        return NULL;
2978        }
2979        ac->touched = 1;
2980
2981        return ac->entry[--ac->avail];
2982}
2983
2984static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2985                                                gfp_t flags)
2986{
2987        might_sleep_if(gfpflags_allow_blocking(flags));
2988}
2989
2990#if DEBUG
2991static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2992                                gfp_t flags, void *objp, unsigned long caller)
2993{
2994        WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2995        if (!objp || is_kfence_address(objp))
2996                return objp;
2997        if (cachep->flags & SLAB_POISON) {
2998                check_poison_obj(cachep, objp);
2999                slab_kernel_map(cachep, objp, 1);
3000                poison_obj(cachep, objp, POISON_INUSE);
3001        }
3002        if (cachep->flags & SLAB_STORE_USER)
3003                *dbg_userword(cachep, objp) = (void *)caller;
3004
3005        if (cachep->flags & SLAB_RED_ZONE) {
3006                if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3007                                *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3008                        slab_error(cachep, "double free, or memory outside object was overwritten");
3009                        pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3010                               objp, *dbg_redzone1(cachep, objp),
3011                               *dbg_redzone2(cachep, objp));
3012                }
3013                *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3014                *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3015        }
3016
3017        objp += obj_offset(cachep);
3018        if (cachep->ctor && cachep->flags & SLAB_POISON)
3019                cachep->ctor(objp);
3020        if (ARCH_SLAB_MINALIGN &&
3021            ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3022                pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3023                       objp, (int)ARCH_SLAB_MINALIGN);
3024        }
3025        return objp;
3026}
3027#else
3028#define cache_alloc_debugcheck_after(a, b, objp, d) (objp)
3029#endif
3030
3031static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3032{
3033        void *objp;
3034        struct array_cache *ac;
3035
3036        check_irq_off();
3037
3038        ac = cpu_cache_get(cachep);
3039        if (likely(ac->avail)) {
3040                ac->touched = 1;
3041                objp = ac->entry[--ac->avail];
3042
3043                STATS_INC_ALLOCHIT(cachep);
3044                goto out;
3045        }
3046
3047        STATS_INC_ALLOCMISS(cachep);
3048        objp = cache_alloc_refill(cachep, flags);
3049        /*
3050         * the 'ac' may be updated by cache_alloc_refill(),
3051         * and kmemleak_erase() requires its correct value.
3052         */
3053        ac = cpu_cache_get(cachep);
3054
3055out:
3056        /*
3057         * To avoid a false negative, if an object that is in one of the
3058         * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3059         * treat the array pointers as a reference to the object.
3060         */
3061        if (objp)
3062                kmemleak_erase(&ac->entry[ac->avail]);
3063        return objp;
3064}
3065
3066#ifdef CONFIG_NUMA
3067/*
3068 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3069 *
3070 * If we are in_interrupt, then process context, including cpusets and
3071 * mempolicy, may not apply and should not be used for allocation policy.
3072 */
3073static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3074{
3075        int nid_alloc, nid_here;
3076
3077        if (in_interrupt() || (flags & __GFP_THISNODE))
3078                return NULL;
3079        nid_alloc = nid_here = numa_mem_id();
3080        if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3081                nid_alloc = cpuset_slab_spread_node();
3082        else if (current->mempolicy)
3083                nid_alloc = mempolicy_slab_node();
3084        if (nid_alloc != nid_here)
3085                return ____cache_alloc_node(cachep, flags, nid_alloc);
3086        return NULL;
3087}
3088
3089/*
3090 * Fallback function if there was no memory available and no objects on a
3091 * certain node and fall back is permitted. First we scan all the
3092 * available node for available objects. If that fails then we
3093 * perform an allocation without specifying a node. This allows the page
3094 * allocator to do its reclaim / fallback magic. We then insert the
3095 * slab into the proper nodelist and then allocate from it.
3096 */
3097static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3098{
3099        struct zonelist *zonelist;
3100        struct zoneref *z;
3101        struct zone *zone;
3102        enum zone_type highest_zoneidx = gfp_zone(flags);
3103        void *obj = NULL;
3104        struct page *page;
3105        int nid;
3106        unsigned int cpuset_mems_cookie;
3107
3108        if (flags & __GFP_THISNODE)
3109                return NULL;
3110
3111retry_cpuset:
3112        cpuset_mems_cookie = read_mems_allowed_begin();
3113        zonelist = node_zonelist(mempolicy_slab_node(), flags);
3114
3115retry:
3116        /*
3117         * Look through allowed nodes for objects available
3118         * from existing per node queues.
3119         */
3120        for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
3121                nid = zone_to_nid(zone);
3122
3123                if (cpuset_zone_allowed(zone, flags) &&
3124                        get_node(cache, nid) &&
3125                        get_node(cache, nid)->free_objects) {
3126                                obj = ____cache_alloc_node(cache,
3127                                        gfp_exact_node(flags), nid);
3128                                if (obj)
3129                                        break;
3130                }
3131        }
3132
3133        if (!obj) {
3134                /*
3135                 * This allocation will be performed within the constraints
3136                 * of the current cpuset / memory policy requirements.
3137                 * We may trigger various forms of reclaim on the allowed
3138                 * set and go into memory reserves if necessary.
3139                 */
3140                page = cache_grow_begin(cache, flags, numa_mem_id());
3141                cache_grow_end(cache, page);
3142                if (page) {
3143                        nid = page_to_nid(page);
3144                        obj = ____cache_alloc_node(cache,
3145                                gfp_exact_node(flags), nid);
3146
3147                        /*
3148                         * Another processor may allocate the objects in
3149                         * the slab since we are not holding any locks.
3150                         */
3151                        if (!obj)
3152                                goto retry;
3153                }
3154        }
3155
3156        if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3157                goto retry_cpuset;
3158        return obj;
3159}
3160
3161/*
3162 * A interface to enable slab creation on nodeid
3163 */
3164static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3165                                int nodeid)
3166{
3167        struct page *page;
3168        struct kmem_cache_node *n;
3169        void *obj = NULL;
3170        void *list = NULL;
3171
3172        VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3173        n = get_node(cachep, nodeid);
3174        BUG_ON(!n);
3175
3176        check_irq_off();
3177        spin_lock(&n->list_lock);
3178        page = get_first_slab(n, false);
3179        if (!page)
3180                goto must_grow;
3181
3182        check_spinlock_acquired_node(cachep, nodeid);
3183
3184        STATS_INC_NODEALLOCS(cachep);
3185        STATS_INC_ACTIVE(cachep);
3186        STATS_SET_HIGH(cachep);
3187
3188        BUG_ON(page->active == cachep->num);
3189
3190        obj = slab_get_obj(cachep, page);
3191        n->free_objects--;
3192
3193        fixup_slab_list(cachep, n, page, &list);
3194
3195        spin_unlock(&n->list_lock);
3196        fixup_objfreelist_debug(cachep, &list);
3197        return obj;
3198
3199must_grow:
3200        spin_unlock(&n->list_lock);
3201        page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3202        if (page) {
3203                /* This slab isn't counted yet so don't update free_objects */
3204                obj = slab_get_obj(cachep, page);
3205        }
3206        cache_grow_end(cachep, page);
3207
3208        return obj ? obj : fallback_alloc(cachep, flags);
3209}
3210
3211static __always_inline void *
3212slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, size_t orig_size,
3213                   unsigned long caller)
3214{
3215        unsigned long save_flags;
3216        void *ptr;
3217        int slab_node = numa_mem_id();
3218        struct obj_cgroup *objcg = NULL;
3219        bool init = false;
3220
3221        flags &= gfp_allowed_mask;
3222        cachep = slab_pre_alloc_hook(cachep, &objcg, 1, flags);
3223        if (unlikely(!cachep))
3224                return NULL;
3225
3226        ptr = kfence_alloc(cachep, orig_size, flags);
3227        if (unlikely(ptr))
3228                goto out_hooks;
3229
3230        cache_alloc_debugcheck_before(cachep, flags);
3231        local_irq_save(save_flags);
3232
3233        if (nodeid == NUMA_NO_NODE)
3234                nodeid = slab_node;
3235
3236        if (unlikely(!get_node(cachep, nodeid))) {
3237                /* Node not bootstrapped yet */
3238                ptr = fallback_alloc(cachep, flags);
3239                goto out;
3240        }
3241
3242        if (nodeid == slab_node) {
3243                /*
3244                 * Use the locally cached objects if possible.
3245                 * However ____cache_alloc does not allow fallback
3246                 * to other nodes. It may fail while we still have
3247                 * objects on other nodes available.
3248                 */
3249                ptr = ____cache_alloc(cachep, flags);
3250                if (ptr)
3251                        goto out;
3252        }
3253        /* ___cache_alloc_node can fall back to other nodes */
3254        ptr = ____cache_alloc_node(cachep, flags, nodeid);
3255  out:
3256        local_irq_restore(save_flags);
3257        ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3258        init = slab_want_init_on_alloc(flags, cachep);
3259
3260out_hooks:
3261        slab_post_alloc_hook(cachep, objcg, flags, 1, &ptr, init);
3262        return ptr;
3263}
3264
3265static __always_inline void *
3266__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3267{
3268        void *objp;
3269
3270        if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3271                objp = alternate_node_alloc(cache, flags);
3272                if (objp)
3273                        goto out;
3274        }
3275        objp = ____cache_alloc(cache, flags);
3276
3277        /*
3278         * We may just have run out of memory on the local node.
3279         * ____cache_alloc_node() knows how to locate memory on other nodes
3280         */
3281        if (!objp)
3282                objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3283
3284  out:
3285        return objp;
3286}
3287#else
3288
3289static __always_inline void *
3290__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3291{
3292        return ____cache_alloc(cachep, flags);
3293}
3294
3295#endif /* CONFIG_NUMA */
3296
3297static __always_inline void *
3298slab_alloc(struct kmem_cache *cachep, gfp_t flags, size_t orig_size, unsigned long caller)
3299{
3300        unsigned long save_flags;
3301        void *objp;
3302        struct obj_cgroup *objcg = NULL;
3303        bool init = false;
3304
3305        flags &= gfp_allowed_mask;
3306        cachep = slab_pre_alloc_hook(cachep, &objcg, 1, flags);
3307        if (unlikely(!cachep))
3308                return NULL;
3309
3310        objp = kfence_alloc(cachep, orig_size, flags);
3311        if (unlikely(objp))
3312                goto out;
3313
3314        cache_alloc_debugcheck_before(cachep, flags);
3315        local_irq_save(save_flags);
3316        objp = __do_cache_alloc(cachep, flags);
3317        local_irq_restore(save_flags);
3318        objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3319        prefetchw(objp);
3320        init = slab_want_init_on_alloc(flags, cachep);
3321
3322out:
3323        slab_post_alloc_hook(cachep, objcg, flags, 1, &objp, init);
3324        return objp;
3325}
3326
3327/*
3328 * Caller needs to acquire correct kmem_cache_node's list_lock
3329 * @list: List of detached free slabs should be freed by caller
3330 */
3331static void free_block(struct kmem_cache *cachep, void **objpp,
3332                        int nr_objects, int node, struct list_head *list)
3333{
3334        int i;
3335        struct kmem_cache_node *n = get_node(cachep, node);
3336        struct page *page;
3337
3338        n->free_objects += nr_objects;
3339
3340        for (i = 0; i < nr_objects; i++) {
3341                void *objp;
3342                struct page *page;
3343
3344                objp = objpp[i];
3345
3346                page = virt_to_head_page(objp);
3347                list_del(&page->slab_list);
3348                check_spinlock_acquired_node(cachep, node);
3349                slab_put_obj(cachep, page, objp);
3350                STATS_DEC_ACTIVE(cachep);
3351
3352                /* fixup slab chains */
3353                if (page->active == 0) {
3354                        list_add(&page->slab_list, &n->slabs_free);
3355                        n->free_slabs++;
3356                } else {
3357                        /* Unconditionally move a slab to the end of the
3358                         * partial list on free - maximum time for the
3359                         * other objects to be freed, too.
3360                         */
3361                        list_add_tail(&page->slab_list, &n->slabs_partial);
3362                }
3363        }
3364
3365        while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3366                n->free_objects -= cachep->num;
3367
3368                page = list_last_entry(&n->slabs_free, struct page, slab_list);
3369                list_move(&page->slab_list, list);
3370                n->free_slabs--;
3371                n->total_slabs--;
3372        }
3373}
3374
3375static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3376{
3377        int batchcount;
3378        struct kmem_cache_node *n;
3379        int node = numa_mem_id();
3380        LIST_HEAD(list);
3381
3382        batchcount = ac->batchcount;
3383
3384        check_irq_off();
3385        n = get_node(cachep, node);
3386        spin_lock(&n->list_lock);
3387        if (n->shared) {
3388                struct array_cache *shared_array = n->shared;
3389                int max = shared_array->limit - shared_array->avail;
3390                if (max) {
3391                        if (batchcount > max)
3392                                batchcount = max;
3393                        memcpy(&(shared_array->entry[shared_array->avail]),
3394                               ac->entry, sizeof(void *) * batchcount);
3395                        shared_array->avail += batchcount;
3396                        goto free_done;
3397                }
3398        }
3399
3400        free_block(cachep, ac->entry, batchcount, node, &list);
3401free_done:
3402#if STATS
3403        {
3404                int i = 0;
3405                struct page *page;
3406
3407                list_for_each_entry(page, &n->slabs_free, slab_list) {
3408                        BUG_ON(page->active);
3409
3410                        i++;
3411                }
3412                STATS_SET_FREEABLE(cachep, i);
3413        }
3414#endif
3415        spin_unlock(&n->list_lock);
3416        ac->avail -= batchcount;
3417        memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3418        slabs_destroy(cachep, &list);
3419}
3420
3421/*
3422 * Release an obj back to its cache. If the obj has a constructed state, it must
3423 * be in this state _before_ it is released.  Called with disabled ints.
3424 */
3425static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3426                                         unsigned long caller)
3427{
3428        bool init;
3429
3430        if (is_kfence_address(objp)) {
3431                kmemleak_free_recursive(objp, cachep->flags);
3432                __kfence_free(objp);
3433                return;
3434        }
3435
3436        /*
3437         * As memory initialization might be integrated into KASAN,
3438         * kasan_slab_free and initialization memset must be
3439         * kept together to avoid discrepancies in behavior.
3440         */
3441        init = slab_want_init_on_free(cachep);
3442        if (init && !kasan_has_integrated_init())
3443                memset(objp, 0, cachep->object_size);
3444        /* KASAN might put objp into memory quarantine, delaying its reuse. */
3445        if (kasan_slab_free(cachep, objp, init))
3446                return;
3447
3448        /* Use KCSAN to help debug racy use-after-free. */
3449        if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU))
3450                __kcsan_check_access(objp, cachep->object_size,
3451                                     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
3452
3453        ___cache_free(cachep, objp, caller);
3454}
3455
3456void ___cache_free(struct kmem_cache *cachep, void *objp,
3457                unsigned long caller)
3458{
3459        struct array_cache *ac = cpu_cache_get(cachep);
3460
3461        check_irq_off();
3462        kmemleak_free_recursive(objp, cachep->flags);
3463        objp = cache_free_debugcheck(cachep, objp, caller);
3464        memcg_slab_free_hook(cachep, &objp, 1);
3465
3466        /*
3467         * Skip calling cache_free_alien() when the platform is not numa.
3468         * This will avoid cache misses that happen while accessing slabp (which
3469         * is per page memory  reference) to get nodeid. Instead use a global
3470         * variable to skip the call, which is mostly likely to be present in
3471         * the cache.
3472         */
3473        if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3474                return;
3475
3476        if (ac->avail < ac->limit) {
3477                STATS_INC_FREEHIT(cachep);
3478        } else {
3479                STATS_INC_FREEMISS(cachep);
3480                cache_flusharray(cachep, ac);
3481        }
3482
3483        if (sk_memalloc_socks()) {
3484                struct page *page = virt_to_head_page(objp);
3485
3486                if (unlikely(PageSlabPfmemalloc(page))) {
3487                        cache_free_pfmemalloc(cachep, page, objp);
3488                        return;
3489                }
3490        }
3491
3492        __free_one(ac, objp);
3493}
3494
3495/**
3496 * kmem_cache_alloc - Allocate an object
3497 * @cachep: The cache to allocate from.
3498 * @flags: See kmalloc().
3499 *
3500 * Allocate an object from this cache.  The flags are only relevant
3501 * if the cache has no available objects.
3502 *
3503 * Return: pointer to the new object or %NULL in case of error
3504 */
3505void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3506{
3507        void *ret = slab_alloc(cachep, flags, cachep->object_size, _RET_IP_);
3508
3509        trace_kmem_cache_alloc(_RET_IP_, ret,
3510                               cachep->object_size, cachep->size, flags);
3511
3512        return ret;
3513}
3514EXPORT_SYMBOL(kmem_cache_alloc);
3515
3516static __always_inline void
3517cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3518                                  size_t size, void **p, unsigned long caller)
3519{
3520        size_t i;
3521
3522        for (i = 0; i < size; i++)
3523                p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3524}
3525
3526int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3527                          void **p)
3528{
3529        size_t i;
3530        struct obj_cgroup *objcg = NULL;
3531
3532        s = slab_pre_alloc_hook(s, &objcg, size, flags);
3533        if (!s)
3534                return 0;
3535
3536        cache_alloc_debugcheck_before(s, flags);
3537
3538        local_irq_disable();
3539        for (i = 0; i < size; i++) {
3540                void *objp = kfence_alloc(s, s->object_size, flags) ?: __do_cache_alloc(s, flags);
3541
3542                if (unlikely(!objp))
3543                        goto error;
3544                p[i] = objp;
3545        }
3546        local_irq_enable();
3547
3548        cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3549
3550        /*
3551         * memcg and kmem_cache debug support and memory initialization.
3552         * Done outside of the IRQ disabled section.
3553         */
3554        slab_post_alloc_hook(s, objcg, flags, size, p,
3555                                slab_want_init_on_alloc(flags, s));
3556        /* FIXME: Trace call missing. Christoph would like a bulk variant */
3557        return size;
3558error:
3559        local_irq_enable();
3560        cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3561        slab_post_alloc_hook(s, objcg, flags, i, p, false);
3562        __kmem_cache_free_bulk(s, i, p);
3563        return 0;
3564}
3565EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3566
3567#ifdef CONFIG_TRACING
3568void *
3569kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3570{
3571        void *ret;
3572
3573        ret = slab_alloc(cachep, flags, size, _RET_IP_);
3574
3575        ret = kasan_kmalloc(cachep, ret, size, flags);
3576        trace_kmalloc(_RET_IP_, ret,
3577                      size, cachep->size, flags);
3578        return ret;
3579}
3580EXPORT_SYMBOL(kmem_cache_alloc_trace);
3581#endif
3582
3583#ifdef CONFIG_NUMA
3584/**
3585 * kmem_cache_alloc_node - Allocate an object on the specified node
3586 * @cachep: The cache to allocate from.
3587 * @flags: See kmalloc().
3588 * @nodeid: node number of the target node.
3589 *
3590 * Identical to kmem_cache_alloc but it will allocate memory on the given
3591 * node, which can improve the performance for cpu bound structures.
3592 *
3593 * Fallback to other node is possible if __GFP_THISNODE is not set.
3594 *
3595 * Return: pointer to the new object or %NULL in case of error
3596 */
3597void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3598{
3599        void *ret = slab_alloc_node(cachep, flags, nodeid, cachep->object_size, _RET_IP_);
3600
3601        trace_kmem_cache_alloc_node(_RET_IP_, ret,
3602                                    cachep->object_size, cachep->size,
3603                                    flags, nodeid);
3604
3605        return ret;
3606}
3607EXPORT_SYMBOL(kmem_cache_alloc_node);
3608
3609#ifdef CONFIG_TRACING
3610void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3611                                  gfp_t flags,
3612                                  int nodeid,
3613                                  size_t size)
3614{
3615        void *ret;
3616
3617        ret = slab_alloc_node(cachep, flags, nodeid, size, _RET_IP_);
3618
3619        ret = kasan_kmalloc(cachep, ret, size, flags);
3620        trace_kmalloc_node(_RET_IP_, ret,
3621                           size, cachep->size,
3622                           flags, nodeid);
3623        return ret;
3624}
3625EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3626#endif
3627
3628static __always_inline void *
3629__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3630{
3631        struct kmem_cache *cachep;
3632        void *ret;
3633
3634        if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3635                return NULL;
3636        cachep = kmalloc_slab(size, flags);
3637        if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3638                return cachep;
3639        ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3640        ret = kasan_kmalloc(cachep, ret, size, flags);
3641
3642        return ret;
3643}
3644
3645void *__kmalloc_node(size_t size, gfp_t flags, int node)
3646{
3647        return __do_kmalloc_node(size, flags, node, _RET_IP_);
3648}
3649EXPORT_SYMBOL(__kmalloc_node);
3650
3651void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3652                int node, unsigned long caller)
3653{
3654        return __do_kmalloc_node(size, flags, node, caller);
3655}
3656EXPORT_SYMBOL(__kmalloc_node_track_caller);
3657#endif /* CONFIG_NUMA */
3658
3659#ifdef CONFIG_PRINTK
3660void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
3661{
3662        struct kmem_cache *cachep;
3663        unsigned int objnr;
3664        void *objp;
3665
3666        kpp->kp_ptr = object;
3667        kpp->kp_page = page;
3668        cachep = page->slab_cache;
3669        kpp->kp_slab_cache = cachep;
3670        objp = object - obj_offset(cachep);
3671        kpp->kp_data_offset = obj_offset(cachep);
3672        page = virt_to_head_page(objp);
3673        objnr = obj_to_index(cachep, page, objp);
3674        objp = index_to_obj(cachep, page, objnr);
3675        kpp->kp_objp = objp;
3676        if (DEBUG && cachep->flags & SLAB_STORE_USER)
3677                kpp->kp_ret = *dbg_userword(cachep, objp);
3678}
3679#endif
3680
3681/**
3682 * __do_kmalloc - allocate memory
3683 * @size: how many bytes of memory are required.
3684 * @flags: the type of memory to allocate (see kmalloc).
3685 * @caller: function caller for debug tracking of the caller
3686 *
3687 * Return: pointer to the allocated memory or %NULL in case of error
3688 */
3689static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3690                                          unsigned long caller)
3691{
3692        struct kmem_cache *cachep;
3693        void *ret;
3694
3695        if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3696                return NULL;
3697        cachep = kmalloc_slab(size, flags);
3698        if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3699                return cachep;
3700        ret = slab_alloc(cachep, flags, size, caller);
3701
3702        ret = kasan_kmalloc(cachep, ret, size, flags);
3703        trace_kmalloc(caller, ret,
3704                      size, cachep->size, flags);
3705
3706        return ret;
3707}
3708
3709void *__kmalloc(size_t size, gfp_t flags)
3710{
3711        return __do_kmalloc(size, flags, _RET_IP_);
3712}
3713EXPORT_SYMBOL(__kmalloc);
3714
3715void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3716{
3717        return __do_kmalloc(size, flags, caller);
3718}
3719EXPORT_SYMBOL(__kmalloc_track_caller);
3720
3721/**
3722 * kmem_cache_free - Deallocate an object
3723 * @cachep: The cache the allocation was from.
3724 * @objp: The previously allocated object.
3725 *
3726 * Free an object which was previously allocated from this
3727 * cache.
3728 */
3729void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3730{
3731        unsigned long flags;
3732        cachep = cache_from_obj(cachep, objp);
3733        if (!cachep)
3734                return;
3735
3736        local_irq_save(flags);
3737        debug_check_no_locks_freed(objp, cachep->object_size);
3738        if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3739                debug_check_no_obj_freed(objp, cachep->object_size);
3740        __cache_free(cachep, objp, _RET_IP_);
3741        local_irq_restore(flags);
3742
3743        trace_kmem_cache_free(_RET_IP_, objp, cachep->name);
3744}
3745EXPORT_SYMBOL(kmem_cache_free);
3746
3747void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3748{
3749        struct kmem_cache *s;
3750        size_t i;
3751
3752        local_irq_disable();
3753        for (i = 0; i < size; i++) {
3754                void *objp = p[i];
3755
3756                if (!orig_s) /* called via kfree_bulk */
3757                        s = virt_to_cache(objp);
3758                else
3759                        s = cache_from_obj(orig_s, objp);
3760                if (!s)
3761                        continue;
3762
3763                debug_check_no_locks_freed(objp, s->object_size);
3764                if (!(s->flags & SLAB_DEBUG_OBJECTS))
3765                        debug_check_no_obj_freed(objp, s->object_size);
3766
3767                __cache_free(s, objp, _RET_IP_);
3768        }
3769        local_irq_enable();
3770
3771        /* FIXME: add tracing */
3772}
3773EXPORT_SYMBOL(kmem_cache_free_bulk);
3774
3775/**
3776 * kfree - free previously allocated memory
3777 * @objp: pointer returned by kmalloc.
3778 *
3779 * If @objp is NULL, no operation is performed.
3780 *
3781 * Don't free memory not originally allocated by kmalloc()
3782 * or you will run into trouble.
3783 */
3784void kfree(const void *objp)
3785{
3786        struct kmem_cache *c;
3787        unsigned long flags;
3788
3789        trace_kfree(_RET_IP_, objp);
3790
3791        if (unlikely(ZERO_OR_NULL_PTR(objp)))
3792                return;
3793        local_irq_save(flags);
3794        kfree_debugcheck(objp);
3795        c = virt_to_cache(objp);
3796        if (!c) {
3797                local_irq_restore(flags);
3798                return;
3799        }
3800        debug_check_no_locks_freed(objp, c->object_size);
3801
3802        debug_check_no_obj_freed(objp, c->object_size);
3803        __cache_free(c, (void *)objp, _RET_IP_);
3804        local_irq_restore(flags);
3805}
3806EXPORT_SYMBOL(kfree);
3807
3808/*
3809 * This initializes kmem_cache_node or resizes various caches for all nodes.
3810 */
3811static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3812{
3813        int ret;
3814        int node;
3815        struct kmem_cache_node *n;
3816
3817        for_each_online_node(node) {
3818                ret = setup_kmem_cache_node(cachep, node, gfp, true);
3819                if (ret)
3820                        goto fail;
3821
3822        }
3823
3824        return 0;
3825
3826fail:
3827        if (!cachep->list.next) {
3828                /* Cache is not active yet. Roll back what we did */
3829                node--;
3830                while (node >= 0) {
3831                        n = get_node(cachep, node);
3832                        if (n) {
3833                                kfree(n->shared);
3834                                free_alien_cache(n->alien);
3835                                kfree(n);
3836                                cachep->node[node] = NULL;
3837                        }
3838                        node--;
3839                }
3840        }
3841        return -ENOMEM;
3842}
3843
3844/* Always called with the slab_mutex held */
3845static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3846                            int batchcount, int shared, gfp_t gfp)
3847{
3848        struct array_cache __percpu *cpu_cache, *prev;
3849        int cpu;
3850
3851        cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3852        if (!cpu_cache)
3853                return -ENOMEM;
3854
3855        prev = cachep->cpu_cache;
3856        cachep->cpu_cache = cpu_cache;
3857        /*
3858         * Without a previous cpu_cache there's no need to synchronize remote
3859         * cpus, so skip the IPIs.
3860         */
3861        if (prev)
3862                kick_all_cpus_sync();
3863
3864        check_irq_on();
3865        cachep->batchcount = batchcount;
3866        cachep->limit = limit;
3867        cachep->shared = shared;
3868
3869        if (!prev)
3870                goto setup_node;
3871
3872        for_each_online_cpu(cpu) {
3873                LIST_HEAD(list);
3874                int node;
3875                struct kmem_cache_node *n;
3876                struct array_cache *ac = per_cpu_ptr(prev, cpu);
3877
3878                node = cpu_to_mem(cpu);
3879                n = get_node(cachep, node);
3880                spin_lock_irq(&n->list_lock);
3881                free_block(cachep, ac->entry, ac->avail, node, &list);
3882                spin_unlock_irq(&n->list_lock);
3883                slabs_destroy(cachep, &list);
3884        }
3885        free_percpu(prev);
3886
3887setup_node:
3888        return setup_kmem_cache_nodes(cachep, gfp);
3889}
3890
3891/* Called with slab_mutex held always */
3892static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3893{
3894        int err;
3895        int limit = 0;
3896        int shared = 0;
3897        int batchcount = 0;
3898
3899        err = cache_random_seq_create(cachep, cachep->num, gfp);
3900        if (err)
3901                goto end;
3902
3903        if (limit && shared && batchcount)
3904                goto skip_setup;
3905        /*
3906         * The head array serves three purposes:
3907         * - create a LIFO ordering, i.e. return objects that are cache-warm
3908         * - reduce the number of spinlock operations.
3909         * - reduce the number of linked list operations on the slab and
3910         *   bufctl chains: array operations are cheaper.
3911         * The numbers are guessed, we should auto-tune as described by
3912         * Bonwick.
3913         */
3914        if (cachep->size > 131072)
3915                limit = 1;
3916        else if (cachep->size > PAGE_SIZE)
3917                limit = 8;
3918        else if (cachep->size > 1024)
3919                limit = 24;
3920        else if (cachep->size > 256)
3921                limit = 54;
3922        else
3923                limit = 120;
3924
3925        /*
3926         * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3927         * allocation behaviour: Most allocs on one cpu, most free operations
3928         * on another cpu. For these cases, an efficient object passing between
3929         * cpus is necessary. This is provided by a shared array. The array
3930         * replaces Bonwick's magazine layer.
3931         * On uniprocessor, it's functionally equivalent (but less efficient)
3932         * to a larger limit. Thus disabled by default.
3933         */
3934        shared = 0;
3935        if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3936                shared = 8;
3937
3938#if DEBUG
3939        /*
3940         * With debugging enabled, large batchcount lead to excessively long
3941         * periods with disabled local interrupts. Limit the batchcount
3942         */
3943        if (limit > 32)
3944                limit = 32;
3945#endif
3946        batchcount = (limit + 1) / 2;
3947skip_setup:
3948        err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3949end:
3950        if (err)
3951                pr_err("enable_cpucache failed for %s, error %d\n",
3952                       cachep->name, -err);
3953        return err;
3954}
3955
3956/*
3957 * Drain an array if it contains any elements taking the node lock only if
3958 * necessary. Note that the node listlock also protects the array_cache
3959 * if drain_array() is used on the shared array.
3960 */
3961static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3962                         struct array_cache *ac, int node)
3963{
3964        LIST_HEAD(list);
3965
3966        /* ac from n->shared can be freed if we don't hold the slab_mutex. */
3967        check_mutex_acquired();
3968
3969        if (!ac || !ac->avail)
3970                return;
3971
3972        if (ac->touched) {
3973                ac->touched = 0;
3974                return;
3975        }
3976
3977        spin_lock_irq(&n->list_lock);
3978        drain_array_locked(cachep, ac, node, false, &list);
3979        spin_unlock_irq(&n->list_lock);
3980
3981        slabs_destroy(cachep, &list);
3982}
3983
3984/**
3985 * cache_reap - Reclaim memory from caches.
3986 * @w: work descriptor
3987 *
3988 * Called from workqueue/eventd every few seconds.
3989 * Purpose:
3990 * - clear the per-cpu caches for this CPU.
3991 * - return freeable pages to the main free memory pool.
3992 *
3993 * If we cannot acquire the cache chain mutex then just give up - we'll try
3994 * again on the next iteration.
3995 */
3996static void cache_reap(struct work_struct *w)
3997{
3998        struct kmem_cache *searchp;
3999        struct kmem_cache_node *n;
4000        int node = numa_mem_id();
4001        struct delayed_work *work = to_delayed_work(w);
4002
4003        if (!mutex_trylock(&slab_mutex))
4004                /* Give up. Setup the next iteration. */
4005                goto out;
4006
4007        list_for_each_entry(searchp, &slab_caches, list) {
4008                check_irq_on();
4009
4010                /*
4011                 * We only take the node lock if absolutely necessary and we
4012                 * have established with reasonable certainty that
4013                 * we can do some work if the lock was obtained.
4014                 */
4015                n = get_node(searchp, node);
4016
4017                reap_alien(searchp, n);
4018
4019                drain_array(searchp, n, cpu_cache_get(searchp), node);
4020
4021                /*
4022                 * These are racy checks but it does not matter
4023                 * if we skip one check or scan twice.
4024                 */
4025                if (time_after(n->next_reap, jiffies))
4026                        goto next;
4027
4028                n->next_reap = jiffies + REAPTIMEOUT_NODE;
4029
4030                drain_array(searchp, n, n->shared, node);
4031
4032                if (n->free_touched)
4033                        n->free_touched = 0;
4034                else {
4035                        int freed;
4036
4037                        freed = drain_freelist(searchp, n, (n->free_limit +
4038                                5 * searchp->num - 1) / (5 * searchp->num));
4039                        STATS_ADD_REAPED(searchp, freed);
4040                }
4041next:
4042                cond_resched();
4043        }
4044        check_irq_on();
4045        mutex_unlock(&slab_mutex);
4046        next_reap_node();
4047out:
4048        /* Set up the next iteration */
4049        schedule_delayed_work_on(smp_processor_id(), work,
4050                                round_jiffies_relative(REAPTIMEOUT_AC));
4051}
4052
4053void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4054{
4055        unsigned long active_objs, num_objs, active_slabs;
4056        unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4057        unsigned long free_slabs = 0;
4058        int node;
4059        struct kmem_cache_node *n;
4060
4061        for_each_kmem_cache_node(cachep, node, n) {
4062                check_irq_on();
4063                spin_lock_irq(&n->list_lock);
4064
4065                total_slabs += n->total_slabs;
4066                free_slabs += n->free_slabs;
4067                free_objs += n->free_objects;
4068
4069                if (n->shared)
4070                        shared_avail += n->shared->avail;
4071
4072                spin_unlock_irq(&n->list_lock);
4073        }
4074        num_objs = total_slabs * cachep->num;
4075        active_slabs = total_slabs - free_slabs;
4076        active_objs = num_objs - free_objs;
4077
4078        sinfo->active_objs = active_objs;
4079        sinfo->num_objs = num_objs;
4080        sinfo->active_slabs = active_slabs;
4081        sinfo->num_slabs = total_slabs;
4082        sinfo->shared_avail = shared_avail;
4083        sinfo->limit = cachep->limit;
4084        sinfo->batchcount = cachep->batchcount;
4085        sinfo->shared = cachep->shared;
4086        sinfo->objects_per_slab = cachep->num;
4087        sinfo->cache_order = cachep->gfporder;
4088}
4089
4090void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4091{
4092#if STATS
4093        {                       /* node stats */
4094                unsigned long high = cachep->high_mark;
4095                unsigned long allocs = cachep->num_allocations;
4096                unsigned long grown = cachep->grown;
4097                unsigned long reaped = cachep->reaped;
4098                unsigned long errors = cachep->errors;
4099                unsigned long max_freeable = cachep->max_freeable;
4100                unsigned long node_allocs = cachep->node_allocs;
4101                unsigned long node_frees = cachep->node_frees;
4102                unsigned long overflows = cachep->node_overflow;
4103
4104                seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4105                           allocs, high, grown,
4106                           reaped, errors, max_freeable, node_allocs,
4107                           node_frees, overflows);
4108        }
4109        /* cpu stats */
4110        {
4111                unsigned long allochit = atomic_read(&cachep->allochit);
4112                unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4113                unsigned long freehit = atomic_read(&cachep->freehit);
4114                unsigned long freemiss = atomic_read(&cachep->freemiss);
4115
4116                seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4117                           allochit, allocmiss, freehit, freemiss);
4118        }
4119#endif
4120}
4121
4122#define MAX_SLABINFO_WRITE 128
4123/**
4124 * slabinfo_write - Tuning for the slab allocator
4125 * @file: unused
4126 * @buffer: user buffer
4127 * @count: data length
4128 * @ppos: unused
4129 *
4130 * Return: %0 on success, negative error code otherwise.
4131 */
4132ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4133                       size_t count, loff_t *ppos)
4134{
4135        char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4136        int limit, batchcount, shared, res;
4137        struct kmem_cache *cachep;
4138
4139        if (count > MAX_SLABINFO_WRITE)
4140                return -EINVAL;
4141        if (copy_from_user(&kbuf, buffer, count))
4142                return -EFAULT;
4143        kbuf[MAX_SLABINFO_WRITE] = '\0';
4144
4145        tmp = strchr(kbuf, ' ');
4146        if (!tmp)
4147                return -EINVAL;
4148        *tmp = '\0';
4149        tmp++;
4150        if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4151                return -EINVAL;
4152
4153        /* Find the cache in the chain of caches. */
4154        mutex_lock(&slab_mutex);
4155        res = -EINVAL;
4156        list_for_each_entry(cachep, &slab_caches, list) {
4157                if (!strcmp(cachep->name, kbuf)) {
4158                        if (limit < 1 || batchcount < 1 ||
4159                                        batchcount > limit || shared < 0) {
4160                                res = 0;
4161                        } else {
4162                                res = do_tune_cpucache(cachep, limit,
4163                                                       batchcount, shared,
4164                                                       GFP_KERNEL);
4165                        }
4166                        break;
4167                }
4168        }
4169        mutex_unlock(&slab_mutex);
4170        if (res >= 0)
4171                res = count;
4172        return res;
4173}
4174
4175#ifdef CONFIG_HARDENED_USERCOPY
4176/*
4177 * Rejects incorrectly sized objects and objects that are to be copied
4178 * to/from userspace but do not fall entirely within the containing slab
4179 * cache's usercopy region.
4180 *
4181 * Returns NULL if check passes, otherwise const char * to name of cache
4182 * to indicate an error.
4183 */
4184void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4185                         bool to_user)
4186{
4187        struct kmem_cache *cachep;
4188        unsigned int objnr;
4189        unsigned long offset;
4190
4191        ptr = kasan_reset_tag(ptr);
4192
4193        /* Find and validate object. */
4194        cachep = page->slab_cache;
4195        objnr = obj_to_index(cachep, page, (void *)ptr);
4196        BUG_ON(objnr >= cachep->num);
4197
4198        /* Find offset within object. */
4199        if (is_kfence_address(ptr))
4200                offset = ptr - kfence_object_start(ptr);
4201        else
4202                offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4203
4204        /* Allow address range falling entirely within usercopy region. */
4205        if (offset >= cachep->useroffset &&
4206            offset - cachep->useroffset <= cachep->usersize &&
4207            n <= cachep->useroffset - offset + cachep->usersize)
4208                return;
4209
4210        /*
4211         * If the copy is still within the allocated object, produce
4212         * a warning instead of rejecting the copy. This is intended
4213         * to be a temporary method to find any missing usercopy
4214         * whitelists.
4215         */
4216        if (usercopy_fallback &&
4217            offset <= cachep->object_size &&
4218            n <= cachep->object_size - offset) {
4219                usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4220                return;
4221        }
4222
4223        usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
4224}
4225#endif /* CONFIG_HARDENED_USERCOPY */
4226
4227/**
4228 * __ksize -- Uninstrumented ksize.
4229 * @objp: pointer to the object
4230 *
4231 * Unlike ksize(), __ksize() is uninstrumented, and does not provide the same
4232 * safety checks as ksize() with KASAN instrumentation enabled.
4233 *
4234 * Return: size of the actual memory used by @objp in bytes
4235 */
4236size_t __ksize(const void *objp)
4237{
4238        struct kmem_cache *c;
4239        size_t size;
4240
4241        BUG_ON(!objp);
4242        if (unlikely(objp == ZERO_SIZE_PTR))
4243                return 0;
4244
4245        c = virt_to_cache(objp);
4246        size = c ? c->object_size : 0;
4247
4248        return size;
4249}
4250EXPORT_SYMBOL(__ksize);
4251