linux/mm/swap.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/swap.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 */
   7
   8/*
   9 * This file contains the default values for the operation of the
  10 * Linux VM subsystem. Fine-tuning documentation can be found in
  11 * Documentation/admin-guide/sysctl/vm.rst.
  12 * Started 18.12.91
  13 * Swap aging added 23.2.95, Stephen Tweedie.
  14 * Buffermem limits added 12.3.98, Rik van Riel.
  15 */
  16
  17#include <linux/mm.h>
  18#include <linux/sched.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/swap.h>
  21#include <linux/mman.h>
  22#include <linux/pagemap.h>
  23#include <linux/pagevec.h>
  24#include <linux/init.h>
  25#include <linux/export.h>
  26#include <linux/mm_inline.h>
  27#include <linux/percpu_counter.h>
  28#include <linux/memremap.h>
  29#include <linux/percpu.h>
  30#include <linux/cpu.h>
  31#include <linux/notifier.h>
  32#include <linux/backing-dev.h>
  33#include <linux/memcontrol.h>
  34#include <linux/gfp.h>
  35#include <linux/uio.h>
  36#include <linux/hugetlb.h>
  37#include <linux/page_idle.h>
  38#include <linux/local_lock.h>
  39#include <linux/buffer_head.h>
  40
  41#include "internal.h"
  42
  43#define CREATE_TRACE_POINTS
  44#include <trace/events/pagemap.h>
  45
  46/* How many pages do we try to swap or page in/out together? */
  47int page_cluster;
  48
  49/* Protecting only lru_rotate.pvec which requires disabling interrupts */
  50struct lru_rotate {
  51        local_lock_t lock;
  52        struct pagevec pvec;
  53};
  54static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
  55        .lock = INIT_LOCAL_LOCK(lock),
  56};
  57
  58/*
  59 * The following struct pagevec are grouped together because they are protected
  60 * by disabling preemption (and interrupts remain enabled).
  61 */
  62struct lru_pvecs {
  63        local_lock_t lock;
  64        struct pagevec lru_add;
  65        struct pagevec lru_deactivate_file;
  66        struct pagevec lru_deactivate;
  67        struct pagevec lru_lazyfree;
  68#ifdef CONFIG_SMP
  69        struct pagevec activate_page;
  70#endif
  71};
  72static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
  73        .lock = INIT_LOCAL_LOCK(lock),
  74};
  75
  76/*
  77 * This path almost never happens for VM activity - pages are normally
  78 * freed via pagevecs.  But it gets used by networking.
  79 */
  80static void __page_cache_release(struct page *page)
  81{
  82        if (PageLRU(page)) {
  83                struct lruvec *lruvec;
  84                unsigned long flags;
  85
  86                lruvec = lock_page_lruvec_irqsave(page, &flags);
  87                del_page_from_lru_list(page, lruvec);
  88                __clear_page_lru_flags(page);
  89                unlock_page_lruvec_irqrestore(lruvec, flags);
  90        }
  91        __ClearPageWaiters(page);
  92}
  93
  94static void __put_single_page(struct page *page)
  95{
  96        __page_cache_release(page);
  97        mem_cgroup_uncharge(page);
  98        free_unref_page(page, 0);
  99}
 100
 101static void __put_compound_page(struct page *page)
 102{
 103        /*
 104         * __page_cache_release() is supposed to be called for thp, not for
 105         * hugetlb. This is because hugetlb page does never have PageLRU set
 106         * (it's never listed to any LRU lists) and no memcg routines should
 107         * be called for hugetlb (it has a separate hugetlb_cgroup.)
 108         */
 109        if (!PageHuge(page))
 110                __page_cache_release(page);
 111        destroy_compound_page(page);
 112}
 113
 114void __put_page(struct page *page)
 115{
 116        if (is_zone_device_page(page)) {
 117                put_dev_pagemap(page->pgmap);
 118
 119                /*
 120                 * The page belongs to the device that created pgmap. Do
 121                 * not return it to page allocator.
 122                 */
 123                return;
 124        }
 125
 126        if (unlikely(PageCompound(page)))
 127                __put_compound_page(page);
 128        else
 129                __put_single_page(page);
 130}
 131EXPORT_SYMBOL(__put_page);
 132
 133/**
 134 * put_pages_list() - release a list of pages
 135 * @pages: list of pages threaded on page->lru
 136 *
 137 * Release a list of pages which are strung together on page.lru.  Currently
 138 * used by read_cache_pages() and related error recovery code.
 139 */
 140void put_pages_list(struct list_head *pages)
 141{
 142        while (!list_empty(pages)) {
 143                struct page *victim;
 144
 145                victim = lru_to_page(pages);
 146                list_del(&victim->lru);
 147                put_page(victim);
 148        }
 149}
 150EXPORT_SYMBOL(put_pages_list);
 151
 152/*
 153 * get_kernel_pages() - pin kernel pages in memory
 154 * @kiov:       An array of struct kvec structures
 155 * @nr_segs:    number of segments to pin
 156 * @write:      pinning for read/write, currently ignored
 157 * @pages:      array that receives pointers to the pages pinned.
 158 *              Should be at least nr_segs long.
 159 *
 160 * Returns number of pages pinned. This may be fewer than the number
 161 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 162 * were pinned, returns -errno. Each page returned must be released
 163 * with a put_page() call when it is finished with.
 164 */
 165int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
 166                struct page **pages)
 167{
 168        int seg;
 169
 170        for (seg = 0; seg < nr_segs; seg++) {
 171                if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
 172                        return seg;
 173
 174                pages[seg] = kmap_to_page(kiov[seg].iov_base);
 175                get_page(pages[seg]);
 176        }
 177
 178        return seg;
 179}
 180EXPORT_SYMBOL_GPL(get_kernel_pages);
 181
 182static void pagevec_lru_move_fn(struct pagevec *pvec,
 183        void (*move_fn)(struct page *page, struct lruvec *lruvec))
 184{
 185        int i;
 186        struct lruvec *lruvec = NULL;
 187        unsigned long flags = 0;
 188
 189        for (i = 0; i < pagevec_count(pvec); i++) {
 190                struct page *page = pvec->pages[i];
 191
 192                /* block memcg migration during page moving between lru */
 193                if (!TestClearPageLRU(page))
 194                        continue;
 195
 196                lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
 197                (*move_fn)(page, lruvec);
 198
 199                SetPageLRU(page);
 200        }
 201        if (lruvec)
 202                unlock_page_lruvec_irqrestore(lruvec, flags);
 203        release_pages(pvec->pages, pvec->nr);
 204        pagevec_reinit(pvec);
 205}
 206
 207static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec)
 208{
 209        if (!PageUnevictable(page)) {
 210                del_page_from_lru_list(page, lruvec);
 211                ClearPageActive(page);
 212                add_page_to_lru_list_tail(page, lruvec);
 213                __count_vm_events(PGROTATED, thp_nr_pages(page));
 214        }
 215}
 216
 217/* return true if pagevec needs to drain */
 218static bool pagevec_add_and_need_flush(struct pagevec *pvec, struct page *page)
 219{
 220        bool ret = false;
 221
 222        if (!pagevec_add(pvec, page) || PageCompound(page) ||
 223                        lru_cache_disabled())
 224                ret = true;
 225
 226        return ret;
 227}
 228
 229/*
 230 * Writeback is about to end against a page which has been marked for immediate
 231 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 232 * inactive list.
 233 *
 234 * rotate_reclaimable_page() must disable IRQs, to prevent nasty races.
 235 */
 236void rotate_reclaimable_page(struct page *page)
 237{
 238        if (!PageLocked(page) && !PageDirty(page) &&
 239            !PageUnevictable(page) && PageLRU(page)) {
 240                struct pagevec *pvec;
 241                unsigned long flags;
 242
 243                get_page(page);
 244                local_lock_irqsave(&lru_rotate.lock, flags);
 245                pvec = this_cpu_ptr(&lru_rotate.pvec);
 246                if (pagevec_add_and_need_flush(pvec, page))
 247                        pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
 248                local_unlock_irqrestore(&lru_rotate.lock, flags);
 249        }
 250}
 251
 252void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
 253{
 254        do {
 255                unsigned long lrusize;
 256
 257                /*
 258                 * Hold lruvec->lru_lock is safe here, since
 259                 * 1) The pinned lruvec in reclaim, or
 260                 * 2) From a pre-LRU page during refault (which also holds the
 261                 *    rcu lock, so would be safe even if the page was on the LRU
 262                 *    and could move simultaneously to a new lruvec).
 263                 */
 264                spin_lock_irq(&lruvec->lru_lock);
 265                /* Record cost event */
 266                if (file)
 267                        lruvec->file_cost += nr_pages;
 268                else
 269                        lruvec->anon_cost += nr_pages;
 270
 271                /*
 272                 * Decay previous events
 273                 *
 274                 * Because workloads change over time (and to avoid
 275                 * overflow) we keep these statistics as a floating
 276                 * average, which ends up weighing recent refaults
 277                 * more than old ones.
 278                 */
 279                lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
 280                          lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
 281                          lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
 282                          lruvec_page_state(lruvec, NR_ACTIVE_FILE);
 283
 284                if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
 285                        lruvec->file_cost /= 2;
 286                        lruvec->anon_cost /= 2;
 287                }
 288                spin_unlock_irq(&lruvec->lru_lock);
 289        } while ((lruvec = parent_lruvec(lruvec)));
 290}
 291
 292void lru_note_cost_page(struct page *page)
 293{
 294        lru_note_cost(mem_cgroup_page_lruvec(page),
 295                      page_is_file_lru(page), thp_nr_pages(page));
 296}
 297
 298static void __activate_page(struct page *page, struct lruvec *lruvec)
 299{
 300        if (!PageActive(page) && !PageUnevictable(page)) {
 301                int nr_pages = thp_nr_pages(page);
 302
 303                del_page_from_lru_list(page, lruvec);
 304                SetPageActive(page);
 305                add_page_to_lru_list(page, lruvec);
 306                trace_mm_lru_activate(page);
 307
 308                __count_vm_events(PGACTIVATE, nr_pages);
 309                __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
 310                                     nr_pages);
 311        }
 312}
 313
 314#ifdef CONFIG_SMP
 315static void activate_page_drain(int cpu)
 316{
 317        struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
 318
 319        if (pagevec_count(pvec))
 320                pagevec_lru_move_fn(pvec, __activate_page);
 321}
 322
 323static bool need_activate_page_drain(int cpu)
 324{
 325        return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
 326}
 327
 328static void activate_page(struct page *page)
 329{
 330        page = compound_head(page);
 331        if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
 332                struct pagevec *pvec;
 333
 334                local_lock(&lru_pvecs.lock);
 335                pvec = this_cpu_ptr(&lru_pvecs.activate_page);
 336                get_page(page);
 337                if (pagevec_add_and_need_flush(pvec, page))
 338                        pagevec_lru_move_fn(pvec, __activate_page);
 339                local_unlock(&lru_pvecs.lock);
 340        }
 341}
 342
 343#else
 344static inline void activate_page_drain(int cpu)
 345{
 346}
 347
 348static void activate_page(struct page *page)
 349{
 350        struct lruvec *lruvec;
 351
 352        page = compound_head(page);
 353        if (TestClearPageLRU(page)) {
 354                lruvec = lock_page_lruvec_irq(page);
 355                __activate_page(page, lruvec);
 356                unlock_page_lruvec_irq(lruvec);
 357                SetPageLRU(page);
 358        }
 359}
 360#endif
 361
 362static void __lru_cache_activate_page(struct page *page)
 363{
 364        struct pagevec *pvec;
 365        int i;
 366
 367        local_lock(&lru_pvecs.lock);
 368        pvec = this_cpu_ptr(&lru_pvecs.lru_add);
 369
 370        /*
 371         * Search backwards on the optimistic assumption that the page being
 372         * activated has just been added to this pagevec. Note that only
 373         * the local pagevec is examined as a !PageLRU page could be in the
 374         * process of being released, reclaimed, migrated or on a remote
 375         * pagevec that is currently being drained. Furthermore, marking
 376         * a remote pagevec's page PageActive potentially hits a race where
 377         * a page is marked PageActive just after it is added to the inactive
 378         * list causing accounting errors and BUG_ON checks to trigger.
 379         */
 380        for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
 381                struct page *pagevec_page = pvec->pages[i];
 382
 383                if (pagevec_page == page) {
 384                        SetPageActive(page);
 385                        break;
 386                }
 387        }
 388
 389        local_unlock(&lru_pvecs.lock);
 390}
 391
 392/*
 393 * Mark a page as having seen activity.
 394 *
 395 * inactive,unreferenced        ->      inactive,referenced
 396 * inactive,referenced          ->      active,unreferenced
 397 * active,unreferenced          ->      active,referenced
 398 *
 399 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
 400 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
 401 */
 402void mark_page_accessed(struct page *page)
 403{
 404        page = compound_head(page);
 405
 406        if (!PageReferenced(page)) {
 407                SetPageReferenced(page);
 408        } else if (PageUnevictable(page)) {
 409                /*
 410                 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
 411                 * this list is never rotated or maintained, so marking an
 412                 * evictable page accessed has no effect.
 413                 */
 414        } else if (!PageActive(page)) {
 415                /*
 416                 * If the page is on the LRU, queue it for activation via
 417                 * lru_pvecs.activate_page. Otherwise, assume the page is on a
 418                 * pagevec, mark it active and it'll be moved to the active
 419                 * LRU on the next drain.
 420                 */
 421                if (PageLRU(page))
 422                        activate_page(page);
 423                else
 424                        __lru_cache_activate_page(page);
 425                ClearPageReferenced(page);
 426                workingset_activation(page);
 427        }
 428        if (page_is_idle(page))
 429                clear_page_idle(page);
 430}
 431EXPORT_SYMBOL(mark_page_accessed);
 432
 433/**
 434 * lru_cache_add - add a page to a page list
 435 * @page: the page to be added to the LRU.
 436 *
 437 * Queue the page for addition to the LRU via pagevec. The decision on whether
 438 * to add the page to the [in]active [file|anon] list is deferred until the
 439 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
 440 * have the page added to the active list using mark_page_accessed().
 441 */
 442void lru_cache_add(struct page *page)
 443{
 444        struct pagevec *pvec;
 445
 446        VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
 447        VM_BUG_ON_PAGE(PageLRU(page), page);
 448
 449        get_page(page);
 450        local_lock(&lru_pvecs.lock);
 451        pvec = this_cpu_ptr(&lru_pvecs.lru_add);
 452        if (pagevec_add_and_need_flush(pvec, page))
 453                __pagevec_lru_add(pvec);
 454        local_unlock(&lru_pvecs.lock);
 455}
 456EXPORT_SYMBOL(lru_cache_add);
 457
 458/**
 459 * lru_cache_add_inactive_or_unevictable
 460 * @page:  the page to be added to LRU
 461 * @vma:   vma in which page is mapped for determining reclaimability
 462 *
 463 * Place @page on the inactive or unevictable LRU list, depending on its
 464 * evictability.
 465 */
 466void lru_cache_add_inactive_or_unevictable(struct page *page,
 467                                         struct vm_area_struct *vma)
 468{
 469        bool unevictable;
 470
 471        VM_BUG_ON_PAGE(PageLRU(page), page);
 472
 473        unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
 474        if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
 475                int nr_pages = thp_nr_pages(page);
 476                /*
 477                 * We use the irq-unsafe __mod_zone_page_state because this
 478                 * counter is not modified from interrupt context, and the pte
 479                 * lock is held(spinlock), which implies preemption disabled.
 480                 */
 481                __mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
 482                count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
 483        }
 484        lru_cache_add(page);
 485}
 486
 487/*
 488 * If the page can not be invalidated, it is moved to the
 489 * inactive list to speed up its reclaim.  It is moved to the
 490 * head of the list, rather than the tail, to give the flusher
 491 * threads some time to write it out, as this is much more
 492 * effective than the single-page writeout from reclaim.
 493 *
 494 * If the page isn't page_mapped and dirty/writeback, the page
 495 * could reclaim asap using PG_reclaim.
 496 *
 497 * 1. active, mapped page -> none
 498 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
 499 * 3. inactive, mapped page -> none
 500 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
 501 * 5. inactive, clean -> inactive, tail
 502 * 6. Others -> none
 503 *
 504 * In 4, why it moves inactive's head, the VM expects the page would
 505 * be write it out by flusher threads as this is much more effective
 506 * than the single-page writeout from reclaim.
 507 */
 508static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec)
 509{
 510        bool active = PageActive(page);
 511        int nr_pages = thp_nr_pages(page);
 512
 513        if (PageUnevictable(page))
 514                return;
 515
 516        /* Some processes are using the page */
 517        if (page_mapped(page))
 518                return;
 519
 520        del_page_from_lru_list(page, lruvec);
 521        ClearPageActive(page);
 522        ClearPageReferenced(page);
 523
 524        if (PageWriteback(page) || PageDirty(page)) {
 525                /*
 526                 * PG_reclaim could be raced with end_page_writeback
 527                 * It can make readahead confusing.  But race window
 528                 * is _really_ small and  it's non-critical problem.
 529                 */
 530                add_page_to_lru_list(page, lruvec);
 531                SetPageReclaim(page);
 532        } else {
 533                /*
 534                 * The page's writeback ends up during pagevec
 535                 * We move that page into tail of inactive.
 536                 */
 537                add_page_to_lru_list_tail(page, lruvec);
 538                __count_vm_events(PGROTATED, nr_pages);
 539        }
 540
 541        if (active) {
 542                __count_vm_events(PGDEACTIVATE, nr_pages);
 543                __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
 544                                     nr_pages);
 545        }
 546}
 547
 548static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec)
 549{
 550        if (PageActive(page) && !PageUnevictable(page)) {
 551                int nr_pages = thp_nr_pages(page);
 552
 553                del_page_from_lru_list(page, lruvec);
 554                ClearPageActive(page);
 555                ClearPageReferenced(page);
 556                add_page_to_lru_list(page, lruvec);
 557
 558                __count_vm_events(PGDEACTIVATE, nr_pages);
 559                __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
 560                                     nr_pages);
 561        }
 562}
 563
 564static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec)
 565{
 566        if (PageAnon(page) && PageSwapBacked(page) &&
 567            !PageSwapCache(page) && !PageUnevictable(page)) {
 568                int nr_pages = thp_nr_pages(page);
 569
 570                del_page_from_lru_list(page, lruvec);
 571                ClearPageActive(page);
 572                ClearPageReferenced(page);
 573                /*
 574                 * Lazyfree pages are clean anonymous pages.  They have
 575                 * PG_swapbacked flag cleared, to distinguish them from normal
 576                 * anonymous pages
 577                 */
 578                ClearPageSwapBacked(page);
 579                add_page_to_lru_list(page, lruvec);
 580
 581                __count_vm_events(PGLAZYFREE, nr_pages);
 582                __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
 583                                     nr_pages);
 584        }
 585}
 586
 587/*
 588 * Drain pages out of the cpu's pagevecs.
 589 * Either "cpu" is the current CPU, and preemption has already been
 590 * disabled; or "cpu" is being hot-unplugged, and is already dead.
 591 */
 592void lru_add_drain_cpu(int cpu)
 593{
 594        struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
 595
 596        if (pagevec_count(pvec))
 597                __pagevec_lru_add(pvec);
 598
 599        pvec = &per_cpu(lru_rotate.pvec, cpu);
 600        /* Disabling interrupts below acts as a compiler barrier. */
 601        if (data_race(pagevec_count(pvec))) {
 602                unsigned long flags;
 603
 604                /* No harm done if a racing interrupt already did this */
 605                local_lock_irqsave(&lru_rotate.lock, flags);
 606                pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
 607                local_unlock_irqrestore(&lru_rotate.lock, flags);
 608        }
 609
 610        pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
 611        if (pagevec_count(pvec))
 612                pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
 613
 614        pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
 615        if (pagevec_count(pvec))
 616                pagevec_lru_move_fn(pvec, lru_deactivate_fn);
 617
 618        pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
 619        if (pagevec_count(pvec))
 620                pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
 621
 622        activate_page_drain(cpu);
 623}
 624
 625/**
 626 * deactivate_file_page - forcefully deactivate a file page
 627 * @page: page to deactivate
 628 *
 629 * This function hints the VM that @page is a good reclaim candidate,
 630 * for example if its invalidation fails due to the page being dirty
 631 * or under writeback.
 632 */
 633void deactivate_file_page(struct page *page)
 634{
 635        /*
 636         * In a workload with many unevictable page such as mprotect,
 637         * unevictable page deactivation for accelerating reclaim is pointless.
 638         */
 639        if (PageUnevictable(page))
 640                return;
 641
 642        if (likely(get_page_unless_zero(page))) {
 643                struct pagevec *pvec;
 644
 645                local_lock(&lru_pvecs.lock);
 646                pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
 647
 648                if (pagevec_add_and_need_flush(pvec, page))
 649                        pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
 650                local_unlock(&lru_pvecs.lock);
 651        }
 652}
 653
 654/*
 655 * deactivate_page - deactivate a page
 656 * @page: page to deactivate
 657 *
 658 * deactivate_page() moves @page to the inactive list if @page was on the active
 659 * list and was not an unevictable page.  This is done to accelerate the reclaim
 660 * of @page.
 661 */
 662void deactivate_page(struct page *page)
 663{
 664        if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
 665                struct pagevec *pvec;
 666
 667                local_lock(&lru_pvecs.lock);
 668                pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
 669                get_page(page);
 670                if (pagevec_add_and_need_flush(pvec, page))
 671                        pagevec_lru_move_fn(pvec, lru_deactivate_fn);
 672                local_unlock(&lru_pvecs.lock);
 673        }
 674}
 675
 676/**
 677 * mark_page_lazyfree - make an anon page lazyfree
 678 * @page: page to deactivate
 679 *
 680 * mark_page_lazyfree() moves @page to the inactive file list.
 681 * This is done to accelerate the reclaim of @page.
 682 */
 683void mark_page_lazyfree(struct page *page)
 684{
 685        if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
 686            !PageSwapCache(page) && !PageUnevictable(page)) {
 687                struct pagevec *pvec;
 688
 689                local_lock(&lru_pvecs.lock);
 690                pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
 691                get_page(page);
 692                if (pagevec_add_and_need_flush(pvec, page))
 693                        pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
 694                local_unlock(&lru_pvecs.lock);
 695        }
 696}
 697
 698void lru_add_drain(void)
 699{
 700        local_lock(&lru_pvecs.lock);
 701        lru_add_drain_cpu(smp_processor_id());
 702        local_unlock(&lru_pvecs.lock);
 703}
 704
 705/*
 706 * It's called from per-cpu workqueue context in SMP case so
 707 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
 708 * the same cpu. It shouldn't be a problem in !SMP case since
 709 * the core is only one and the locks will disable preemption.
 710 */
 711static void lru_add_and_bh_lrus_drain(void)
 712{
 713        local_lock(&lru_pvecs.lock);
 714        lru_add_drain_cpu(smp_processor_id());
 715        local_unlock(&lru_pvecs.lock);
 716        invalidate_bh_lrus_cpu();
 717}
 718
 719void lru_add_drain_cpu_zone(struct zone *zone)
 720{
 721        local_lock(&lru_pvecs.lock);
 722        lru_add_drain_cpu(smp_processor_id());
 723        drain_local_pages(zone);
 724        local_unlock(&lru_pvecs.lock);
 725}
 726
 727#ifdef CONFIG_SMP
 728
 729static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
 730
 731static void lru_add_drain_per_cpu(struct work_struct *dummy)
 732{
 733        lru_add_and_bh_lrus_drain();
 734}
 735
 736/*
 737 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
 738 * kworkers being shut down before our page_alloc_cpu_dead callback is
 739 * executed on the offlined cpu.
 740 * Calling this function with cpu hotplug locks held can actually lead
 741 * to obscure indirect dependencies via WQ context.
 742 */
 743inline void __lru_add_drain_all(bool force_all_cpus)
 744{
 745        /*
 746         * lru_drain_gen - Global pages generation number
 747         *
 748         * (A) Definition: global lru_drain_gen = x implies that all generations
 749         *     0 < n <= x are already *scheduled* for draining.
 750         *
 751         * This is an optimization for the highly-contended use case where a
 752         * user space workload keeps constantly generating a flow of pages for
 753         * each CPU.
 754         */
 755        static unsigned int lru_drain_gen;
 756        static struct cpumask has_work;
 757        static DEFINE_MUTEX(lock);
 758        unsigned cpu, this_gen;
 759
 760        /*
 761         * Make sure nobody triggers this path before mm_percpu_wq is fully
 762         * initialized.
 763         */
 764        if (WARN_ON(!mm_percpu_wq))
 765                return;
 766
 767        /*
 768         * Guarantee pagevec counter stores visible by this CPU are visible to
 769         * other CPUs before loading the current drain generation.
 770         */
 771        smp_mb();
 772
 773        /*
 774         * (B) Locally cache global LRU draining generation number
 775         *
 776         * The read barrier ensures that the counter is loaded before the mutex
 777         * is taken. It pairs with smp_mb() inside the mutex critical section
 778         * at (D).
 779         */
 780        this_gen = smp_load_acquire(&lru_drain_gen);
 781
 782        mutex_lock(&lock);
 783
 784        /*
 785         * (C) Exit the draining operation if a newer generation, from another
 786         * lru_add_drain_all(), was already scheduled for draining. Check (A).
 787         */
 788        if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
 789                goto done;
 790
 791        /*
 792         * (D) Increment global generation number
 793         *
 794         * Pairs with smp_load_acquire() at (B), outside of the critical
 795         * section. Use a full memory barrier to guarantee that the new global
 796         * drain generation number is stored before loading pagevec counters.
 797         *
 798         * This pairing must be done here, before the for_each_online_cpu loop
 799         * below which drains the page vectors.
 800         *
 801         * Let x, y, and z represent some system CPU numbers, where x < y < z.
 802         * Assume CPU #z is in the middle of the for_each_online_cpu loop
 803         * below and has already reached CPU #y's per-cpu data. CPU #x comes
 804         * along, adds some pages to its per-cpu vectors, then calls
 805         * lru_add_drain_all().
 806         *
 807         * If the paired barrier is done at any later step, e.g. after the
 808         * loop, CPU #x will just exit at (C) and miss flushing out all of its
 809         * added pages.
 810         */
 811        WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
 812        smp_mb();
 813
 814        cpumask_clear(&has_work);
 815        for_each_online_cpu(cpu) {
 816                struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
 817
 818                if (force_all_cpus ||
 819                    pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
 820                    data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
 821                    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
 822                    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
 823                    pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
 824                    need_activate_page_drain(cpu) ||
 825                    has_bh_in_lru(cpu, NULL)) {
 826                        INIT_WORK(work, lru_add_drain_per_cpu);
 827                        queue_work_on(cpu, mm_percpu_wq, work);
 828                        __cpumask_set_cpu(cpu, &has_work);
 829                }
 830        }
 831
 832        for_each_cpu(cpu, &has_work)
 833                flush_work(&per_cpu(lru_add_drain_work, cpu));
 834
 835done:
 836        mutex_unlock(&lock);
 837}
 838
 839void lru_add_drain_all(void)
 840{
 841        __lru_add_drain_all(false);
 842}
 843#else
 844void lru_add_drain_all(void)
 845{
 846        lru_add_drain();
 847}
 848#endif /* CONFIG_SMP */
 849
 850atomic_t lru_disable_count = ATOMIC_INIT(0);
 851
 852/*
 853 * lru_cache_disable() needs to be called before we start compiling
 854 * a list of pages to be migrated using isolate_lru_page().
 855 * It drains pages on LRU cache and then disable on all cpus until
 856 * lru_cache_enable is called.
 857 *
 858 * Must be paired with a call to lru_cache_enable().
 859 */
 860void lru_cache_disable(void)
 861{
 862        atomic_inc(&lru_disable_count);
 863#ifdef CONFIG_SMP
 864        /*
 865         * lru_add_drain_all in the force mode will schedule draining on
 866         * all online CPUs so any calls of lru_cache_disabled wrapped by
 867         * local_lock or preemption disabled would be ordered by that.
 868         * The atomic operation doesn't need to have stronger ordering
 869         * requirements because that is enforeced by the scheduling
 870         * guarantees.
 871         */
 872        __lru_add_drain_all(true);
 873#else
 874        lru_add_and_bh_lrus_drain();
 875#endif
 876}
 877
 878/**
 879 * release_pages - batched put_page()
 880 * @pages: array of pages to release
 881 * @nr: number of pages
 882 *
 883 * Decrement the reference count on all the pages in @pages.  If it
 884 * fell to zero, remove the page from the LRU and free it.
 885 */
 886void release_pages(struct page **pages, int nr)
 887{
 888        int i;
 889        LIST_HEAD(pages_to_free);
 890        struct lruvec *lruvec = NULL;
 891        unsigned long flags;
 892        unsigned int lock_batch;
 893
 894        for (i = 0; i < nr; i++) {
 895                struct page *page = pages[i];
 896
 897                /*
 898                 * Make sure the IRQ-safe lock-holding time does not get
 899                 * excessive with a continuous string of pages from the
 900                 * same lruvec. The lock is held only if lruvec != NULL.
 901                 */
 902                if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
 903                        unlock_page_lruvec_irqrestore(lruvec, flags);
 904                        lruvec = NULL;
 905                }
 906
 907                page = compound_head(page);
 908                if (is_huge_zero_page(page))
 909                        continue;
 910
 911                if (is_zone_device_page(page)) {
 912                        if (lruvec) {
 913                                unlock_page_lruvec_irqrestore(lruvec, flags);
 914                                lruvec = NULL;
 915                        }
 916                        /*
 917                         * ZONE_DEVICE pages that return 'false' from
 918                         * page_is_devmap_managed() do not require special
 919                         * processing, and instead, expect a call to
 920                         * put_page_testzero().
 921                         */
 922                        if (page_is_devmap_managed(page)) {
 923                                put_devmap_managed_page(page);
 924                                continue;
 925                        }
 926                        if (put_page_testzero(page))
 927                                put_dev_pagemap(page->pgmap);
 928                        continue;
 929                }
 930
 931                if (!put_page_testzero(page))
 932                        continue;
 933
 934                if (PageCompound(page)) {
 935                        if (lruvec) {
 936                                unlock_page_lruvec_irqrestore(lruvec, flags);
 937                                lruvec = NULL;
 938                        }
 939                        __put_compound_page(page);
 940                        continue;
 941                }
 942
 943                if (PageLRU(page)) {
 944                        struct lruvec *prev_lruvec = lruvec;
 945
 946                        lruvec = relock_page_lruvec_irqsave(page, lruvec,
 947                                                                        &flags);
 948                        if (prev_lruvec != lruvec)
 949                                lock_batch = 0;
 950
 951                        del_page_from_lru_list(page, lruvec);
 952                        __clear_page_lru_flags(page);
 953                }
 954
 955                __ClearPageWaiters(page);
 956
 957                list_add(&page->lru, &pages_to_free);
 958        }
 959        if (lruvec)
 960                unlock_page_lruvec_irqrestore(lruvec, flags);
 961
 962        mem_cgroup_uncharge_list(&pages_to_free);
 963        free_unref_page_list(&pages_to_free);
 964}
 965EXPORT_SYMBOL(release_pages);
 966
 967/*
 968 * The pages which we're about to release may be in the deferred lru-addition
 969 * queues.  That would prevent them from really being freed right now.  That's
 970 * OK from a correctness point of view but is inefficient - those pages may be
 971 * cache-warm and we want to give them back to the page allocator ASAP.
 972 *
 973 * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
 974 * and __pagevec_lru_add_active() call release_pages() directly to avoid
 975 * mutual recursion.
 976 */
 977void __pagevec_release(struct pagevec *pvec)
 978{
 979        if (!pvec->percpu_pvec_drained) {
 980                lru_add_drain();
 981                pvec->percpu_pvec_drained = true;
 982        }
 983        release_pages(pvec->pages, pagevec_count(pvec));
 984        pagevec_reinit(pvec);
 985}
 986EXPORT_SYMBOL(__pagevec_release);
 987
 988static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec)
 989{
 990        int was_unevictable = TestClearPageUnevictable(page);
 991        int nr_pages = thp_nr_pages(page);
 992
 993        VM_BUG_ON_PAGE(PageLRU(page), page);
 994
 995        /*
 996         * Page becomes evictable in two ways:
 997         * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
 998         * 2) Before acquiring LRU lock to put the page to correct LRU and then
 999         *   a) do PageLRU check with lock [check_move_unevictable_pages]
1000         *   b) do PageLRU check before lock [clear_page_mlock]
1001         *
1002         * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
1003         * following strict ordering:
1004         *
1005         * #0: __pagevec_lru_add_fn             #1: clear_page_mlock
1006         *
1007         * SetPageLRU()                         TestClearPageMlocked()
1008         * smp_mb() // explicit ordering        // above provides strict
1009         *                                      // ordering
1010         * PageMlocked()                        PageLRU()
1011         *
1012         *
1013         * if '#1' does not observe setting of PG_lru by '#0' and fails
1014         * isolation, the explicit barrier will make sure that page_evictable
1015         * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
1016         * can be reordered after PageMlocked check and can make '#1' to fail
1017         * the isolation of the page whose Mlocked bit is cleared (#0 is also
1018         * looking at the same page) and the evictable page will be stranded
1019         * in an unevictable LRU.
1020         */
1021        SetPageLRU(page);
1022        smp_mb__after_atomic();
1023
1024        if (page_evictable(page)) {
1025                if (was_unevictable)
1026                        __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
1027        } else {
1028                ClearPageActive(page);
1029                SetPageUnevictable(page);
1030                if (!was_unevictable)
1031                        __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
1032        }
1033
1034        add_page_to_lru_list(page, lruvec);
1035        trace_mm_lru_insertion(page);
1036}
1037
1038/*
1039 * Add the passed pages to the LRU, then drop the caller's refcount
1040 * on them.  Reinitialises the caller's pagevec.
1041 */
1042void __pagevec_lru_add(struct pagevec *pvec)
1043{
1044        int i;
1045        struct lruvec *lruvec = NULL;
1046        unsigned long flags = 0;
1047
1048        for (i = 0; i < pagevec_count(pvec); i++) {
1049                struct page *page = pvec->pages[i];
1050
1051                lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
1052                __pagevec_lru_add_fn(page, lruvec);
1053        }
1054        if (lruvec)
1055                unlock_page_lruvec_irqrestore(lruvec, flags);
1056        release_pages(pvec->pages, pvec->nr);
1057        pagevec_reinit(pvec);
1058}
1059
1060/**
1061 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1062 * @pvec:       The pagevec to prune
1063 *
1064 * find_get_entries() fills both pages and XArray value entries (aka
1065 * exceptional entries) into the pagevec.  This function prunes all
1066 * exceptionals from @pvec without leaving holes, so that it can be
1067 * passed on to page-only pagevec operations.
1068 */
1069void pagevec_remove_exceptionals(struct pagevec *pvec)
1070{
1071        int i, j;
1072
1073        for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1074                struct page *page = pvec->pages[i];
1075                if (!xa_is_value(page))
1076                        pvec->pages[j++] = page;
1077        }
1078        pvec->nr = j;
1079}
1080
1081/**
1082 * pagevec_lookup_range - gang pagecache lookup
1083 * @pvec:       Where the resulting pages are placed
1084 * @mapping:    The address_space to search
1085 * @start:      The starting page index
1086 * @end:        The final page index
1087 *
1088 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1089 * pages in the mapping starting from index @start and upto index @end
1090 * (inclusive).  The pages are placed in @pvec.  pagevec_lookup() takes a
1091 * reference against the pages in @pvec.
1092 *
1093 * The search returns a group of mapping-contiguous pages with ascending
1094 * indexes.  There may be holes in the indices due to not-present pages. We
1095 * also update @start to index the next page for the traversal.
1096 *
1097 * pagevec_lookup_range() returns the number of pages which were found. If this
1098 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1099 * reached.
1100 */
1101unsigned pagevec_lookup_range(struct pagevec *pvec,
1102                struct address_space *mapping, pgoff_t *start, pgoff_t end)
1103{
1104        pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1105                                        pvec->pages);
1106        return pagevec_count(pvec);
1107}
1108EXPORT_SYMBOL(pagevec_lookup_range);
1109
1110unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1111                struct address_space *mapping, pgoff_t *index, pgoff_t end,
1112                xa_mark_t tag)
1113{
1114        pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1115                                        PAGEVEC_SIZE, pvec->pages);
1116        return pagevec_count(pvec);
1117}
1118EXPORT_SYMBOL(pagevec_lookup_range_tag);
1119
1120/*
1121 * Perform any setup for the swap system
1122 */
1123void __init swap_setup(void)
1124{
1125        unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1126
1127        /* Use a smaller cluster for small-memory machines */
1128        if (megs < 16)
1129                page_cluster = 2;
1130        else
1131                page_cluster = 3;
1132        /*
1133         * Right now other parts of the system means that we
1134         * _really_ don't want to cluster much more
1135         */
1136}
1137
1138#ifdef CONFIG_DEV_PAGEMAP_OPS
1139void put_devmap_managed_page(struct page *page)
1140{
1141        int count;
1142
1143        if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1144                return;
1145
1146        count = page_ref_dec_return(page);
1147
1148        /*
1149         * devmap page refcounts are 1-based, rather than 0-based: if
1150         * refcount is 1, then the page is free and the refcount is
1151         * stable because nobody holds a reference on the page.
1152         */
1153        if (count == 1)
1154                free_devmap_managed_page(page);
1155        else if (!count)
1156                __put_page(page);
1157}
1158EXPORT_SYMBOL(put_devmap_managed_page);
1159#endif
1160