linux/net/core/skbuff.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *      Routines having to do with the 'struct sk_buff' memory handlers.
   4 *
   5 *      Authors:        Alan Cox <alan@lxorguk.ukuu.org.uk>
   6 *                      Florian La Roche <rzsfl@rz.uni-sb.de>
   7 *
   8 *      Fixes:
   9 *              Alan Cox        :       Fixed the worst of the load
  10 *                                      balancer bugs.
  11 *              Dave Platt      :       Interrupt stacking fix.
  12 *      Richard Kooijman        :       Timestamp fixes.
  13 *              Alan Cox        :       Changed buffer format.
  14 *              Alan Cox        :       destructor hook for AF_UNIX etc.
  15 *              Linus Torvalds  :       Better skb_clone.
  16 *              Alan Cox        :       Added skb_copy.
  17 *              Alan Cox        :       Added all the changed routines Linus
  18 *                                      only put in the headers
  19 *              Ray VanTassle   :       Fixed --skb->lock in free
  20 *              Alan Cox        :       skb_copy copy arp field
  21 *              Andi Kleen      :       slabified it.
  22 *              Robert Olsson   :       Removed skb_head_pool
  23 *
  24 *      NOTE:
  25 *              The __skb_ routines should be called with interrupts
  26 *      disabled, or you better be *real* sure that the operation is atomic
  27 *      with respect to whatever list is being frobbed (e.g. via lock_sock()
  28 *      or via disabling bottom half handlers, etc).
  29 */
  30
  31/*
  32 *      The functions in this file will not compile correctly with gcc 2.4.x
  33 */
  34
  35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  36
  37#include <linux/module.h>
  38#include <linux/types.h>
  39#include <linux/kernel.h>
  40#include <linux/mm.h>
  41#include <linux/interrupt.h>
  42#include <linux/in.h>
  43#include <linux/inet.h>
  44#include <linux/slab.h>
  45#include <linux/tcp.h>
  46#include <linux/udp.h>
  47#include <linux/sctp.h>
  48#include <linux/netdevice.h>
  49#ifdef CONFIG_NET_CLS_ACT
  50#include <net/pkt_sched.h>
  51#endif
  52#include <linux/string.h>
  53#include <linux/skbuff.h>
  54#include <linux/splice.h>
  55#include <linux/cache.h>
  56#include <linux/rtnetlink.h>
  57#include <linux/init.h>
  58#include <linux/scatterlist.h>
  59#include <linux/errqueue.h>
  60#include <linux/prefetch.h>
  61#include <linux/if_vlan.h>
  62#include <linux/mpls.h>
  63#include <linux/kcov.h>
  64
  65#include <net/protocol.h>
  66#include <net/dst.h>
  67#include <net/sock.h>
  68#include <net/checksum.h>
  69#include <net/ip6_checksum.h>
  70#include <net/xfrm.h>
  71#include <net/mpls.h>
  72#include <net/mptcp.h>
  73#include <net/page_pool.h>
  74
  75#include <linux/uaccess.h>
  76#include <trace/events/skb.h>
  77#include <linux/highmem.h>
  78#include <linux/capability.h>
  79#include <linux/user_namespace.h>
  80#include <linux/indirect_call_wrapper.h>
  81
  82#include "datagram.h"
  83#include "sock_destructor.h"
  84
  85struct kmem_cache *skbuff_head_cache __ro_after_init;
  86static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
  87#ifdef CONFIG_SKB_EXTENSIONS
  88static struct kmem_cache *skbuff_ext_cache __ro_after_init;
  89#endif
  90int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
  91EXPORT_SYMBOL(sysctl_max_skb_frags);
  92
  93/**
  94 *      skb_panic - private function for out-of-line support
  95 *      @skb:   buffer
  96 *      @sz:    size
  97 *      @addr:  address
  98 *      @msg:   skb_over_panic or skb_under_panic
  99 *
 100 *      Out-of-line support for skb_put() and skb_push().
 101 *      Called via the wrapper skb_over_panic() or skb_under_panic().
 102 *      Keep out of line to prevent kernel bloat.
 103 *      __builtin_return_address is not used because it is not always reliable.
 104 */
 105static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
 106                      const char msg[])
 107{
 108        pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
 109                 msg, addr, skb->len, sz, skb->head, skb->data,
 110                 (unsigned long)skb->tail, (unsigned long)skb->end,
 111                 skb->dev ? skb->dev->name : "<NULL>");
 112        BUG();
 113}
 114
 115static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 116{
 117        skb_panic(skb, sz, addr, __func__);
 118}
 119
 120static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 121{
 122        skb_panic(skb, sz, addr, __func__);
 123}
 124
 125#define NAPI_SKB_CACHE_SIZE     64
 126#define NAPI_SKB_CACHE_BULK     16
 127#define NAPI_SKB_CACHE_HALF     (NAPI_SKB_CACHE_SIZE / 2)
 128
 129struct napi_alloc_cache {
 130        struct page_frag_cache page;
 131        unsigned int skb_count;
 132        void *skb_cache[NAPI_SKB_CACHE_SIZE];
 133};
 134
 135static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
 136static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
 137
 138static void *__alloc_frag_align(unsigned int fragsz, gfp_t gfp_mask,
 139                                unsigned int align_mask)
 140{
 141        struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 142
 143        return page_frag_alloc_align(&nc->page, fragsz, gfp_mask, align_mask);
 144}
 145
 146void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
 147{
 148        fragsz = SKB_DATA_ALIGN(fragsz);
 149
 150        return __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask);
 151}
 152EXPORT_SYMBOL(__napi_alloc_frag_align);
 153
 154void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
 155{
 156        struct page_frag_cache *nc;
 157        void *data;
 158
 159        fragsz = SKB_DATA_ALIGN(fragsz);
 160        if (in_hardirq() || irqs_disabled()) {
 161                nc = this_cpu_ptr(&netdev_alloc_cache);
 162                data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
 163        } else {
 164                local_bh_disable();
 165                data = __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask);
 166                local_bh_enable();
 167        }
 168        return data;
 169}
 170EXPORT_SYMBOL(__netdev_alloc_frag_align);
 171
 172static struct sk_buff *napi_skb_cache_get(void)
 173{
 174        struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 175        struct sk_buff *skb;
 176
 177        if (unlikely(!nc->skb_count))
 178                nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
 179                                                      GFP_ATOMIC,
 180                                                      NAPI_SKB_CACHE_BULK,
 181                                                      nc->skb_cache);
 182        if (unlikely(!nc->skb_count))
 183                return NULL;
 184
 185        skb = nc->skb_cache[--nc->skb_count];
 186        kasan_unpoison_object_data(skbuff_head_cache, skb);
 187
 188        return skb;
 189}
 190
 191/* Caller must provide SKB that is memset cleared */
 192static void __build_skb_around(struct sk_buff *skb, void *data,
 193                               unsigned int frag_size)
 194{
 195        struct skb_shared_info *shinfo;
 196        unsigned int size = frag_size ? : ksize(data);
 197
 198        size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 199
 200        /* Assumes caller memset cleared SKB */
 201        skb->truesize = SKB_TRUESIZE(size);
 202        refcount_set(&skb->users, 1);
 203        skb->head = data;
 204        skb->data = data;
 205        skb_reset_tail_pointer(skb);
 206        skb->end = skb->tail + size;
 207        skb->mac_header = (typeof(skb->mac_header))~0U;
 208        skb->transport_header = (typeof(skb->transport_header))~0U;
 209
 210        /* make sure we initialize shinfo sequentially */
 211        shinfo = skb_shinfo(skb);
 212        memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 213        atomic_set(&shinfo->dataref, 1);
 214
 215        skb_set_kcov_handle(skb, kcov_common_handle());
 216}
 217
 218/**
 219 * __build_skb - build a network buffer
 220 * @data: data buffer provided by caller
 221 * @frag_size: size of data, or 0 if head was kmalloced
 222 *
 223 * Allocate a new &sk_buff. Caller provides space holding head and
 224 * skb_shared_info. @data must have been allocated by kmalloc() only if
 225 * @frag_size is 0, otherwise data should come from the page allocator
 226 *  or vmalloc()
 227 * The return is the new skb buffer.
 228 * On a failure the return is %NULL, and @data is not freed.
 229 * Notes :
 230 *  Before IO, driver allocates only data buffer where NIC put incoming frame
 231 *  Driver should add room at head (NET_SKB_PAD) and
 232 *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
 233 *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
 234 *  before giving packet to stack.
 235 *  RX rings only contains data buffers, not full skbs.
 236 */
 237struct sk_buff *__build_skb(void *data, unsigned int frag_size)
 238{
 239        struct sk_buff *skb;
 240
 241        skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
 242        if (unlikely(!skb))
 243                return NULL;
 244
 245        memset(skb, 0, offsetof(struct sk_buff, tail));
 246        __build_skb_around(skb, data, frag_size);
 247
 248        return skb;
 249}
 250
 251/* build_skb() is wrapper over __build_skb(), that specifically
 252 * takes care of skb->head and skb->pfmemalloc
 253 * This means that if @frag_size is not zero, then @data must be backed
 254 * by a page fragment, not kmalloc() or vmalloc()
 255 */
 256struct sk_buff *build_skb(void *data, unsigned int frag_size)
 257{
 258        struct sk_buff *skb = __build_skb(data, frag_size);
 259
 260        if (skb && frag_size) {
 261                skb->head_frag = 1;
 262                if (page_is_pfmemalloc(virt_to_head_page(data)))
 263                        skb->pfmemalloc = 1;
 264        }
 265        return skb;
 266}
 267EXPORT_SYMBOL(build_skb);
 268
 269/**
 270 * build_skb_around - build a network buffer around provided skb
 271 * @skb: sk_buff provide by caller, must be memset cleared
 272 * @data: data buffer provided by caller
 273 * @frag_size: size of data, or 0 if head was kmalloced
 274 */
 275struct sk_buff *build_skb_around(struct sk_buff *skb,
 276                                 void *data, unsigned int frag_size)
 277{
 278        if (unlikely(!skb))
 279                return NULL;
 280
 281        __build_skb_around(skb, data, frag_size);
 282
 283        if (frag_size) {
 284                skb->head_frag = 1;
 285                if (page_is_pfmemalloc(virt_to_head_page(data)))
 286                        skb->pfmemalloc = 1;
 287        }
 288        return skb;
 289}
 290EXPORT_SYMBOL(build_skb_around);
 291
 292/**
 293 * __napi_build_skb - build a network buffer
 294 * @data: data buffer provided by caller
 295 * @frag_size: size of data, or 0 if head was kmalloced
 296 *
 297 * Version of __build_skb() that uses NAPI percpu caches to obtain
 298 * skbuff_head instead of inplace allocation.
 299 *
 300 * Returns a new &sk_buff on success, %NULL on allocation failure.
 301 */
 302static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
 303{
 304        struct sk_buff *skb;
 305
 306        skb = napi_skb_cache_get();
 307        if (unlikely(!skb))
 308                return NULL;
 309
 310        memset(skb, 0, offsetof(struct sk_buff, tail));
 311        __build_skb_around(skb, data, frag_size);
 312
 313        return skb;
 314}
 315
 316/**
 317 * napi_build_skb - build a network buffer
 318 * @data: data buffer provided by caller
 319 * @frag_size: size of data, or 0 if head was kmalloced
 320 *
 321 * Version of __napi_build_skb() that takes care of skb->head_frag
 322 * and skb->pfmemalloc when the data is a page or page fragment.
 323 *
 324 * Returns a new &sk_buff on success, %NULL on allocation failure.
 325 */
 326struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
 327{
 328        struct sk_buff *skb = __napi_build_skb(data, frag_size);
 329
 330        if (likely(skb) && frag_size) {
 331                skb->head_frag = 1;
 332                skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
 333        }
 334
 335        return skb;
 336}
 337EXPORT_SYMBOL(napi_build_skb);
 338
 339/*
 340 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
 341 * the caller if emergency pfmemalloc reserves are being used. If it is and
 342 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
 343 * may be used. Otherwise, the packet data may be discarded until enough
 344 * memory is free
 345 */
 346static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
 347                             bool *pfmemalloc)
 348{
 349        void *obj;
 350        bool ret_pfmemalloc = false;
 351
 352        /*
 353         * Try a regular allocation, when that fails and we're not entitled
 354         * to the reserves, fail.
 355         */
 356        obj = kmalloc_node_track_caller(size,
 357                                        flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
 358                                        node);
 359        if (obj || !(gfp_pfmemalloc_allowed(flags)))
 360                goto out;
 361
 362        /* Try again but now we are using pfmemalloc reserves */
 363        ret_pfmemalloc = true;
 364        obj = kmalloc_node_track_caller(size, flags, node);
 365
 366out:
 367        if (pfmemalloc)
 368                *pfmemalloc = ret_pfmemalloc;
 369
 370        return obj;
 371}
 372
 373/*      Allocate a new skbuff. We do this ourselves so we can fill in a few
 374 *      'private' fields and also do memory statistics to find all the
 375 *      [BEEP] leaks.
 376 *
 377 */
 378
 379/**
 380 *      __alloc_skb     -       allocate a network buffer
 381 *      @size: size to allocate
 382 *      @gfp_mask: allocation mask
 383 *      @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
 384 *              instead of head cache and allocate a cloned (child) skb.
 385 *              If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
 386 *              allocations in case the data is required for writeback
 387 *      @node: numa node to allocate memory on
 388 *
 389 *      Allocate a new &sk_buff. The returned buffer has no headroom and a
 390 *      tail room of at least size bytes. The object has a reference count
 391 *      of one. The return is the buffer. On a failure the return is %NULL.
 392 *
 393 *      Buffers may only be allocated from interrupts using a @gfp_mask of
 394 *      %GFP_ATOMIC.
 395 */
 396struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
 397                            int flags, int node)
 398{
 399        struct kmem_cache *cache;
 400        struct sk_buff *skb;
 401        u8 *data;
 402        bool pfmemalloc;
 403
 404        cache = (flags & SKB_ALLOC_FCLONE)
 405                ? skbuff_fclone_cache : skbuff_head_cache;
 406
 407        if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
 408                gfp_mask |= __GFP_MEMALLOC;
 409
 410        /* Get the HEAD */
 411        if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
 412            likely(node == NUMA_NO_NODE || node == numa_mem_id()))
 413                skb = napi_skb_cache_get();
 414        else
 415                skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
 416        if (unlikely(!skb))
 417                return NULL;
 418        prefetchw(skb);
 419
 420        /* We do our best to align skb_shared_info on a separate cache
 421         * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
 422         * aligned memory blocks, unless SLUB/SLAB debug is enabled.
 423         * Both skb->head and skb_shared_info are cache line aligned.
 424         */
 425        size = SKB_DATA_ALIGN(size);
 426        size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 427        data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
 428        if (unlikely(!data))
 429                goto nodata;
 430        /* kmalloc(size) might give us more room than requested.
 431         * Put skb_shared_info exactly at the end of allocated zone,
 432         * to allow max possible filling before reallocation.
 433         */
 434        size = SKB_WITH_OVERHEAD(ksize(data));
 435        prefetchw(data + size);
 436
 437        /*
 438         * Only clear those fields we need to clear, not those that we will
 439         * actually initialise below. Hence, don't put any more fields after
 440         * the tail pointer in struct sk_buff!
 441         */
 442        memset(skb, 0, offsetof(struct sk_buff, tail));
 443        __build_skb_around(skb, data, 0);
 444        skb->pfmemalloc = pfmemalloc;
 445
 446        if (flags & SKB_ALLOC_FCLONE) {
 447                struct sk_buff_fclones *fclones;
 448
 449                fclones = container_of(skb, struct sk_buff_fclones, skb1);
 450
 451                skb->fclone = SKB_FCLONE_ORIG;
 452                refcount_set(&fclones->fclone_ref, 1);
 453
 454                fclones->skb2.fclone = SKB_FCLONE_CLONE;
 455        }
 456
 457        return skb;
 458
 459nodata:
 460        kmem_cache_free(cache, skb);
 461        return NULL;
 462}
 463EXPORT_SYMBOL(__alloc_skb);
 464
 465/**
 466 *      __netdev_alloc_skb - allocate an skbuff for rx on a specific device
 467 *      @dev: network device to receive on
 468 *      @len: length to allocate
 469 *      @gfp_mask: get_free_pages mask, passed to alloc_skb
 470 *
 471 *      Allocate a new &sk_buff and assign it a usage count of one. The
 472 *      buffer has NET_SKB_PAD headroom built in. Users should allocate
 473 *      the headroom they think they need without accounting for the
 474 *      built in space. The built in space is used for optimisations.
 475 *
 476 *      %NULL is returned if there is no free memory.
 477 */
 478struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
 479                                   gfp_t gfp_mask)
 480{
 481        struct page_frag_cache *nc;
 482        struct sk_buff *skb;
 483        bool pfmemalloc;
 484        void *data;
 485
 486        len += NET_SKB_PAD;
 487
 488        /* If requested length is either too small or too big,
 489         * we use kmalloc() for skb->head allocation.
 490         */
 491        if (len <= SKB_WITH_OVERHEAD(1024) ||
 492            len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
 493            (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
 494                skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
 495                if (!skb)
 496                        goto skb_fail;
 497                goto skb_success;
 498        }
 499
 500        len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 501        len = SKB_DATA_ALIGN(len);
 502
 503        if (sk_memalloc_socks())
 504                gfp_mask |= __GFP_MEMALLOC;
 505
 506        if (in_hardirq() || irqs_disabled()) {
 507                nc = this_cpu_ptr(&netdev_alloc_cache);
 508                data = page_frag_alloc(nc, len, gfp_mask);
 509                pfmemalloc = nc->pfmemalloc;
 510        } else {
 511                local_bh_disable();
 512                nc = this_cpu_ptr(&napi_alloc_cache.page);
 513                data = page_frag_alloc(nc, len, gfp_mask);
 514                pfmemalloc = nc->pfmemalloc;
 515                local_bh_enable();
 516        }
 517
 518        if (unlikely(!data))
 519                return NULL;
 520
 521        skb = __build_skb(data, len);
 522        if (unlikely(!skb)) {
 523                skb_free_frag(data);
 524                return NULL;
 525        }
 526
 527        if (pfmemalloc)
 528                skb->pfmemalloc = 1;
 529        skb->head_frag = 1;
 530
 531skb_success:
 532        skb_reserve(skb, NET_SKB_PAD);
 533        skb->dev = dev;
 534
 535skb_fail:
 536        return skb;
 537}
 538EXPORT_SYMBOL(__netdev_alloc_skb);
 539
 540/**
 541 *      __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
 542 *      @napi: napi instance this buffer was allocated for
 543 *      @len: length to allocate
 544 *      @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
 545 *
 546 *      Allocate a new sk_buff for use in NAPI receive.  This buffer will
 547 *      attempt to allocate the head from a special reserved region used
 548 *      only for NAPI Rx allocation.  By doing this we can save several
 549 *      CPU cycles by avoiding having to disable and re-enable IRQs.
 550 *
 551 *      %NULL is returned if there is no free memory.
 552 */
 553struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
 554                                 gfp_t gfp_mask)
 555{
 556        struct napi_alloc_cache *nc;
 557        struct sk_buff *skb;
 558        void *data;
 559
 560        len += NET_SKB_PAD + NET_IP_ALIGN;
 561
 562        /* If requested length is either too small or too big,
 563         * we use kmalloc() for skb->head allocation.
 564         */
 565        if (len <= SKB_WITH_OVERHEAD(1024) ||
 566            len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
 567            (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
 568                skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
 569                                  NUMA_NO_NODE);
 570                if (!skb)
 571                        goto skb_fail;
 572                goto skb_success;
 573        }
 574
 575        nc = this_cpu_ptr(&napi_alloc_cache);
 576        len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 577        len = SKB_DATA_ALIGN(len);
 578
 579        if (sk_memalloc_socks())
 580                gfp_mask |= __GFP_MEMALLOC;
 581
 582        data = page_frag_alloc(&nc->page, len, gfp_mask);
 583        if (unlikely(!data))
 584                return NULL;
 585
 586        skb = __napi_build_skb(data, len);
 587        if (unlikely(!skb)) {
 588                skb_free_frag(data);
 589                return NULL;
 590        }
 591
 592        if (nc->page.pfmemalloc)
 593                skb->pfmemalloc = 1;
 594        skb->head_frag = 1;
 595
 596skb_success:
 597        skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
 598        skb->dev = napi->dev;
 599
 600skb_fail:
 601        return skb;
 602}
 603EXPORT_SYMBOL(__napi_alloc_skb);
 604
 605void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
 606                     int size, unsigned int truesize)
 607{
 608        skb_fill_page_desc(skb, i, page, off, size);
 609        skb->len += size;
 610        skb->data_len += size;
 611        skb->truesize += truesize;
 612}
 613EXPORT_SYMBOL(skb_add_rx_frag);
 614
 615void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
 616                          unsigned int truesize)
 617{
 618        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 619
 620        skb_frag_size_add(frag, size);
 621        skb->len += size;
 622        skb->data_len += size;
 623        skb->truesize += truesize;
 624}
 625EXPORT_SYMBOL(skb_coalesce_rx_frag);
 626
 627static void skb_drop_list(struct sk_buff **listp)
 628{
 629        kfree_skb_list(*listp);
 630        *listp = NULL;
 631}
 632
 633static inline void skb_drop_fraglist(struct sk_buff *skb)
 634{
 635        skb_drop_list(&skb_shinfo(skb)->frag_list);
 636}
 637
 638static void skb_clone_fraglist(struct sk_buff *skb)
 639{
 640        struct sk_buff *list;
 641
 642        skb_walk_frags(skb, list)
 643                skb_get(list);
 644}
 645
 646static void skb_free_head(struct sk_buff *skb)
 647{
 648        unsigned char *head = skb->head;
 649
 650        if (skb->head_frag) {
 651                if (skb_pp_recycle(skb, head))
 652                        return;
 653                skb_free_frag(head);
 654        } else {
 655                kfree(head);
 656        }
 657}
 658
 659static void skb_release_data(struct sk_buff *skb)
 660{
 661        struct skb_shared_info *shinfo = skb_shinfo(skb);
 662        int i;
 663
 664        if (skb->cloned &&
 665            atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
 666                              &shinfo->dataref))
 667                goto exit;
 668
 669        skb_zcopy_clear(skb, true);
 670
 671        for (i = 0; i < shinfo->nr_frags; i++)
 672                __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
 673
 674        if (shinfo->frag_list)
 675                kfree_skb_list(shinfo->frag_list);
 676
 677        skb_free_head(skb);
 678exit:
 679        /* When we clone an SKB we copy the reycling bit. The pp_recycle
 680         * bit is only set on the head though, so in order to avoid races
 681         * while trying to recycle fragments on __skb_frag_unref() we need
 682         * to make one SKB responsible for triggering the recycle path.
 683         * So disable the recycling bit if an SKB is cloned and we have
 684         * additional references to to the fragmented part of the SKB.
 685         * Eventually the last SKB will have the recycling bit set and it's
 686         * dataref set to 0, which will trigger the recycling
 687         */
 688        skb->pp_recycle = 0;
 689}
 690
 691/*
 692 *      Free an skbuff by memory without cleaning the state.
 693 */
 694static void kfree_skbmem(struct sk_buff *skb)
 695{
 696        struct sk_buff_fclones *fclones;
 697
 698        switch (skb->fclone) {
 699        case SKB_FCLONE_UNAVAILABLE:
 700                kmem_cache_free(skbuff_head_cache, skb);
 701                return;
 702
 703        case SKB_FCLONE_ORIG:
 704                fclones = container_of(skb, struct sk_buff_fclones, skb1);
 705
 706                /* We usually free the clone (TX completion) before original skb
 707                 * This test would have no chance to be true for the clone,
 708                 * while here, branch prediction will be good.
 709                 */
 710                if (refcount_read(&fclones->fclone_ref) == 1)
 711                        goto fastpath;
 712                break;
 713
 714        default: /* SKB_FCLONE_CLONE */
 715                fclones = container_of(skb, struct sk_buff_fclones, skb2);
 716                break;
 717        }
 718        if (!refcount_dec_and_test(&fclones->fclone_ref))
 719                return;
 720fastpath:
 721        kmem_cache_free(skbuff_fclone_cache, fclones);
 722}
 723
 724void skb_release_head_state(struct sk_buff *skb)
 725{
 726        skb_dst_drop(skb);
 727        if (skb->destructor) {
 728                WARN_ON(in_hardirq());
 729                skb->destructor(skb);
 730        }
 731#if IS_ENABLED(CONFIG_NF_CONNTRACK)
 732        nf_conntrack_put(skb_nfct(skb));
 733#endif
 734        skb_ext_put(skb);
 735}
 736
 737/* Free everything but the sk_buff shell. */
 738static void skb_release_all(struct sk_buff *skb)
 739{
 740        skb_release_head_state(skb);
 741        if (likely(skb->head))
 742                skb_release_data(skb);
 743}
 744
 745/**
 746 *      __kfree_skb - private function
 747 *      @skb: buffer
 748 *
 749 *      Free an sk_buff. Release anything attached to the buffer.
 750 *      Clean the state. This is an internal helper function. Users should
 751 *      always call kfree_skb
 752 */
 753
 754void __kfree_skb(struct sk_buff *skb)
 755{
 756        skb_release_all(skb);
 757        kfree_skbmem(skb);
 758}
 759EXPORT_SYMBOL(__kfree_skb);
 760
 761/**
 762 *      kfree_skb - free an sk_buff
 763 *      @skb: buffer to free
 764 *
 765 *      Drop a reference to the buffer and free it if the usage count has
 766 *      hit zero.
 767 */
 768void kfree_skb(struct sk_buff *skb)
 769{
 770        if (!skb_unref(skb))
 771                return;
 772
 773        trace_kfree_skb(skb, __builtin_return_address(0));
 774        __kfree_skb(skb);
 775}
 776EXPORT_SYMBOL(kfree_skb);
 777
 778void kfree_skb_list(struct sk_buff *segs)
 779{
 780        while (segs) {
 781                struct sk_buff *next = segs->next;
 782
 783                kfree_skb(segs);
 784                segs = next;
 785        }
 786}
 787EXPORT_SYMBOL(kfree_skb_list);
 788
 789/* Dump skb information and contents.
 790 *
 791 * Must only be called from net_ratelimit()-ed paths.
 792 *
 793 * Dumps whole packets if full_pkt, only headers otherwise.
 794 */
 795void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
 796{
 797        struct skb_shared_info *sh = skb_shinfo(skb);
 798        struct net_device *dev = skb->dev;
 799        struct sock *sk = skb->sk;
 800        struct sk_buff *list_skb;
 801        bool has_mac, has_trans;
 802        int headroom, tailroom;
 803        int i, len, seg_len;
 804
 805        if (full_pkt)
 806                len = skb->len;
 807        else
 808                len = min_t(int, skb->len, MAX_HEADER + 128);
 809
 810        headroom = skb_headroom(skb);
 811        tailroom = skb_tailroom(skb);
 812
 813        has_mac = skb_mac_header_was_set(skb);
 814        has_trans = skb_transport_header_was_set(skb);
 815
 816        printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
 817               "mac=(%d,%d) net=(%d,%d) trans=%d\n"
 818               "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
 819               "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
 820               "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
 821               level, skb->len, headroom, skb_headlen(skb), tailroom,
 822               has_mac ? skb->mac_header : -1,
 823               has_mac ? skb_mac_header_len(skb) : -1,
 824               skb->network_header,
 825               has_trans ? skb_network_header_len(skb) : -1,
 826               has_trans ? skb->transport_header : -1,
 827               sh->tx_flags, sh->nr_frags,
 828               sh->gso_size, sh->gso_type, sh->gso_segs,
 829               skb->csum, skb->ip_summed, skb->csum_complete_sw,
 830               skb->csum_valid, skb->csum_level,
 831               skb->hash, skb->sw_hash, skb->l4_hash,
 832               ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
 833
 834        if (dev)
 835                printk("%sdev name=%s feat=0x%pNF\n",
 836                       level, dev->name, &dev->features);
 837        if (sk)
 838                printk("%ssk family=%hu type=%u proto=%u\n",
 839                       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
 840
 841        if (full_pkt && headroom)
 842                print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
 843                               16, 1, skb->head, headroom, false);
 844
 845        seg_len = min_t(int, skb_headlen(skb), len);
 846        if (seg_len)
 847                print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
 848                               16, 1, skb->data, seg_len, false);
 849        len -= seg_len;
 850
 851        if (full_pkt && tailroom)
 852                print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
 853                               16, 1, skb_tail_pointer(skb), tailroom, false);
 854
 855        for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
 856                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 857                u32 p_off, p_len, copied;
 858                struct page *p;
 859                u8 *vaddr;
 860
 861                skb_frag_foreach_page(frag, skb_frag_off(frag),
 862                                      skb_frag_size(frag), p, p_off, p_len,
 863                                      copied) {
 864                        seg_len = min_t(int, p_len, len);
 865                        vaddr = kmap_atomic(p);
 866                        print_hex_dump(level, "skb frag:     ",
 867                                       DUMP_PREFIX_OFFSET,
 868                                       16, 1, vaddr + p_off, seg_len, false);
 869                        kunmap_atomic(vaddr);
 870                        len -= seg_len;
 871                        if (!len)
 872                                break;
 873                }
 874        }
 875
 876        if (full_pkt && skb_has_frag_list(skb)) {
 877                printk("skb fraglist:\n");
 878                skb_walk_frags(skb, list_skb)
 879                        skb_dump(level, list_skb, true);
 880        }
 881}
 882EXPORT_SYMBOL(skb_dump);
 883
 884/**
 885 *      skb_tx_error - report an sk_buff xmit error
 886 *      @skb: buffer that triggered an error
 887 *
 888 *      Report xmit error if a device callback is tracking this skb.
 889 *      skb must be freed afterwards.
 890 */
 891void skb_tx_error(struct sk_buff *skb)
 892{
 893        skb_zcopy_clear(skb, true);
 894}
 895EXPORT_SYMBOL(skb_tx_error);
 896
 897#ifdef CONFIG_TRACEPOINTS
 898/**
 899 *      consume_skb - free an skbuff
 900 *      @skb: buffer to free
 901 *
 902 *      Drop a ref to the buffer and free it if the usage count has hit zero
 903 *      Functions identically to kfree_skb, but kfree_skb assumes that the frame
 904 *      is being dropped after a failure and notes that
 905 */
 906void consume_skb(struct sk_buff *skb)
 907{
 908        if (!skb_unref(skb))
 909                return;
 910
 911        trace_consume_skb(skb);
 912        __kfree_skb(skb);
 913}
 914EXPORT_SYMBOL(consume_skb);
 915#endif
 916
 917/**
 918 *      __consume_stateless_skb - free an skbuff, assuming it is stateless
 919 *      @skb: buffer to free
 920 *
 921 *      Alike consume_skb(), but this variant assumes that this is the last
 922 *      skb reference and all the head states have been already dropped
 923 */
 924void __consume_stateless_skb(struct sk_buff *skb)
 925{
 926        trace_consume_skb(skb);
 927        skb_release_data(skb);
 928        kfree_skbmem(skb);
 929}
 930
 931static void napi_skb_cache_put(struct sk_buff *skb)
 932{
 933        struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 934        u32 i;
 935
 936        kasan_poison_object_data(skbuff_head_cache, skb);
 937        nc->skb_cache[nc->skb_count++] = skb;
 938
 939        if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
 940                for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
 941                        kasan_unpoison_object_data(skbuff_head_cache,
 942                                                   nc->skb_cache[i]);
 943
 944                kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
 945                                     nc->skb_cache + NAPI_SKB_CACHE_HALF);
 946                nc->skb_count = NAPI_SKB_CACHE_HALF;
 947        }
 948}
 949
 950void __kfree_skb_defer(struct sk_buff *skb)
 951{
 952        skb_release_all(skb);
 953        napi_skb_cache_put(skb);
 954}
 955
 956void napi_skb_free_stolen_head(struct sk_buff *skb)
 957{
 958        if (unlikely(skb->slow_gro)) {
 959                nf_reset_ct(skb);
 960                skb_dst_drop(skb);
 961                skb_ext_put(skb);
 962                skb_orphan(skb);
 963                skb->slow_gro = 0;
 964        }
 965        napi_skb_cache_put(skb);
 966}
 967
 968void napi_consume_skb(struct sk_buff *skb, int budget)
 969{
 970        /* Zero budget indicate non-NAPI context called us, like netpoll */
 971        if (unlikely(!budget)) {
 972                dev_consume_skb_any(skb);
 973                return;
 974        }
 975
 976        lockdep_assert_in_softirq();
 977
 978        if (!skb_unref(skb))
 979                return;
 980
 981        /* if reaching here SKB is ready to free */
 982        trace_consume_skb(skb);
 983
 984        /* if SKB is a clone, don't handle this case */
 985        if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
 986                __kfree_skb(skb);
 987                return;
 988        }
 989
 990        skb_release_all(skb);
 991        napi_skb_cache_put(skb);
 992}
 993EXPORT_SYMBOL(napi_consume_skb);
 994
 995/* Make sure a field is enclosed inside headers_start/headers_end section */
 996#define CHECK_SKB_FIELD(field) \
 997        BUILD_BUG_ON(offsetof(struct sk_buff, field) <          \
 998                     offsetof(struct sk_buff, headers_start));  \
 999        BUILD_BUG_ON(offsetof(struct sk_buff, field) >          \
1000                     offsetof(struct sk_buff, headers_end));    \
1001
1002static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1003{
1004        new->tstamp             = old->tstamp;
1005        /* We do not copy old->sk */
1006        new->dev                = old->dev;
1007        memcpy(new->cb, old->cb, sizeof(old->cb));
1008        skb_dst_copy(new, old);
1009        __skb_ext_copy(new, old);
1010        __nf_copy(new, old, false);
1011
1012        /* Note : this field could be in headers_start/headers_end section
1013         * It is not yet because we do not want to have a 16 bit hole
1014         */
1015        new->queue_mapping = old->queue_mapping;
1016
1017        memcpy(&new->headers_start, &old->headers_start,
1018               offsetof(struct sk_buff, headers_end) -
1019               offsetof(struct sk_buff, headers_start));
1020        CHECK_SKB_FIELD(protocol);
1021        CHECK_SKB_FIELD(csum);
1022        CHECK_SKB_FIELD(hash);
1023        CHECK_SKB_FIELD(priority);
1024        CHECK_SKB_FIELD(skb_iif);
1025        CHECK_SKB_FIELD(vlan_proto);
1026        CHECK_SKB_FIELD(vlan_tci);
1027        CHECK_SKB_FIELD(transport_header);
1028        CHECK_SKB_FIELD(network_header);
1029        CHECK_SKB_FIELD(mac_header);
1030        CHECK_SKB_FIELD(inner_protocol);
1031        CHECK_SKB_FIELD(inner_transport_header);
1032        CHECK_SKB_FIELD(inner_network_header);
1033        CHECK_SKB_FIELD(inner_mac_header);
1034        CHECK_SKB_FIELD(mark);
1035#ifdef CONFIG_NETWORK_SECMARK
1036        CHECK_SKB_FIELD(secmark);
1037#endif
1038#ifdef CONFIG_NET_RX_BUSY_POLL
1039        CHECK_SKB_FIELD(napi_id);
1040#endif
1041#ifdef CONFIG_XPS
1042        CHECK_SKB_FIELD(sender_cpu);
1043#endif
1044#ifdef CONFIG_NET_SCHED
1045        CHECK_SKB_FIELD(tc_index);
1046#endif
1047
1048}
1049
1050/*
1051 * You should not add any new code to this function.  Add it to
1052 * __copy_skb_header above instead.
1053 */
1054static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1055{
1056#define C(x) n->x = skb->x
1057
1058        n->next = n->prev = NULL;
1059        n->sk = NULL;
1060        __copy_skb_header(n, skb);
1061
1062        C(len);
1063        C(data_len);
1064        C(mac_len);
1065        n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1066        n->cloned = 1;
1067        n->nohdr = 0;
1068        n->peeked = 0;
1069        C(pfmemalloc);
1070        C(pp_recycle);
1071        n->destructor = NULL;
1072        C(tail);
1073        C(end);
1074        C(head);
1075        C(head_frag);
1076        C(data);
1077        C(truesize);
1078        refcount_set(&n->users, 1);
1079
1080        atomic_inc(&(skb_shinfo(skb)->dataref));
1081        skb->cloned = 1;
1082
1083        return n;
1084#undef C
1085}
1086
1087/**
1088 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1089 * @first: first sk_buff of the msg
1090 */
1091struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1092{
1093        struct sk_buff *n;
1094
1095        n = alloc_skb(0, GFP_ATOMIC);
1096        if (!n)
1097                return NULL;
1098
1099        n->len = first->len;
1100        n->data_len = first->len;
1101        n->truesize = first->truesize;
1102
1103        skb_shinfo(n)->frag_list = first;
1104
1105        __copy_skb_header(n, first);
1106        n->destructor = NULL;
1107
1108        return n;
1109}
1110EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1111
1112/**
1113 *      skb_morph       -       morph one skb into another
1114 *      @dst: the skb to receive the contents
1115 *      @src: the skb to supply the contents
1116 *
1117 *      This is identical to skb_clone except that the target skb is
1118 *      supplied by the user.
1119 *
1120 *      The target skb is returned upon exit.
1121 */
1122struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1123{
1124        skb_release_all(dst);
1125        return __skb_clone(dst, src);
1126}
1127EXPORT_SYMBOL_GPL(skb_morph);
1128
1129int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1130{
1131        unsigned long max_pg, num_pg, new_pg, old_pg;
1132        struct user_struct *user;
1133
1134        if (capable(CAP_IPC_LOCK) || !size)
1135                return 0;
1136
1137        num_pg = (size >> PAGE_SHIFT) + 2;      /* worst case */
1138        max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1139        user = mmp->user ? : current_user();
1140
1141        do {
1142                old_pg = atomic_long_read(&user->locked_vm);
1143                new_pg = old_pg + num_pg;
1144                if (new_pg > max_pg)
1145                        return -ENOBUFS;
1146        } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1147                 old_pg);
1148
1149        if (!mmp->user) {
1150                mmp->user = get_uid(user);
1151                mmp->num_pg = num_pg;
1152        } else {
1153                mmp->num_pg += num_pg;
1154        }
1155
1156        return 0;
1157}
1158EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1159
1160void mm_unaccount_pinned_pages(struct mmpin *mmp)
1161{
1162        if (mmp->user) {
1163                atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1164                free_uid(mmp->user);
1165        }
1166}
1167EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1168
1169struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1170{
1171        struct ubuf_info *uarg;
1172        struct sk_buff *skb;
1173
1174        WARN_ON_ONCE(!in_task());
1175
1176        skb = sock_omalloc(sk, 0, GFP_KERNEL);
1177        if (!skb)
1178                return NULL;
1179
1180        BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1181        uarg = (void *)skb->cb;
1182        uarg->mmp.user = NULL;
1183
1184        if (mm_account_pinned_pages(&uarg->mmp, size)) {
1185                kfree_skb(skb);
1186                return NULL;
1187        }
1188
1189        uarg->callback = msg_zerocopy_callback;
1190        uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1191        uarg->len = 1;
1192        uarg->bytelen = size;
1193        uarg->zerocopy = 1;
1194        uarg->flags = SKBFL_ZEROCOPY_FRAG;
1195        refcount_set(&uarg->refcnt, 1);
1196        sock_hold(sk);
1197
1198        return uarg;
1199}
1200EXPORT_SYMBOL_GPL(msg_zerocopy_alloc);
1201
1202static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1203{
1204        return container_of((void *)uarg, struct sk_buff, cb);
1205}
1206
1207struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1208                                       struct ubuf_info *uarg)
1209{
1210        if (uarg) {
1211                const u32 byte_limit = 1 << 19;         /* limit to a few TSO */
1212                u32 bytelen, next;
1213
1214                /* realloc only when socket is locked (TCP, UDP cork),
1215                 * so uarg->len and sk_zckey access is serialized
1216                 */
1217                if (!sock_owned_by_user(sk)) {
1218                        WARN_ON_ONCE(1);
1219                        return NULL;
1220                }
1221
1222                bytelen = uarg->bytelen + size;
1223                if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1224                        /* TCP can create new skb to attach new uarg */
1225                        if (sk->sk_type == SOCK_STREAM)
1226                                goto new_alloc;
1227                        return NULL;
1228                }
1229
1230                next = (u32)atomic_read(&sk->sk_zckey);
1231                if ((u32)(uarg->id + uarg->len) == next) {
1232                        if (mm_account_pinned_pages(&uarg->mmp, size))
1233                                return NULL;
1234                        uarg->len++;
1235                        uarg->bytelen = bytelen;
1236                        atomic_set(&sk->sk_zckey, ++next);
1237
1238                        /* no extra ref when appending to datagram (MSG_MORE) */
1239                        if (sk->sk_type == SOCK_STREAM)
1240                                net_zcopy_get(uarg);
1241
1242                        return uarg;
1243                }
1244        }
1245
1246new_alloc:
1247        return msg_zerocopy_alloc(sk, size);
1248}
1249EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1250
1251static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1252{
1253        struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1254        u32 old_lo, old_hi;
1255        u64 sum_len;
1256
1257        old_lo = serr->ee.ee_info;
1258        old_hi = serr->ee.ee_data;
1259        sum_len = old_hi - old_lo + 1ULL + len;
1260
1261        if (sum_len >= (1ULL << 32))
1262                return false;
1263
1264        if (lo != old_hi + 1)
1265                return false;
1266
1267        serr->ee.ee_data += len;
1268        return true;
1269}
1270
1271static void __msg_zerocopy_callback(struct ubuf_info *uarg)
1272{
1273        struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1274        struct sock_exterr_skb *serr;
1275        struct sock *sk = skb->sk;
1276        struct sk_buff_head *q;
1277        unsigned long flags;
1278        bool is_zerocopy;
1279        u32 lo, hi;
1280        u16 len;
1281
1282        mm_unaccount_pinned_pages(&uarg->mmp);
1283
1284        /* if !len, there was only 1 call, and it was aborted
1285         * so do not queue a completion notification
1286         */
1287        if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1288                goto release;
1289
1290        len = uarg->len;
1291        lo = uarg->id;
1292        hi = uarg->id + len - 1;
1293        is_zerocopy = uarg->zerocopy;
1294
1295        serr = SKB_EXT_ERR(skb);
1296        memset(serr, 0, sizeof(*serr));
1297        serr->ee.ee_errno = 0;
1298        serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1299        serr->ee.ee_data = hi;
1300        serr->ee.ee_info = lo;
1301        if (!is_zerocopy)
1302                serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1303
1304        q = &sk->sk_error_queue;
1305        spin_lock_irqsave(&q->lock, flags);
1306        tail = skb_peek_tail(q);
1307        if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1308            !skb_zerocopy_notify_extend(tail, lo, len)) {
1309                __skb_queue_tail(q, skb);
1310                skb = NULL;
1311        }
1312        spin_unlock_irqrestore(&q->lock, flags);
1313
1314        sk_error_report(sk);
1315
1316release:
1317        consume_skb(skb);
1318        sock_put(sk);
1319}
1320
1321void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1322                           bool success)
1323{
1324        uarg->zerocopy = uarg->zerocopy & success;
1325
1326        if (refcount_dec_and_test(&uarg->refcnt))
1327                __msg_zerocopy_callback(uarg);
1328}
1329EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1330
1331void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1332{
1333        struct sock *sk = skb_from_uarg(uarg)->sk;
1334
1335        atomic_dec(&sk->sk_zckey);
1336        uarg->len--;
1337
1338        if (have_uref)
1339                msg_zerocopy_callback(NULL, uarg, true);
1340}
1341EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1342
1343int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1344{
1345        return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1346}
1347EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1348
1349int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1350                             struct msghdr *msg, int len,
1351                             struct ubuf_info *uarg)
1352{
1353        struct ubuf_info *orig_uarg = skb_zcopy(skb);
1354        struct iov_iter orig_iter = msg->msg_iter;
1355        int err, orig_len = skb->len;
1356
1357        /* An skb can only point to one uarg. This edge case happens when
1358         * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1359         */
1360        if (orig_uarg && uarg != orig_uarg)
1361                return -EEXIST;
1362
1363        err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1364        if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1365                struct sock *save_sk = skb->sk;
1366
1367                /* Streams do not free skb on error. Reset to prev state. */
1368                msg->msg_iter = orig_iter;
1369                skb->sk = sk;
1370                ___pskb_trim(skb, orig_len);
1371                skb->sk = save_sk;
1372                return err;
1373        }
1374
1375        skb_zcopy_set(skb, uarg, NULL);
1376        return skb->len - orig_len;
1377}
1378EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1379
1380static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1381                              gfp_t gfp_mask)
1382{
1383        if (skb_zcopy(orig)) {
1384                if (skb_zcopy(nskb)) {
1385                        /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1386                        if (!gfp_mask) {
1387                                WARN_ON_ONCE(1);
1388                                return -ENOMEM;
1389                        }
1390                        if (skb_uarg(nskb) == skb_uarg(orig))
1391                                return 0;
1392                        if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1393                                return -EIO;
1394                }
1395                skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1396        }
1397        return 0;
1398}
1399
1400/**
1401 *      skb_copy_ubufs  -       copy userspace skb frags buffers to kernel
1402 *      @skb: the skb to modify
1403 *      @gfp_mask: allocation priority
1404 *
1405 *      This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1406 *      It will copy all frags into kernel and drop the reference
1407 *      to userspace pages.
1408 *
1409 *      If this function is called from an interrupt gfp_mask() must be
1410 *      %GFP_ATOMIC.
1411 *
1412 *      Returns 0 on success or a negative error code on failure
1413 *      to allocate kernel memory to copy to.
1414 */
1415int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1416{
1417        int num_frags = skb_shinfo(skb)->nr_frags;
1418        struct page *page, *head = NULL;
1419        int i, new_frags;
1420        u32 d_off;
1421
1422        if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1423                return -EINVAL;
1424
1425        if (!num_frags)
1426                goto release;
1427
1428        new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1429        for (i = 0; i < new_frags; i++) {
1430                page = alloc_page(gfp_mask);
1431                if (!page) {
1432                        while (head) {
1433                                struct page *next = (struct page *)page_private(head);
1434                                put_page(head);
1435                                head = next;
1436                        }
1437                        return -ENOMEM;
1438                }
1439                set_page_private(page, (unsigned long)head);
1440                head = page;
1441        }
1442
1443        page = head;
1444        d_off = 0;
1445        for (i = 0; i < num_frags; i++) {
1446                skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1447                u32 p_off, p_len, copied;
1448                struct page *p;
1449                u8 *vaddr;
1450
1451                skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1452                                      p, p_off, p_len, copied) {
1453                        u32 copy, done = 0;
1454                        vaddr = kmap_atomic(p);
1455
1456                        while (done < p_len) {
1457                                if (d_off == PAGE_SIZE) {
1458                                        d_off = 0;
1459                                        page = (struct page *)page_private(page);
1460                                }
1461                                copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1462                                memcpy(page_address(page) + d_off,
1463                                       vaddr + p_off + done, copy);
1464                                done += copy;
1465                                d_off += copy;
1466                        }
1467                        kunmap_atomic(vaddr);
1468                }
1469        }
1470
1471        /* skb frags release userspace buffers */
1472        for (i = 0; i < num_frags; i++)
1473                skb_frag_unref(skb, i);
1474
1475        /* skb frags point to kernel buffers */
1476        for (i = 0; i < new_frags - 1; i++) {
1477                __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1478                head = (struct page *)page_private(head);
1479        }
1480        __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1481        skb_shinfo(skb)->nr_frags = new_frags;
1482
1483release:
1484        skb_zcopy_clear(skb, false);
1485        return 0;
1486}
1487EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1488
1489/**
1490 *      skb_clone       -       duplicate an sk_buff
1491 *      @skb: buffer to clone
1492 *      @gfp_mask: allocation priority
1493 *
1494 *      Duplicate an &sk_buff. The new one is not owned by a socket. Both
1495 *      copies share the same packet data but not structure. The new
1496 *      buffer has a reference count of 1. If the allocation fails the
1497 *      function returns %NULL otherwise the new buffer is returned.
1498 *
1499 *      If this function is called from an interrupt gfp_mask() must be
1500 *      %GFP_ATOMIC.
1501 */
1502
1503struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1504{
1505        struct sk_buff_fclones *fclones = container_of(skb,
1506                                                       struct sk_buff_fclones,
1507                                                       skb1);
1508        struct sk_buff *n;
1509
1510        if (skb_orphan_frags(skb, gfp_mask))
1511                return NULL;
1512
1513        if (skb->fclone == SKB_FCLONE_ORIG &&
1514            refcount_read(&fclones->fclone_ref) == 1) {
1515                n = &fclones->skb2;
1516                refcount_set(&fclones->fclone_ref, 2);
1517        } else {
1518                if (skb_pfmemalloc(skb))
1519                        gfp_mask |= __GFP_MEMALLOC;
1520
1521                n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1522                if (!n)
1523                        return NULL;
1524
1525                n->fclone = SKB_FCLONE_UNAVAILABLE;
1526        }
1527
1528        return __skb_clone(n, skb);
1529}
1530EXPORT_SYMBOL(skb_clone);
1531
1532void skb_headers_offset_update(struct sk_buff *skb, int off)
1533{
1534        /* Only adjust this if it actually is csum_start rather than csum */
1535        if (skb->ip_summed == CHECKSUM_PARTIAL)
1536                skb->csum_start += off;
1537        /* {transport,network,mac}_header and tail are relative to skb->head */
1538        skb->transport_header += off;
1539        skb->network_header   += off;
1540        if (skb_mac_header_was_set(skb))
1541                skb->mac_header += off;
1542        skb->inner_transport_header += off;
1543        skb->inner_network_header += off;
1544        skb->inner_mac_header += off;
1545}
1546EXPORT_SYMBOL(skb_headers_offset_update);
1547
1548void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1549{
1550        __copy_skb_header(new, old);
1551
1552        skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1553        skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1554        skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1555}
1556EXPORT_SYMBOL(skb_copy_header);
1557
1558static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1559{
1560        if (skb_pfmemalloc(skb))
1561                return SKB_ALLOC_RX;
1562        return 0;
1563}
1564
1565/**
1566 *      skb_copy        -       create private copy of an sk_buff
1567 *      @skb: buffer to copy
1568 *      @gfp_mask: allocation priority
1569 *
1570 *      Make a copy of both an &sk_buff and its data. This is used when the
1571 *      caller wishes to modify the data and needs a private copy of the
1572 *      data to alter. Returns %NULL on failure or the pointer to the buffer
1573 *      on success. The returned buffer has a reference count of 1.
1574 *
1575 *      As by-product this function converts non-linear &sk_buff to linear
1576 *      one, so that &sk_buff becomes completely private and caller is allowed
1577 *      to modify all the data of returned buffer. This means that this
1578 *      function is not recommended for use in circumstances when only
1579 *      header is going to be modified. Use pskb_copy() instead.
1580 */
1581
1582struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1583{
1584        int headerlen = skb_headroom(skb);
1585        unsigned int size = skb_end_offset(skb) + skb->data_len;
1586        struct sk_buff *n = __alloc_skb(size, gfp_mask,
1587                                        skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1588
1589        if (!n)
1590                return NULL;
1591
1592        /* Set the data pointer */
1593        skb_reserve(n, headerlen);
1594        /* Set the tail pointer and length */
1595        skb_put(n, skb->len);
1596
1597        BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1598
1599        skb_copy_header(n, skb);
1600        return n;
1601}
1602EXPORT_SYMBOL(skb_copy);
1603
1604/**
1605 *      __pskb_copy_fclone      -  create copy of an sk_buff with private head.
1606 *      @skb: buffer to copy
1607 *      @headroom: headroom of new skb
1608 *      @gfp_mask: allocation priority
1609 *      @fclone: if true allocate the copy of the skb from the fclone
1610 *      cache instead of the head cache; it is recommended to set this
1611 *      to true for the cases where the copy will likely be cloned
1612 *
1613 *      Make a copy of both an &sk_buff and part of its data, located
1614 *      in header. Fragmented data remain shared. This is used when
1615 *      the caller wishes to modify only header of &sk_buff and needs
1616 *      private copy of the header to alter. Returns %NULL on failure
1617 *      or the pointer to the buffer on success.
1618 *      The returned buffer has a reference count of 1.
1619 */
1620
1621struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1622                                   gfp_t gfp_mask, bool fclone)
1623{
1624        unsigned int size = skb_headlen(skb) + headroom;
1625        int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1626        struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1627
1628        if (!n)
1629                goto out;
1630
1631        /* Set the data pointer */
1632        skb_reserve(n, headroom);
1633        /* Set the tail pointer and length */
1634        skb_put(n, skb_headlen(skb));
1635        /* Copy the bytes */
1636        skb_copy_from_linear_data(skb, n->data, n->len);
1637
1638        n->truesize += skb->data_len;
1639        n->data_len  = skb->data_len;
1640        n->len       = skb->len;
1641
1642        if (skb_shinfo(skb)->nr_frags) {
1643                int i;
1644
1645                if (skb_orphan_frags(skb, gfp_mask) ||
1646                    skb_zerocopy_clone(n, skb, gfp_mask)) {
1647                        kfree_skb(n);
1648                        n = NULL;
1649                        goto out;
1650                }
1651                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1652                        skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1653                        skb_frag_ref(skb, i);
1654                }
1655                skb_shinfo(n)->nr_frags = i;
1656        }
1657
1658        if (skb_has_frag_list(skb)) {
1659                skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1660                skb_clone_fraglist(n);
1661        }
1662
1663        skb_copy_header(n, skb);
1664out:
1665        return n;
1666}
1667EXPORT_SYMBOL(__pskb_copy_fclone);
1668
1669/**
1670 *      pskb_expand_head - reallocate header of &sk_buff
1671 *      @skb: buffer to reallocate
1672 *      @nhead: room to add at head
1673 *      @ntail: room to add at tail
1674 *      @gfp_mask: allocation priority
1675 *
1676 *      Expands (or creates identical copy, if @nhead and @ntail are zero)
1677 *      header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1678 *      reference count of 1. Returns zero in the case of success or error,
1679 *      if expansion failed. In the last case, &sk_buff is not changed.
1680 *
1681 *      All the pointers pointing into skb header may change and must be
1682 *      reloaded after call to this function.
1683 */
1684
1685int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1686                     gfp_t gfp_mask)
1687{
1688        int i, osize = skb_end_offset(skb);
1689        int size = osize + nhead + ntail;
1690        long off;
1691        u8 *data;
1692
1693        BUG_ON(nhead < 0);
1694
1695        BUG_ON(skb_shared(skb));
1696
1697        size = SKB_DATA_ALIGN(size);
1698
1699        if (skb_pfmemalloc(skb))
1700                gfp_mask |= __GFP_MEMALLOC;
1701        data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1702                               gfp_mask, NUMA_NO_NODE, NULL);
1703        if (!data)
1704                goto nodata;
1705        size = SKB_WITH_OVERHEAD(ksize(data));
1706
1707        /* Copy only real data... and, alas, header. This should be
1708         * optimized for the cases when header is void.
1709         */
1710        memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1711
1712        memcpy((struct skb_shared_info *)(data + size),
1713               skb_shinfo(skb),
1714               offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1715
1716        /*
1717         * if shinfo is shared we must drop the old head gracefully, but if it
1718         * is not we can just drop the old head and let the existing refcount
1719         * be since all we did is relocate the values
1720         */
1721        if (skb_cloned(skb)) {
1722                if (skb_orphan_frags(skb, gfp_mask))
1723                        goto nofrags;
1724                if (skb_zcopy(skb))
1725                        refcount_inc(&skb_uarg(skb)->refcnt);
1726                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1727                        skb_frag_ref(skb, i);
1728
1729                if (skb_has_frag_list(skb))
1730                        skb_clone_fraglist(skb);
1731
1732                skb_release_data(skb);
1733        } else {
1734                skb_free_head(skb);
1735        }
1736        off = (data + nhead) - skb->head;
1737
1738        skb->head     = data;
1739        skb->head_frag = 0;
1740        skb->data    += off;
1741#ifdef NET_SKBUFF_DATA_USES_OFFSET
1742        skb->end      = size;
1743        off           = nhead;
1744#else
1745        skb->end      = skb->head + size;
1746#endif
1747        skb->tail             += off;
1748        skb_headers_offset_update(skb, nhead);
1749        skb->cloned   = 0;
1750        skb->hdr_len  = 0;
1751        skb->nohdr    = 0;
1752        atomic_set(&skb_shinfo(skb)->dataref, 1);
1753
1754        skb_metadata_clear(skb);
1755
1756        /* It is not generally safe to change skb->truesize.
1757         * For the moment, we really care of rx path, or
1758         * when skb is orphaned (not attached to a socket).
1759         */
1760        if (!skb->sk || skb->destructor == sock_edemux)
1761                skb->truesize += size - osize;
1762
1763        return 0;
1764
1765nofrags:
1766        kfree(data);
1767nodata:
1768        return -ENOMEM;
1769}
1770EXPORT_SYMBOL(pskb_expand_head);
1771
1772/* Make private copy of skb with writable head and some headroom */
1773
1774struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1775{
1776        struct sk_buff *skb2;
1777        int delta = headroom - skb_headroom(skb);
1778
1779        if (delta <= 0)
1780                skb2 = pskb_copy(skb, GFP_ATOMIC);
1781        else {
1782                skb2 = skb_clone(skb, GFP_ATOMIC);
1783                if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1784                                             GFP_ATOMIC)) {
1785                        kfree_skb(skb2);
1786                        skb2 = NULL;
1787                }
1788        }
1789        return skb2;
1790}
1791EXPORT_SYMBOL(skb_realloc_headroom);
1792
1793/**
1794 *      skb_expand_head - reallocate header of &sk_buff
1795 *      @skb: buffer to reallocate
1796 *      @headroom: needed headroom
1797 *
1798 *      Unlike skb_realloc_headroom, this one does not allocate a new skb
1799 *      if possible; copies skb->sk to new skb as needed
1800 *      and frees original skb in case of failures.
1801 *
1802 *      It expect increased headroom and generates warning otherwise.
1803 */
1804
1805struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
1806{
1807        int delta = headroom - skb_headroom(skb);
1808        int osize = skb_end_offset(skb);
1809        struct sock *sk = skb->sk;
1810
1811        if (WARN_ONCE(delta <= 0,
1812                      "%s is expecting an increase in the headroom", __func__))
1813                return skb;
1814
1815        delta = SKB_DATA_ALIGN(delta);
1816        /* pskb_expand_head() might crash, if skb is shared. */
1817        if (skb_shared(skb) || !is_skb_wmem(skb)) {
1818                struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1819
1820                if (unlikely(!nskb))
1821                        goto fail;
1822
1823                if (sk)
1824                        skb_set_owner_w(nskb, sk);
1825                consume_skb(skb);
1826                skb = nskb;
1827        }
1828        if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
1829                goto fail;
1830
1831        if (sk && is_skb_wmem(skb)) {
1832                delta = skb_end_offset(skb) - osize;
1833                refcount_add(delta, &sk->sk_wmem_alloc);
1834                skb->truesize += delta;
1835        }
1836        return skb;
1837
1838fail:
1839        kfree_skb(skb);
1840        return NULL;
1841}
1842EXPORT_SYMBOL(skb_expand_head);
1843
1844/**
1845 *      skb_copy_expand -       copy and expand sk_buff
1846 *      @skb: buffer to copy
1847 *      @newheadroom: new free bytes at head
1848 *      @newtailroom: new free bytes at tail
1849 *      @gfp_mask: allocation priority
1850 *
1851 *      Make a copy of both an &sk_buff and its data and while doing so
1852 *      allocate additional space.
1853 *
1854 *      This is used when the caller wishes to modify the data and needs a
1855 *      private copy of the data to alter as well as more space for new fields.
1856 *      Returns %NULL on failure or the pointer to the buffer
1857 *      on success. The returned buffer has a reference count of 1.
1858 *
1859 *      You must pass %GFP_ATOMIC as the allocation priority if this function
1860 *      is called from an interrupt.
1861 */
1862struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1863                                int newheadroom, int newtailroom,
1864                                gfp_t gfp_mask)
1865{
1866        /*
1867         *      Allocate the copy buffer
1868         */
1869        struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1870                                        gfp_mask, skb_alloc_rx_flag(skb),
1871                                        NUMA_NO_NODE);
1872        int oldheadroom = skb_headroom(skb);
1873        int head_copy_len, head_copy_off;
1874
1875        if (!n)
1876                return NULL;
1877
1878        skb_reserve(n, newheadroom);
1879
1880        /* Set the tail pointer and length */
1881        skb_put(n, skb->len);
1882
1883        head_copy_len = oldheadroom;
1884        head_copy_off = 0;
1885        if (newheadroom <= head_copy_len)
1886                head_copy_len = newheadroom;
1887        else
1888                head_copy_off = newheadroom - head_copy_len;
1889
1890        /* Copy the linear header and data. */
1891        BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1892                             skb->len + head_copy_len));
1893
1894        skb_copy_header(n, skb);
1895
1896        skb_headers_offset_update(n, newheadroom - oldheadroom);
1897
1898        return n;
1899}
1900EXPORT_SYMBOL(skb_copy_expand);
1901
1902/**
1903 *      __skb_pad               -       zero pad the tail of an skb
1904 *      @skb: buffer to pad
1905 *      @pad: space to pad
1906 *      @free_on_error: free buffer on error
1907 *
1908 *      Ensure that a buffer is followed by a padding area that is zero
1909 *      filled. Used by network drivers which may DMA or transfer data
1910 *      beyond the buffer end onto the wire.
1911 *
1912 *      May return error in out of memory cases. The skb is freed on error
1913 *      if @free_on_error is true.
1914 */
1915
1916int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1917{
1918        int err;
1919        int ntail;
1920
1921        /* If the skbuff is non linear tailroom is always zero.. */
1922        if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1923                memset(skb->data+skb->len, 0, pad);
1924                return 0;
1925        }
1926
1927        ntail = skb->data_len + pad - (skb->end - skb->tail);
1928        if (likely(skb_cloned(skb) || ntail > 0)) {
1929                err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1930                if (unlikely(err))
1931                        goto free_skb;
1932        }
1933
1934        /* FIXME: The use of this function with non-linear skb's really needs
1935         * to be audited.
1936         */
1937        err = skb_linearize(skb);
1938        if (unlikely(err))
1939                goto free_skb;
1940
1941        memset(skb->data + skb->len, 0, pad);
1942        return 0;
1943
1944free_skb:
1945        if (free_on_error)
1946                kfree_skb(skb);
1947        return err;
1948}
1949EXPORT_SYMBOL(__skb_pad);
1950
1951/**
1952 *      pskb_put - add data to the tail of a potentially fragmented buffer
1953 *      @skb: start of the buffer to use
1954 *      @tail: tail fragment of the buffer to use
1955 *      @len: amount of data to add
1956 *
1957 *      This function extends the used data area of the potentially
1958 *      fragmented buffer. @tail must be the last fragment of @skb -- or
1959 *      @skb itself. If this would exceed the total buffer size the kernel
1960 *      will panic. A pointer to the first byte of the extra data is
1961 *      returned.
1962 */
1963
1964void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1965{
1966        if (tail != skb) {
1967                skb->data_len += len;
1968                skb->len += len;
1969        }
1970        return skb_put(tail, len);
1971}
1972EXPORT_SYMBOL_GPL(pskb_put);
1973
1974/**
1975 *      skb_put - add data to a buffer
1976 *      @skb: buffer to use
1977 *      @len: amount of data to add
1978 *
1979 *      This function extends the used data area of the buffer. If this would
1980 *      exceed the total buffer size the kernel will panic. A pointer to the
1981 *      first byte of the extra data is returned.
1982 */
1983void *skb_put(struct sk_buff *skb, unsigned int len)
1984{
1985        void *tmp = skb_tail_pointer(skb);
1986        SKB_LINEAR_ASSERT(skb);
1987        skb->tail += len;
1988        skb->len  += len;
1989        if (unlikely(skb->tail > skb->end))
1990                skb_over_panic(skb, len, __builtin_return_address(0));
1991        return tmp;
1992}
1993EXPORT_SYMBOL(skb_put);
1994
1995/**
1996 *      skb_push - add data to the start of a buffer
1997 *      @skb: buffer to use
1998 *      @len: amount of data to add
1999 *
2000 *      This function extends the used data area of the buffer at the buffer
2001 *      start. If this would exceed the total buffer headroom the kernel will
2002 *      panic. A pointer to the first byte of the extra data is returned.
2003 */
2004void *skb_push(struct sk_buff *skb, unsigned int len)
2005{
2006        skb->data -= len;
2007        skb->len  += len;
2008        if (unlikely(skb->data < skb->head))
2009                skb_under_panic(skb, len, __builtin_return_address(0));
2010        return skb->data;
2011}
2012EXPORT_SYMBOL(skb_push);
2013
2014/**
2015 *      skb_pull - remove data from the start of a buffer
2016 *      @skb: buffer to use
2017 *      @len: amount of data to remove
2018 *
2019 *      This function removes data from the start of a buffer, returning
2020 *      the memory to the headroom. A pointer to the next data in the buffer
2021 *      is returned. Once the data has been pulled future pushes will overwrite
2022 *      the old data.
2023 */
2024void *skb_pull(struct sk_buff *skb, unsigned int len)
2025{
2026        return skb_pull_inline(skb, len);
2027}
2028EXPORT_SYMBOL(skb_pull);
2029
2030/**
2031 *      skb_trim - remove end from a buffer
2032 *      @skb: buffer to alter
2033 *      @len: new length
2034 *
2035 *      Cut the length of a buffer down by removing data from the tail. If
2036 *      the buffer is already under the length specified it is not modified.
2037 *      The skb must be linear.
2038 */
2039void skb_trim(struct sk_buff *skb, unsigned int len)
2040{
2041        if (skb->len > len)
2042                __skb_trim(skb, len);
2043}
2044EXPORT_SYMBOL(skb_trim);
2045
2046/* Trims skb to length len. It can change skb pointers.
2047 */
2048
2049int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2050{
2051        struct sk_buff **fragp;
2052        struct sk_buff *frag;
2053        int offset = skb_headlen(skb);
2054        int nfrags = skb_shinfo(skb)->nr_frags;
2055        int i;
2056        int err;
2057
2058        if (skb_cloned(skb) &&
2059            unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2060                return err;
2061
2062        i = 0;
2063        if (offset >= len)
2064                goto drop_pages;
2065
2066        for (; i < nfrags; i++) {
2067                int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2068
2069                if (end < len) {
2070                        offset = end;
2071                        continue;
2072                }
2073
2074                skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2075
2076drop_pages:
2077                skb_shinfo(skb)->nr_frags = i;
2078
2079                for (; i < nfrags; i++)
2080                        skb_frag_unref(skb, i);
2081
2082                if (skb_has_frag_list(skb))
2083                        skb_drop_fraglist(skb);
2084                goto done;
2085        }
2086
2087        for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2088             fragp = &frag->next) {
2089                int end = offset + frag->len;
2090
2091                if (skb_shared(frag)) {
2092                        struct sk_buff *nfrag;
2093
2094                        nfrag = skb_clone(frag, GFP_ATOMIC);
2095                        if (unlikely(!nfrag))
2096                                return -ENOMEM;
2097
2098                        nfrag->next = frag->next;
2099                        consume_skb(frag);
2100                        frag = nfrag;
2101                        *fragp = frag;
2102                }
2103
2104                if (end < len) {
2105                        offset = end;
2106                        continue;
2107                }
2108
2109                if (end > len &&
2110                    unlikely((err = pskb_trim(frag, len - offset))))
2111                        return err;
2112
2113                if (frag->next)
2114                        skb_drop_list(&frag->next);
2115                break;
2116        }
2117
2118done:
2119        if (len > skb_headlen(skb)) {
2120                skb->data_len -= skb->len - len;
2121                skb->len       = len;
2122        } else {
2123                skb->len       = len;
2124                skb->data_len  = 0;
2125                skb_set_tail_pointer(skb, len);
2126        }
2127
2128        if (!skb->sk || skb->destructor == sock_edemux)
2129                skb_condense(skb);
2130        return 0;
2131}
2132EXPORT_SYMBOL(___pskb_trim);
2133
2134/* Note : use pskb_trim_rcsum() instead of calling this directly
2135 */
2136int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2137{
2138        if (skb->ip_summed == CHECKSUM_COMPLETE) {
2139                int delta = skb->len - len;
2140
2141                skb->csum = csum_block_sub(skb->csum,
2142                                           skb_checksum(skb, len, delta, 0),
2143                                           len);
2144        } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2145                int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2146                int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2147
2148                if (offset + sizeof(__sum16) > hdlen)
2149                        return -EINVAL;
2150        }
2151        return __pskb_trim(skb, len);
2152}
2153EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2154
2155/**
2156 *      __pskb_pull_tail - advance tail of skb header
2157 *      @skb: buffer to reallocate
2158 *      @delta: number of bytes to advance tail
2159 *
2160 *      The function makes a sense only on a fragmented &sk_buff,
2161 *      it expands header moving its tail forward and copying necessary
2162 *      data from fragmented part.
2163 *
2164 *      &sk_buff MUST have reference count of 1.
2165 *
2166 *      Returns %NULL (and &sk_buff does not change) if pull failed
2167 *      or value of new tail of skb in the case of success.
2168 *
2169 *      All the pointers pointing into skb header may change and must be
2170 *      reloaded after call to this function.
2171 */
2172
2173/* Moves tail of skb head forward, copying data from fragmented part,
2174 * when it is necessary.
2175 * 1. It may fail due to malloc failure.
2176 * 2. It may change skb pointers.
2177 *
2178 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2179 */
2180void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2181{
2182        /* If skb has not enough free space at tail, get new one
2183         * plus 128 bytes for future expansions. If we have enough
2184         * room at tail, reallocate without expansion only if skb is cloned.
2185         */
2186        int i, k, eat = (skb->tail + delta) - skb->end;
2187
2188        if (eat > 0 || skb_cloned(skb)) {
2189                if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2190                                     GFP_ATOMIC))
2191                        return NULL;
2192        }
2193
2194        BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2195                             skb_tail_pointer(skb), delta));
2196
2197        /* Optimization: no fragments, no reasons to preestimate
2198         * size of pulled pages. Superb.
2199         */
2200        if (!skb_has_frag_list(skb))
2201                goto pull_pages;
2202
2203        /* Estimate size of pulled pages. */
2204        eat = delta;
2205        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2206                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2207
2208                if (size >= eat)
2209                        goto pull_pages;
2210                eat -= size;
2211        }
2212
2213        /* If we need update frag list, we are in troubles.
2214         * Certainly, it is possible to add an offset to skb data,
2215         * but taking into account that pulling is expected to
2216         * be very rare operation, it is worth to fight against
2217         * further bloating skb head and crucify ourselves here instead.
2218         * Pure masohism, indeed. 8)8)
2219         */
2220        if (eat) {
2221                struct sk_buff *list = skb_shinfo(skb)->frag_list;
2222                struct sk_buff *clone = NULL;
2223                struct sk_buff *insp = NULL;
2224
2225                do {
2226                        if (list->len <= eat) {
2227                                /* Eaten as whole. */
2228                                eat -= list->len;
2229                                list = list->next;
2230                                insp = list;
2231                        } else {
2232                                /* Eaten partially. */
2233
2234                                if (skb_shared(list)) {
2235                                        /* Sucks! We need to fork list. :-( */
2236                                        clone = skb_clone(list, GFP_ATOMIC);
2237                                        if (!clone)
2238                                                return NULL;
2239                                        insp = list->next;
2240                                        list = clone;
2241                                } else {
2242                                        /* This may be pulled without
2243                                         * problems. */
2244                                        insp = list;
2245                                }
2246                                if (!pskb_pull(list, eat)) {
2247                                        kfree_skb(clone);
2248                                        return NULL;
2249                                }
2250                                break;
2251                        }
2252                } while (eat);
2253
2254                /* Free pulled out fragments. */
2255                while ((list = skb_shinfo(skb)->frag_list) != insp) {
2256                        skb_shinfo(skb)->frag_list = list->next;
2257                        kfree_skb(list);
2258                }
2259                /* And insert new clone at head. */
2260                if (clone) {
2261                        clone->next = list;
2262                        skb_shinfo(skb)->frag_list = clone;
2263                }
2264        }
2265        /* Success! Now we may commit changes to skb data. */
2266
2267pull_pages:
2268        eat = delta;
2269        k = 0;
2270        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2271                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2272
2273                if (size <= eat) {
2274                        skb_frag_unref(skb, i);
2275                        eat -= size;
2276                } else {
2277                        skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2278
2279                        *frag = skb_shinfo(skb)->frags[i];
2280                        if (eat) {
2281                                skb_frag_off_add(frag, eat);
2282                                skb_frag_size_sub(frag, eat);
2283                                if (!i)
2284                                        goto end;
2285                                eat = 0;
2286                        }
2287                        k++;
2288                }
2289        }
2290        skb_shinfo(skb)->nr_frags = k;
2291
2292end:
2293        skb->tail     += delta;
2294        skb->data_len -= delta;
2295
2296        if (!skb->data_len)
2297                skb_zcopy_clear(skb, false);
2298
2299        return skb_tail_pointer(skb);
2300}
2301EXPORT_SYMBOL(__pskb_pull_tail);
2302
2303/**
2304 *      skb_copy_bits - copy bits from skb to kernel buffer
2305 *      @skb: source skb
2306 *      @offset: offset in source
2307 *      @to: destination buffer
2308 *      @len: number of bytes to copy
2309 *
2310 *      Copy the specified number of bytes from the source skb to the
2311 *      destination buffer.
2312 *
2313 *      CAUTION ! :
2314 *              If its prototype is ever changed,
2315 *              check arch/{*}/net/{*}.S files,
2316 *              since it is called from BPF assembly code.
2317 */
2318int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2319{
2320        int start = skb_headlen(skb);
2321        struct sk_buff *frag_iter;
2322        int i, copy;
2323
2324        if (offset > (int)skb->len - len)
2325                goto fault;
2326
2327        /* Copy header. */
2328        if ((copy = start - offset) > 0) {
2329                if (copy > len)
2330                        copy = len;
2331                skb_copy_from_linear_data_offset(skb, offset, to, copy);
2332                if ((len -= copy) == 0)
2333                        return 0;
2334                offset += copy;
2335                to     += copy;
2336        }
2337
2338        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2339                int end;
2340                skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2341
2342                WARN_ON(start > offset + len);
2343
2344                end = start + skb_frag_size(f);
2345                if ((copy = end - offset) > 0) {
2346                        u32 p_off, p_len, copied;
2347                        struct page *p;
2348                        u8 *vaddr;
2349
2350                        if (copy > len)
2351                                copy = len;
2352
2353                        skb_frag_foreach_page(f,
2354                                              skb_frag_off(f) + offset - start,
2355                                              copy, p, p_off, p_len, copied) {
2356                                vaddr = kmap_atomic(p);
2357                                memcpy(to + copied, vaddr + p_off, p_len);
2358                                kunmap_atomic(vaddr);
2359                        }
2360
2361                        if ((len -= copy) == 0)
2362                                return 0;
2363                        offset += copy;
2364                        to     += copy;
2365                }
2366                start = end;
2367        }
2368
2369        skb_walk_frags(skb, frag_iter) {
2370                int end;
2371
2372                WARN_ON(start > offset + len);
2373
2374                end = start + frag_iter->len;
2375                if ((copy = end - offset) > 0) {
2376                        if (copy > len)
2377                                copy = len;
2378                        if (skb_copy_bits(frag_iter, offset - start, to, copy))
2379                                goto fault;
2380                        if ((len -= copy) == 0)
2381                                return 0;
2382                        offset += copy;
2383                        to     += copy;
2384                }
2385                start = end;
2386        }
2387
2388        if (!len)
2389                return 0;
2390
2391fault:
2392        return -EFAULT;
2393}
2394EXPORT_SYMBOL(skb_copy_bits);
2395
2396/*
2397 * Callback from splice_to_pipe(), if we need to release some pages
2398 * at the end of the spd in case we error'ed out in filling the pipe.
2399 */
2400static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2401{
2402        put_page(spd->pages[i]);
2403}
2404
2405static struct page *linear_to_page(struct page *page, unsigned int *len,
2406                                   unsigned int *offset,
2407                                   struct sock *sk)
2408{
2409        struct page_frag *pfrag = sk_page_frag(sk);
2410
2411        if (!sk_page_frag_refill(sk, pfrag))
2412                return NULL;
2413
2414        *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2415
2416        memcpy(page_address(pfrag->page) + pfrag->offset,
2417               page_address(page) + *offset, *len);
2418        *offset = pfrag->offset;
2419        pfrag->offset += *len;
2420
2421        return pfrag->page;
2422}
2423
2424static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2425                             struct page *page,
2426                             unsigned int offset)
2427{
2428        return  spd->nr_pages &&
2429                spd->pages[spd->nr_pages - 1] == page &&
2430                (spd->partial[spd->nr_pages - 1].offset +
2431                 spd->partial[spd->nr_pages - 1].len == offset);
2432}
2433
2434/*
2435 * Fill page/offset/length into spd, if it can hold more pages.
2436 */
2437static bool spd_fill_page(struct splice_pipe_desc *spd,
2438                          struct pipe_inode_info *pipe, struct page *page,
2439                          unsigned int *len, unsigned int offset,
2440                          bool linear,
2441                          struct sock *sk)
2442{
2443        if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2444                return true;
2445
2446        if (linear) {
2447                page = linear_to_page(page, len, &offset, sk);
2448                if (!page)
2449                        return true;
2450        }
2451        if (spd_can_coalesce(spd, page, offset)) {
2452                spd->partial[spd->nr_pages - 1].len += *len;
2453                return false;
2454        }
2455        get_page(page);
2456        spd->pages[spd->nr_pages] = page;
2457        spd->partial[spd->nr_pages].len = *len;
2458        spd->partial[spd->nr_pages].offset = offset;
2459        spd->nr_pages++;
2460
2461        return false;
2462}
2463
2464static bool __splice_segment(struct page *page, unsigned int poff,
2465                             unsigned int plen, unsigned int *off,
2466                             unsigned int *len,
2467                             struct splice_pipe_desc *spd, bool linear,
2468                             struct sock *sk,
2469                             struct pipe_inode_info *pipe)
2470{
2471        if (!*len)
2472                return true;
2473
2474        /* skip this segment if already processed */
2475        if (*off >= plen) {
2476                *off -= plen;
2477                return false;
2478        }
2479
2480        /* ignore any bits we already processed */
2481        poff += *off;
2482        plen -= *off;
2483        *off = 0;
2484
2485        do {
2486                unsigned int flen = min(*len, plen);
2487
2488                if (spd_fill_page(spd, pipe, page, &flen, poff,
2489                                  linear, sk))
2490                        return true;
2491                poff += flen;
2492                plen -= flen;
2493                *len -= flen;
2494        } while (*len && plen);
2495
2496        return false;
2497}
2498
2499/*
2500 * Map linear and fragment data from the skb to spd. It reports true if the
2501 * pipe is full or if we already spliced the requested length.
2502 */
2503static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2504                              unsigned int *offset, unsigned int *len,
2505                              struct splice_pipe_desc *spd, struct sock *sk)
2506{
2507        int seg;
2508        struct sk_buff *iter;
2509
2510        /* map the linear part :
2511         * If skb->head_frag is set, this 'linear' part is backed by a
2512         * fragment, and if the head is not shared with any clones then
2513         * we can avoid a copy since we own the head portion of this page.
2514         */
2515        if (__splice_segment(virt_to_page(skb->data),
2516                             (unsigned long) skb->data & (PAGE_SIZE - 1),
2517                             skb_headlen(skb),
2518                             offset, len, spd,
2519                             skb_head_is_locked(skb),
2520                             sk, pipe))
2521                return true;
2522
2523        /*
2524         * then map the fragments
2525         */
2526        for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2527                const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2528
2529                if (__splice_segment(skb_frag_page(f),
2530                                     skb_frag_off(f), skb_frag_size(f),
2531                                     offset, len, spd, false, sk, pipe))
2532                        return true;
2533        }
2534
2535        skb_walk_frags(skb, iter) {
2536                if (*offset >= iter->len) {
2537                        *offset -= iter->len;
2538                        continue;
2539                }
2540                /* __skb_splice_bits() only fails if the output has no room
2541                 * left, so no point in going over the frag_list for the error
2542                 * case.
2543                 */
2544                if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2545                        return true;
2546        }
2547
2548        return false;
2549}
2550
2551/*
2552 * Map data from the skb to a pipe. Should handle both the linear part,
2553 * the fragments, and the frag list.
2554 */
2555int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2556                    struct pipe_inode_info *pipe, unsigned int tlen,
2557                    unsigned int flags)
2558{
2559        struct partial_page partial[MAX_SKB_FRAGS];
2560        struct page *pages[MAX_SKB_FRAGS];
2561        struct splice_pipe_desc spd = {
2562                .pages = pages,
2563                .partial = partial,
2564                .nr_pages_max = MAX_SKB_FRAGS,
2565                .ops = &nosteal_pipe_buf_ops,
2566                .spd_release = sock_spd_release,
2567        };
2568        int ret = 0;
2569
2570        __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2571
2572        if (spd.nr_pages)
2573                ret = splice_to_pipe(pipe, &spd);
2574
2575        return ret;
2576}
2577EXPORT_SYMBOL_GPL(skb_splice_bits);
2578
2579static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2580                            struct kvec *vec, size_t num, size_t size)
2581{
2582        struct socket *sock = sk->sk_socket;
2583
2584        if (!sock)
2585                return -EINVAL;
2586        return kernel_sendmsg(sock, msg, vec, num, size);
2587}
2588
2589static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2590                             size_t size, int flags)
2591{
2592        struct socket *sock = sk->sk_socket;
2593
2594        if (!sock)
2595                return -EINVAL;
2596        return kernel_sendpage(sock, page, offset, size, flags);
2597}
2598
2599typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2600                            struct kvec *vec, size_t num, size_t size);
2601typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2602                             size_t size, int flags);
2603static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2604                           int len, sendmsg_func sendmsg, sendpage_func sendpage)
2605{
2606        unsigned int orig_len = len;
2607        struct sk_buff *head = skb;
2608        unsigned short fragidx;
2609        int slen, ret;
2610
2611do_frag_list:
2612
2613        /* Deal with head data */
2614        while (offset < skb_headlen(skb) && len) {
2615                struct kvec kv;
2616                struct msghdr msg;
2617
2618                slen = min_t(int, len, skb_headlen(skb) - offset);
2619                kv.iov_base = skb->data + offset;
2620                kv.iov_len = slen;
2621                memset(&msg, 0, sizeof(msg));
2622                msg.msg_flags = MSG_DONTWAIT;
2623
2624                ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2625                                      sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2626                if (ret <= 0)
2627                        goto error;
2628
2629                offset += ret;
2630                len -= ret;
2631        }
2632
2633        /* All the data was skb head? */
2634        if (!len)
2635                goto out;
2636
2637        /* Make offset relative to start of frags */
2638        offset -= skb_headlen(skb);
2639
2640        /* Find where we are in frag list */
2641        for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2642                skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2643
2644                if (offset < skb_frag_size(frag))
2645                        break;
2646
2647                offset -= skb_frag_size(frag);
2648        }
2649
2650        for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2651                skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2652
2653                slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2654
2655                while (slen) {
2656                        ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2657                                              sendpage_unlocked, sk,
2658                                              skb_frag_page(frag),
2659                                              skb_frag_off(frag) + offset,
2660                                              slen, MSG_DONTWAIT);
2661                        if (ret <= 0)
2662                                goto error;
2663
2664                        len -= ret;
2665                        offset += ret;
2666                        slen -= ret;
2667                }
2668
2669                offset = 0;
2670        }
2671
2672        if (len) {
2673                /* Process any frag lists */
2674
2675                if (skb == head) {
2676                        if (skb_has_frag_list(skb)) {
2677                                skb = skb_shinfo(skb)->frag_list;
2678                                goto do_frag_list;
2679                        }
2680                } else if (skb->next) {
2681                        skb = skb->next;
2682                        goto do_frag_list;
2683                }
2684        }
2685
2686out:
2687        return orig_len - len;
2688
2689error:
2690        return orig_len == len ? ret : orig_len - len;
2691}
2692
2693/* Send skb data on a socket. Socket must be locked. */
2694int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2695                         int len)
2696{
2697        return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2698                               kernel_sendpage_locked);
2699}
2700EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2701
2702/* Send skb data on a socket. Socket must be unlocked. */
2703int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2704{
2705        return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2706                               sendpage_unlocked);
2707}
2708
2709/**
2710 *      skb_store_bits - store bits from kernel buffer to skb
2711 *      @skb: destination buffer
2712 *      @offset: offset in destination
2713 *      @from: source buffer
2714 *      @len: number of bytes to copy
2715 *
2716 *      Copy the specified number of bytes from the source buffer to the
2717 *      destination skb.  This function handles all the messy bits of
2718 *      traversing fragment lists and such.
2719 */
2720
2721int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2722{
2723        int start = skb_headlen(skb);
2724        struct sk_buff *frag_iter;
2725        int i, copy;
2726
2727        if (offset > (int)skb->len - len)
2728                goto fault;
2729
2730        if ((copy = start - offset) > 0) {
2731                if (copy > len)
2732                        copy = len;
2733                skb_copy_to_linear_data_offset(skb, offset, from, copy);
2734                if ((len -= copy) == 0)
2735                        return 0;
2736                offset += copy;
2737                from += copy;
2738        }
2739
2740        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2741                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2742                int end;
2743
2744                WARN_ON(start > offset + len);
2745
2746                end = start + skb_frag_size(frag);
2747                if ((copy = end - offset) > 0) {
2748                        u32 p_off, p_len, copied;
2749                        struct page *p;
2750                        u8 *vaddr;
2751
2752                        if (copy > len)
2753                                copy = len;
2754
2755                        skb_frag_foreach_page(frag,
2756                                              skb_frag_off(frag) + offset - start,
2757                                              copy, p, p_off, p_len, copied) {
2758                                vaddr = kmap_atomic(p);
2759                                memcpy(vaddr + p_off, from + copied, p_len);
2760                                kunmap_atomic(vaddr);
2761                        }
2762
2763                        if ((len -= copy) == 0)
2764                                return 0;
2765                        offset += copy;
2766                        from += copy;
2767                }
2768                start = end;
2769        }
2770
2771        skb_walk_frags(skb, frag_iter) {
2772                int end;
2773
2774                WARN_ON(start > offset + len);
2775
2776                end = start + frag_iter->len;
2777                if ((copy = end - offset) > 0) {
2778                        if (copy > len)
2779                                copy = len;
2780                        if (skb_store_bits(frag_iter, offset - start,
2781                                           from, copy))
2782                                goto fault;
2783                        if ((len -= copy) == 0)
2784                                return 0;
2785                        offset += copy;
2786                        from += copy;
2787                }
2788                start = end;
2789        }
2790        if (!len)
2791                return 0;
2792
2793fault:
2794        return -EFAULT;
2795}
2796EXPORT_SYMBOL(skb_store_bits);
2797
2798/* Checksum skb data. */
2799__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2800                      __wsum csum, const struct skb_checksum_ops *ops)
2801{
2802        int start = skb_headlen(skb);
2803        int i, copy = start - offset;
2804        struct sk_buff *frag_iter;
2805        int pos = 0;
2806
2807        /* Checksum header. */
2808        if (copy > 0) {
2809                if (copy > len)
2810                        copy = len;
2811                csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2812                                       skb->data + offset, copy, csum);
2813                if ((len -= copy) == 0)
2814                        return csum;
2815                offset += copy;
2816                pos     = copy;
2817        }
2818
2819        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2820                int end;
2821                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2822
2823                WARN_ON(start > offset + len);
2824
2825                end = start + skb_frag_size(frag);
2826                if ((copy = end - offset) > 0) {
2827                        u32 p_off, p_len, copied;
2828                        struct page *p;
2829                        __wsum csum2;
2830                        u8 *vaddr;
2831
2832                        if (copy > len)
2833                                copy = len;
2834
2835                        skb_frag_foreach_page(frag,
2836                                              skb_frag_off(frag) + offset - start,
2837                                              copy, p, p_off, p_len, copied) {
2838                                vaddr = kmap_atomic(p);
2839                                csum2 = INDIRECT_CALL_1(ops->update,
2840                                                        csum_partial_ext,
2841                                                        vaddr + p_off, p_len, 0);
2842                                kunmap_atomic(vaddr);
2843                                csum = INDIRECT_CALL_1(ops->combine,
2844                                                       csum_block_add_ext, csum,
2845                                                       csum2, pos, p_len);
2846                                pos += p_len;
2847                        }
2848
2849                        if (!(len -= copy))
2850                                return csum;
2851                        offset += copy;
2852                }
2853                start = end;
2854        }
2855
2856        skb_walk_frags(skb, frag_iter) {
2857                int end;
2858
2859                WARN_ON(start > offset + len);
2860
2861                end = start + frag_iter->len;
2862                if ((copy = end - offset) > 0) {
2863                        __wsum csum2;
2864                        if (copy > len)
2865                                copy = len;
2866                        csum2 = __skb_checksum(frag_iter, offset - start,
2867                                               copy, 0, ops);
2868                        csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2869                                               csum, csum2, pos, copy);
2870                        if ((len -= copy) == 0)
2871                                return csum;
2872                        offset += copy;
2873                        pos    += copy;
2874                }
2875                start = end;
2876        }
2877        BUG_ON(len);
2878
2879        return csum;
2880}
2881EXPORT_SYMBOL(__skb_checksum);
2882
2883__wsum skb_checksum(const struct sk_buff *skb, int offset,
2884                    int len, __wsum csum)
2885{
2886        const struct skb_checksum_ops ops = {
2887                .update  = csum_partial_ext,
2888                .combine = csum_block_add_ext,
2889        };
2890
2891        return __skb_checksum(skb, offset, len, csum, &ops);
2892}
2893EXPORT_SYMBOL(skb_checksum);
2894
2895/* Both of above in one bottle. */
2896
2897__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2898                                    u8 *to, int len)
2899{
2900        int start = skb_headlen(skb);
2901        int i, copy = start - offset;
2902        struct sk_buff *frag_iter;
2903        int pos = 0;
2904        __wsum csum = 0;
2905
2906        /* Copy header. */
2907        if (copy > 0) {
2908                if (copy > len)
2909                        copy = len;
2910                csum = csum_partial_copy_nocheck(skb->data + offset, to,
2911                                                 copy);
2912                if ((len -= copy) == 0)
2913                        return csum;
2914                offset += copy;
2915                to     += copy;
2916                pos     = copy;
2917        }
2918
2919        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2920                int end;
2921
2922                WARN_ON(start > offset + len);
2923
2924                end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2925                if ((copy = end - offset) > 0) {
2926                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2927                        u32 p_off, p_len, copied;
2928                        struct page *p;
2929                        __wsum csum2;
2930                        u8 *vaddr;
2931
2932                        if (copy > len)
2933                                copy = len;
2934
2935                        skb_frag_foreach_page(frag,
2936                                              skb_frag_off(frag) + offset - start,
2937                                              copy, p, p_off, p_len, copied) {
2938                                vaddr = kmap_atomic(p);
2939                                csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2940                                                                  to + copied,
2941                                                                  p_len);
2942                                kunmap_atomic(vaddr);
2943                                csum = csum_block_add(csum, csum2, pos);
2944                                pos += p_len;
2945                        }
2946
2947                        if (!(len -= copy))
2948                                return csum;
2949                        offset += copy;
2950                        to     += copy;
2951                }
2952                start = end;
2953        }
2954
2955        skb_walk_frags(skb, frag_iter) {
2956                __wsum csum2;
2957                int end;
2958
2959                WARN_ON(start > offset + len);
2960
2961                end = start + frag_iter->len;
2962                if ((copy = end - offset) > 0) {
2963                        if (copy > len)
2964                                copy = len;
2965                        csum2 = skb_copy_and_csum_bits(frag_iter,
2966                                                       offset - start,
2967                                                       to, copy);
2968                        csum = csum_block_add(csum, csum2, pos);
2969                        if ((len -= copy) == 0)
2970                                return csum;
2971                        offset += copy;
2972                        to     += copy;
2973                        pos    += copy;
2974                }
2975                start = end;
2976        }
2977        BUG_ON(len);
2978        return csum;
2979}
2980EXPORT_SYMBOL(skb_copy_and_csum_bits);
2981
2982__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2983{
2984        __sum16 sum;
2985
2986        sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2987        /* See comments in __skb_checksum_complete(). */
2988        if (likely(!sum)) {
2989                if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2990                    !skb->csum_complete_sw)
2991                        netdev_rx_csum_fault(skb->dev, skb);
2992        }
2993        if (!skb_shared(skb))
2994                skb->csum_valid = !sum;
2995        return sum;
2996}
2997EXPORT_SYMBOL(__skb_checksum_complete_head);
2998
2999/* This function assumes skb->csum already holds pseudo header's checksum,
3000 * which has been changed from the hardware checksum, for example, by
3001 * __skb_checksum_validate_complete(). And, the original skb->csum must
3002 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3003 *
3004 * It returns non-zero if the recomputed checksum is still invalid, otherwise
3005 * zero. The new checksum is stored back into skb->csum unless the skb is
3006 * shared.
3007 */
3008__sum16 __skb_checksum_complete(struct sk_buff *skb)
3009{
3010        __wsum csum;
3011        __sum16 sum;
3012
3013        csum = skb_checksum(skb, 0, skb->len, 0);
3014
3015        sum = csum_fold(csum_add(skb->csum, csum));
3016        /* This check is inverted, because we already knew the hardware
3017         * checksum is invalid before calling this function. So, if the
3018         * re-computed checksum is valid instead, then we have a mismatch
3019         * between the original skb->csum and skb_checksum(). This means either
3020         * the original hardware checksum is incorrect or we screw up skb->csum
3021         * when moving skb->data around.
3022         */
3023        if (likely(!sum)) {
3024                if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3025                    !skb->csum_complete_sw)
3026                        netdev_rx_csum_fault(skb->dev, skb);
3027        }
3028
3029        if (!skb_shared(skb)) {
3030                /* Save full packet checksum */
3031                skb->csum = csum;
3032                skb->ip_summed = CHECKSUM_COMPLETE;
3033                skb->csum_complete_sw = 1;
3034                skb->csum_valid = !sum;
3035        }
3036
3037        return sum;
3038}
3039EXPORT_SYMBOL(__skb_checksum_complete);
3040
3041static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3042{
3043        net_warn_ratelimited(
3044                "%s: attempt to compute crc32c without libcrc32c.ko\n",
3045                __func__);
3046        return 0;
3047}
3048
3049static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3050                                       int offset, int len)
3051{
3052        net_warn_ratelimited(
3053                "%s: attempt to compute crc32c without libcrc32c.ko\n",
3054                __func__);
3055        return 0;
3056}
3057
3058static const struct skb_checksum_ops default_crc32c_ops = {
3059        .update  = warn_crc32c_csum_update,
3060        .combine = warn_crc32c_csum_combine,
3061};
3062
3063const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3064        &default_crc32c_ops;
3065EXPORT_SYMBOL(crc32c_csum_stub);
3066
3067 /**
3068 *      skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3069 *      @from: source buffer
3070 *
3071 *      Calculates the amount of linear headroom needed in the 'to' skb passed
3072 *      into skb_zerocopy().
3073 */
3074unsigned int
3075skb_zerocopy_headlen(const struct sk_buff *from)
3076{
3077        unsigned int hlen = 0;
3078
3079        if (!from->head_frag ||
3080            skb_headlen(from) < L1_CACHE_BYTES ||
3081            skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3082                hlen = skb_headlen(from);
3083                if (!hlen)
3084                        hlen = from->len;
3085        }
3086
3087        if (skb_has_frag_list(from))
3088                hlen = from->len;
3089
3090        return hlen;
3091}
3092EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3093
3094/**
3095 *      skb_zerocopy - Zero copy skb to skb
3096 *      @to: destination buffer
3097 *      @from: source buffer
3098 *      @len: number of bytes to copy from source buffer
3099 *      @hlen: size of linear headroom in destination buffer
3100 *
3101 *      Copies up to `len` bytes from `from` to `to` by creating references
3102 *      to the frags in the source buffer.
3103 *
3104 *      The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3105 *      headroom in the `to` buffer.
3106 *
3107 *      Return value:
3108 *      0: everything is OK
3109 *      -ENOMEM: couldn't orphan frags of @from due to lack of memory
3110 *      -EFAULT: skb_copy_bits() found some problem with skb geometry
3111 */
3112int
3113skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3114{
3115        int i, j = 0;
3116        int plen = 0; /* length of skb->head fragment */
3117        int ret;
3118        struct page *page;
3119        unsigned int offset;
3120
3121        BUG_ON(!from->head_frag && !hlen);
3122
3123        /* dont bother with small payloads */
3124        if (len <= skb_tailroom(to))
3125                return skb_copy_bits(from, 0, skb_put(to, len), len);
3126
3127        if (hlen) {
3128                ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3129                if (unlikely(ret))
3130                        return ret;
3131                len -= hlen;
3132        } else {
3133                plen = min_t(int, skb_headlen(from), len);
3134                if (plen) {
3135                        page = virt_to_head_page(from->head);
3136                        offset = from->data - (unsigned char *)page_address(page);
3137                        __skb_fill_page_desc(to, 0, page, offset, plen);
3138                        get_page(page);
3139                        j = 1;
3140                        len -= plen;
3141                }
3142        }
3143
3144        to->truesize += len + plen;
3145        to->len += len + plen;
3146        to->data_len += len + plen;
3147
3148        if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3149                skb_tx_error(from);
3150                return -ENOMEM;
3151        }
3152        skb_zerocopy_clone(to, from, GFP_ATOMIC);
3153
3154        for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3155                int size;
3156
3157                if (!len)
3158                        break;
3159                skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3160                size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3161                                        len);
3162                skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3163                len -= size;
3164                skb_frag_ref(to, j);
3165                j++;
3166        }
3167        skb_shinfo(to)->nr_frags = j;
3168
3169        return 0;
3170}
3171EXPORT_SYMBOL_GPL(skb_zerocopy);
3172
3173void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3174{
3175        __wsum csum;
3176        long csstart;
3177
3178        if (skb->ip_summed == CHECKSUM_PARTIAL)
3179                csstart = skb_checksum_start_offset(skb);
3180        else
3181                csstart = skb_headlen(skb);
3182
3183        BUG_ON(csstart > skb_headlen(skb));
3184
3185        skb_copy_from_linear_data(skb, to, csstart);
3186
3187        csum = 0;
3188        if (csstart != skb->len)
3189                csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3190                                              skb->len - csstart);
3191
3192        if (skb->ip_summed == CHECKSUM_PARTIAL) {
3193                long csstuff = csstart + skb->csum_offset;
3194
3195                *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3196        }
3197}
3198EXPORT_SYMBOL(skb_copy_and_csum_dev);
3199
3200/**
3201 *      skb_dequeue - remove from the head of the queue
3202 *      @list: list to dequeue from
3203 *
3204 *      Remove the head of the list. The list lock is taken so the function
3205 *      may be used safely with other locking list functions. The head item is
3206 *      returned or %NULL if the list is empty.
3207 */
3208
3209struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3210{
3211        unsigned long flags;
3212        struct sk_buff *result;
3213
3214        spin_lock_irqsave(&list->lock, flags);
3215        result = __skb_dequeue(list);
3216        spin_unlock_irqrestore(&list->lock, flags);
3217        return result;
3218}
3219EXPORT_SYMBOL(skb_dequeue);
3220
3221/**
3222 *      skb_dequeue_tail - remove from the tail of the queue
3223 *      @list: list to dequeue from
3224 *
3225 *      Remove the tail of the list. The list lock is taken so the function
3226 *      may be used safely with other locking list functions. The tail item is
3227 *      returned or %NULL if the list is empty.
3228 */
3229struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3230{
3231        unsigned long flags;
3232        struct sk_buff *result;
3233
3234        spin_lock_irqsave(&list->lock, flags);
3235        result = __skb_dequeue_tail(list);
3236        spin_unlock_irqrestore(&list->lock, flags);
3237        return result;
3238}
3239EXPORT_SYMBOL(skb_dequeue_tail);
3240
3241/**
3242 *      skb_queue_purge - empty a list
3243 *      @list: list to empty
3244 *
3245 *      Delete all buffers on an &sk_buff list. Each buffer is removed from
3246 *      the list and one reference dropped. This function takes the list
3247 *      lock and is atomic with respect to other list locking functions.
3248 */
3249void skb_queue_purge(struct sk_buff_head *list)
3250{
3251        struct sk_buff *skb;
3252        while ((skb = skb_dequeue(list)) != NULL)
3253                kfree_skb(skb);
3254}
3255EXPORT_SYMBOL(skb_queue_purge);
3256
3257/**
3258 *      skb_rbtree_purge - empty a skb rbtree
3259 *      @root: root of the rbtree to empty
3260 *      Return value: the sum of truesizes of all purged skbs.
3261 *
3262 *      Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3263 *      the list and one reference dropped. This function does not take
3264 *      any lock. Synchronization should be handled by the caller (e.g., TCP
3265 *      out-of-order queue is protected by the socket lock).
3266 */
3267unsigned int skb_rbtree_purge(struct rb_root *root)
3268{
3269        struct rb_node *p = rb_first(root);
3270        unsigned int sum = 0;
3271
3272        while (p) {
3273                struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3274
3275                p = rb_next(p);
3276                rb_erase(&skb->rbnode, root);
3277                sum += skb->truesize;
3278                kfree_skb(skb);
3279        }
3280        return sum;
3281}
3282
3283/**
3284 *      skb_queue_head - queue a buffer at the list head
3285 *      @list: list to use
3286 *      @newsk: buffer to queue
3287 *
3288 *      Queue a buffer at the start of the list. This function takes the
3289 *      list lock and can be used safely with other locking &sk_buff functions
3290 *      safely.
3291 *
3292 *      A buffer cannot be placed on two lists at the same time.
3293 */
3294void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3295{
3296        unsigned long flags;
3297
3298        spin_lock_irqsave(&list->lock, flags);
3299        __skb_queue_head(list, newsk);
3300        spin_unlock_irqrestore(&list->lock, flags);
3301}
3302EXPORT_SYMBOL(skb_queue_head);
3303
3304/**
3305 *      skb_queue_tail - queue a buffer at the list tail
3306 *      @list: list to use
3307 *      @newsk: buffer to queue
3308 *
3309 *      Queue a buffer at the tail of the list. This function takes the
3310 *      list lock and can be used safely with other locking &sk_buff functions
3311 *      safely.
3312 *
3313 *      A buffer cannot be placed on two lists at the same time.
3314 */
3315void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3316{
3317        unsigned long flags;
3318
3319        spin_lock_irqsave(&list->lock, flags);
3320        __skb_queue_tail(list, newsk);
3321        spin_unlock_irqrestore(&list->lock, flags);
3322}
3323EXPORT_SYMBOL(skb_queue_tail);
3324
3325/**
3326 *      skb_unlink      -       remove a buffer from a list
3327 *      @skb: buffer to remove
3328 *      @list: list to use
3329 *
3330 *      Remove a packet from a list. The list locks are taken and this
3331 *      function is atomic with respect to other list locked calls
3332 *
3333 *      You must know what list the SKB is on.
3334 */
3335void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3336{
3337        unsigned long flags;
3338
3339        spin_lock_irqsave(&list->lock, flags);
3340        __skb_unlink(skb, list);
3341        spin_unlock_irqrestore(&list->lock, flags);
3342}
3343EXPORT_SYMBOL(skb_unlink);
3344
3345/**
3346 *      skb_append      -       append a buffer
3347 *      @old: buffer to insert after
3348 *      @newsk: buffer to insert
3349 *      @list: list to use
3350 *
3351 *      Place a packet after a given packet in a list. The list locks are taken
3352 *      and this function is atomic with respect to other list locked calls.
3353 *      A buffer cannot be placed on two lists at the same time.
3354 */
3355void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3356{
3357        unsigned long flags;
3358
3359        spin_lock_irqsave(&list->lock, flags);
3360        __skb_queue_after(list, old, newsk);
3361        spin_unlock_irqrestore(&list->lock, flags);
3362}
3363EXPORT_SYMBOL(skb_append);
3364
3365static inline void skb_split_inside_header(struct sk_buff *skb,
3366                                           struct sk_buff* skb1,
3367                                           const u32 len, const int pos)
3368{
3369        int i;
3370
3371        skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3372                                         pos - len);
3373        /* And move data appendix as is. */
3374        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3375                skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3376
3377        skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3378        skb_shinfo(skb)->nr_frags  = 0;
3379        skb1->data_len             = skb->data_len;
3380        skb1->len                  += skb1->data_len;
3381        skb->data_len              = 0;
3382        skb->len                   = len;
3383        skb_set_tail_pointer(skb, len);
3384}
3385
3386static inline void skb_split_no_header(struct sk_buff *skb,
3387                                       struct sk_buff* skb1,
3388                                       const u32 len, int pos)
3389{
3390        int i, k = 0;
3391        const int nfrags = skb_shinfo(skb)->nr_frags;
3392
3393        skb_shinfo(skb)->nr_frags = 0;
3394        skb1->len                 = skb1->data_len = skb->len - len;
3395        skb->len                  = len;
3396        skb->data_len             = len - pos;
3397
3398        for (i = 0; i < nfrags; i++) {
3399                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3400
3401                if (pos + size > len) {
3402                        skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3403
3404                        if (pos < len) {
3405                                /* Split frag.
3406                                 * We have two variants in this case:
3407                                 * 1. Move all the frag to the second
3408                                 *    part, if it is possible. F.e.
3409                                 *    this approach is mandatory for TUX,
3410                                 *    where splitting is expensive.
3411                                 * 2. Split is accurately. We make this.
3412                                 */
3413                                skb_frag_ref(skb, i);
3414                                skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3415                                skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3416                                skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3417                                skb_shinfo(skb)->nr_frags++;
3418                        }
3419                        k++;
3420                } else
3421                        skb_shinfo(skb)->nr_frags++;
3422                pos += size;
3423        }
3424        skb_shinfo(skb1)->nr_frags = k;
3425}
3426
3427/**
3428 * skb_split - Split fragmented skb to two parts at length len.
3429 * @skb: the buffer to split
3430 * @skb1: the buffer to receive the second part
3431 * @len: new length for skb
3432 */
3433void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3434{
3435        int pos = skb_headlen(skb);
3436
3437        skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3438        skb_zerocopy_clone(skb1, skb, 0);
3439        if (len < pos)  /* Split line is inside header. */
3440                skb_split_inside_header(skb, skb1, len, pos);
3441        else            /* Second chunk has no header, nothing to copy. */
3442                skb_split_no_header(skb, skb1, len, pos);
3443}
3444EXPORT_SYMBOL(skb_split);
3445
3446/* Shifting from/to a cloned skb is a no-go.
3447 *
3448 * Caller cannot keep skb_shinfo related pointers past calling here!
3449 */
3450static int skb_prepare_for_shift(struct sk_buff *skb)
3451{
3452        int ret = 0;
3453
3454        if (skb_cloned(skb)) {
3455                /* Save and restore truesize: pskb_expand_head() may reallocate
3456                 * memory where ksize(kmalloc(S)) != ksize(kmalloc(S)), but we
3457                 * cannot change truesize at this point.
3458                 */
3459                unsigned int save_truesize = skb->truesize;
3460
3461                ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3462                skb->truesize = save_truesize;
3463        }
3464        return ret;
3465}
3466
3467/**
3468 * skb_shift - Shifts paged data partially from skb to another
3469 * @tgt: buffer into which tail data gets added
3470 * @skb: buffer from which the paged data comes from
3471 * @shiftlen: shift up to this many bytes
3472 *
3473 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3474 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3475 * It's up to caller to free skb if everything was shifted.
3476 *
3477 * If @tgt runs out of frags, the whole operation is aborted.
3478 *
3479 * Skb cannot include anything else but paged data while tgt is allowed
3480 * to have non-paged data as well.
3481 *
3482 * TODO: full sized shift could be optimized but that would need
3483 * specialized skb free'er to handle frags without up-to-date nr_frags.
3484 */
3485int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3486{
3487        int from, to, merge, todo;
3488        skb_frag_t *fragfrom, *fragto;
3489
3490        BUG_ON(shiftlen > skb->len);
3491
3492        if (skb_headlen(skb))
3493                return 0;
3494        if (skb_zcopy(tgt) || skb_zcopy(skb))
3495                return 0;
3496
3497        todo = shiftlen;
3498        from = 0;
3499        to = skb_shinfo(tgt)->nr_frags;
3500        fragfrom = &skb_shinfo(skb)->frags[from];
3501
3502        /* Actual merge is delayed until the point when we know we can
3503         * commit all, so that we don't have to undo partial changes
3504         */
3505        if (!to ||
3506            !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3507                              skb_frag_off(fragfrom))) {
3508                merge = -1;
3509        } else {
3510                merge = to - 1;
3511
3512                todo -= skb_frag_size(fragfrom);
3513                if (todo < 0) {
3514                        if (skb_prepare_for_shift(skb) ||
3515                            skb_prepare_for_shift(tgt))
3516                                return 0;
3517
3518                        /* All previous frag pointers might be stale! */
3519                        fragfrom = &skb_shinfo(skb)->frags[from];
3520                        fragto = &skb_shinfo(tgt)->frags[merge];
3521
3522                        skb_frag_size_add(fragto, shiftlen);
3523                        skb_frag_size_sub(fragfrom, shiftlen);
3524                        skb_frag_off_add(fragfrom, shiftlen);
3525
3526                        goto onlymerged;
3527                }
3528
3529                from++;
3530        }
3531
3532        /* Skip full, not-fitting skb to avoid expensive operations */
3533        if ((shiftlen == skb->len) &&
3534            (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3535                return 0;
3536
3537        if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3538                return 0;
3539
3540        while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3541                if (to == MAX_SKB_FRAGS)
3542                        return 0;
3543
3544                fragfrom = &skb_shinfo(skb)->frags[from];
3545                fragto = &skb_shinfo(tgt)->frags[to];
3546
3547                if (todo >= skb_frag_size(fragfrom)) {
3548                        *fragto = *fragfrom;
3549                        todo -= skb_frag_size(fragfrom);
3550                        from++;
3551                        to++;
3552
3553                } else {
3554                        __skb_frag_ref(fragfrom);
3555                        skb_frag_page_copy(fragto, fragfrom);
3556                        skb_frag_off_copy(fragto, fragfrom);
3557                        skb_frag_size_set(fragto, todo);
3558
3559                        skb_frag_off_add(fragfrom, todo);
3560                        skb_frag_size_sub(fragfrom, todo);
3561                        todo = 0;
3562
3563                        to++;
3564                        break;
3565                }
3566        }
3567
3568        /* Ready to "commit" this state change to tgt */
3569        skb_shinfo(tgt)->nr_frags = to;
3570
3571        if (merge >= 0) {
3572                fragfrom = &skb_shinfo(skb)->frags[0];
3573                fragto = &skb_shinfo(tgt)->frags[merge];
3574
3575                skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3576                __skb_frag_unref(fragfrom, skb->pp_recycle);
3577        }
3578
3579        /* Reposition in the original skb */
3580        to = 0;
3581        while (from < skb_shinfo(skb)->nr_frags)
3582                skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3583        skb_shinfo(skb)->nr_frags = to;
3584
3585        BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3586
3587onlymerged:
3588        /* Most likely the tgt won't ever need its checksum anymore, skb on
3589         * the other hand might need it if it needs to be resent
3590         */
3591        tgt->ip_summed = CHECKSUM_PARTIAL;
3592        skb->ip_summed = CHECKSUM_PARTIAL;
3593
3594        /* Yak, is it really working this way? Some helper please? */
3595        skb->len -= shiftlen;
3596        skb->data_len -= shiftlen;
3597        skb->truesize -= shiftlen;
3598        tgt->len += shiftlen;
3599        tgt->data_len += shiftlen;
3600        tgt->truesize += shiftlen;
3601
3602        return shiftlen;
3603}
3604
3605/**
3606 * skb_prepare_seq_read - Prepare a sequential read of skb data
3607 * @skb: the buffer to read
3608 * @from: lower offset of data to be read
3609 * @to: upper offset of data to be read
3610 * @st: state variable
3611 *
3612 * Initializes the specified state variable. Must be called before
3613 * invoking skb_seq_read() for the first time.
3614 */
3615void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3616                          unsigned int to, struct skb_seq_state *st)
3617{
3618        st->lower_offset = from;
3619        st->upper_offset = to;
3620        st->root_skb = st->cur_skb = skb;
3621        st->frag_idx = st->stepped_offset = 0;
3622        st->frag_data = NULL;
3623        st->frag_off = 0;
3624}
3625EXPORT_SYMBOL(skb_prepare_seq_read);
3626
3627/**
3628 * skb_seq_read - Sequentially read skb data
3629 * @consumed: number of bytes consumed by the caller so far
3630 * @data: destination pointer for data to be returned
3631 * @st: state variable
3632 *
3633 * Reads a block of skb data at @consumed relative to the
3634 * lower offset specified to skb_prepare_seq_read(). Assigns
3635 * the head of the data block to @data and returns the length
3636 * of the block or 0 if the end of the skb data or the upper
3637 * offset has been reached.
3638 *
3639 * The caller is not required to consume all of the data
3640 * returned, i.e. @consumed is typically set to the number
3641 * of bytes already consumed and the next call to
3642 * skb_seq_read() will return the remaining part of the block.
3643 *
3644 * Note 1: The size of each block of data returned can be arbitrary,
3645 *       this limitation is the cost for zerocopy sequential
3646 *       reads of potentially non linear data.
3647 *
3648 * Note 2: Fragment lists within fragments are not implemented
3649 *       at the moment, state->root_skb could be replaced with
3650 *       a stack for this purpose.
3651 */
3652unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3653                          struct skb_seq_state *st)
3654{
3655        unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3656        skb_frag_t *frag;
3657
3658        if (unlikely(abs_offset >= st->upper_offset)) {
3659                if (st->frag_data) {
3660                        kunmap_atomic(st->frag_data);
3661                        st->frag_data = NULL;
3662                }
3663                return 0;
3664        }
3665
3666next_skb:
3667        block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3668
3669        if (abs_offset < block_limit && !st->frag_data) {
3670                *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3671                return block_limit - abs_offset;
3672        }
3673
3674        if (st->frag_idx == 0 && !st->frag_data)
3675                st->stepped_offset += skb_headlen(st->cur_skb);
3676
3677        while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3678                unsigned int pg_idx, pg_off, pg_sz;
3679
3680                frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3681
3682                pg_idx = 0;
3683                pg_off = skb_frag_off(frag);
3684                pg_sz = skb_frag_size(frag);
3685
3686                if (skb_frag_must_loop(skb_frag_page(frag))) {
3687                        pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3688                        pg_off = offset_in_page(pg_off + st->frag_off);
3689                        pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3690                                                    PAGE_SIZE - pg_off);
3691                }
3692
3693                block_limit = pg_sz + st->stepped_offset;
3694                if (abs_offset < block_limit) {
3695                        if (!st->frag_data)
3696                                st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3697
3698                        *data = (u8 *)st->frag_data + pg_off +
3699                                (abs_offset - st->stepped_offset);
3700
3701                        return block_limit - abs_offset;
3702                }
3703
3704                if (st->frag_data) {
3705                        kunmap_atomic(st->frag_data);
3706                        st->frag_data = NULL;
3707                }
3708
3709                st->stepped_offset += pg_sz;
3710                st->frag_off += pg_sz;
3711                if (st->frag_off == skb_frag_size(frag)) {
3712                        st->frag_off = 0;
3713                        st->frag_idx++;
3714                }
3715        }
3716
3717        if (st->frag_data) {
3718                kunmap_atomic(st->frag_data);
3719                st->frag_data = NULL;
3720        }
3721
3722        if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3723                st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3724                st->frag_idx = 0;
3725                goto next_skb;
3726        } else if (st->cur_skb->next) {
3727                st->cur_skb = st->cur_skb->next;
3728                st->frag_idx = 0;
3729                goto next_skb;
3730        }
3731
3732        return 0;
3733}
3734EXPORT_SYMBOL(skb_seq_read);
3735
3736/**
3737 * skb_abort_seq_read - Abort a sequential read of skb data
3738 * @st: state variable
3739 *
3740 * Must be called if skb_seq_read() was not called until it
3741 * returned 0.
3742 */
3743void skb_abort_seq_read(struct skb_seq_state *st)
3744{
3745        if (st->frag_data)
3746                kunmap_atomic(st->frag_data);
3747}
3748EXPORT_SYMBOL(skb_abort_seq_read);
3749
3750#define TS_SKB_CB(state)        ((struct skb_seq_state *) &((state)->cb))
3751
3752static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3753                                          struct ts_config *conf,
3754                                          struct ts_state *state)
3755{
3756        return skb_seq_read(offset, text, TS_SKB_CB(state));
3757}
3758
3759static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3760{
3761        skb_abort_seq_read(TS_SKB_CB(state));
3762}
3763
3764/**
3765 * skb_find_text - Find a text pattern in skb data
3766 * @skb: the buffer to look in
3767 * @from: search offset
3768 * @to: search limit
3769 * @config: textsearch configuration
3770 *
3771 * Finds a pattern in the skb data according to the specified
3772 * textsearch configuration. Use textsearch_next() to retrieve
3773 * subsequent occurrences of the pattern. Returns the offset
3774 * to the first occurrence or UINT_MAX if no match was found.
3775 */
3776unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3777                           unsigned int to, struct ts_config *config)
3778{
3779        struct ts_state state;
3780        unsigned int ret;
3781
3782        BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
3783
3784        config->get_next_block = skb_ts_get_next_block;
3785        config->finish = skb_ts_finish;
3786
3787        skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3788
3789        ret = textsearch_find(config, &state);
3790        return (ret <= to - from ? ret : UINT_MAX);
3791}
3792EXPORT_SYMBOL(skb_find_text);
3793
3794int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3795                         int offset, size_t size)
3796{
3797        int i = skb_shinfo(skb)->nr_frags;
3798
3799        if (skb_can_coalesce(skb, i, page, offset)) {
3800                skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3801        } else if (i < MAX_SKB_FRAGS) {
3802                get_page(page);
3803                skb_fill_page_desc(skb, i, page, offset, size);
3804        } else {
3805                return -EMSGSIZE;
3806        }
3807
3808        return 0;
3809}
3810EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3811
3812/**
3813 *      skb_pull_rcsum - pull skb and update receive checksum
3814 *      @skb: buffer to update
3815 *      @len: length of data pulled
3816 *
3817 *      This function performs an skb_pull on the packet and updates
3818 *      the CHECKSUM_COMPLETE checksum.  It should be used on
3819 *      receive path processing instead of skb_pull unless you know
3820 *      that the checksum difference is zero (e.g., a valid IP header)
3821 *      or you are setting ip_summed to CHECKSUM_NONE.
3822 */
3823void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3824{
3825        unsigned char *data = skb->data;
3826
3827        BUG_ON(len > skb->len);
3828        __skb_pull(skb, len);
3829        skb_postpull_rcsum(skb, data, len);
3830        return skb->data;
3831}
3832EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3833
3834static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3835{
3836        skb_frag_t head_frag;
3837        struct page *page;
3838
3839        page = virt_to_head_page(frag_skb->head);
3840        __skb_frag_set_page(&head_frag, page);
3841        skb_frag_off_set(&head_frag, frag_skb->data -
3842                         (unsigned char *)page_address(page));
3843        skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3844        return head_frag;
3845}
3846
3847struct sk_buff *skb_segment_list(struct sk_buff *skb,
3848                                 netdev_features_t features,
3849                                 unsigned int offset)
3850{
3851        struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3852        unsigned int tnl_hlen = skb_tnl_header_len(skb);
3853        unsigned int delta_truesize = 0;
3854        unsigned int delta_len = 0;
3855        struct sk_buff *tail = NULL;
3856        struct sk_buff *nskb, *tmp;
3857        int err;
3858
3859        skb_push(skb, -skb_network_offset(skb) + offset);
3860
3861        skb_shinfo(skb)->frag_list = NULL;
3862
3863        do {
3864                nskb = list_skb;
3865                list_skb = list_skb->next;
3866
3867                err = 0;
3868                if (skb_shared(nskb)) {
3869                        tmp = skb_clone(nskb, GFP_ATOMIC);
3870                        if (tmp) {
3871                                consume_skb(nskb);
3872                                nskb = tmp;
3873                                err = skb_unclone(nskb, GFP_ATOMIC);
3874                        } else {
3875                                err = -ENOMEM;
3876                        }
3877                }
3878
3879                if (!tail)
3880                        skb->next = nskb;
3881                else
3882                        tail->next = nskb;
3883
3884                if (unlikely(err)) {
3885                        nskb->next = list_skb;
3886                        goto err_linearize;
3887                }
3888
3889                tail = nskb;
3890
3891                delta_len += nskb->len;
3892                delta_truesize += nskb->truesize;
3893
3894                skb_push(nskb, -skb_network_offset(nskb) + offset);
3895
3896                skb_release_head_state(nskb);
3897                __copy_skb_header(nskb, skb);
3898
3899                skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3900                skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3901                                                 nskb->data - tnl_hlen,
3902                                                 offset + tnl_hlen);
3903
3904                if (skb_needs_linearize(nskb, features) &&
3905                    __skb_linearize(nskb))
3906                        goto err_linearize;
3907
3908        } while (list_skb);
3909
3910        skb->truesize = skb->truesize - delta_truesize;
3911        skb->data_len = skb->data_len - delta_len;
3912        skb->len = skb->len - delta_len;
3913
3914        skb_gso_reset(skb);
3915
3916        skb->prev = tail;
3917
3918        if (skb_needs_linearize(skb, features) &&
3919            __skb_linearize(skb))
3920                goto err_linearize;
3921
3922        skb_get(skb);
3923
3924        return skb;
3925
3926err_linearize:
3927        kfree_skb_list(skb->next);
3928        skb->next = NULL;
3929        return ERR_PTR(-ENOMEM);
3930}
3931EXPORT_SYMBOL_GPL(skb_segment_list);
3932
3933int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3934{
3935        if (unlikely(p->len + skb->len >= 65536))
3936                return -E2BIG;
3937
3938        if (NAPI_GRO_CB(p)->last == p)
3939                skb_shinfo(p)->frag_list = skb;
3940        else
3941                NAPI_GRO_CB(p)->last->next = skb;
3942
3943        skb_pull(skb, skb_gro_offset(skb));
3944
3945        NAPI_GRO_CB(p)->last = skb;
3946        NAPI_GRO_CB(p)->count++;
3947        p->data_len += skb->len;
3948
3949        /* sk owenrship - if any - completely transferred to the aggregated packet */
3950        skb->destructor = NULL;
3951        p->truesize += skb->truesize;
3952        p->len += skb->len;
3953
3954        NAPI_GRO_CB(skb)->same_flow = 1;
3955
3956        return 0;
3957}
3958
3959/**
3960 *      skb_segment - Perform protocol segmentation on skb.
3961 *      @head_skb: buffer to segment
3962 *      @features: features for the output path (see dev->features)
3963 *
3964 *      This function performs segmentation on the given skb.  It returns
3965 *      a pointer to the first in a list of new skbs for the segments.
3966 *      In case of error it returns ERR_PTR(err).
3967 */
3968struct sk_buff *skb_segment(struct sk_buff *head_skb,
3969                            netdev_features_t features)
3970{
3971        struct sk_buff *segs = NULL;
3972        struct sk_buff *tail = NULL;
3973        struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3974        skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3975        unsigned int mss = skb_shinfo(head_skb)->gso_size;
3976        unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3977        struct sk_buff *frag_skb = head_skb;
3978        unsigned int offset = doffset;
3979        unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3980        unsigned int partial_segs = 0;
3981        unsigned int headroom;
3982        unsigned int len = head_skb->len;
3983        __be16 proto;
3984        bool csum, sg;
3985        int nfrags = skb_shinfo(head_skb)->nr_frags;
3986        int err = -ENOMEM;
3987        int i = 0;
3988        int pos;
3989
3990        if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3991            (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3992                /* gso_size is untrusted, and we have a frag_list with a linear
3993                 * non head_frag head.
3994                 *
3995                 * (we assume checking the first list_skb member suffices;
3996                 * i.e if either of the list_skb members have non head_frag
3997                 * head, then the first one has too).
3998                 *
3999                 * If head_skb's headlen does not fit requested gso_size, it
4000                 * means that the frag_list members do NOT terminate on exact
4001                 * gso_size boundaries. Hence we cannot perform skb_frag_t page
4002                 * sharing. Therefore we must fallback to copying the frag_list
4003                 * skbs; we do so by disabling SG.
4004                 */
4005                if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
4006                        features &= ~NETIF_F_SG;
4007        }
4008
4009        __skb_push(head_skb, doffset);
4010        proto = skb_network_protocol(head_skb, NULL);
4011        if (unlikely(!proto))
4012                return ERR_PTR(-EINVAL);
4013
4014        sg = !!(features & NETIF_F_SG);
4015        csum = !!can_checksum_protocol(features, proto);
4016
4017        if (sg && csum && (mss != GSO_BY_FRAGS))  {
4018                if (!(features & NETIF_F_GSO_PARTIAL)) {
4019                        struct sk_buff *iter;
4020                        unsigned int frag_len;
4021
4022                        if (!list_skb ||
4023                            !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4024                                goto normal;
4025
4026                        /* If we get here then all the required
4027                         * GSO features except frag_list are supported.
4028                         * Try to split the SKB to multiple GSO SKBs
4029                         * with no frag_list.
4030                         * Currently we can do that only when the buffers don't
4031                         * have a linear part and all the buffers except
4032                         * the last are of the same length.
4033                         */
4034                        frag_len = list_skb->len;
4035                        skb_walk_frags(head_skb, iter) {
4036                                if (frag_len != iter->len && iter->next)
4037                                        goto normal;
4038                                if (skb_headlen(iter) && !iter->head_frag)
4039                                        goto normal;
4040
4041                                len -= iter->len;
4042                        }
4043
4044                        if (len != frag_len)
4045                                goto normal;
4046                }
4047
4048                /* GSO partial only requires that we trim off any excess that
4049                 * doesn't fit into an MSS sized block, so take care of that
4050                 * now.
4051                 */
4052                partial_segs = len / mss;
4053                if (partial_segs > 1)
4054                        mss *= partial_segs;
4055                else
4056                        partial_segs = 0;
4057        }
4058
4059normal:
4060        headroom = skb_headroom(head_skb);
4061        pos = skb_headlen(head_skb);
4062
4063        do {
4064                struct sk_buff *nskb;
4065                skb_frag_t *nskb_frag;
4066                int hsize;
4067                int size;
4068
4069                if (unlikely(mss == GSO_BY_FRAGS)) {
4070                        len = list_skb->len;
4071                } else {
4072                        len = head_skb->len - offset;
4073                        if (len > mss)
4074                                len = mss;
4075                }
4076
4077                hsize = skb_headlen(head_skb) - offset;
4078
4079                if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4080                    (skb_headlen(list_skb) == len || sg)) {
4081                        BUG_ON(skb_headlen(list_skb) > len);
4082
4083                        i = 0;
4084                        nfrags = skb_shinfo(list_skb)->nr_frags;
4085                        frag = skb_shinfo(list_skb)->frags;
4086                        frag_skb = list_skb;
4087                        pos += skb_headlen(list_skb);
4088
4089                        while (pos < offset + len) {
4090                                BUG_ON(i >= nfrags);
4091
4092                                size = skb_frag_size(frag);
4093                                if (pos + size > offset + len)
4094                                        break;
4095
4096                                i++;
4097                                pos += size;
4098                                frag++;
4099                        }
4100
4101                        nskb = skb_clone(list_skb, GFP_ATOMIC);
4102                        list_skb = list_skb->next;
4103
4104                        if (unlikely(!nskb))
4105                                goto err;
4106
4107                        if (unlikely(pskb_trim(nskb, len))) {
4108                                kfree_skb(nskb);
4109                                goto err;
4110                        }
4111
4112                        hsize = skb_end_offset(nskb);
4113                        if (skb_cow_head(nskb, doffset + headroom)) {
4114                                kfree_skb(nskb);
4115                                goto err;
4116                        }
4117
4118                        nskb->truesize += skb_end_offset(nskb) - hsize;
4119                        skb_release_head_state(nskb);
4120                        __skb_push(nskb, doffset);
4121                } else {
4122                        if (hsize < 0)
4123                                hsize = 0;
4124                        if (hsize > len || !sg)
4125                                hsize = len;
4126
4127                        nskb = __alloc_skb(hsize + doffset + headroom,
4128                                           GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4129                                           NUMA_NO_NODE);
4130
4131                        if (unlikely(!nskb))
4132                                goto err;
4133
4134                        skb_reserve(nskb, headroom);
4135                        __skb_put(nskb, doffset);
4136                }
4137
4138                if (segs)
4139                        tail->next = nskb;
4140                else
4141                        segs = nskb;
4142                tail = nskb;
4143
4144                __copy_skb_header(nskb, head_skb);
4145
4146                skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4147                skb_reset_mac_len(nskb);
4148
4149                skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4150                                                 nskb->data - tnl_hlen,
4151                                                 doffset + tnl_hlen);
4152
4153                if (nskb->len == len + doffset)
4154                        goto perform_csum_check;
4155
4156                if (!sg) {
4157                        if (!csum) {
4158                                if (!nskb->remcsum_offload)
4159                                        nskb->ip_summed = CHECKSUM_NONE;
4160                                SKB_GSO_CB(nskb)->csum =
4161                                        skb_copy_and_csum_bits(head_skb, offset,
4162                                                               skb_put(nskb,
4163                                                                       len),
4164                                                               len);
4165                                SKB_GSO_CB(nskb)->csum_start =
4166                                        skb_headroom(nskb) + doffset;
4167                        } else {
4168                                skb_copy_bits(head_skb, offset,
4169                                              skb_put(nskb, len),
4170                                              len);
4171                        }
4172                        continue;
4173                }
4174
4175                nskb_frag = skb_shinfo(nskb)->frags;
4176
4177                skb_copy_from_linear_data_offset(head_skb, offset,
4178                                                 skb_put(nskb, hsize), hsize);
4179
4180                skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4181                                           SKBFL_SHARED_FRAG;
4182
4183                if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4184                    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4185                        goto err;
4186
4187                while (pos < offset + len) {
4188                        if (i >= nfrags) {
4189                                i = 0;
4190                                nfrags = skb_shinfo(list_skb)->nr_frags;
4191                                frag = skb_shinfo(list_skb)->frags;
4192                                frag_skb = list_skb;
4193                                if (!skb_headlen(list_skb)) {
4194                                        BUG_ON(!nfrags);
4195                                } else {
4196                                        BUG_ON(!list_skb->head_frag);
4197
4198                                        /* to make room for head_frag. */
4199                                        i--;
4200                                        frag--;
4201                                }
4202                                if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4203                                    skb_zerocopy_clone(nskb, frag_skb,
4204                                                       GFP_ATOMIC))
4205                                        goto err;
4206
4207                                list_skb = list_skb->next;
4208                        }
4209
4210                        if (unlikely(skb_shinfo(nskb)->nr_frags >=
4211                                     MAX_SKB_FRAGS)) {
4212                                net_warn_ratelimited(
4213                                        "skb_segment: too many frags: %u %u\n",
4214                                        pos, mss);
4215                                err = -EINVAL;
4216                                goto err;
4217                        }
4218
4219                        *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4220                        __skb_frag_ref(nskb_frag);
4221                        size = skb_frag_size(nskb_frag);
4222
4223                        if (pos < offset) {
4224                                skb_frag_off_add(nskb_frag, offset - pos);
4225                                skb_frag_size_sub(nskb_frag, offset - pos);
4226                        }
4227
4228                        skb_shinfo(nskb)->nr_frags++;
4229
4230                        if (pos + size <= offset + len) {
4231                                i++;
4232                                frag++;
4233                                pos += size;
4234                        } else {
4235                                skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4236                                goto skip_fraglist;
4237                        }
4238
4239                        nskb_frag++;
4240                }
4241
4242skip_fraglist:
4243                nskb->data_len = len - hsize;
4244                nskb->len += nskb->data_len;
4245                nskb->truesize += nskb->data_len;
4246
4247perform_csum_check:
4248                if (!csum) {
4249                        if (skb_has_shared_frag(nskb) &&
4250                            __skb_linearize(nskb))
4251                                goto err;
4252
4253                        if (!nskb->remcsum_offload)
4254                                nskb->ip_summed = CHECKSUM_NONE;
4255                        SKB_GSO_CB(nskb)->csum =
4256                                skb_checksum(nskb, doffset,
4257                                             nskb->len - doffset, 0);
4258                        SKB_GSO_CB(nskb)->csum_start =
4259                                skb_headroom(nskb) + doffset;
4260                }
4261        } while ((offset += len) < head_skb->len);
4262
4263        /* Some callers want to get the end of the list.
4264         * Put it in segs->prev to avoid walking the list.
4265         * (see validate_xmit_skb_list() for example)
4266         */
4267        segs->prev = tail;
4268
4269        if (partial_segs) {
4270                struct sk_buff *iter;
4271                int type = skb_shinfo(head_skb)->gso_type;
4272                unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4273
4274                /* Update type to add partial and then remove dodgy if set */
4275                type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4276                type &= ~SKB_GSO_DODGY;
4277
4278                /* Update GSO info and prepare to start updating headers on
4279                 * our way back down the stack of protocols.
4280                 */
4281                for (iter = segs; iter; iter = iter->next) {
4282                        skb_shinfo(iter)->gso_size = gso_size;
4283                        skb_shinfo(iter)->gso_segs = partial_segs;
4284                        skb_shinfo(iter)->gso_type = type;
4285                        SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4286                }
4287
4288                if (tail->len - doffset <= gso_size)
4289                        skb_shinfo(tail)->gso_size = 0;
4290                else if (tail != segs)
4291                        skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4292        }
4293
4294        /* Following permits correct backpressure, for protocols
4295         * using skb_set_owner_w().
4296         * Idea is to tranfert ownership from head_skb to last segment.
4297         */
4298        if (head_skb->destructor == sock_wfree) {
4299                swap(tail->truesize, head_skb->truesize);
4300                swap(tail->destructor, head_skb->destructor);
4301                swap(tail->sk, head_skb->sk);
4302        }
4303        return segs;
4304
4305err:
4306        kfree_skb_list(segs);
4307        return ERR_PTR(err);
4308}
4309EXPORT_SYMBOL_GPL(skb_segment);
4310
4311int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4312{
4313        struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4314        unsigned int offset = skb_gro_offset(skb);
4315        unsigned int headlen = skb_headlen(skb);
4316        unsigned int len = skb_gro_len(skb);
4317        unsigned int delta_truesize;
4318        unsigned int new_truesize;
4319        struct sk_buff *lp;
4320
4321        if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4322                return -E2BIG;
4323
4324        lp = NAPI_GRO_CB(p)->last;
4325        pinfo = skb_shinfo(lp);
4326
4327        if (headlen <= offset) {
4328                skb_frag_t *frag;
4329                skb_frag_t *frag2;
4330                int i = skbinfo->nr_frags;
4331                int nr_frags = pinfo->nr_frags + i;
4332
4333                if (nr_frags > MAX_SKB_FRAGS)
4334                        goto merge;
4335
4336                offset -= headlen;
4337                pinfo->nr_frags = nr_frags;
4338                skbinfo->nr_frags = 0;
4339
4340                frag = pinfo->frags + nr_frags;
4341                frag2 = skbinfo->frags + i;
4342                do {
4343                        *--frag = *--frag2;
4344                } while (--i);
4345
4346                skb_frag_off_add(frag, offset);
4347                skb_frag_size_sub(frag, offset);
4348
4349                /* all fragments truesize : remove (head size + sk_buff) */
4350                new_truesize = SKB_TRUESIZE(skb_end_offset(skb));
4351                delta_truesize = skb->truesize - new_truesize;
4352
4353                skb->truesize = new_truesize;
4354                skb->len -= skb->data_len;
4355                skb->data_len = 0;
4356
4357                NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4358                goto done;
4359        } else if (skb->head_frag) {
4360                int nr_frags = pinfo->nr_frags;
4361                skb_frag_t *frag = pinfo->frags + nr_frags;
4362                struct page *page = virt_to_head_page(skb->head);
4363                unsigned int first_size = headlen - offset;
4364                unsigned int first_offset;
4365
4366                if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4367                        goto merge;
4368
4369                first_offset = skb->data -
4370                               (unsigned char *)page_address(page) +
4371                               offset;
4372
4373                pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4374
4375                __skb_frag_set_page(frag, page);
4376                skb_frag_off_set(frag, first_offset);
4377                skb_frag_size_set(frag, first_size);
4378
4379                memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4380                /* We dont need to clear skbinfo->nr_frags here */
4381
4382                new_truesize = SKB_DATA_ALIGN(sizeof(struct sk_buff));
4383                delta_truesize = skb->truesize - new_truesize;
4384                skb->truesize = new_truesize;
4385                NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4386                goto done;
4387        }
4388
4389merge:
4390        /* sk owenrship - if any - completely transferred to the aggregated packet */
4391        skb->destructor = NULL;
4392        delta_truesize = skb->truesize;
4393        if (offset > headlen) {
4394                unsigned int eat = offset - headlen;
4395
4396                skb_frag_off_add(&skbinfo->frags[0], eat);
4397                skb_frag_size_sub(&skbinfo->frags[0], eat);
4398                skb->data_len -= eat;
4399                skb->len -= eat;
4400                offset = headlen;
4401        }
4402
4403        __skb_pull(skb, offset);
4404
4405        if (NAPI_GRO_CB(p)->last == p)
4406                skb_shinfo(p)->frag_list = skb;
4407        else
4408                NAPI_GRO_CB(p)->last->next = skb;
4409        NAPI_GRO_CB(p)->last = skb;
4410        __skb_header_release(skb);
4411        lp = p;
4412
4413done:
4414        NAPI_GRO_CB(p)->count++;
4415        p->data_len += len;
4416        p->truesize += delta_truesize;
4417        p->len += len;
4418        if (lp != p) {
4419                lp->data_len += len;
4420                lp->truesize += delta_truesize;
4421                lp->len += len;
4422        }
4423        NAPI_GRO_CB(skb)->same_flow = 1;
4424        return 0;
4425}
4426
4427#ifdef CONFIG_SKB_EXTENSIONS
4428#define SKB_EXT_ALIGN_VALUE     8
4429#define SKB_EXT_CHUNKSIZEOF(x)  (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4430
4431static const u8 skb_ext_type_len[] = {
4432#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4433        [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4434#endif
4435#ifdef CONFIG_XFRM
4436        [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4437#endif
4438#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4439        [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4440#endif
4441#if IS_ENABLED(CONFIG_MPTCP)
4442        [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4443#endif
4444};
4445
4446static __always_inline unsigned int skb_ext_total_length(void)
4447{
4448        return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4449#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4450                skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4451#endif
4452#ifdef CONFIG_XFRM
4453                skb_ext_type_len[SKB_EXT_SEC_PATH] +
4454#endif
4455#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4456                skb_ext_type_len[TC_SKB_EXT] +
4457#endif
4458#if IS_ENABLED(CONFIG_MPTCP)
4459                skb_ext_type_len[SKB_EXT_MPTCP] +
4460#endif
4461                0;
4462}
4463
4464static void skb_extensions_init(void)
4465{
4466        BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4467        BUILD_BUG_ON(skb_ext_total_length() > 255);
4468
4469        skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4470                                             SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4471                                             0,
4472                                             SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4473                                             NULL);
4474}
4475#else
4476static void skb_extensions_init(void) {}
4477#endif
4478
4479void __init skb_init(void)
4480{
4481        skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4482                                              sizeof(struct sk_buff),
4483                                              0,
4484                                              SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4485                                              offsetof(struct sk_buff, cb),
4486                                              sizeof_field(struct sk_buff, cb),
4487                                              NULL);
4488        skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4489                                                sizeof(struct sk_buff_fclones),
4490                                                0,
4491                                                SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4492                                                NULL);
4493        skb_extensions_init();
4494}
4495
4496static int
4497__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4498               unsigned int recursion_level)
4499{
4500        int start = skb_headlen(skb);
4501        int i, copy = start - offset;
4502        struct sk_buff *frag_iter;
4503        int elt = 0;
4504
4505        if (unlikely(recursion_level >= 24))
4506                return -EMSGSIZE;
4507
4508        if (copy > 0) {
4509                if (copy > len)
4510                        copy = len;
4511                sg_set_buf(sg, skb->data + offset, copy);
4512                elt++;
4513                if ((len -= copy) == 0)
4514                        return elt;
4515                offset += copy;
4516        }
4517
4518        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4519                int end;
4520
4521                WARN_ON(start > offset + len);
4522
4523                end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4524                if ((copy = end - offset) > 0) {
4525                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4526                        if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4527                                return -EMSGSIZE;
4528
4529                        if (copy > len)
4530                                copy = len;
4531                        sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4532                                    skb_frag_off(frag) + offset - start);
4533                        elt++;
4534                        if (!(len -= copy))
4535                                return elt;
4536                        offset += copy;
4537                }
4538                start = end;
4539        }
4540
4541        skb_walk_frags(skb, frag_iter) {
4542                int end, ret;
4543
4544                WARN_ON(start > offset + len);
4545
4546                end = start + frag_iter->len;
4547                if ((copy = end - offset) > 0) {
4548                        if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4549                                return -EMSGSIZE;
4550
4551                        if (copy > len)
4552                                copy = len;
4553                        ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4554                                              copy, recursion_level + 1);
4555                        if (unlikely(ret < 0))
4556                                return ret;
4557                        elt += ret;
4558                        if ((len -= copy) == 0)
4559                                return elt;
4560                        offset += copy;
4561                }
4562                start = end;
4563        }
4564        BUG_ON(len);
4565        return elt;
4566}
4567
4568/**
4569 *      skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4570 *      @skb: Socket buffer containing the buffers to be mapped
4571 *      @sg: The scatter-gather list to map into
4572 *      @offset: The offset into the buffer's contents to start mapping
4573 *      @len: Length of buffer space to be mapped
4574 *
4575 *      Fill the specified scatter-gather list with mappings/pointers into a
4576 *      region of the buffer space attached to a socket buffer. Returns either
4577 *      the number of scatterlist items used, or -EMSGSIZE if the contents
4578 *      could not fit.
4579 */
4580int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4581{
4582        int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4583
4584        if (nsg <= 0)
4585                return nsg;
4586
4587        sg_mark_end(&sg[nsg - 1]);
4588
4589        return nsg;
4590}
4591EXPORT_SYMBOL_GPL(skb_to_sgvec);
4592
4593/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4594 * sglist without mark the sg which contain last skb data as the end.
4595 * So the caller can mannipulate sg list as will when padding new data after
4596 * the first call without calling sg_unmark_end to expend sg list.
4597 *
4598 * Scenario to use skb_to_sgvec_nomark:
4599 * 1. sg_init_table
4600 * 2. skb_to_sgvec_nomark(payload1)
4601 * 3. skb_to_sgvec_nomark(payload2)
4602 *
4603 * This is equivalent to:
4604 * 1. sg_init_table
4605 * 2. skb_to_sgvec(payload1)
4606 * 3. sg_unmark_end
4607 * 4. skb_to_sgvec(payload2)
4608 *
4609 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4610 * is more preferable.
4611 */
4612int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4613                        int offset, int len)
4614{
4615        return __skb_to_sgvec(skb, sg, offset, len, 0);
4616}
4617EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4618
4619
4620
4621/**
4622 *      skb_cow_data - Check that a socket buffer's data buffers are writable
4623 *      @skb: The socket buffer to check.
4624 *      @tailbits: Amount of trailing space to be added
4625 *      @trailer: Returned pointer to the skb where the @tailbits space begins
4626 *
4627 *      Make sure that the data buffers attached to a socket buffer are
4628 *      writable. If they are not, private copies are made of the data buffers
4629 *      and the socket buffer is set to use these instead.
4630 *
4631 *      If @tailbits is given, make sure that there is space to write @tailbits
4632 *      bytes of data beyond current end of socket buffer.  @trailer will be
4633 *      set to point to the skb in which this space begins.
4634 *
4635 *      The number of scatterlist elements required to completely map the
4636 *      COW'd and extended socket buffer will be returned.
4637 */
4638int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4639{
4640        int copyflag;
4641        int elt;
4642        struct sk_buff *skb1, **skb_p;
4643
4644        /* If skb is cloned or its head is paged, reallocate
4645         * head pulling out all the pages (pages are considered not writable
4646         * at the moment even if they are anonymous).
4647         */
4648        if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4649            !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4650                return -ENOMEM;
4651
4652        /* Easy case. Most of packets will go this way. */
4653        if (!skb_has_frag_list(skb)) {
4654                /* A little of trouble, not enough of space for trailer.
4655                 * This should not happen, when stack is tuned to generate
4656                 * good frames. OK, on miss we reallocate and reserve even more
4657                 * space, 128 bytes is fair. */
4658
4659                if (skb_tailroom(skb) < tailbits &&
4660                    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4661                        return -ENOMEM;
4662
4663                /* Voila! */
4664                *trailer = skb;
4665                return 1;
4666        }
4667
4668        /* Misery. We are in troubles, going to mincer fragments... */
4669
4670        elt = 1;
4671        skb_p = &skb_shinfo(skb)->frag_list;
4672        copyflag = 0;
4673
4674        while ((skb1 = *skb_p) != NULL) {
4675                int ntail = 0;
4676
4677                /* The fragment is partially pulled by someone,
4678                 * this can happen on input. Copy it and everything
4679                 * after it. */
4680
4681                if (skb_shared(skb1))
4682                        copyflag = 1;
4683
4684                /* If the skb is the last, worry about trailer. */
4685
4686                if (skb1->next == NULL && tailbits) {
4687                        if (skb_shinfo(skb1)->nr_frags ||
4688                            skb_has_frag_list(skb1) ||
4689                            skb_tailroom(skb1) < tailbits)
4690                                ntail = tailbits + 128;
4691                }
4692
4693                if (copyflag ||
4694                    skb_cloned(skb1) ||
4695                    ntail ||
4696                    skb_shinfo(skb1)->nr_frags ||
4697                    skb_has_frag_list(skb1)) {
4698                        struct sk_buff *skb2;
4699
4700                        /* Fuck, we are miserable poor guys... */
4701                        if (ntail == 0)
4702                                skb2 = skb_copy(skb1, GFP_ATOMIC);
4703                        else
4704                                skb2 = skb_copy_expand(skb1,
4705                                                       skb_headroom(skb1),
4706                                                       ntail,
4707                                                       GFP_ATOMIC);
4708                        if (unlikely(skb2 == NULL))
4709                                return -ENOMEM;
4710
4711                        if (skb1->sk)
4712                                skb_set_owner_w(skb2, skb1->sk);
4713
4714                        /* Looking around. Are we still alive?
4715                         * OK, link new skb, drop old one */
4716
4717                        skb2->next = skb1->next;
4718                        *skb_p = skb2;
4719                        kfree_skb(skb1);
4720                        skb1 = skb2;
4721                }
4722                elt++;
4723                *trailer = skb1;
4724                skb_p = &skb1->next;
4725        }
4726
4727        return elt;
4728}
4729EXPORT_SYMBOL_GPL(skb_cow_data);
4730
4731static void sock_rmem_free(struct sk_buff *skb)
4732{
4733        struct sock *sk = skb->sk;
4734
4735        atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4736}
4737
4738static void skb_set_err_queue(struct sk_buff *skb)
4739{
4740        /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4741         * So, it is safe to (mis)use it to mark skbs on the error queue.
4742         */
4743        skb->pkt_type = PACKET_OUTGOING;
4744        BUILD_BUG_ON(PACKET_OUTGOING == 0);
4745}
4746
4747/*
4748 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4749 */
4750int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4751{
4752        if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4753            (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4754                return -ENOMEM;
4755
4756        skb_orphan(skb);
4757        skb->sk = sk;
4758        skb->destructor = sock_rmem_free;
4759        atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4760        skb_set_err_queue(skb);
4761
4762        /* before exiting rcu section, make sure dst is refcounted */
4763        skb_dst_force(skb);
4764
4765        skb_queue_tail(&sk->sk_error_queue, skb);
4766        if (!sock_flag(sk, SOCK_DEAD))
4767                sk_error_report(sk);
4768        return 0;
4769}
4770EXPORT_SYMBOL(sock_queue_err_skb);
4771
4772static bool is_icmp_err_skb(const struct sk_buff *skb)
4773{
4774        return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4775                       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4776}
4777
4778struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4779{
4780        struct sk_buff_head *q = &sk->sk_error_queue;
4781        struct sk_buff *skb, *skb_next = NULL;
4782        bool icmp_next = false;
4783        unsigned long flags;
4784
4785        spin_lock_irqsave(&q->lock, flags);
4786        skb = __skb_dequeue(q);
4787        if (skb && (skb_next = skb_peek(q))) {
4788                icmp_next = is_icmp_err_skb(skb_next);
4789                if (icmp_next)
4790                        sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4791        }
4792        spin_unlock_irqrestore(&q->lock, flags);
4793
4794        if (is_icmp_err_skb(skb) && !icmp_next)
4795                sk->sk_err = 0;
4796
4797        if (skb_next)
4798                sk_error_report(sk);
4799
4800        return skb;
4801}
4802EXPORT_SYMBOL(sock_dequeue_err_skb);
4803
4804/**
4805 * skb_clone_sk - create clone of skb, and take reference to socket
4806 * @skb: the skb to clone
4807 *
4808 * This function creates a clone of a buffer that holds a reference on
4809 * sk_refcnt.  Buffers created via this function are meant to be
4810 * returned using sock_queue_err_skb, or free via kfree_skb.
4811 *
4812 * When passing buffers allocated with this function to sock_queue_err_skb
4813 * it is necessary to wrap the call with sock_hold/sock_put in order to
4814 * prevent the socket from being released prior to being enqueued on
4815 * the sk_error_queue.
4816 */
4817struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4818{
4819        struct sock *sk = skb->sk;
4820        struct sk_buff *clone;
4821
4822        if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4823                return NULL;
4824
4825        clone = skb_clone(skb, GFP_ATOMIC);
4826        if (!clone) {
4827                sock_put(sk);
4828                return NULL;
4829        }
4830
4831        clone->sk = sk;
4832        clone->destructor = sock_efree;
4833
4834        return clone;
4835}
4836EXPORT_SYMBOL(skb_clone_sk);
4837
4838static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4839                                        struct sock *sk,
4840                                        int tstype,
4841                                        bool opt_stats)
4842{
4843        struct sock_exterr_skb *serr;
4844        int err;
4845
4846        BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4847
4848        serr = SKB_EXT_ERR(skb);
4849        memset(serr, 0, sizeof(*serr));
4850        serr->ee.ee_errno = ENOMSG;
4851        serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4852        serr->ee.ee_info = tstype;
4853        serr->opt_stats = opt_stats;
4854        serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4855        if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4856                serr->ee.ee_data = skb_shinfo(skb)->tskey;
4857                if (sk->sk_protocol == IPPROTO_TCP &&
4858                    sk->sk_type == SOCK_STREAM)
4859                        serr->ee.ee_data -= sk->sk_tskey;
4860        }
4861
4862        err = sock_queue_err_skb(sk, skb);
4863
4864        if (err)
4865                kfree_skb(skb);
4866}
4867
4868static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4869{
4870        bool ret;
4871
4872        if (likely(sysctl_tstamp_allow_data || tsonly))
4873                return true;
4874
4875        read_lock_bh(&sk->sk_callback_lock);
4876        ret = sk->sk_socket && sk->sk_socket->file &&
4877              file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4878        read_unlock_bh(&sk->sk_callback_lock);
4879        return ret;
4880}
4881
4882void skb_complete_tx_timestamp(struct sk_buff *skb,
4883                               struct skb_shared_hwtstamps *hwtstamps)
4884{
4885        struct sock *sk = skb->sk;
4886
4887        if (!skb_may_tx_timestamp(sk, false))
4888                goto err;
4889
4890        /* Take a reference to prevent skb_orphan() from freeing the socket,
4891         * but only if the socket refcount is not zero.
4892         */
4893        if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4894                *skb_hwtstamps(skb) = *hwtstamps;
4895                __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4896                sock_put(sk);
4897                return;
4898        }
4899
4900err:
4901        kfree_skb(skb);
4902}
4903EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4904
4905void __skb_tstamp_tx(struct sk_buff *orig_skb,
4906                     const struct sk_buff *ack_skb,
4907                     struct skb_shared_hwtstamps *hwtstamps,
4908                     struct sock *sk, int tstype)
4909{
4910        struct sk_buff *skb;
4911        bool tsonly, opt_stats = false;
4912
4913        if (!sk)
4914                return;
4915
4916        if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4917            skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4918                return;
4919
4920        tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4921        if (!skb_may_tx_timestamp(sk, tsonly))
4922                return;
4923
4924        if (tsonly) {
4925#ifdef CONFIG_INET
4926                if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4927                    sk->sk_protocol == IPPROTO_TCP &&
4928                    sk->sk_type == SOCK_STREAM) {
4929                        skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4930                                                             ack_skb);
4931                        opt_stats = true;
4932                } else
4933#endif
4934                        skb = alloc_skb(0, GFP_ATOMIC);
4935        } else {
4936                skb = skb_clone(orig_skb, GFP_ATOMIC);
4937        }
4938        if (!skb)
4939                return;
4940
4941        if (tsonly) {
4942                skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4943                                             SKBTX_ANY_TSTAMP;
4944                skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4945        }
4946
4947        if (hwtstamps)
4948                *skb_hwtstamps(skb) = *hwtstamps;
4949        else
4950                skb->tstamp = ktime_get_real();
4951
4952        __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4953}
4954EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4955
4956void skb_tstamp_tx(struct sk_buff *orig_skb,
4957                   struct skb_shared_hwtstamps *hwtstamps)
4958{
4959        return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
4960                               SCM_TSTAMP_SND);
4961}
4962EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4963
4964void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4965{
4966        struct sock *sk = skb->sk;
4967        struct sock_exterr_skb *serr;
4968        int err = 1;
4969
4970        skb->wifi_acked_valid = 1;
4971        skb->wifi_acked = acked;
4972
4973        serr = SKB_EXT_ERR(skb);
4974        memset(serr, 0, sizeof(*serr));
4975        serr->ee.ee_errno = ENOMSG;
4976        serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4977
4978        /* Take a reference to prevent skb_orphan() from freeing the socket,
4979         * but only if the socket refcount is not zero.
4980         */
4981        if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4982                err = sock_queue_err_skb(sk, skb);
4983                sock_put(sk);
4984        }
4985        if (err)
4986                kfree_skb(skb);
4987}
4988EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4989
4990/**
4991 * skb_partial_csum_set - set up and verify partial csum values for packet
4992 * @skb: the skb to set
4993 * @start: the number of bytes after skb->data to start checksumming.
4994 * @off: the offset from start to place the checksum.
4995 *
4996 * For untrusted partially-checksummed packets, we need to make sure the values
4997 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4998 *
4999 * This function checks and sets those values and skb->ip_summed: if this
5000 * returns false you should drop the packet.
5001 */
5002bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5003{
5004        u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5005        u32 csum_start = skb_headroom(skb) + (u32)start;
5006
5007        if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
5008                net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5009                                     start, off, skb_headroom(skb), skb_headlen(skb));
5010                return false;
5011        }
5012        skb->ip_summed = CHECKSUM_PARTIAL;
5013        skb->csum_start = csum_start;
5014        skb->csum_offset = off;
5015        skb_set_transport_header(skb, start);
5016        return true;
5017}
5018EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5019
5020static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5021                               unsigned int max)
5022{
5023        if (skb_headlen(skb) >= len)
5024                return 0;
5025
5026        /* If we need to pullup then pullup to the max, so we
5027         * won't need to do it again.
5028         */
5029        if (max > skb->len)
5030                max = skb->len;
5031
5032        if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5033                return -ENOMEM;
5034
5035        if (skb_headlen(skb) < len)
5036                return -EPROTO;
5037
5038        return 0;
5039}
5040
5041#define MAX_TCP_HDR_LEN (15 * 4)
5042
5043static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5044                                      typeof(IPPROTO_IP) proto,
5045                                      unsigned int off)
5046{
5047        int err;
5048
5049        switch (proto) {
5050        case IPPROTO_TCP:
5051                err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5052                                          off + MAX_TCP_HDR_LEN);
5053                if (!err && !skb_partial_csum_set(skb, off,
5054                                                  offsetof(struct tcphdr,
5055                                                           check)))
5056                        err = -EPROTO;
5057                return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5058
5059        case IPPROTO_UDP:
5060                err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5061                                          off + sizeof(struct udphdr));
5062                if (!err && !skb_partial_csum_set(skb, off,
5063                                                  offsetof(struct udphdr,
5064                                                           check)))
5065                        err = -EPROTO;
5066                return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5067        }
5068
5069        return ERR_PTR(-EPROTO);
5070}
5071
5072/* This value should be large enough to cover a tagged ethernet header plus
5073 * maximally sized IP and TCP or UDP headers.
5074 */
5075#define MAX_IP_HDR_LEN 128
5076
5077static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5078{
5079        unsigned int off;
5080        bool fragment;
5081        __sum16 *csum;
5082        int err;
5083
5084        fragment = false;
5085
5086        err = skb_maybe_pull_tail(skb,
5087                                  sizeof(struct iphdr),
5088                                  MAX_IP_HDR_LEN);
5089        if (err < 0)
5090                goto out;
5091
5092        if (ip_is_fragment(ip_hdr(skb)))
5093                fragment = true;
5094
5095        off = ip_hdrlen(skb);
5096
5097        err = -EPROTO;
5098
5099        if (fragment)
5100                goto out;
5101
5102        csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5103        if (IS_ERR(csum))
5104                return PTR_ERR(csum);
5105
5106        if (recalculate)
5107                *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5108                                           ip_hdr(skb)->daddr,
5109                                           skb->len - off,
5110                                           ip_hdr(skb)->protocol, 0);
5111        err = 0;
5112
5113out:
5114        return err;
5115}
5116
5117/* This value should be large enough to cover a tagged ethernet header plus
5118 * an IPv6 header, all options, and a maximal TCP or UDP header.
5119 */
5120#define MAX_IPV6_HDR_LEN 256
5121
5122#define OPT_HDR(type, skb, off) \
5123        (type *)(skb_network_header(skb) + (off))
5124
5125static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5126{
5127        int err;
5128        u8 nexthdr;
5129        unsigned int off;
5130        unsigned int len;
5131        bool fragment;
5132        bool done;
5133        __sum16 *csum;
5134
5135        fragment = false;
5136        done = false;
5137
5138        off = sizeof(struct ipv6hdr);
5139
5140        err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5141        if (err < 0)
5142                goto out;
5143
5144        nexthdr = ipv6_hdr(skb)->nexthdr;
5145
5146        len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5147        while (off <= len && !done) {
5148                switch (nexthdr) {
5149                case IPPROTO_DSTOPTS:
5150                case IPPROTO_HOPOPTS:
5151                case IPPROTO_ROUTING: {
5152                        struct ipv6_opt_hdr *hp;
5153
5154                        err = skb_maybe_pull_tail(skb,
5155                                                  off +
5156                                                  sizeof(struct ipv6_opt_hdr),
5157                                                  MAX_IPV6_HDR_LEN);
5158                        if (err < 0)
5159                                goto out;
5160
5161                        hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5162                        nexthdr = hp->nexthdr;
5163                        off += ipv6_optlen(hp);
5164                        break;
5165                }
5166                case IPPROTO_AH: {
5167                        struct ip_auth_hdr *hp;
5168
5169                        err = skb_maybe_pull_tail(skb,
5170                                                  off +
5171                                                  sizeof(struct ip_auth_hdr),
5172                                                  MAX_IPV6_HDR_LEN);
5173                        if (err < 0)
5174                                goto out;
5175
5176                        hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5177                        nexthdr = hp->nexthdr;
5178                        off += ipv6_authlen(hp);
5179                        break;
5180                }
5181                case IPPROTO_FRAGMENT: {
5182                        struct frag_hdr *hp;
5183
5184                        err = skb_maybe_pull_tail(skb,
5185                                                  off +
5186                                                  sizeof(struct frag_hdr),
5187                                                  MAX_IPV6_HDR_LEN);
5188                        if (err < 0)
5189                                goto out;
5190
5191                        hp = OPT_HDR(struct frag_hdr, skb, off);
5192
5193                        if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5194                                fragment = true;
5195
5196                        nexthdr = hp->nexthdr;
5197                        off += sizeof(struct frag_hdr);
5198                        break;
5199                }
5200                default:
5201                        done = true;
5202                        break;
5203                }
5204        }
5205
5206        err = -EPROTO;
5207
5208        if (!done || fragment)
5209                goto out;
5210
5211        csum = skb_checksum_setup_ip(skb, nexthdr, off);
5212        if (IS_ERR(csum))
5213                return PTR_ERR(csum);
5214
5215        if (recalculate)
5216                *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5217                                         &ipv6_hdr(skb)->daddr,
5218                                         skb->len - off, nexthdr, 0);
5219        err = 0;
5220
5221out:
5222        return err;
5223}
5224
5225/**
5226 * skb_checksum_setup - set up partial checksum offset
5227 * @skb: the skb to set up
5228 * @recalculate: if true the pseudo-header checksum will be recalculated
5229 */
5230int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5231{
5232        int err;
5233
5234        switch (skb->protocol) {
5235        case htons(ETH_P_IP):
5236                err = skb_checksum_setup_ipv4(skb, recalculate);
5237                break;
5238
5239        case htons(ETH_P_IPV6):
5240                err = skb_checksum_setup_ipv6(skb, recalculate);
5241                break;
5242
5243        default:
5244                err = -EPROTO;
5245                break;
5246        }
5247
5248        return err;
5249}
5250EXPORT_SYMBOL(skb_checksum_setup);
5251
5252/**
5253 * skb_checksum_maybe_trim - maybe trims the given skb
5254 * @skb: the skb to check
5255 * @transport_len: the data length beyond the network header
5256 *
5257 * Checks whether the given skb has data beyond the given transport length.
5258 * If so, returns a cloned skb trimmed to this transport length.
5259 * Otherwise returns the provided skb. Returns NULL in error cases
5260 * (e.g. transport_len exceeds skb length or out-of-memory).
5261 *
5262 * Caller needs to set the skb transport header and free any returned skb if it
5263 * differs from the provided skb.
5264 */
5265static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5266                                               unsigned int transport_len)
5267{
5268        struct sk_buff *skb_chk;
5269        unsigned int len = skb_transport_offset(skb) + transport_len;
5270        int ret;
5271
5272        if (skb->len < len)
5273                return NULL;
5274        else if (skb->len == len)
5275                return skb;
5276
5277        skb_chk = skb_clone(skb, GFP_ATOMIC);
5278        if (!skb_chk)
5279                return NULL;
5280
5281        ret = pskb_trim_rcsum(skb_chk, len);
5282        if (ret) {
5283                kfree_skb(skb_chk);
5284                return NULL;
5285        }
5286
5287        return skb_chk;
5288}
5289
5290/**
5291 * skb_checksum_trimmed - validate checksum of an skb
5292 * @skb: the skb to check
5293 * @transport_len: the data length beyond the network header
5294 * @skb_chkf: checksum function to use
5295 *
5296 * Applies the given checksum function skb_chkf to the provided skb.
5297 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5298 *
5299 * If the skb has data beyond the given transport length, then a
5300 * trimmed & cloned skb is checked and returned.
5301 *
5302 * Caller needs to set the skb transport header and free any returned skb if it
5303 * differs from the provided skb.
5304 */
5305struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5306                                     unsigned int transport_len,
5307                                     __sum16(*skb_chkf)(struct sk_buff *skb))
5308{
5309        struct sk_buff *skb_chk;
5310        unsigned int offset = skb_transport_offset(skb);
5311        __sum16 ret;
5312
5313        skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5314        if (!skb_chk)
5315                goto err;
5316
5317        if (!pskb_may_pull(skb_chk, offset))
5318                goto err;
5319
5320        skb_pull_rcsum(skb_chk, offset);
5321        ret = skb_chkf(skb_chk);
5322        skb_push_rcsum(skb_chk, offset);
5323
5324        if (ret)
5325                goto err;
5326
5327        return skb_chk;
5328
5329err:
5330        if (skb_chk && skb_chk != skb)
5331                kfree_skb(skb_chk);
5332
5333        return NULL;
5334
5335}
5336EXPORT_SYMBOL(skb_checksum_trimmed);
5337
5338void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5339{
5340        net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5341                             skb->dev->name);
5342}
5343EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5344
5345void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5346{
5347        if (head_stolen) {
5348                skb_release_head_state(skb);
5349                kmem_cache_free(skbuff_head_cache, skb);
5350        } else {
5351                __kfree_skb(skb);
5352        }
5353}
5354EXPORT_SYMBOL(kfree_skb_partial);
5355
5356/**
5357 * skb_try_coalesce - try to merge skb to prior one
5358 * @to: prior buffer
5359 * @from: buffer to add
5360 * @fragstolen: pointer to boolean
5361 * @delta_truesize: how much more was allocated than was requested
5362 */
5363bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5364                      bool *fragstolen, int *delta_truesize)
5365{
5366        struct skb_shared_info *to_shinfo, *from_shinfo;
5367        int i, delta, len = from->len;
5368
5369        *fragstolen = false;
5370
5371        if (skb_cloned(to))
5372                return false;
5373
5374        /* The page pool signature of struct page will eventually figure out
5375         * which pages can be recycled or not but for now let's prohibit slab
5376         * allocated and page_pool allocated SKBs from being coalesced.
5377         */
5378        if (to->pp_recycle != from->pp_recycle)
5379                return false;
5380
5381        if (len <= skb_tailroom(to)) {
5382                if (len)
5383                        BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5384                *delta_truesize = 0;
5385                return true;
5386        }
5387
5388        to_shinfo = skb_shinfo(to);
5389        from_shinfo = skb_shinfo(from);
5390        if (to_shinfo->frag_list || from_shinfo->frag_list)
5391                return false;
5392        if (skb_zcopy(to) || skb_zcopy(from))
5393                return false;
5394
5395        if (skb_headlen(from) != 0) {
5396                struct page *page;
5397                unsigned int offset;
5398
5399                if (to_shinfo->nr_frags +
5400                    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5401                        return false;
5402
5403                if (skb_head_is_locked(from))
5404                        return false;
5405
5406                delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5407
5408                page = virt_to_head_page(from->head);
5409                offset = from->data - (unsigned char *)page_address(page);
5410
5411                skb_fill_page_desc(to, to_shinfo->nr_frags,
5412                                   page, offset, skb_headlen(from));
5413                *fragstolen = true;
5414        } else {
5415                if (to_shinfo->nr_frags +
5416                    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5417                        return false;
5418
5419                delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5420        }
5421
5422        WARN_ON_ONCE(delta < len);
5423
5424        memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5425               from_shinfo->frags,
5426               from_shinfo->nr_frags * sizeof(skb_frag_t));
5427        to_shinfo->nr_frags += from_shinfo->nr_frags;
5428
5429        if (!skb_cloned(from))
5430                from_shinfo->nr_frags = 0;
5431
5432        /* if the skb is not cloned this does nothing
5433         * since we set nr_frags to 0.
5434         */
5435        for (i = 0; i < from_shinfo->nr_frags; i++)
5436                __skb_frag_ref(&from_shinfo->frags[i]);
5437
5438        to->truesize += delta;
5439        to->len += len;
5440        to->data_len += len;
5441
5442        *delta_truesize = delta;
5443        return true;
5444}
5445EXPORT_SYMBOL(skb_try_coalesce);
5446
5447/**
5448 * skb_scrub_packet - scrub an skb
5449 *
5450 * @skb: buffer to clean
5451 * @xnet: packet is crossing netns
5452 *
5453 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5454 * into/from a tunnel. Some information have to be cleared during these
5455 * operations.
5456 * skb_scrub_packet can also be used to clean a skb before injecting it in
5457 * another namespace (@xnet == true). We have to clear all information in the
5458 * skb that could impact namespace isolation.
5459 */
5460void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5461{
5462        skb->pkt_type = PACKET_HOST;
5463        skb->skb_iif = 0;
5464        skb->ignore_df = 0;
5465        skb_dst_drop(skb);
5466        skb_ext_reset(skb);
5467        nf_reset_ct(skb);
5468        nf_reset_trace(skb);
5469
5470#ifdef CONFIG_NET_SWITCHDEV
5471        skb->offload_fwd_mark = 0;
5472        skb->offload_l3_fwd_mark = 0;
5473#endif
5474
5475        if (!xnet)
5476                return;
5477
5478        ipvs_reset(skb);
5479        skb->mark = 0;
5480        skb->tstamp = 0;
5481}
5482EXPORT_SYMBOL_GPL(skb_scrub_packet);
5483
5484/**
5485 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5486 *
5487 * @skb: GSO skb
5488 *
5489 * skb_gso_transport_seglen is used to determine the real size of the
5490 * individual segments, including Layer4 headers (TCP/UDP).
5491 *
5492 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5493 */
5494static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5495{
5496        const struct skb_shared_info *shinfo = skb_shinfo(skb);
5497        unsigned int thlen = 0;
5498
5499        if (skb->encapsulation) {
5500                thlen = skb_inner_transport_header(skb) -
5501                        skb_transport_header(skb);
5502
5503                if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5504                        thlen += inner_tcp_hdrlen(skb);
5505        } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5506                thlen = tcp_hdrlen(skb);
5507        } else if (unlikely(skb_is_gso_sctp(skb))) {
5508                thlen = sizeof(struct sctphdr);
5509        } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5510                thlen = sizeof(struct udphdr);
5511        }
5512        /* UFO sets gso_size to the size of the fragmentation
5513         * payload, i.e. the size of the L4 (UDP) header is already
5514         * accounted for.
5515         */
5516        return thlen + shinfo->gso_size;
5517}
5518
5519/**
5520 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5521 *
5522 * @skb: GSO skb
5523 *
5524 * skb_gso_network_seglen is used to determine the real size of the
5525 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5526 *
5527 * The MAC/L2 header is not accounted for.
5528 */
5529static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5530{
5531        unsigned int hdr_len = skb_transport_header(skb) -
5532                               skb_network_header(skb);
5533
5534        return hdr_len + skb_gso_transport_seglen(skb);
5535}
5536
5537/**
5538 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5539 *
5540 * @skb: GSO skb
5541 *
5542 * skb_gso_mac_seglen is used to determine the real size of the
5543 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5544 * headers (TCP/UDP).
5545 */
5546static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5547{
5548        unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5549
5550        return hdr_len + skb_gso_transport_seglen(skb);
5551}
5552
5553/**
5554 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5555 *
5556 * There are a couple of instances where we have a GSO skb, and we
5557 * want to determine what size it would be after it is segmented.
5558 *
5559 * We might want to check:
5560 * -    L3+L4+payload size (e.g. IP forwarding)
5561 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5562 *
5563 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5564 *
5565 * @skb: GSO skb
5566 *
5567 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5568 *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5569 *
5570 * @max_len: The maximum permissible length.
5571 *
5572 * Returns true if the segmented length <= max length.
5573 */
5574static inline bool skb_gso_size_check(const struct sk_buff *skb,
5575                                      unsigned int seg_len,
5576                                      unsigned int max_len) {
5577        const struct skb_shared_info *shinfo = skb_shinfo(skb);
5578        const struct sk_buff *iter;
5579
5580        if (shinfo->gso_size != GSO_BY_FRAGS)
5581                return seg_len <= max_len;
5582
5583        /* Undo this so we can re-use header sizes */
5584        seg_len -= GSO_BY_FRAGS;
5585
5586        skb_walk_frags(skb, iter) {
5587                if (seg_len + skb_headlen(iter) > max_len)
5588                        return false;
5589        }
5590
5591        return true;
5592}
5593
5594/**
5595 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5596 *
5597 * @skb: GSO skb
5598 * @mtu: MTU to validate against
5599 *
5600 * skb_gso_validate_network_len validates if a given skb will fit a
5601 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5602 * payload.
5603 */
5604bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5605{
5606        return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5607}
5608EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5609
5610/**
5611 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5612 *
5613 * @skb: GSO skb
5614 * @len: length to validate against
5615 *
5616 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5617 * length once split, including L2, L3 and L4 headers and the payload.
5618 */
5619bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5620{
5621        return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5622}
5623EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5624
5625static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5626{
5627        int mac_len, meta_len;
5628        void *meta;
5629
5630        if (skb_cow(skb, skb_headroom(skb)) < 0) {
5631                kfree_skb(skb);
5632                return NULL;
5633        }
5634
5635        mac_len = skb->data - skb_mac_header(skb);
5636        if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5637                memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5638                        mac_len - VLAN_HLEN - ETH_TLEN);
5639        }
5640
5641        meta_len = skb_metadata_len(skb);
5642        if (meta_len) {
5643                meta = skb_metadata_end(skb) - meta_len;
5644                memmove(meta + VLAN_HLEN, meta, meta_len);
5645        }
5646
5647        skb->mac_header += VLAN_HLEN;
5648        return skb;
5649}
5650
5651struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5652{
5653        struct vlan_hdr *vhdr;
5654        u16 vlan_tci;
5655
5656        if (unlikely(skb_vlan_tag_present(skb))) {
5657                /* vlan_tci is already set-up so leave this for another time */
5658                return skb;
5659        }
5660
5661        skb = skb_share_check(skb, GFP_ATOMIC);
5662        if (unlikely(!skb))
5663                goto err_free;
5664        /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5665        if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5666                goto err_free;
5667
5668        vhdr = (struct vlan_hdr *)skb->data;
5669        vlan_tci = ntohs(vhdr->h_vlan_TCI);
5670        __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5671
5672        skb_pull_rcsum(skb, VLAN_HLEN);
5673        vlan_set_encap_proto(skb, vhdr);
5674
5675        skb = skb_reorder_vlan_header(skb);
5676        if (unlikely(!skb))
5677                goto err_free;
5678
5679        skb_reset_network_header(skb);
5680        if (!skb_transport_header_was_set(skb))
5681                skb_reset_transport_header(skb);
5682        skb_reset_mac_len(skb);
5683
5684        return skb;
5685
5686err_free:
5687        kfree_skb(skb);
5688        return NULL;
5689}
5690EXPORT_SYMBOL(skb_vlan_untag);
5691
5692int skb_ensure_writable(struct sk_buff *skb, int write_len)
5693{
5694        if (!pskb_may_pull(skb, write_len))
5695                return -ENOMEM;
5696
5697        if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5698                return 0;
5699
5700        return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5701}
5702EXPORT_SYMBOL(skb_ensure_writable);
5703
5704/* remove VLAN header from packet and update csum accordingly.
5705 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5706 */
5707int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5708{
5709        struct vlan_hdr *vhdr;
5710        int offset = skb->data - skb_mac_header(skb);
5711        int err;
5712
5713        if (WARN_ONCE(offset,
5714                      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5715                      offset)) {
5716                return -EINVAL;
5717        }
5718
5719        err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5720        if (unlikely(err))
5721                return err;
5722
5723        skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5724
5725        vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5726        *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5727
5728        memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5729        __skb_pull(skb, VLAN_HLEN);
5730
5731        vlan_set_encap_proto(skb, vhdr);
5732        skb->mac_header += VLAN_HLEN;
5733
5734        if (skb_network_offset(skb) < ETH_HLEN)
5735                skb_set_network_header(skb, ETH_HLEN);
5736
5737        skb_reset_mac_len(skb);
5738
5739        return err;
5740}
5741EXPORT_SYMBOL(__skb_vlan_pop);
5742
5743/* Pop a vlan tag either from hwaccel or from payload.
5744 * Expects skb->data at mac header.
5745 */
5746int skb_vlan_pop(struct sk_buff *skb)
5747{
5748        u16 vlan_tci;
5749        __be16 vlan_proto;
5750        int err;
5751
5752        if (likely(skb_vlan_tag_present(skb))) {
5753                __vlan_hwaccel_clear_tag(skb);
5754        } else {
5755                if (unlikely(!eth_type_vlan(skb->protocol)))
5756                        return 0;
5757
5758                err = __skb_vlan_pop(skb, &vlan_tci);
5759                if (err)
5760                        return err;
5761        }
5762        /* move next vlan tag to hw accel tag */
5763        if (likely(!eth_type_vlan(skb->protocol)))
5764                return 0;
5765
5766        vlan_proto = skb->protocol;
5767        err = __skb_vlan_pop(skb, &vlan_tci);
5768        if (unlikely(err))
5769                return err;
5770
5771        __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5772        return 0;
5773}
5774EXPORT_SYMBOL(skb_vlan_pop);
5775
5776/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5777 * Expects skb->data at mac header.
5778 */
5779int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5780{
5781        if (skb_vlan_tag_present(skb)) {
5782                int offset = skb->data - skb_mac_header(skb);
5783                int err;
5784
5785                if (WARN_ONCE(offset,
5786                              "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5787                              offset)) {
5788                        return -EINVAL;
5789                }
5790
5791                err = __vlan_insert_tag(skb, skb->vlan_proto,
5792                                        skb_vlan_tag_get(skb));
5793                if (err)
5794                        return err;
5795
5796                skb->protocol = skb->vlan_proto;
5797                skb->mac_len += VLAN_HLEN;
5798
5799                skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5800        }
5801        __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5802        return 0;
5803}
5804EXPORT_SYMBOL(skb_vlan_push);
5805
5806/**
5807 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5808 *
5809 * @skb: Socket buffer to modify
5810 *
5811 * Drop the Ethernet header of @skb.
5812 *
5813 * Expects that skb->data points to the mac header and that no VLAN tags are
5814 * present.
5815 *
5816 * Returns 0 on success, -errno otherwise.
5817 */
5818int skb_eth_pop(struct sk_buff *skb)
5819{
5820        if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5821            skb_network_offset(skb) < ETH_HLEN)
5822                return -EPROTO;
5823
5824        skb_pull_rcsum(skb, ETH_HLEN);
5825        skb_reset_mac_header(skb);
5826        skb_reset_mac_len(skb);
5827
5828        return 0;
5829}
5830EXPORT_SYMBOL(skb_eth_pop);
5831
5832/**
5833 * skb_eth_push() - Add a new Ethernet header at the head of a packet
5834 *
5835 * @skb: Socket buffer to modify
5836 * @dst: Destination MAC address of the new header
5837 * @src: Source MAC address of the new header
5838 *
5839 * Prepend @skb with a new Ethernet header.
5840 *
5841 * Expects that skb->data points to the mac header, which must be empty.
5842 *
5843 * Returns 0 on success, -errno otherwise.
5844 */
5845int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5846                 const unsigned char *src)
5847{
5848        struct ethhdr *eth;
5849        int err;
5850
5851        if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5852                return -EPROTO;
5853
5854        err = skb_cow_head(skb, sizeof(*eth));
5855        if (err < 0)
5856                return err;
5857
5858        skb_push(skb, sizeof(*eth));
5859        skb_reset_mac_header(skb);
5860        skb_reset_mac_len(skb);
5861
5862        eth = eth_hdr(skb);
5863        ether_addr_copy(eth->h_dest, dst);
5864        ether_addr_copy(eth->h_source, src);
5865        eth->h_proto = skb->protocol;
5866
5867        skb_postpush_rcsum(skb, eth, sizeof(*eth));
5868
5869        return 0;
5870}
5871EXPORT_SYMBOL(skb_eth_push);
5872
5873/* Update the ethertype of hdr and the skb csum value if required. */
5874static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5875                             __be16 ethertype)
5876{
5877        if (skb->ip_summed == CHECKSUM_COMPLETE) {
5878                __be16 diff[] = { ~hdr->h_proto, ethertype };
5879
5880                skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5881        }
5882
5883        hdr->h_proto = ethertype;
5884}
5885
5886/**
5887 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5888 *                   the packet
5889 *
5890 * @skb: buffer
5891 * @mpls_lse: MPLS label stack entry to push
5892 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5893 * @mac_len: length of the MAC header
5894 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5895 *            ethernet
5896 *
5897 * Expects skb->data at mac header.
5898 *
5899 * Returns 0 on success, -errno otherwise.
5900 */
5901int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5902                  int mac_len, bool ethernet)
5903{
5904        struct mpls_shim_hdr *lse;
5905        int err;
5906
5907        if (unlikely(!eth_p_mpls(mpls_proto)))
5908                return -EINVAL;
5909
5910        /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5911        if (skb->encapsulation)
5912                return -EINVAL;
5913
5914        err = skb_cow_head(skb, MPLS_HLEN);
5915        if (unlikely(err))
5916                return err;
5917
5918        if (!skb->inner_protocol) {
5919                skb_set_inner_network_header(skb, skb_network_offset(skb));
5920                skb_set_inner_protocol(skb, skb->protocol);
5921        }
5922
5923        skb_push(skb, MPLS_HLEN);
5924        memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5925                mac_len);
5926        skb_reset_mac_header(skb);
5927        skb_set_network_header(skb, mac_len);
5928        skb_reset_mac_len(skb);
5929
5930        lse = mpls_hdr(skb);
5931        lse->label_stack_entry = mpls_lse;
5932        skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5933
5934        if (ethernet && mac_len >= ETH_HLEN)
5935                skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5936        skb->protocol = mpls_proto;
5937
5938        return 0;
5939}
5940EXPORT_SYMBOL_GPL(skb_mpls_push);
5941
5942/**
5943 * skb_mpls_pop() - pop the outermost MPLS header
5944 *
5945 * @skb: buffer
5946 * @next_proto: ethertype of header after popped MPLS header
5947 * @mac_len: length of the MAC header
5948 * @ethernet: flag to indicate if the packet is ethernet
5949 *
5950 * Expects skb->data at mac header.
5951 *
5952 * Returns 0 on success, -errno otherwise.
5953 */
5954int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5955                 bool ethernet)
5956{
5957        int err;
5958
5959        if (unlikely(!eth_p_mpls(skb->protocol)))
5960                return 0;
5961
5962        err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5963        if (unlikely(err))
5964                return err;
5965
5966        skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5967        memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5968                mac_len);
5969
5970        __skb_pull(skb, MPLS_HLEN);
5971        skb_reset_mac_header(skb);
5972        skb_set_network_header(skb, mac_len);
5973
5974        if (ethernet && mac_len >= ETH_HLEN) {
5975                struct ethhdr *hdr;
5976
5977                /* use mpls_hdr() to get ethertype to account for VLANs. */
5978                hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5979                skb_mod_eth_type(skb, hdr, next_proto);
5980        }
5981        skb->protocol = next_proto;
5982
5983        return 0;
5984}
5985EXPORT_SYMBOL_GPL(skb_mpls_pop);
5986
5987/**
5988 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5989 *
5990 * @skb: buffer
5991 * @mpls_lse: new MPLS label stack entry to update to
5992 *
5993 * Expects skb->data at mac header.
5994 *
5995 * Returns 0 on success, -errno otherwise.
5996 */
5997int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5998{
5999        int err;
6000
6001        if (unlikely(!eth_p_mpls(skb->protocol)))
6002                return -EINVAL;
6003
6004        err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6005        if (unlikely(err))
6006                return err;
6007
6008        if (skb->ip_summed == CHECKSUM_COMPLETE) {
6009                __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6010
6011                skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6012        }
6013
6014        mpls_hdr(skb)->label_stack_entry = mpls_lse;
6015
6016        return 0;
6017}
6018EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6019
6020/**
6021 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6022 *
6023 * @skb: buffer
6024 *
6025 * Expects skb->data at mac header.
6026 *
6027 * Returns 0 on success, -errno otherwise.
6028 */
6029int skb_mpls_dec_ttl(struct sk_buff *skb)
6030{
6031        u32 lse;
6032        u8 ttl;
6033
6034        if (unlikely(!eth_p_mpls(skb->protocol)))
6035                return -EINVAL;
6036
6037        if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6038                return -ENOMEM;
6039
6040        lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6041        ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6042        if (!--ttl)
6043                return -EINVAL;
6044
6045        lse &= ~MPLS_LS_TTL_MASK;
6046        lse |= ttl << MPLS_LS_TTL_SHIFT;
6047
6048        return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6049}
6050EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6051
6052/**
6053 * alloc_skb_with_frags - allocate skb with page frags
6054 *
6055 * @header_len: size of linear part
6056 * @data_len: needed length in frags
6057 * @max_page_order: max page order desired.
6058 * @errcode: pointer to error code if any
6059 * @gfp_mask: allocation mask
6060 *
6061 * This can be used to allocate a paged skb, given a maximal order for frags.
6062 */
6063struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6064                                     unsigned long data_len,
6065                                     int max_page_order,
6066                                     int *errcode,
6067                                     gfp_t gfp_mask)
6068{
6069        int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
6070        unsigned long chunk;
6071        struct sk_buff *skb;
6072        struct page *page;
6073        int i;
6074
6075        *errcode = -EMSGSIZE;
6076        /* Note this test could be relaxed, if we succeed to allocate
6077         * high order pages...
6078         */
6079        if (npages > MAX_SKB_FRAGS)
6080                return NULL;
6081
6082        *errcode = -ENOBUFS;
6083        skb = alloc_skb(header_len, gfp_mask);
6084        if (!skb)
6085                return NULL;
6086
6087        skb->truesize += npages << PAGE_SHIFT;
6088
6089        for (i = 0; npages > 0; i++) {
6090                int order = max_page_order;
6091
6092                while (order) {
6093                        if (npages >= 1 << order) {
6094                                page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6095                                                   __GFP_COMP |
6096                                                   __GFP_NOWARN,
6097                                                   order);
6098                                if (page)
6099                                        goto fill_page;
6100                                /* Do not retry other high order allocations */
6101                                order = 1;
6102                                max_page_order = 0;
6103                        }
6104                        order--;
6105                }
6106                page = alloc_page(gfp_mask);
6107                if (!page)
6108                        goto failure;
6109fill_page:
6110                chunk = min_t(unsigned long, data_len,
6111                              PAGE_SIZE << order);
6112                skb_fill_page_desc(skb, i, page, 0, chunk);
6113                data_len -= chunk;
6114                npages -= 1 << order;
6115        }
6116        return skb;
6117
6118failure:
6119        kfree_skb(skb);
6120        return NULL;
6121}
6122EXPORT_SYMBOL(alloc_skb_with_frags);
6123
6124/* carve out the first off bytes from skb when off < headlen */
6125static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6126                                    const int headlen, gfp_t gfp_mask)
6127{
6128        int i;
6129        int size = skb_end_offset(skb);
6130        int new_hlen = headlen - off;
6131        u8 *data;
6132
6133        size = SKB_DATA_ALIGN(size);
6134
6135        if (skb_pfmemalloc(skb))
6136                gfp_mask |= __GFP_MEMALLOC;
6137        data = kmalloc_reserve(size +
6138                               SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6139                               gfp_mask, NUMA_NO_NODE, NULL);
6140        if (!data)
6141                return -ENOMEM;
6142
6143        size = SKB_WITH_OVERHEAD(ksize(data));
6144
6145        /* Copy real data, and all frags */
6146        skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6147        skb->len -= off;
6148
6149        memcpy((struct skb_shared_info *)(data + size),
6150               skb_shinfo(skb),
6151               offsetof(struct skb_shared_info,
6152                        frags[skb_shinfo(skb)->nr_frags]));
6153        if (skb_cloned(skb)) {
6154                /* drop the old head gracefully */
6155                if (skb_orphan_frags(skb, gfp_mask)) {
6156                        kfree(data);
6157                        return -ENOMEM;
6158                }
6159                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6160                        skb_frag_ref(skb, i);
6161                if (skb_has_frag_list(skb))
6162                        skb_clone_fraglist(skb);
6163                skb_release_data(skb);
6164        } else {
6165                /* we can reuse existing recount- all we did was
6166                 * relocate values
6167                 */
6168                skb_free_head(skb);
6169        }
6170
6171        skb->head = data;
6172        skb->data = data;
6173        skb->head_frag = 0;
6174#ifdef NET_SKBUFF_DATA_USES_OFFSET
6175        skb->end = size;
6176#else
6177        skb->end = skb->head + size;
6178#endif
6179        skb_set_tail_pointer(skb, skb_headlen(skb));
6180        skb_headers_offset_update(skb, 0);
6181        skb->cloned = 0;
6182        skb->hdr_len = 0;
6183        skb->nohdr = 0;
6184        atomic_set(&skb_shinfo(skb)->dataref, 1);
6185
6186        return 0;
6187}
6188
6189static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6190
6191/* carve out the first eat bytes from skb's frag_list. May recurse into
6192 * pskb_carve()
6193 */
6194static int pskb_carve_frag_list(struct sk_buff *skb,
6195                                struct skb_shared_info *shinfo, int eat,
6196                                gfp_t gfp_mask)
6197{
6198        struct sk_buff *list = shinfo->frag_list;
6199        struct sk_buff *clone = NULL;
6200        struct sk_buff *insp = NULL;
6201
6202        do {
6203                if (!list) {
6204                        pr_err("Not enough bytes to eat. Want %d\n", eat);
6205                        return -EFAULT;
6206                }
6207                if (list->len <= eat) {
6208                        /* Eaten as whole. */
6209                        eat -= list->len;
6210                        list = list->next;
6211                        insp = list;
6212                } else {
6213                        /* Eaten partially. */
6214                        if (skb_shared(list)) {
6215                                clone = skb_clone(list, gfp_mask);
6216                                if (!clone)
6217                                        return -ENOMEM;
6218                                insp = list->next;
6219                                list = clone;
6220                        } else {
6221                                /* This may be pulled without problems. */
6222                                insp = list;
6223                        }
6224                        if (pskb_carve(list, eat, gfp_mask) < 0) {
6225                                kfree_skb(clone);
6226                                return -ENOMEM;
6227                        }
6228                        break;
6229                }
6230        } while (eat);
6231
6232        /* Free pulled out fragments. */
6233        while ((list = shinfo->frag_list) != insp) {
6234                shinfo->frag_list = list->next;
6235                kfree_skb(list);
6236        }
6237        /* And insert new clone at head. */
6238        if (clone) {
6239                clone->next = list;
6240                shinfo->frag_list = clone;
6241        }
6242        return 0;
6243}
6244
6245/* carve off first len bytes from skb. Split line (off) is in the
6246 * non-linear part of skb
6247 */
6248static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6249                                       int pos, gfp_t gfp_mask)
6250{
6251        int i, k = 0;
6252        int size = skb_end_offset(skb);
6253        u8 *data;
6254        const int nfrags = skb_shinfo(skb)->nr_frags;
6255        struct skb_shared_info *shinfo;
6256
6257        size = SKB_DATA_ALIGN(size);
6258
6259        if (skb_pfmemalloc(skb))
6260                gfp_mask |= __GFP_MEMALLOC;
6261        data = kmalloc_reserve(size +
6262                               SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6263                               gfp_mask, NUMA_NO_NODE, NULL);
6264        if (!data)
6265                return -ENOMEM;
6266
6267        size = SKB_WITH_OVERHEAD(ksize(data));
6268
6269        memcpy((struct skb_shared_info *)(data + size),
6270               skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6271        if (skb_orphan_frags(skb, gfp_mask)) {
6272                kfree(data);
6273                return -ENOMEM;
6274        }
6275        shinfo = (struct skb_shared_info *)(data + size);
6276        for (i = 0; i < nfrags; i++) {
6277                int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6278
6279                if (pos + fsize > off) {
6280                        shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6281
6282                        if (pos < off) {
6283                                /* Split frag.
6284                                 * We have two variants in this case:
6285                                 * 1. Move all the frag to the second
6286                                 *    part, if it is possible. F.e.
6287                                 *    this approach is mandatory for TUX,
6288                                 *    where splitting is expensive.
6289                                 * 2. Split is accurately. We make this.
6290                                 */
6291                                skb_frag_off_add(&shinfo->frags[0], off - pos);
6292                                skb_frag_size_sub(&shinfo->frags[0], off - pos);
6293                        }
6294                        skb_frag_ref(skb, i);
6295                        k++;
6296                }
6297                pos += fsize;
6298        }
6299        shinfo->nr_frags = k;
6300        if (skb_has_frag_list(skb))
6301                skb_clone_fraglist(skb);
6302
6303        /* split line is in frag list */
6304        if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6305                /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6306                if (skb_has_frag_list(skb))
6307                        kfree_skb_list(skb_shinfo(skb)->frag_list);
6308                kfree(data);
6309                return -ENOMEM;
6310        }
6311        skb_release_data(skb);
6312
6313        skb->head = data;
6314        skb->head_frag = 0;
6315        skb->data = data;
6316#ifdef NET_SKBUFF_DATA_USES_OFFSET
6317        skb->end = size;
6318#else
6319        skb->end = skb->head + size;
6320#endif
6321        skb_reset_tail_pointer(skb);
6322        skb_headers_offset_update(skb, 0);
6323        skb->cloned   = 0;
6324        skb->hdr_len  = 0;
6325        skb->nohdr    = 0;
6326        skb->len -= off;
6327        skb->data_len = skb->len;
6328        atomic_set(&skb_shinfo(skb)->dataref, 1);
6329        return 0;
6330}
6331
6332/* remove len bytes from the beginning of the skb */
6333static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6334{
6335        int headlen = skb_headlen(skb);
6336
6337        if (len < headlen)
6338                return pskb_carve_inside_header(skb, len, headlen, gfp);
6339        else
6340                return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6341}
6342
6343/* Extract to_copy bytes starting at off from skb, and return this in
6344 * a new skb
6345 */
6346struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6347                             int to_copy, gfp_t gfp)
6348{
6349        struct sk_buff  *clone = skb_clone(skb, gfp);
6350
6351        if (!clone)
6352                return NULL;
6353
6354        if (pskb_carve(clone, off, gfp) < 0 ||
6355            pskb_trim(clone, to_copy)) {
6356                kfree_skb(clone);
6357                return NULL;
6358        }
6359        return clone;
6360}
6361EXPORT_SYMBOL(pskb_extract);
6362
6363/**
6364 * skb_condense - try to get rid of fragments/frag_list if possible
6365 * @skb: buffer
6366 *
6367 * Can be used to save memory before skb is added to a busy queue.
6368 * If packet has bytes in frags and enough tail room in skb->head,
6369 * pull all of them, so that we can free the frags right now and adjust
6370 * truesize.
6371 * Notes:
6372 *      We do not reallocate skb->head thus can not fail.
6373 *      Caller must re-evaluate skb->truesize if needed.
6374 */
6375void skb_condense(struct sk_buff *skb)
6376{
6377        if (skb->data_len) {
6378                if (skb->data_len > skb->end - skb->tail ||
6379                    skb_cloned(skb))
6380                        return;
6381
6382                /* Nice, we can free page frag(s) right now */
6383                __pskb_pull_tail(skb, skb->data_len);
6384        }
6385        /* At this point, skb->truesize might be over estimated,
6386         * because skb had a fragment, and fragments do not tell
6387         * their truesize.
6388         * When we pulled its content into skb->head, fragment
6389         * was freed, but __pskb_pull_tail() could not possibly
6390         * adjust skb->truesize, not knowing the frag truesize.
6391         */
6392        skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6393}
6394
6395#ifdef CONFIG_SKB_EXTENSIONS
6396static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6397{
6398        return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6399}
6400
6401/**
6402 * __skb_ext_alloc - allocate a new skb extensions storage
6403 *
6404 * @flags: See kmalloc().
6405 *
6406 * Returns the newly allocated pointer. The pointer can later attached to a
6407 * skb via __skb_ext_set().
6408 * Note: caller must handle the skb_ext as an opaque data.
6409 */
6410struct skb_ext *__skb_ext_alloc(gfp_t flags)
6411{
6412        struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6413
6414        if (new) {
6415                memset(new->offset, 0, sizeof(new->offset));
6416                refcount_set(&new->refcnt, 1);
6417        }
6418
6419        return new;
6420}
6421
6422static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6423                                         unsigned int old_active)
6424{
6425        struct skb_ext *new;
6426
6427        if (refcount_read(&old->refcnt) == 1)
6428                return old;
6429
6430        new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6431        if (!new)
6432                return NULL;
6433
6434        memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6435        refcount_set(&new->refcnt, 1);
6436
6437#ifdef CONFIG_XFRM
6438        if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6439                struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6440                unsigned int i;
6441
6442                for (i = 0; i < sp->len; i++)
6443                        xfrm_state_hold(sp->xvec[i]);
6444        }
6445#endif
6446        __skb_ext_put(old);
6447        return new;
6448}
6449
6450/**
6451 * __skb_ext_set - attach the specified extension storage to this skb
6452 * @skb: buffer
6453 * @id: extension id
6454 * @ext: extension storage previously allocated via __skb_ext_alloc()
6455 *
6456 * Existing extensions, if any, are cleared.
6457 *
6458 * Returns the pointer to the extension.
6459 */
6460void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6461                    struct skb_ext *ext)
6462{
6463        unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6464
6465        skb_ext_put(skb);
6466        newlen = newoff + skb_ext_type_len[id];
6467        ext->chunks = newlen;
6468        ext->offset[id] = newoff;
6469        skb->extensions = ext;
6470        skb->active_extensions = 1 << id;
6471        return skb_ext_get_ptr(ext, id);
6472}
6473
6474/**
6475 * skb_ext_add - allocate space for given extension, COW if needed
6476 * @skb: buffer
6477 * @id: extension to allocate space for
6478 *
6479 * Allocates enough space for the given extension.
6480 * If the extension is already present, a pointer to that extension
6481 * is returned.
6482 *
6483 * If the skb was cloned, COW applies and the returned memory can be
6484 * modified without changing the extension space of clones buffers.
6485 *
6486 * Returns pointer to the extension or NULL on allocation failure.
6487 */
6488void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6489{
6490        struct skb_ext *new, *old = NULL;
6491        unsigned int newlen, newoff;
6492
6493        if (skb->active_extensions) {
6494                old = skb->extensions;
6495
6496                new = skb_ext_maybe_cow(old, skb->active_extensions);
6497                if (!new)
6498                        return NULL;
6499
6500                if (__skb_ext_exist(new, id))
6501                        goto set_active;
6502
6503                newoff = new->chunks;
6504        } else {
6505                newoff = SKB_EXT_CHUNKSIZEOF(*new);
6506
6507                new = __skb_ext_alloc(GFP_ATOMIC);
6508                if (!new)
6509                        return NULL;
6510        }
6511
6512        newlen = newoff + skb_ext_type_len[id];
6513        new->chunks = newlen;
6514        new->offset[id] = newoff;
6515set_active:
6516        skb->slow_gro = 1;
6517        skb->extensions = new;
6518        skb->active_extensions |= 1 << id;
6519        return skb_ext_get_ptr(new, id);
6520}
6521EXPORT_SYMBOL(skb_ext_add);
6522
6523#ifdef CONFIG_XFRM
6524static void skb_ext_put_sp(struct sec_path *sp)
6525{
6526        unsigned int i;
6527
6528        for (i = 0; i < sp->len; i++)
6529                xfrm_state_put(sp->xvec[i]);
6530}
6531#endif
6532
6533void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6534{
6535        struct skb_ext *ext = skb->extensions;
6536
6537        skb->active_extensions &= ~(1 << id);
6538        if (skb->active_extensions == 0) {
6539                skb->extensions = NULL;
6540                __skb_ext_put(ext);
6541#ifdef CONFIG_XFRM
6542        } else if (id == SKB_EXT_SEC_PATH &&
6543                   refcount_read(&ext->refcnt) == 1) {
6544                struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6545
6546                skb_ext_put_sp(sp);
6547                sp->len = 0;
6548#endif
6549        }
6550}
6551EXPORT_SYMBOL(__skb_ext_del);
6552
6553void __skb_ext_put(struct skb_ext *ext)
6554{
6555        /* If this is last clone, nothing can increment
6556         * it after check passes.  Avoids one atomic op.
6557         */
6558        if (refcount_read(&ext->refcnt) == 1)
6559                goto free_now;
6560
6561        if (!refcount_dec_and_test(&ext->refcnt))
6562                return;
6563free_now:
6564#ifdef CONFIG_XFRM
6565        if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6566                skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6567#endif
6568
6569        kmem_cache_free(skbuff_ext_cache, ext);
6570}
6571EXPORT_SYMBOL(__skb_ext_put);
6572#endif /* CONFIG_SKB_EXTENSIONS */
6573