linux/net/ipv4/arp.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* linux/net/ipv4/arp.c
   3 *
   4 * Copyright (C) 1994 by Florian  La Roche
   5 *
   6 * This module implements the Address Resolution Protocol ARP (RFC 826),
   7 * which is used to convert IP addresses (or in the future maybe other
   8 * high-level addresses) into a low-level hardware address (like an Ethernet
   9 * address).
  10 *
  11 * Fixes:
  12 *              Alan Cox        :       Removed the Ethernet assumptions in
  13 *                                      Florian's code
  14 *              Alan Cox        :       Fixed some small errors in the ARP
  15 *                                      logic
  16 *              Alan Cox        :       Allow >4K in /proc
  17 *              Alan Cox        :       Make ARP add its own protocol entry
  18 *              Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
  19 *              Stephen Henson  :       Add AX25 support to arp_get_info()
  20 *              Alan Cox        :       Drop data when a device is downed.
  21 *              Alan Cox        :       Use init_timer().
  22 *              Alan Cox        :       Double lock fixes.
  23 *              Martin Seine    :       Move the arphdr structure
  24 *                                      to if_arp.h for compatibility.
  25 *                                      with BSD based programs.
  26 *              Andrew Tridgell :       Added ARP netmask code and
  27 *                                      re-arranged proxy handling.
  28 *              Alan Cox        :       Changed to use notifiers.
  29 *              Niibe Yutaka    :       Reply for this device or proxies only.
  30 *              Alan Cox        :       Don't proxy across hardware types!
  31 *              Jonathan Naylor :       Added support for NET/ROM.
  32 *              Mike Shaver     :       RFC1122 checks.
  33 *              Jonathan Naylor :       Only lookup the hardware address for
  34 *                                      the correct hardware type.
  35 *              Germano Caronni :       Assorted subtle races.
  36 *              Craig Schlenter :       Don't modify permanent entry
  37 *                                      during arp_rcv.
  38 *              Russ Nelson     :       Tidied up a few bits.
  39 *              Alexey Kuznetsov:       Major changes to caching and behaviour,
  40 *                                      eg intelligent arp probing and
  41 *                                      generation
  42 *                                      of host down events.
  43 *              Alan Cox        :       Missing unlock in device events.
  44 *              Eckes           :       ARP ioctl control errors.
  45 *              Alexey Kuznetsov:       Arp free fix.
  46 *              Manuel Rodriguez:       Gratuitous ARP.
  47 *              Jonathan Layes  :       Added arpd support through kerneld
  48 *                                      message queue (960314)
  49 *              Mike Shaver     :       /proc/sys/net/ipv4/arp_* support
  50 *              Mike McLagan    :       Routing by source
  51 *              Stuart Cheshire :       Metricom and grat arp fixes
  52 *                                      *** FOR 2.1 clean this up ***
  53 *              Lawrence V. Stefani: (08/12/96) Added FDDI support.
  54 *              Alan Cox        :       Took the AP1000 nasty FDDI hack and
  55 *                                      folded into the mainstream FDDI code.
  56 *                                      Ack spit, Linus how did you allow that
  57 *                                      one in...
  58 *              Jes Sorensen    :       Make FDDI work again in 2.1.x and
  59 *                                      clean up the APFDDI & gen. FDDI bits.
  60 *              Alexey Kuznetsov:       new arp state machine;
  61 *                                      now it is in net/core/neighbour.c.
  62 *              Krzysztof Halasa:       Added Frame Relay ARP support.
  63 *              Arnaldo C. Melo :       convert /proc/net/arp to seq_file
  64 *              Shmulik Hen:            Split arp_send to arp_create and
  65 *                                      arp_xmit so intermediate drivers like
  66 *                                      bonding can change the skb before
  67 *                                      sending (e.g. insert 8021q tag).
  68 *              Harald Welte    :       convert to make use of jenkins hash
  69 *              Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
  70 */
  71
  72#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  73
  74#include <linux/module.h>
  75#include <linux/types.h>
  76#include <linux/string.h>
  77#include <linux/kernel.h>
  78#include <linux/capability.h>
  79#include <linux/socket.h>
  80#include <linux/sockios.h>
  81#include <linux/errno.h>
  82#include <linux/in.h>
  83#include <linux/mm.h>
  84#include <linux/inet.h>
  85#include <linux/inetdevice.h>
  86#include <linux/netdevice.h>
  87#include <linux/etherdevice.h>
  88#include <linux/fddidevice.h>
  89#include <linux/if_arp.h>
  90#include <linux/skbuff.h>
  91#include <linux/proc_fs.h>
  92#include <linux/seq_file.h>
  93#include <linux/stat.h>
  94#include <linux/init.h>
  95#include <linux/net.h>
  96#include <linux/rcupdate.h>
  97#include <linux/slab.h>
  98#ifdef CONFIG_SYSCTL
  99#include <linux/sysctl.h>
 100#endif
 101
 102#include <net/net_namespace.h>
 103#include <net/ip.h>
 104#include <net/icmp.h>
 105#include <net/route.h>
 106#include <net/protocol.h>
 107#include <net/tcp.h>
 108#include <net/sock.h>
 109#include <net/arp.h>
 110#include <net/ax25.h>
 111#include <net/netrom.h>
 112#include <net/dst_metadata.h>
 113#include <net/ip_tunnels.h>
 114
 115#include <linux/uaccess.h>
 116
 117#include <linux/netfilter_arp.h>
 118
 119/*
 120 *      Interface to generic neighbour cache.
 121 */
 122static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
 123static bool arp_key_eq(const struct neighbour *n, const void *pkey);
 124static int arp_constructor(struct neighbour *neigh);
 125static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
 126static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
 127static void parp_redo(struct sk_buff *skb);
 128static int arp_is_multicast(const void *pkey);
 129
 130static const struct neigh_ops arp_generic_ops = {
 131        .family =               AF_INET,
 132        .solicit =              arp_solicit,
 133        .error_report =         arp_error_report,
 134        .output =               neigh_resolve_output,
 135        .connected_output =     neigh_connected_output,
 136};
 137
 138static const struct neigh_ops arp_hh_ops = {
 139        .family =               AF_INET,
 140        .solicit =              arp_solicit,
 141        .error_report =         arp_error_report,
 142        .output =               neigh_resolve_output,
 143        .connected_output =     neigh_resolve_output,
 144};
 145
 146static const struct neigh_ops arp_direct_ops = {
 147        .family =               AF_INET,
 148        .output =               neigh_direct_output,
 149        .connected_output =     neigh_direct_output,
 150};
 151
 152struct neigh_table arp_tbl = {
 153        .family         = AF_INET,
 154        .key_len        = 4,
 155        .protocol       = cpu_to_be16(ETH_P_IP),
 156        .hash           = arp_hash,
 157        .key_eq         = arp_key_eq,
 158        .constructor    = arp_constructor,
 159        .proxy_redo     = parp_redo,
 160        .is_multicast   = arp_is_multicast,
 161        .id             = "arp_cache",
 162        .parms          = {
 163                .tbl                    = &arp_tbl,
 164                .reachable_time         = 30 * HZ,
 165                .data   = {
 166                        [NEIGH_VAR_MCAST_PROBES] = 3,
 167                        [NEIGH_VAR_UCAST_PROBES] = 3,
 168                        [NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
 169                        [NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
 170                        [NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
 171                        [NEIGH_VAR_GC_STALETIME] = 60 * HZ,
 172                        [NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_MAX,
 173                        [NEIGH_VAR_PROXY_QLEN] = 64,
 174                        [NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
 175                        [NEIGH_VAR_PROXY_DELAY] = (8 * HZ) / 10,
 176                        [NEIGH_VAR_LOCKTIME] = 1 * HZ,
 177                },
 178        },
 179        .gc_interval    = 30 * HZ,
 180        .gc_thresh1     = 128,
 181        .gc_thresh2     = 512,
 182        .gc_thresh3     = 1024,
 183};
 184EXPORT_SYMBOL(arp_tbl);
 185
 186int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
 187{
 188        switch (dev->type) {
 189        case ARPHRD_ETHER:
 190        case ARPHRD_FDDI:
 191        case ARPHRD_IEEE802:
 192                ip_eth_mc_map(addr, haddr);
 193                return 0;
 194        case ARPHRD_INFINIBAND:
 195                ip_ib_mc_map(addr, dev->broadcast, haddr);
 196                return 0;
 197        case ARPHRD_IPGRE:
 198                ip_ipgre_mc_map(addr, dev->broadcast, haddr);
 199                return 0;
 200        default:
 201                if (dir) {
 202                        memcpy(haddr, dev->broadcast, dev->addr_len);
 203                        return 0;
 204                }
 205        }
 206        return -EINVAL;
 207}
 208
 209
 210static u32 arp_hash(const void *pkey,
 211                    const struct net_device *dev,
 212                    __u32 *hash_rnd)
 213{
 214        return arp_hashfn(pkey, dev, hash_rnd);
 215}
 216
 217static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
 218{
 219        return neigh_key_eq32(neigh, pkey);
 220}
 221
 222static int arp_constructor(struct neighbour *neigh)
 223{
 224        __be32 addr;
 225        struct net_device *dev = neigh->dev;
 226        struct in_device *in_dev;
 227        struct neigh_parms *parms;
 228        u32 inaddr_any = INADDR_ANY;
 229
 230        if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
 231                memcpy(neigh->primary_key, &inaddr_any, arp_tbl.key_len);
 232
 233        addr = *(__be32 *)neigh->primary_key;
 234        rcu_read_lock();
 235        in_dev = __in_dev_get_rcu(dev);
 236        if (!in_dev) {
 237                rcu_read_unlock();
 238                return -EINVAL;
 239        }
 240
 241        neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
 242
 243        parms = in_dev->arp_parms;
 244        __neigh_parms_put(neigh->parms);
 245        neigh->parms = neigh_parms_clone(parms);
 246        rcu_read_unlock();
 247
 248        if (!dev->header_ops) {
 249                neigh->nud_state = NUD_NOARP;
 250                neigh->ops = &arp_direct_ops;
 251                neigh->output = neigh_direct_output;
 252        } else {
 253                /* Good devices (checked by reading texts, but only Ethernet is
 254                   tested)
 255
 256                   ARPHRD_ETHER: (ethernet, apfddi)
 257                   ARPHRD_FDDI: (fddi)
 258                   ARPHRD_IEEE802: (tr)
 259                   ARPHRD_METRICOM: (strip)
 260                   ARPHRD_ARCNET:
 261                   etc. etc. etc.
 262
 263                   ARPHRD_IPDDP will also work, if author repairs it.
 264                   I did not it, because this driver does not work even
 265                   in old paradigm.
 266                 */
 267
 268                if (neigh->type == RTN_MULTICAST) {
 269                        neigh->nud_state = NUD_NOARP;
 270                        arp_mc_map(addr, neigh->ha, dev, 1);
 271                } else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
 272                        neigh->nud_state = NUD_NOARP;
 273                        memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 274                } else if (neigh->type == RTN_BROADCAST ||
 275                           (dev->flags & IFF_POINTOPOINT)) {
 276                        neigh->nud_state = NUD_NOARP;
 277                        memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 278                }
 279
 280                if (dev->header_ops->cache)
 281                        neigh->ops = &arp_hh_ops;
 282                else
 283                        neigh->ops = &arp_generic_ops;
 284
 285                if (neigh->nud_state & NUD_VALID)
 286                        neigh->output = neigh->ops->connected_output;
 287                else
 288                        neigh->output = neigh->ops->output;
 289        }
 290        return 0;
 291}
 292
 293static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
 294{
 295        dst_link_failure(skb);
 296        kfree_skb(skb);
 297}
 298
 299/* Create and send an arp packet. */
 300static void arp_send_dst(int type, int ptype, __be32 dest_ip,
 301                         struct net_device *dev, __be32 src_ip,
 302                         const unsigned char *dest_hw,
 303                         const unsigned char *src_hw,
 304                         const unsigned char *target_hw,
 305                         struct dst_entry *dst)
 306{
 307        struct sk_buff *skb;
 308
 309        /* arp on this interface. */
 310        if (dev->flags & IFF_NOARP)
 311                return;
 312
 313        skb = arp_create(type, ptype, dest_ip, dev, src_ip,
 314                         dest_hw, src_hw, target_hw);
 315        if (!skb)
 316                return;
 317
 318        skb_dst_set(skb, dst_clone(dst));
 319        arp_xmit(skb);
 320}
 321
 322void arp_send(int type, int ptype, __be32 dest_ip,
 323              struct net_device *dev, __be32 src_ip,
 324              const unsigned char *dest_hw, const unsigned char *src_hw,
 325              const unsigned char *target_hw)
 326{
 327        arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
 328                     target_hw, NULL);
 329}
 330EXPORT_SYMBOL(arp_send);
 331
 332static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
 333{
 334        __be32 saddr = 0;
 335        u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
 336        struct net_device *dev = neigh->dev;
 337        __be32 target = *(__be32 *)neigh->primary_key;
 338        int probes = atomic_read(&neigh->probes);
 339        struct in_device *in_dev;
 340        struct dst_entry *dst = NULL;
 341
 342        rcu_read_lock();
 343        in_dev = __in_dev_get_rcu(dev);
 344        if (!in_dev) {
 345                rcu_read_unlock();
 346                return;
 347        }
 348        switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
 349        default:
 350        case 0:         /* By default announce any local IP */
 351                if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
 352                                          ip_hdr(skb)->saddr) == RTN_LOCAL)
 353                        saddr = ip_hdr(skb)->saddr;
 354                break;
 355        case 1:         /* Restrict announcements of saddr in same subnet */
 356                if (!skb)
 357                        break;
 358                saddr = ip_hdr(skb)->saddr;
 359                if (inet_addr_type_dev_table(dev_net(dev), dev,
 360                                             saddr) == RTN_LOCAL) {
 361                        /* saddr should be known to target */
 362                        if (inet_addr_onlink(in_dev, target, saddr))
 363                                break;
 364                }
 365                saddr = 0;
 366                break;
 367        case 2:         /* Avoid secondary IPs, get a primary/preferred one */
 368                break;
 369        }
 370        rcu_read_unlock();
 371
 372        if (!saddr)
 373                saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 374
 375        probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
 376        if (probes < 0) {
 377                if (!(neigh->nud_state & NUD_VALID))
 378                        pr_debug("trying to ucast probe in NUD_INVALID\n");
 379                neigh_ha_snapshot(dst_ha, neigh, dev);
 380                dst_hw = dst_ha;
 381        } else {
 382                probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
 383                if (probes < 0) {
 384                        neigh_app_ns(neigh);
 385                        return;
 386                }
 387        }
 388
 389        if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
 390                dst = skb_dst(skb);
 391        arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
 392                     dst_hw, dev->dev_addr, NULL, dst);
 393}
 394
 395static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
 396{
 397        struct net *net = dev_net(in_dev->dev);
 398        int scope;
 399
 400        switch (IN_DEV_ARP_IGNORE(in_dev)) {
 401        case 0: /* Reply, the tip is already validated */
 402                return 0;
 403        case 1: /* Reply only if tip is configured on the incoming interface */
 404                sip = 0;
 405                scope = RT_SCOPE_HOST;
 406                break;
 407        case 2: /*
 408                 * Reply only if tip is configured on the incoming interface
 409                 * and is in same subnet as sip
 410                 */
 411                scope = RT_SCOPE_HOST;
 412                break;
 413        case 3: /* Do not reply for scope host addresses */
 414                sip = 0;
 415                scope = RT_SCOPE_LINK;
 416                in_dev = NULL;
 417                break;
 418        case 4: /* Reserved */
 419        case 5:
 420        case 6:
 421        case 7:
 422                return 0;
 423        case 8: /* Do not reply */
 424                return 1;
 425        default:
 426                return 0;
 427        }
 428        return !inet_confirm_addr(net, in_dev, sip, tip, scope);
 429}
 430
 431static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
 432{
 433        struct rtable *rt;
 434        int flag = 0;
 435        /*unsigned long now; */
 436        struct net *net = dev_net(dev);
 437
 438        rt = ip_route_output(net, sip, tip, 0, l3mdev_master_ifindex_rcu(dev));
 439        if (IS_ERR(rt))
 440                return 1;
 441        if (rt->dst.dev != dev) {
 442                __NET_INC_STATS(net, LINUX_MIB_ARPFILTER);
 443                flag = 1;
 444        }
 445        ip_rt_put(rt);
 446        return flag;
 447}
 448
 449/*
 450 * Check if we can use proxy ARP for this path
 451 */
 452static inline int arp_fwd_proxy(struct in_device *in_dev,
 453                                struct net_device *dev, struct rtable *rt)
 454{
 455        struct in_device *out_dev;
 456        int imi, omi = -1;
 457
 458        if (rt->dst.dev == dev)
 459                return 0;
 460
 461        if (!IN_DEV_PROXY_ARP(in_dev))
 462                return 0;
 463        imi = IN_DEV_MEDIUM_ID(in_dev);
 464        if (imi == 0)
 465                return 1;
 466        if (imi == -1)
 467                return 0;
 468
 469        /* place to check for proxy_arp for routes */
 470
 471        out_dev = __in_dev_get_rcu(rt->dst.dev);
 472        if (out_dev)
 473                omi = IN_DEV_MEDIUM_ID(out_dev);
 474
 475        return omi != imi && omi != -1;
 476}
 477
 478/*
 479 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
 480 *
 481 * RFC3069 supports proxy arp replies back to the same interface.  This
 482 * is done to support (ethernet) switch features, like RFC 3069, where
 483 * the individual ports are not allowed to communicate with each
 484 * other, BUT they are allowed to talk to the upstream router.  As
 485 * described in RFC 3069, it is possible to allow these hosts to
 486 * communicate through the upstream router, by proxy_arp'ing.
 487 *
 488 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
 489 *
 490 *  This technology is known by different names:
 491 *    In RFC 3069 it is called VLAN Aggregation.
 492 *    Cisco and Allied Telesyn call it Private VLAN.
 493 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
 494 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
 495 *
 496 */
 497static inline int arp_fwd_pvlan(struct in_device *in_dev,
 498                                struct net_device *dev, struct rtable *rt,
 499                                __be32 sip, __be32 tip)
 500{
 501        /* Private VLAN is only concerned about the same ethernet segment */
 502        if (rt->dst.dev != dev)
 503                return 0;
 504
 505        /* Don't reply on self probes (often done by windowz boxes)*/
 506        if (sip == tip)
 507                return 0;
 508
 509        if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
 510                return 1;
 511        else
 512                return 0;
 513}
 514
 515/*
 516 *      Interface to link layer: send routine and receive handler.
 517 */
 518
 519/*
 520 *      Create an arp packet. If dest_hw is not set, we create a broadcast
 521 *      message.
 522 */
 523struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
 524                           struct net_device *dev, __be32 src_ip,
 525                           const unsigned char *dest_hw,
 526                           const unsigned char *src_hw,
 527                           const unsigned char *target_hw)
 528{
 529        struct sk_buff *skb;
 530        struct arphdr *arp;
 531        unsigned char *arp_ptr;
 532        int hlen = LL_RESERVED_SPACE(dev);
 533        int tlen = dev->needed_tailroom;
 534
 535        /*
 536         *      Allocate a buffer
 537         */
 538
 539        skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
 540        if (!skb)
 541                return NULL;
 542
 543        skb_reserve(skb, hlen);
 544        skb_reset_network_header(skb);
 545        arp = skb_put(skb, arp_hdr_len(dev));
 546        skb->dev = dev;
 547        skb->protocol = htons(ETH_P_ARP);
 548        if (!src_hw)
 549                src_hw = dev->dev_addr;
 550        if (!dest_hw)
 551                dest_hw = dev->broadcast;
 552
 553        /*
 554         *      Fill the device header for the ARP frame
 555         */
 556        if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
 557                goto out;
 558
 559        /*
 560         * Fill out the arp protocol part.
 561         *
 562         * The arp hardware type should match the device type, except for FDDI,
 563         * which (according to RFC 1390) should always equal 1 (Ethernet).
 564         */
 565        /*
 566         *      Exceptions everywhere. AX.25 uses the AX.25 PID value not the
 567         *      DIX code for the protocol. Make these device structure fields.
 568         */
 569        switch (dev->type) {
 570        default:
 571                arp->ar_hrd = htons(dev->type);
 572                arp->ar_pro = htons(ETH_P_IP);
 573                break;
 574
 575#if IS_ENABLED(CONFIG_AX25)
 576        case ARPHRD_AX25:
 577                arp->ar_hrd = htons(ARPHRD_AX25);
 578                arp->ar_pro = htons(AX25_P_IP);
 579                break;
 580
 581#if IS_ENABLED(CONFIG_NETROM)
 582        case ARPHRD_NETROM:
 583                arp->ar_hrd = htons(ARPHRD_NETROM);
 584                arp->ar_pro = htons(AX25_P_IP);
 585                break;
 586#endif
 587#endif
 588
 589#if IS_ENABLED(CONFIG_FDDI)
 590        case ARPHRD_FDDI:
 591                arp->ar_hrd = htons(ARPHRD_ETHER);
 592                arp->ar_pro = htons(ETH_P_IP);
 593                break;
 594#endif
 595        }
 596
 597        arp->ar_hln = dev->addr_len;
 598        arp->ar_pln = 4;
 599        arp->ar_op = htons(type);
 600
 601        arp_ptr = (unsigned char *)(arp + 1);
 602
 603        memcpy(arp_ptr, src_hw, dev->addr_len);
 604        arp_ptr += dev->addr_len;
 605        memcpy(arp_ptr, &src_ip, 4);
 606        arp_ptr += 4;
 607
 608        switch (dev->type) {
 609#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 610        case ARPHRD_IEEE1394:
 611                break;
 612#endif
 613        default:
 614                if (target_hw)
 615                        memcpy(arp_ptr, target_hw, dev->addr_len);
 616                else
 617                        memset(arp_ptr, 0, dev->addr_len);
 618                arp_ptr += dev->addr_len;
 619        }
 620        memcpy(arp_ptr, &dest_ip, 4);
 621
 622        return skb;
 623
 624out:
 625        kfree_skb(skb);
 626        return NULL;
 627}
 628EXPORT_SYMBOL(arp_create);
 629
 630static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
 631{
 632        return dev_queue_xmit(skb);
 633}
 634
 635/*
 636 *      Send an arp packet.
 637 */
 638void arp_xmit(struct sk_buff *skb)
 639{
 640        /* Send it off, maybe filter it using firewalling first.  */
 641        NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
 642                dev_net(skb->dev), NULL, skb, NULL, skb->dev,
 643                arp_xmit_finish);
 644}
 645EXPORT_SYMBOL(arp_xmit);
 646
 647static bool arp_is_garp(struct net *net, struct net_device *dev,
 648                        int *addr_type, __be16 ar_op,
 649                        __be32 sip, __be32 tip,
 650                        unsigned char *sha, unsigned char *tha)
 651{
 652        bool is_garp = tip == sip;
 653
 654        /* Gratuitous ARP _replies_ also require target hwaddr to be
 655         * the same as source.
 656         */
 657        if (is_garp && ar_op == htons(ARPOP_REPLY))
 658                is_garp =
 659                        /* IPv4 over IEEE 1394 doesn't provide target
 660                         * hardware address field in its ARP payload.
 661                         */
 662                        tha &&
 663                        !memcmp(tha, sha, dev->addr_len);
 664
 665        if (is_garp) {
 666                *addr_type = inet_addr_type_dev_table(net, dev, sip);
 667                if (*addr_type != RTN_UNICAST)
 668                        is_garp = false;
 669        }
 670        return is_garp;
 671}
 672
 673/*
 674 *      Process an arp request.
 675 */
 676
 677static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
 678{
 679        struct net_device *dev = skb->dev;
 680        struct in_device *in_dev = __in_dev_get_rcu(dev);
 681        struct arphdr *arp;
 682        unsigned char *arp_ptr;
 683        struct rtable *rt;
 684        unsigned char *sha;
 685        unsigned char *tha = NULL;
 686        __be32 sip, tip;
 687        u16 dev_type = dev->type;
 688        int addr_type;
 689        struct neighbour *n;
 690        struct dst_entry *reply_dst = NULL;
 691        bool is_garp = false;
 692
 693        /* arp_rcv below verifies the ARP header and verifies the device
 694         * is ARP'able.
 695         */
 696
 697        if (!in_dev)
 698                goto out_free_skb;
 699
 700        arp = arp_hdr(skb);
 701
 702        switch (dev_type) {
 703        default:
 704                if (arp->ar_pro != htons(ETH_P_IP) ||
 705                    htons(dev_type) != arp->ar_hrd)
 706                        goto out_free_skb;
 707                break;
 708        case ARPHRD_ETHER:
 709        case ARPHRD_FDDI:
 710        case ARPHRD_IEEE802:
 711                /*
 712                 * ETHERNET, and Fibre Channel (which are IEEE 802
 713                 * devices, according to RFC 2625) devices will accept ARP
 714                 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
 715                 * This is the case also of FDDI, where the RFC 1390 says that
 716                 * FDDI devices should accept ARP hardware of (1) Ethernet,
 717                 * however, to be more robust, we'll accept both 1 (Ethernet)
 718                 * or 6 (IEEE 802.2)
 719                 */
 720                if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
 721                     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 722                    arp->ar_pro != htons(ETH_P_IP))
 723                        goto out_free_skb;
 724                break;
 725        case ARPHRD_AX25:
 726                if (arp->ar_pro != htons(AX25_P_IP) ||
 727                    arp->ar_hrd != htons(ARPHRD_AX25))
 728                        goto out_free_skb;
 729                break;
 730        case ARPHRD_NETROM:
 731                if (arp->ar_pro != htons(AX25_P_IP) ||
 732                    arp->ar_hrd != htons(ARPHRD_NETROM))
 733                        goto out_free_skb;
 734                break;
 735        }
 736
 737        /* Understand only these message types */
 738
 739        if (arp->ar_op != htons(ARPOP_REPLY) &&
 740            arp->ar_op != htons(ARPOP_REQUEST))
 741                goto out_free_skb;
 742
 743/*
 744 *      Extract fields
 745 */
 746        arp_ptr = (unsigned char *)(arp + 1);
 747        sha     = arp_ptr;
 748        arp_ptr += dev->addr_len;
 749        memcpy(&sip, arp_ptr, 4);
 750        arp_ptr += 4;
 751        switch (dev_type) {
 752#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 753        case ARPHRD_IEEE1394:
 754                break;
 755#endif
 756        default:
 757                tha = arp_ptr;
 758                arp_ptr += dev->addr_len;
 759        }
 760        memcpy(&tip, arp_ptr, 4);
 761/*
 762 *      Check for bad requests for 127.x.x.x and requests for multicast
 763 *      addresses.  If this is one such, delete it.
 764 */
 765        if (ipv4_is_multicast(tip) ||
 766            (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
 767                goto out_free_skb;
 768
 769 /*
 770  *     For some 802.11 wireless deployments (and possibly other networks),
 771  *     there will be an ARP proxy and gratuitous ARP frames are attacks
 772  *     and thus should not be accepted.
 773  */
 774        if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP))
 775                goto out_free_skb;
 776
 777/*
 778 *     Special case: We must set Frame Relay source Q.922 address
 779 */
 780        if (dev_type == ARPHRD_DLCI)
 781                sha = dev->broadcast;
 782
 783/*
 784 *  Process entry.  The idea here is we want to send a reply if it is a
 785 *  request for us or if it is a request for someone else that we hold
 786 *  a proxy for.  We want to add an entry to our cache if it is a reply
 787 *  to us or if it is a request for our address.
 788 *  (The assumption for this last is that if someone is requesting our
 789 *  address, they are probably intending to talk to us, so it saves time
 790 *  if we cache their address.  Their address is also probably not in
 791 *  our cache, since ours is not in their cache.)
 792 *
 793 *  Putting this another way, we only care about replies if they are to
 794 *  us, in which case we add them to the cache.  For requests, we care
 795 *  about those for us and those for our proxies.  We reply to both,
 796 *  and in the case of requests for us we add the requester to the arp
 797 *  cache.
 798 */
 799
 800        if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
 801                reply_dst = (struct dst_entry *)
 802                            iptunnel_metadata_reply(skb_metadata_dst(skb),
 803                                                    GFP_ATOMIC);
 804
 805        /* Special case: IPv4 duplicate address detection packet (RFC2131) */
 806        if (sip == 0) {
 807                if (arp->ar_op == htons(ARPOP_REQUEST) &&
 808                    inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
 809                    !arp_ignore(in_dev, sip, tip))
 810                        arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
 811                                     sha, dev->dev_addr, sha, reply_dst);
 812                goto out_consume_skb;
 813        }
 814
 815        if (arp->ar_op == htons(ARPOP_REQUEST) &&
 816            ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 817
 818                rt = skb_rtable(skb);
 819                addr_type = rt->rt_type;
 820
 821                if (addr_type == RTN_LOCAL) {
 822                        int dont_send;
 823
 824                        dont_send = arp_ignore(in_dev, sip, tip);
 825                        if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 826                                dont_send = arp_filter(sip, tip, dev);
 827                        if (!dont_send) {
 828                                n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 829                                if (n) {
 830                                        arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 831                                                     sip, dev, tip, sha,
 832                                                     dev->dev_addr, sha,
 833                                                     reply_dst);
 834                                        neigh_release(n);
 835                                }
 836                        }
 837                        goto out_consume_skb;
 838                } else if (IN_DEV_FORWARD(in_dev)) {
 839                        if (addr_type == RTN_UNICAST  &&
 840                            (arp_fwd_proxy(in_dev, dev, rt) ||
 841                             arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
 842                             (rt->dst.dev != dev &&
 843                              pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
 844                                n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 845                                if (n)
 846                                        neigh_release(n);
 847
 848                                if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
 849                                    skb->pkt_type == PACKET_HOST ||
 850                                    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
 851                                        arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 852                                                     sip, dev, tip, sha,
 853                                                     dev->dev_addr, sha,
 854                                                     reply_dst);
 855                                } else {
 856                                        pneigh_enqueue(&arp_tbl,
 857                                                       in_dev->arp_parms, skb);
 858                                        goto out_free_dst;
 859                                }
 860                                goto out_consume_skb;
 861                        }
 862                }
 863        }
 864
 865        /* Update our ARP tables */
 866
 867        n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 868
 869        addr_type = -1;
 870        if (n || IN_DEV_ARP_ACCEPT(in_dev)) {
 871                is_garp = arp_is_garp(net, dev, &addr_type, arp->ar_op,
 872                                      sip, tip, sha, tha);
 873        }
 874
 875        if (IN_DEV_ARP_ACCEPT(in_dev)) {
 876                /* Unsolicited ARP is not accepted by default.
 877                   It is possible, that this option should be enabled for some
 878                   devices (strip is candidate)
 879                 */
 880                if (!n &&
 881                    (is_garp ||
 882                     (arp->ar_op == htons(ARPOP_REPLY) &&
 883                      (addr_type == RTN_UNICAST ||
 884                       (addr_type < 0 &&
 885                        /* postpone calculation to as late as possible */
 886                        inet_addr_type_dev_table(net, dev, sip) ==
 887                                RTN_UNICAST)))))
 888                        n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
 889        }
 890
 891        if (n) {
 892                int state = NUD_REACHABLE;
 893                int override;
 894
 895                /* If several different ARP replies follows back-to-back,
 896                   use the FIRST one. It is possible, if several proxy
 897                   agents are active. Taking the first reply prevents
 898                   arp trashing and chooses the fastest router.
 899                 */
 900                override = time_after(jiffies,
 901                                      n->updated +
 902                                      NEIGH_VAR(n->parms, LOCKTIME)) ||
 903                           is_garp;
 904
 905                /* Broadcast replies and request packets
 906                   do not assert neighbour reachability.
 907                 */
 908                if (arp->ar_op != htons(ARPOP_REPLY) ||
 909                    skb->pkt_type != PACKET_HOST)
 910                        state = NUD_STALE;
 911                neigh_update(n, sha, state,
 912                             override ? NEIGH_UPDATE_F_OVERRIDE : 0, 0);
 913                neigh_release(n);
 914        }
 915
 916out_consume_skb:
 917        consume_skb(skb);
 918
 919out_free_dst:
 920        dst_release(reply_dst);
 921        return NET_RX_SUCCESS;
 922
 923out_free_skb:
 924        kfree_skb(skb);
 925        return NET_RX_DROP;
 926}
 927
 928static void parp_redo(struct sk_buff *skb)
 929{
 930        arp_process(dev_net(skb->dev), NULL, skb);
 931}
 932
 933static int arp_is_multicast(const void *pkey)
 934{
 935        return ipv4_is_multicast(*((__be32 *)pkey));
 936}
 937
 938/*
 939 *      Receive an arp request from the device layer.
 940 */
 941
 942static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
 943                   struct packet_type *pt, struct net_device *orig_dev)
 944{
 945        const struct arphdr *arp;
 946
 947        /* do not tweak dropwatch on an ARP we will ignore */
 948        if (dev->flags & IFF_NOARP ||
 949            skb->pkt_type == PACKET_OTHERHOST ||
 950            skb->pkt_type == PACKET_LOOPBACK)
 951                goto consumeskb;
 952
 953        skb = skb_share_check(skb, GFP_ATOMIC);
 954        if (!skb)
 955                goto out_of_mem;
 956
 957        /* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
 958        if (!pskb_may_pull(skb, arp_hdr_len(dev)))
 959                goto freeskb;
 960
 961        arp = arp_hdr(skb);
 962        if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
 963                goto freeskb;
 964
 965        memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 966
 967        return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
 968                       dev_net(dev), NULL, skb, dev, NULL,
 969                       arp_process);
 970
 971consumeskb:
 972        consume_skb(skb);
 973        return NET_RX_SUCCESS;
 974freeskb:
 975        kfree_skb(skb);
 976out_of_mem:
 977        return NET_RX_DROP;
 978}
 979
 980/*
 981 *      User level interface (ioctl)
 982 */
 983
 984/*
 985 *      Set (create) an ARP cache entry.
 986 */
 987
 988static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
 989{
 990        if (!dev) {
 991                IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
 992                return 0;
 993        }
 994        if (__in_dev_get_rtnl(dev)) {
 995                IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
 996                return 0;
 997        }
 998        return -ENXIO;
 999}
1000
1001static int arp_req_set_public(struct net *net, struct arpreq *r,
1002                struct net_device *dev)
1003{
1004        __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1005        __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1006
1007        if (mask && mask != htonl(0xFFFFFFFF))
1008                return -EINVAL;
1009        if (!dev && (r->arp_flags & ATF_COM)) {
1010                dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1011                                      r->arp_ha.sa_data);
1012                if (!dev)
1013                        return -ENODEV;
1014        }
1015        if (mask) {
1016                if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
1017                        return -ENOBUFS;
1018                return 0;
1019        }
1020
1021        return arp_req_set_proxy(net, dev, 1);
1022}
1023
1024static int arp_req_set(struct net *net, struct arpreq *r,
1025                       struct net_device *dev)
1026{
1027        __be32 ip;
1028        struct neighbour *neigh;
1029        int err;
1030
1031        if (r->arp_flags & ATF_PUBL)
1032                return arp_req_set_public(net, r, dev);
1033
1034        ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1035        if (r->arp_flags & ATF_PERM)
1036                r->arp_flags |= ATF_COM;
1037        if (!dev) {
1038                struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1039
1040                if (IS_ERR(rt))
1041                        return PTR_ERR(rt);
1042                dev = rt->dst.dev;
1043                ip_rt_put(rt);
1044                if (!dev)
1045                        return -EINVAL;
1046        }
1047        switch (dev->type) {
1048#if IS_ENABLED(CONFIG_FDDI)
1049        case ARPHRD_FDDI:
1050                /*
1051                 * According to RFC 1390, FDDI devices should accept ARP
1052                 * hardware types of 1 (Ethernet).  However, to be more
1053                 * robust, we'll accept hardware types of either 1 (Ethernet)
1054                 * or 6 (IEEE 802.2).
1055                 */
1056                if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1057                    r->arp_ha.sa_family != ARPHRD_ETHER &&
1058                    r->arp_ha.sa_family != ARPHRD_IEEE802)
1059                        return -EINVAL;
1060                break;
1061#endif
1062        default:
1063                if (r->arp_ha.sa_family != dev->type)
1064                        return -EINVAL;
1065                break;
1066        }
1067
1068        neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1069        err = PTR_ERR(neigh);
1070        if (!IS_ERR(neigh)) {
1071                unsigned int state = NUD_STALE;
1072                if (r->arp_flags & ATF_PERM)
1073                        state = NUD_PERMANENT;
1074                err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1075                                   r->arp_ha.sa_data : NULL, state,
1076                                   NEIGH_UPDATE_F_OVERRIDE |
1077                                   NEIGH_UPDATE_F_ADMIN, 0);
1078                neigh_release(neigh);
1079        }
1080        return err;
1081}
1082
1083static unsigned int arp_state_to_flags(struct neighbour *neigh)
1084{
1085        if (neigh->nud_state&NUD_PERMANENT)
1086                return ATF_PERM | ATF_COM;
1087        else if (neigh->nud_state&NUD_VALID)
1088                return ATF_COM;
1089        else
1090                return 0;
1091}
1092
1093/*
1094 *      Get an ARP cache entry.
1095 */
1096
1097static int arp_req_get(struct arpreq *r, struct net_device *dev)
1098{
1099        __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1100        struct neighbour *neigh;
1101        int err = -ENXIO;
1102
1103        neigh = neigh_lookup(&arp_tbl, &ip, dev);
1104        if (neigh) {
1105                if (!(neigh->nud_state & NUD_NOARP)) {
1106                        read_lock_bh(&neigh->lock);
1107                        memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1108                        r->arp_flags = arp_state_to_flags(neigh);
1109                        read_unlock_bh(&neigh->lock);
1110                        r->arp_ha.sa_family = dev->type;
1111                        strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1112                        err = 0;
1113                }
1114                neigh_release(neigh);
1115        }
1116        return err;
1117}
1118
1119static int arp_invalidate(struct net_device *dev, __be32 ip)
1120{
1121        struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1122        int err = -ENXIO;
1123        struct neigh_table *tbl = &arp_tbl;
1124
1125        if (neigh) {
1126                if (neigh->nud_state & ~NUD_NOARP)
1127                        err = neigh_update(neigh, NULL, NUD_FAILED,
1128                                           NEIGH_UPDATE_F_OVERRIDE|
1129                                           NEIGH_UPDATE_F_ADMIN, 0);
1130                write_lock_bh(&tbl->lock);
1131                neigh_release(neigh);
1132                neigh_remove_one(neigh, tbl);
1133                write_unlock_bh(&tbl->lock);
1134        }
1135
1136        return err;
1137}
1138
1139static int arp_req_delete_public(struct net *net, struct arpreq *r,
1140                struct net_device *dev)
1141{
1142        __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1143        __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1144
1145        if (mask == htonl(0xFFFFFFFF))
1146                return pneigh_delete(&arp_tbl, net, &ip, dev);
1147
1148        if (mask)
1149                return -EINVAL;
1150
1151        return arp_req_set_proxy(net, dev, 0);
1152}
1153
1154static int arp_req_delete(struct net *net, struct arpreq *r,
1155                          struct net_device *dev)
1156{
1157        __be32 ip;
1158
1159        if (r->arp_flags & ATF_PUBL)
1160                return arp_req_delete_public(net, r, dev);
1161
1162        ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1163        if (!dev) {
1164                struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1165                if (IS_ERR(rt))
1166                        return PTR_ERR(rt);
1167                dev = rt->dst.dev;
1168                ip_rt_put(rt);
1169                if (!dev)
1170                        return -EINVAL;
1171        }
1172        return arp_invalidate(dev, ip);
1173}
1174
1175/*
1176 *      Handle an ARP layer I/O control request.
1177 */
1178
1179int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1180{
1181        int err;
1182        struct arpreq r;
1183        struct net_device *dev = NULL;
1184
1185        switch (cmd) {
1186        case SIOCDARP:
1187        case SIOCSARP:
1188                if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1189                        return -EPERM;
1190                fallthrough;
1191        case SIOCGARP:
1192                err = copy_from_user(&r, arg, sizeof(struct arpreq));
1193                if (err)
1194                        return -EFAULT;
1195                break;
1196        default:
1197                return -EINVAL;
1198        }
1199
1200        if (r.arp_pa.sa_family != AF_INET)
1201                return -EPFNOSUPPORT;
1202
1203        if (!(r.arp_flags & ATF_PUBL) &&
1204            (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1205                return -EINVAL;
1206        if (!(r.arp_flags & ATF_NETMASK))
1207                ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1208                                                           htonl(0xFFFFFFFFUL);
1209        rtnl_lock();
1210        if (r.arp_dev[0]) {
1211                err = -ENODEV;
1212                dev = __dev_get_by_name(net, r.arp_dev);
1213                if (!dev)
1214                        goto out;
1215
1216                /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1217                if (!r.arp_ha.sa_family)
1218                        r.arp_ha.sa_family = dev->type;
1219                err = -EINVAL;
1220                if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1221                        goto out;
1222        } else if (cmd == SIOCGARP) {
1223                err = -ENODEV;
1224                goto out;
1225        }
1226
1227        switch (cmd) {
1228        case SIOCDARP:
1229                err = arp_req_delete(net, &r, dev);
1230                break;
1231        case SIOCSARP:
1232                err = arp_req_set(net, &r, dev);
1233                break;
1234        case SIOCGARP:
1235                err = arp_req_get(&r, dev);
1236                break;
1237        }
1238out:
1239        rtnl_unlock();
1240        if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1241                err = -EFAULT;
1242        return err;
1243}
1244
1245static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1246                            void *ptr)
1247{
1248        struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1249        struct netdev_notifier_change_info *change_info;
1250
1251        switch (event) {
1252        case NETDEV_CHANGEADDR:
1253                neigh_changeaddr(&arp_tbl, dev);
1254                rt_cache_flush(dev_net(dev));
1255                break;
1256        case NETDEV_CHANGE:
1257                change_info = ptr;
1258                if (change_info->flags_changed & IFF_NOARP)
1259                        neigh_changeaddr(&arp_tbl, dev);
1260                if (!netif_carrier_ok(dev))
1261                        neigh_carrier_down(&arp_tbl, dev);
1262                break;
1263        default:
1264                break;
1265        }
1266
1267        return NOTIFY_DONE;
1268}
1269
1270static struct notifier_block arp_netdev_notifier = {
1271        .notifier_call = arp_netdev_event,
1272};
1273
1274/* Note, that it is not on notifier chain.
1275   It is necessary, that this routine was called after route cache will be
1276   flushed.
1277 */
1278void arp_ifdown(struct net_device *dev)
1279{
1280        neigh_ifdown(&arp_tbl, dev);
1281}
1282
1283
1284/*
1285 *      Called once on startup.
1286 */
1287
1288static struct packet_type arp_packet_type __read_mostly = {
1289        .type = cpu_to_be16(ETH_P_ARP),
1290        .func = arp_rcv,
1291};
1292
1293static int arp_proc_init(void);
1294
1295void __init arp_init(void)
1296{
1297        neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1298
1299        dev_add_pack(&arp_packet_type);
1300        arp_proc_init();
1301#ifdef CONFIG_SYSCTL
1302        neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1303#endif
1304        register_netdevice_notifier(&arp_netdev_notifier);
1305}
1306
1307#ifdef CONFIG_PROC_FS
1308#if IS_ENABLED(CONFIG_AX25)
1309
1310/* ------------------------------------------------------------------------ */
1311/*
1312 *      ax25 -> ASCII conversion
1313 */
1314static void ax2asc2(ax25_address *a, char *buf)
1315{
1316        char c, *s;
1317        int n;
1318
1319        for (n = 0, s = buf; n < 6; n++) {
1320                c = (a->ax25_call[n] >> 1) & 0x7F;
1321
1322                if (c != ' ')
1323                        *s++ = c;
1324        }
1325
1326        *s++ = '-';
1327        n = (a->ax25_call[6] >> 1) & 0x0F;
1328        if (n > 9) {
1329                *s++ = '1';
1330                n -= 10;
1331        }
1332
1333        *s++ = n + '0';
1334        *s++ = '\0';
1335
1336        if (*buf == '\0' || *buf == '-') {
1337                buf[0] = '*';
1338                buf[1] = '\0';
1339        }
1340}
1341#endif /* CONFIG_AX25 */
1342
1343#define HBUFFERLEN 30
1344
1345static void arp_format_neigh_entry(struct seq_file *seq,
1346                                   struct neighbour *n)
1347{
1348        char hbuffer[HBUFFERLEN];
1349        int k, j;
1350        char tbuf[16];
1351        struct net_device *dev = n->dev;
1352        int hatype = dev->type;
1353
1354        read_lock(&n->lock);
1355        /* Convert hardware address to XX:XX:XX:XX ... form. */
1356#if IS_ENABLED(CONFIG_AX25)
1357        if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1358                ax2asc2((ax25_address *)n->ha, hbuffer);
1359        else {
1360#endif
1361        for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1362                hbuffer[k++] = hex_asc_hi(n->ha[j]);
1363                hbuffer[k++] = hex_asc_lo(n->ha[j]);
1364                hbuffer[k++] = ':';
1365        }
1366        if (k != 0)
1367                --k;
1368        hbuffer[k] = 0;
1369#if IS_ENABLED(CONFIG_AX25)
1370        }
1371#endif
1372        sprintf(tbuf, "%pI4", n->primary_key);
1373        seq_printf(seq, "%-16s 0x%-10x0x%-10x%-17s     *        %s\n",
1374                   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1375        read_unlock(&n->lock);
1376}
1377
1378static void arp_format_pneigh_entry(struct seq_file *seq,
1379                                    struct pneigh_entry *n)
1380{
1381        struct net_device *dev = n->dev;
1382        int hatype = dev ? dev->type : 0;
1383        char tbuf[16];
1384
1385        sprintf(tbuf, "%pI4", n->key);
1386        seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1387                   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1388                   dev ? dev->name : "*");
1389}
1390
1391static int arp_seq_show(struct seq_file *seq, void *v)
1392{
1393        if (v == SEQ_START_TOKEN) {
1394                seq_puts(seq, "IP address       HW type     Flags       "
1395                              "HW address            Mask     Device\n");
1396        } else {
1397                struct neigh_seq_state *state = seq->private;
1398
1399                if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1400                        arp_format_pneigh_entry(seq, v);
1401                else
1402                        arp_format_neigh_entry(seq, v);
1403        }
1404
1405        return 0;
1406}
1407
1408static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1409{
1410        /* Don't want to confuse "arp -a" w/ magic entries,
1411         * so we tell the generic iterator to skip NUD_NOARP.
1412         */
1413        return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1414}
1415
1416/* ------------------------------------------------------------------------ */
1417
1418static const struct seq_operations arp_seq_ops = {
1419        .start  = arp_seq_start,
1420        .next   = neigh_seq_next,
1421        .stop   = neigh_seq_stop,
1422        .show   = arp_seq_show,
1423};
1424
1425/* ------------------------------------------------------------------------ */
1426
1427static int __net_init arp_net_init(struct net *net)
1428{
1429        if (!proc_create_net("arp", 0444, net->proc_net, &arp_seq_ops,
1430                        sizeof(struct neigh_seq_state)))
1431                return -ENOMEM;
1432        return 0;
1433}
1434
1435static void __net_exit arp_net_exit(struct net *net)
1436{
1437        remove_proc_entry("arp", net->proc_net);
1438}
1439
1440static struct pernet_operations arp_net_ops = {
1441        .init = arp_net_init,
1442        .exit = arp_net_exit,
1443};
1444
1445static int __init arp_proc_init(void)
1446{
1447        return register_pernet_subsys(&arp_net_ops);
1448}
1449
1450#else /* CONFIG_PROC_FS */
1451
1452static int __init arp_proc_init(void)
1453{
1454        return 0;
1455}
1456
1457#endif /* CONFIG_PROC_FS */
1458