linux/net/ipv4/ip_input.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   4 *              operating system.  INET is implemented using the  BSD Socket
   5 *              interface as the means of communication with the user level.
   6 *
   7 *              The Internet Protocol (IP) module.
   8 *
   9 * Authors:     Ross Biro
  10 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *              Donald Becker, <becker@super.org>
  12 *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
  13 *              Richard Underwood
  14 *              Stefan Becker, <stefanb@yello.ping.de>
  15 *              Jorge Cwik, <jorge@laser.satlink.net>
  16 *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  17 *
  18 * Fixes:
  19 *              Alan Cox        :       Commented a couple of minor bits of surplus code
  20 *              Alan Cox        :       Undefining IP_FORWARD doesn't include the code
  21 *                                      (just stops a compiler warning).
  22 *              Alan Cox        :       Frames with >=MAX_ROUTE record routes, strict routes or loose routes
  23 *                                      are junked rather than corrupting things.
  24 *              Alan Cox        :       Frames to bad broadcast subnets are dumped
  25 *                                      We used to process them non broadcast and
  26 *                                      boy could that cause havoc.
  27 *              Alan Cox        :       ip_forward sets the free flag on the
  28 *                                      new frame it queues. Still crap because
  29 *                                      it copies the frame but at least it
  30 *                                      doesn't eat memory too.
  31 *              Alan Cox        :       Generic queue code and memory fixes.
  32 *              Fred Van Kempen :       IP fragment support (borrowed from NET2E)
  33 *              Gerhard Koerting:       Forward fragmented frames correctly.
  34 *              Gerhard Koerting:       Fixes to my fix of the above 8-).
  35 *              Gerhard Koerting:       IP interface addressing fix.
  36 *              Linus Torvalds  :       More robustness checks
  37 *              Alan Cox        :       Even more checks: Still not as robust as it ought to be
  38 *              Alan Cox        :       Save IP header pointer for later
  39 *              Alan Cox        :       ip option setting
  40 *              Alan Cox        :       Use ip_tos/ip_ttl settings
  41 *              Alan Cox        :       Fragmentation bogosity removed
  42 *                                      (Thanks to Mark.Bush@prg.ox.ac.uk)
  43 *              Dmitry Gorodchanin :    Send of a raw packet crash fix.
  44 *              Alan Cox        :       Silly ip bug when an overlength
  45 *                                      fragment turns up. Now frees the
  46 *                                      queue.
  47 *              Linus Torvalds/ :       Memory leakage on fragmentation
  48 *              Alan Cox        :       handling.
  49 *              Gerhard Koerting:       Forwarding uses IP priority hints
  50 *              Teemu Rantanen  :       Fragment problems.
  51 *              Alan Cox        :       General cleanup, comments and reformat
  52 *              Alan Cox        :       SNMP statistics
  53 *              Alan Cox        :       BSD address rule semantics. Also see
  54 *                                      UDP as there is a nasty checksum issue
  55 *                                      if you do things the wrong way.
  56 *              Alan Cox        :       Always defrag, moved IP_FORWARD to the config.in file
  57 *              Alan Cox        :       IP options adjust sk->priority.
  58 *              Pedro Roque     :       Fix mtu/length error in ip_forward.
  59 *              Alan Cox        :       Avoid ip_chk_addr when possible.
  60 *      Richard Underwood       :       IP multicasting.
  61 *              Alan Cox        :       Cleaned up multicast handlers.
  62 *              Alan Cox        :       RAW sockets demultiplex in the BSD style.
  63 *              Gunther Mayer   :       Fix the SNMP reporting typo
  64 *              Alan Cox        :       Always in group 224.0.0.1
  65 *      Pauline Middelink       :       Fast ip_checksum update when forwarding
  66 *                                      Masquerading support.
  67 *              Alan Cox        :       Multicast loopback error for 224.0.0.1
  68 *              Alan Cox        :       IP_MULTICAST_LOOP option.
  69 *              Alan Cox        :       Use notifiers.
  70 *              Bjorn Ekwall    :       Removed ip_csum (from slhc.c too)
  71 *              Bjorn Ekwall    :       Moved ip_fast_csum to ip.h (inline!)
  72 *              Stefan Becker   :       Send out ICMP HOST REDIRECT
  73 *      Arnt Gulbrandsen        :       ip_build_xmit
  74 *              Alan Cox        :       Per socket routing cache
  75 *              Alan Cox        :       Fixed routing cache, added header cache.
  76 *              Alan Cox        :       Loopback didn't work right in original ip_build_xmit - fixed it.
  77 *              Alan Cox        :       Only send ICMP_REDIRECT if src/dest are the same net.
  78 *              Alan Cox        :       Incoming IP option handling.
  79 *              Alan Cox        :       Set saddr on raw output frames as per BSD.
  80 *              Alan Cox        :       Stopped broadcast source route explosions.
  81 *              Alan Cox        :       Can disable source routing
  82 *              Takeshi Sone    :       Masquerading didn't work.
  83 *      Dave Bonn,Alan Cox      :       Faster IP forwarding whenever possible.
  84 *              Alan Cox        :       Memory leaks, tramples, misc debugging.
  85 *              Alan Cox        :       Fixed multicast (by popular demand 8))
  86 *              Alan Cox        :       Fixed forwarding (by even more popular demand 8))
  87 *              Alan Cox        :       Fixed SNMP statistics [I think]
  88 *      Gerhard Koerting        :       IP fragmentation forwarding fix
  89 *              Alan Cox        :       Device lock against page fault.
  90 *              Alan Cox        :       IP_HDRINCL facility.
  91 *      Werner Almesberger      :       Zero fragment bug
  92 *              Alan Cox        :       RAW IP frame length bug
  93 *              Alan Cox        :       Outgoing firewall on build_xmit
  94 *              A.N.Kuznetsov   :       IP_OPTIONS support throughout the kernel
  95 *              Alan Cox        :       Multicast routing hooks
  96 *              Jos Vos         :       Do accounting *before* call_in_firewall
  97 *      Willy Konynenberg       :       Transparent proxying support
  98 *
  99 * To Fix:
 100 *              IP fragmentation wants rewriting cleanly. The RFC815 algorithm is much more efficient
 101 *              and could be made very efficient with the addition of some virtual memory hacks to permit
 102 *              the allocation of a buffer that can then be 'grown' by twiddling page tables.
 103 *              Output fragmentation wants updating along with the buffer management to use a single
 104 *              interleaved copy algorithm so that fragmenting has a one copy overhead. Actual packet
 105 *              output should probably do its own fragmentation at the UDP/RAW layer. TCP shouldn't cause
 106 *              fragmentation anyway.
 107 */
 108
 109#define pr_fmt(fmt) "IPv4: " fmt
 110
 111#include <linux/module.h>
 112#include <linux/types.h>
 113#include <linux/kernel.h>
 114#include <linux/string.h>
 115#include <linux/errno.h>
 116#include <linux/slab.h>
 117
 118#include <linux/net.h>
 119#include <linux/socket.h>
 120#include <linux/sockios.h>
 121#include <linux/in.h>
 122#include <linux/inet.h>
 123#include <linux/inetdevice.h>
 124#include <linux/netdevice.h>
 125#include <linux/etherdevice.h>
 126#include <linux/indirect_call_wrapper.h>
 127
 128#include <net/snmp.h>
 129#include <net/ip.h>
 130#include <net/protocol.h>
 131#include <net/route.h>
 132#include <linux/skbuff.h>
 133#include <net/sock.h>
 134#include <net/arp.h>
 135#include <net/icmp.h>
 136#include <net/raw.h>
 137#include <net/checksum.h>
 138#include <net/inet_ecn.h>
 139#include <linux/netfilter_ipv4.h>
 140#include <net/xfrm.h>
 141#include <linux/mroute.h>
 142#include <linux/netlink.h>
 143#include <net/dst_metadata.h>
 144
 145/*
 146 *      Process Router Attention IP option (RFC 2113)
 147 */
 148bool ip_call_ra_chain(struct sk_buff *skb)
 149{
 150        struct ip_ra_chain *ra;
 151        u8 protocol = ip_hdr(skb)->protocol;
 152        struct sock *last = NULL;
 153        struct net_device *dev = skb->dev;
 154        struct net *net = dev_net(dev);
 155
 156        for (ra = rcu_dereference(net->ipv4.ra_chain); ra; ra = rcu_dereference(ra->next)) {
 157                struct sock *sk = ra->sk;
 158
 159                /* If socket is bound to an interface, only report
 160                 * the packet if it came  from that interface.
 161                 */
 162                if (sk && inet_sk(sk)->inet_num == protocol &&
 163                    (!sk->sk_bound_dev_if ||
 164                     sk->sk_bound_dev_if == dev->ifindex)) {
 165                        if (ip_is_fragment(ip_hdr(skb))) {
 166                                if (ip_defrag(net, skb, IP_DEFRAG_CALL_RA_CHAIN))
 167                                        return true;
 168                        }
 169                        if (last) {
 170                                struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
 171                                if (skb2)
 172                                        raw_rcv(last, skb2);
 173                        }
 174                        last = sk;
 175                }
 176        }
 177
 178        if (last) {
 179                raw_rcv(last, skb);
 180                return true;
 181        }
 182        return false;
 183}
 184
 185INDIRECT_CALLABLE_DECLARE(int udp_rcv(struct sk_buff *));
 186INDIRECT_CALLABLE_DECLARE(int tcp_v4_rcv(struct sk_buff *));
 187void ip_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int protocol)
 188{
 189        const struct net_protocol *ipprot;
 190        int raw, ret;
 191
 192resubmit:
 193        raw = raw_local_deliver(skb, protocol);
 194
 195        ipprot = rcu_dereference(inet_protos[protocol]);
 196        if (ipprot) {
 197                if (!ipprot->no_policy) {
 198                        if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
 199                                kfree_skb(skb);
 200                                return;
 201                        }
 202                        nf_reset_ct(skb);
 203                }
 204                ret = INDIRECT_CALL_2(ipprot->handler, tcp_v4_rcv, udp_rcv,
 205                                      skb);
 206                if (ret < 0) {
 207                        protocol = -ret;
 208                        goto resubmit;
 209                }
 210                __IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
 211        } else {
 212                if (!raw) {
 213                        if (xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
 214                                __IP_INC_STATS(net, IPSTATS_MIB_INUNKNOWNPROTOS);
 215                                icmp_send(skb, ICMP_DEST_UNREACH,
 216                                          ICMP_PROT_UNREACH, 0);
 217                        }
 218                        kfree_skb(skb);
 219                } else {
 220                        __IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
 221                        consume_skb(skb);
 222                }
 223        }
 224}
 225
 226static int ip_local_deliver_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
 227{
 228        __skb_pull(skb, skb_network_header_len(skb));
 229
 230        rcu_read_lock();
 231        ip_protocol_deliver_rcu(net, skb, ip_hdr(skb)->protocol);
 232        rcu_read_unlock();
 233
 234        return 0;
 235}
 236
 237/*
 238 *      Deliver IP Packets to the higher protocol layers.
 239 */
 240int ip_local_deliver(struct sk_buff *skb)
 241{
 242        /*
 243         *      Reassemble IP fragments.
 244         */
 245        struct net *net = dev_net(skb->dev);
 246
 247        if (ip_is_fragment(ip_hdr(skb))) {
 248                if (ip_defrag(net, skb, IP_DEFRAG_LOCAL_DELIVER))
 249                        return 0;
 250        }
 251
 252        return NF_HOOK(NFPROTO_IPV4, NF_INET_LOCAL_IN,
 253                       net, NULL, skb, skb->dev, NULL,
 254                       ip_local_deliver_finish);
 255}
 256EXPORT_SYMBOL(ip_local_deliver);
 257
 258static inline bool ip_rcv_options(struct sk_buff *skb, struct net_device *dev)
 259{
 260        struct ip_options *opt;
 261        const struct iphdr *iph;
 262
 263        /* It looks as overkill, because not all
 264           IP options require packet mangling.
 265           But it is the easiest for now, especially taking
 266           into account that combination of IP options
 267           and running sniffer is extremely rare condition.
 268                                              --ANK (980813)
 269        */
 270        if (skb_cow(skb, skb_headroom(skb))) {
 271                __IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INDISCARDS);
 272                goto drop;
 273        }
 274
 275        iph = ip_hdr(skb);
 276        opt = &(IPCB(skb)->opt);
 277        opt->optlen = iph->ihl*4 - sizeof(struct iphdr);
 278
 279        if (ip_options_compile(dev_net(dev), opt, skb)) {
 280                __IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INHDRERRORS);
 281                goto drop;
 282        }
 283
 284        if (unlikely(opt->srr)) {
 285                struct in_device *in_dev = __in_dev_get_rcu(dev);
 286
 287                if (in_dev) {
 288                        if (!IN_DEV_SOURCE_ROUTE(in_dev)) {
 289                                if (IN_DEV_LOG_MARTIANS(in_dev))
 290                                        net_info_ratelimited("source route option %pI4 -> %pI4\n",
 291                                                             &iph->saddr,
 292                                                             &iph->daddr);
 293                                goto drop;
 294                        }
 295                }
 296
 297                if (ip_options_rcv_srr(skb, dev))
 298                        goto drop;
 299        }
 300
 301        return false;
 302drop:
 303        return true;
 304}
 305
 306static bool ip_can_use_hint(const struct sk_buff *skb, const struct iphdr *iph,
 307                            const struct sk_buff *hint)
 308{
 309        return hint && !skb_dst(skb) && ip_hdr(hint)->daddr == iph->daddr &&
 310               ip_hdr(hint)->tos == iph->tos;
 311}
 312
 313INDIRECT_CALLABLE_DECLARE(int udp_v4_early_demux(struct sk_buff *));
 314INDIRECT_CALLABLE_DECLARE(int tcp_v4_early_demux(struct sk_buff *));
 315static int ip_rcv_finish_core(struct net *net, struct sock *sk,
 316                              struct sk_buff *skb, struct net_device *dev,
 317                              const struct sk_buff *hint)
 318{
 319        const struct iphdr *iph = ip_hdr(skb);
 320        int (*edemux)(struct sk_buff *skb);
 321        struct rtable *rt;
 322        int err;
 323
 324        if (ip_can_use_hint(skb, iph, hint)) {
 325                err = ip_route_use_hint(skb, iph->daddr, iph->saddr, iph->tos,
 326                                        dev, hint);
 327                if (unlikely(err))
 328                        goto drop_error;
 329        }
 330
 331        if (net->ipv4.sysctl_ip_early_demux &&
 332            !skb_dst(skb) &&
 333            !skb->sk &&
 334            !ip_is_fragment(iph)) {
 335                const struct net_protocol *ipprot;
 336                int protocol = iph->protocol;
 337
 338                ipprot = rcu_dereference(inet_protos[protocol]);
 339                if (ipprot && (edemux = READ_ONCE(ipprot->early_demux))) {
 340                        err = INDIRECT_CALL_2(edemux, tcp_v4_early_demux,
 341                                              udp_v4_early_demux, skb);
 342                        if (unlikely(err))
 343                                goto drop_error;
 344                        /* must reload iph, skb->head might have changed */
 345                        iph = ip_hdr(skb);
 346                }
 347        }
 348
 349        /*
 350         *      Initialise the virtual path cache for the packet. It describes
 351         *      how the packet travels inside Linux networking.
 352         */
 353        if (!skb_valid_dst(skb)) {
 354                err = ip_route_input_noref(skb, iph->daddr, iph->saddr,
 355                                           iph->tos, dev);
 356                if (unlikely(err))
 357                        goto drop_error;
 358        }
 359
 360#ifdef CONFIG_IP_ROUTE_CLASSID
 361        if (unlikely(skb_dst(skb)->tclassid)) {
 362                struct ip_rt_acct *st = this_cpu_ptr(ip_rt_acct);
 363                u32 idx = skb_dst(skb)->tclassid;
 364                st[idx&0xFF].o_packets++;
 365                st[idx&0xFF].o_bytes += skb->len;
 366                st[(idx>>16)&0xFF].i_packets++;
 367                st[(idx>>16)&0xFF].i_bytes += skb->len;
 368        }
 369#endif
 370
 371        if (iph->ihl > 5 && ip_rcv_options(skb, dev))
 372                goto drop;
 373
 374        rt = skb_rtable(skb);
 375        if (rt->rt_type == RTN_MULTICAST) {
 376                __IP_UPD_PO_STATS(net, IPSTATS_MIB_INMCAST, skb->len);
 377        } else if (rt->rt_type == RTN_BROADCAST) {
 378                __IP_UPD_PO_STATS(net, IPSTATS_MIB_INBCAST, skb->len);
 379        } else if (skb->pkt_type == PACKET_BROADCAST ||
 380                   skb->pkt_type == PACKET_MULTICAST) {
 381                struct in_device *in_dev = __in_dev_get_rcu(dev);
 382
 383                /* RFC 1122 3.3.6:
 384                 *
 385                 *   When a host sends a datagram to a link-layer broadcast
 386                 *   address, the IP destination address MUST be a legal IP
 387                 *   broadcast or IP multicast address.
 388                 *
 389                 *   A host SHOULD silently discard a datagram that is received
 390                 *   via a link-layer broadcast (see Section 2.4) but does not
 391                 *   specify an IP multicast or broadcast destination address.
 392                 *
 393                 * This doesn't explicitly say L2 *broadcast*, but broadcast is
 394                 * in a way a form of multicast and the most common use case for
 395                 * this is 802.11 protecting against cross-station spoofing (the
 396                 * so-called "hole-196" attack) so do it for both.
 397                 */
 398                if (in_dev &&
 399                    IN_DEV_ORCONF(in_dev, DROP_UNICAST_IN_L2_MULTICAST))
 400                        goto drop;
 401        }
 402
 403        return NET_RX_SUCCESS;
 404
 405drop:
 406        kfree_skb(skb);
 407        return NET_RX_DROP;
 408
 409drop_error:
 410        if (err == -EXDEV)
 411                __NET_INC_STATS(net, LINUX_MIB_IPRPFILTER);
 412        goto drop;
 413}
 414
 415static int ip_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
 416{
 417        struct net_device *dev = skb->dev;
 418        int ret;
 419
 420        /* if ingress device is enslaved to an L3 master device pass the
 421         * skb to its handler for processing
 422         */
 423        skb = l3mdev_ip_rcv(skb);
 424        if (!skb)
 425                return NET_RX_SUCCESS;
 426
 427        ret = ip_rcv_finish_core(net, sk, skb, dev, NULL);
 428        if (ret != NET_RX_DROP)
 429                ret = dst_input(skb);
 430        return ret;
 431}
 432
 433/*
 434 *      Main IP Receive routine.
 435 */
 436static struct sk_buff *ip_rcv_core(struct sk_buff *skb, struct net *net)
 437{
 438        const struct iphdr *iph;
 439        u32 len;
 440
 441        /* When the interface is in promisc. mode, drop all the crap
 442         * that it receives, do not try to analyse it.
 443         */
 444        if (skb->pkt_type == PACKET_OTHERHOST)
 445                goto drop;
 446
 447        __IP_UPD_PO_STATS(net, IPSTATS_MIB_IN, skb->len);
 448
 449        skb = skb_share_check(skb, GFP_ATOMIC);
 450        if (!skb) {
 451                __IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
 452                goto out;
 453        }
 454
 455        if (!pskb_may_pull(skb, sizeof(struct iphdr)))
 456                goto inhdr_error;
 457
 458        iph = ip_hdr(skb);
 459
 460        /*
 461         *      RFC1122: 3.2.1.2 MUST silently discard any IP frame that fails the checksum.
 462         *
 463         *      Is the datagram acceptable?
 464         *
 465         *      1.      Length at least the size of an ip header
 466         *      2.      Version of 4
 467         *      3.      Checksums correctly. [Speed optimisation for later, skip loopback checksums]
 468         *      4.      Doesn't have a bogus length
 469         */
 470
 471        if (iph->ihl < 5 || iph->version != 4)
 472                goto inhdr_error;
 473
 474        BUILD_BUG_ON(IPSTATS_MIB_ECT1PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_1);
 475        BUILD_BUG_ON(IPSTATS_MIB_ECT0PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_0);
 476        BUILD_BUG_ON(IPSTATS_MIB_CEPKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_CE);
 477        __IP_ADD_STATS(net,
 478                       IPSTATS_MIB_NOECTPKTS + (iph->tos & INET_ECN_MASK),
 479                       max_t(unsigned short, 1, skb_shinfo(skb)->gso_segs));
 480
 481        if (!pskb_may_pull(skb, iph->ihl*4))
 482                goto inhdr_error;
 483
 484        iph = ip_hdr(skb);
 485
 486        if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
 487                goto csum_error;
 488
 489        len = ntohs(iph->tot_len);
 490        if (skb->len < len) {
 491                __IP_INC_STATS(net, IPSTATS_MIB_INTRUNCATEDPKTS);
 492                goto drop;
 493        } else if (len < (iph->ihl*4))
 494                goto inhdr_error;
 495
 496        /* Our transport medium may have padded the buffer out. Now we know it
 497         * is IP we can trim to the true length of the frame.
 498         * Note this now means skb->len holds ntohs(iph->tot_len).
 499         */
 500        if (pskb_trim_rcsum(skb, len)) {
 501                __IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
 502                goto drop;
 503        }
 504
 505        iph = ip_hdr(skb);
 506        skb->transport_header = skb->network_header + iph->ihl*4;
 507
 508        /* Remove any debris in the socket control block */
 509        memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
 510        IPCB(skb)->iif = skb->skb_iif;
 511
 512        /* Must drop socket now because of tproxy. */
 513        if (!skb_sk_is_prefetched(skb))
 514                skb_orphan(skb);
 515
 516        return skb;
 517
 518csum_error:
 519        __IP_INC_STATS(net, IPSTATS_MIB_CSUMERRORS);
 520inhdr_error:
 521        __IP_INC_STATS(net, IPSTATS_MIB_INHDRERRORS);
 522drop:
 523        kfree_skb(skb);
 524out:
 525        return NULL;
 526}
 527
 528/*
 529 * IP receive entry point
 530 */
 531int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt,
 532           struct net_device *orig_dev)
 533{
 534        struct net *net = dev_net(dev);
 535
 536        skb = ip_rcv_core(skb, net);
 537        if (skb == NULL)
 538                return NET_RX_DROP;
 539
 540        return NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING,
 541                       net, NULL, skb, dev, NULL,
 542                       ip_rcv_finish);
 543}
 544
 545static void ip_sublist_rcv_finish(struct list_head *head)
 546{
 547        struct sk_buff *skb, *next;
 548
 549        list_for_each_entry_safe(skb, next, head, list) {
 550                skb_list_del_init(skb);
 551                dst_input(skb);
 552        }
 553}
 554
 555static struct sk_buff *ip_extract_route_hint(const struct net *net,
 556                                             struct sk_buff *skb, int rt_type)
 557{
 558        if (fib4_has_custom_rules(net) || rt_type == RTN_BROADCAST)
 559                return NULL;
 560
 561        return skb;
 562}
 563
 564static void ip_list_rcv_finish(struct net *net, struct sock *sk,
 565                               struct list_head *head)
 566{
 567        struct sk_buff *skb, *next, *hint = NULL;
 568        struct dst_entry *curr_dst = NULL;
 569        struct list_head sublist;
 570
 571        INIT_LIST_HEAD(&sublist);
 572        list_for_each_entry_safe(skb, next, head, list) {
 573                struct net_device *dev = skb->dev;
 574                struct dst_entry *dst;
 575
 576                skb_list_del_init(skb);
 577                /* if ingress device is enslaved to an L3 master device pass the
 578                 * skb to its handler for processing
 579                 */
 580                skb = l3mdev_ip_rcv(skb);
 581                if (!skb)
 582                        continue;
 583                if (ip_rcv_finish_core(net, sk, skb, dev, hint) == NET_RX_DROP)
 584                        continue;
 585
 586                dst = skb_dst(skb);
 587                if (curr_dst != dst) {
 588                        hint = ip_extract_route_hint(net, skb,
 589                                               ((struct rtable *)dst)->rt_type);
 590
 591                        /* dispatch old sublist */
 592                        if (!list_empty(&sublist))
 593                                ip_sublist_rcv_finish(&sublist);
 594                        /* start new sublist */
 595                        INIT_LIST_HEAD(&sublist);
 596                        curr_dst = dst;
 597                }
 598                list_add_tail(&skb->list, &sublist);
 599        }
 600        /* dispatch final sublist */
 601        ip_sublist_rcv_finish(&sublist);
 602}
 603
 604static void ip_sublist_rcv(struct list_head *head, struct net_device *dev,
 605                           struct net *net)
 606{
 607        NF_HOOK_LIST(NFPROTO_IPV4, NF_INET_PRE_ROUTING, net, NULL,
 608                     head, dev, NULL, ip_rcv_finish);
 609        ip_list_rcv_finish(net, NULL, head);
 610}
 611
 612/* Receive a list of IP packets */
 613void ip_list_rcv(struct list_head *head, struct packet_type *pt,
 614                 struct net_device *orig_dev)
 615{
 616        struct net_device *curr_dev = NULL;
 617        struct net *curr_net = NULL;
 618        struct sk_buff *skb, *next;
 619        struct list_head sublist;
 620
 621        INIT_LIST_HEAD(&sublist);
 622        list_for_each_entry_safe(skb, next, head, list) {
 623                struct net_device *dev = skb->dev;
 624                struct net *net = dev_net(dev);
 625
 626                skb_list_del_init(skb);
 627                skb = ip_rcv_core(skb, net);
 628                if (skb == NULL)
 629                        continue;
 630
 631                if (curr_dev != dev || curr_net != net) {
 632                        /* dispatch old sublist */
 633                        if (!list_empty(&sublist))
 634                                ip_sublist_rcv(&sublist, curr_dev, curr_net);
 635                        /* start new sublist */
 636                        INIT_LIST_HEAD(&sublist);
 637                        curr_dev = dev;
 638                        curr_net = net;
 639                }
 640                list_add_tail(&skb->list, &sublist);
 641        }
 642        /* dispatch final sublist */
 643        if (!list_empty(&sublist))
 644                ip_sublist_rcv(&sublist, curr_dev, curr_net);
 645}
 646