linux/net/ipv4/tcp_cubic.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * TCP CUBIC: Binary Increase Congestion control for TCP v2.3
   4 * Home page:
   5 *      http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC
   6 * This is from the implementation of CUBIC TCP in
   7 * Sangtae Ha, Injong Rhee and Lisong Xu,
   8 *  "CUBIC: A New TCP-Friendly High-Speed TCP Variant"
   9 *  in ACM SIGOPS Operating System Review, July 2008.
  10 * Available from:
  11 *  http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf
  12 *
  13 * CUBIC integrates a new slow start algorithm, called HyStart.
  14 * The details of HyStart are presented in
  15 *  Sangtae Ha and Injong Rhee,
  16 *  "Taming the Elephants: New TCP Slow Start", NCSU TechReport 2008.
  17 * Available from:
  18 *  http://netsrv.csc.ncsu.edu/export/hystart_techreport_2008.pdf
  19 *
  20 * All testing results are available from:
  21 * http://netsrv.csc.ncsu.edu/wiki/index.php/TCP_Testing
  22 *
  23 * Unless CUBIC is enabled and congestion window is large
  24 * this behaves the same as the original Reno.
  25 */
  26
  27#include <linux/mm.h>
  28#include <linux/module.h>
  29#include <linux/math64.h>
  30#include <net/tcp.h>
  31
  32#define BICTCP_BETA_SCALE    1024       /* Scale factor beta calculation
  33                                         * max_cwnd = snd_cwnd * beta
  34                                         */
  35#define BICTCP_HZ               10      /* BIC HZ 2^10 = 1024 */
  36
  37/* Two methods of hybrid slow start */
  38#define HYSTART_ACK_TRAIN       0x1
  39#define HYSTART_DELAY           0x2
  40
  41/* Number of delay samples for detecting the increase of delay */
  42#define HYSTART_MIN_SAMPLES     8
  43#define HYSTART_DELAY_MIN       (4000U) /* 4 ms */
  44#define HYSTART_DELAY_MAX       (16000U)        /* 16 ms */
  45#define HYSTART_DELAY_THRESH(x) clamp(x, HYSTART_DELAY_MIN, HYSTART_DELAY_MAX)
  46
  47static int fast_convergence __read_mostly = 1;
  48static int beta __read_mostly = 717;    /* = 717/1024 (BICTCP_BETA_SCALE) */
  49static int initial_ssthresh __read_mostly;
  50static int bic_scale __read_mostly = 41;
  51static int tcp_friendliness __read_mostly = 1;
  52
  53static int hystart __read_mostly = 1;
  54static int hystart_detect __read_mostly = HYSTART_ACK_TRAIN | HYSTART_DELAY;
  55static int hystart_low_window __read_mostly = 16;
  56static int hystart_ack_delta_us __read_mostly = 2000;
  57
  58static u32 cube_rtt_scale __read_mostly;
  59static u32 beta_scale __read_mostly;
  60static u64 cube_factor __read_mostly;
  61
  62/* Note parameters that are used for precomputing scale factors are read-only */
  63module_param(fast_convergence, int, 0644);
  64MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence");
  65module_param(beta, int, 0644);
  66MODULE_PARM_DESC(beta, "beta for multiplicative increase");
  67module_param(initial_ssthresh, int, 0644);
  68MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold");
  69module_param(bic_scale, int, 0444);
  70MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
  71module_param(tcp_friendliness, int, 0644);
  72MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness");
  73module_param(hystart, int, 0644);
  74MODULE_PARM_DESC(hystart, "turn on/off hybrid slow start algorithm");
  75module_param(hystart_detect, int, 0644);
  76MODULE_PARM_DESC(hystart_detect, "hybrid slow start detection mechanisms"
  77                 " 1: packet-train 2: delay 3: both packet-train and delay");
  78module_param(hystart_low_window, int, 0644);
  79MODULE_PARM_DESC(hystart_low_window, "lower bound cwnd for hybrid slow start");
  80module_param(hystart_ack_delta_us, int, 0644);
  81MODULE_PARM_DESC(hystart_ack_delta_us, "spacing between ack's indicating train (usecs)");
  82
  83/* BIC TCP Parameters */
  84struct bictcp {
  85        u32     cnt;            /* increase cwnd by 1 after ACKs */
  86        u32     last_max_cwnd;  /* last maximum snd_cwnd */
  87        u32     last_cwnd;      /* the last snd_cwnd */
  88        u32     last_time;      /* time when updated last_cwnd */
  89        u32     bic_origin_point;/* origin point of bic function */
  90        u32     bic_K;          /* time to origin point
  91                                   from the beginning of the current epoch */
  92        u32     delay_min;      /* min delay (usec) */
  93        u32     epoch_start;    /* beginning of an epoch */
  94        u32     ack_cnt;        /* number of acks */
  95        u32     tcp_cwnd;       /* estimated tcp cwnd */
  96        u16     unused;
  97        u8      sample_cnt;     /* number of samples to decide curr_rtt */
  98        u8      found;          /* the exit point is found? */
  99        u32     round_start;    /* beginning of each round */
 100        u32     end_seq;        /* end_seq of the round */
 101        u32     last_ack;       /* last time when the ACK spacing is close */
 102        u32     curr_rtt;       /* the minimum rtt of current round */
 103};
 104
 105static inline void bictcp_reset(struct bictcp *ca)
 106{
 107        memset(ca, 0, offsetof(struct bictcp, unused));
 108        ca->found = 0;
 109}
 110
 111static inline u32 bictcp_clock_us(const struct sock *sk)
 112{
 113        return tcp_sk(sk)->tcp_mstamp;
 114}
 115
 116static inline void bictcp_hystart_reset(struct sock *sk)
 117{
 118        struct tcp_sock *tp = tcp_sk(sk);
 119        struct bictcp *ca = inet_csk_ca(sk);
 120
 121        ca->round_start = ca->last_ack = bictcp_clock_us(sk);
 122        ca->end_seq = tp->snd_nxt;
 123        ca->curr_rtt = ~0U;
 124        ca->sample_cnt = 0;
 125}
 126
 127static void cubictcp_init(struct sock *sk)
 128{
 129        struct bictcp *ca = inet_csk_ca(sk);
 130
 131        bictcp_reset(ca);
 132
 133        if (hystart)
 134                bictcp_hystart_reset(sk);
 135
 136        if (!hystart && initial_ssthresh)
 137                tcp_sk(sk)->snd_ssthresh = initial_ssthresh;
 138}
 139
 140static void cubictcp_cwnd_event(struct sock *sk, enum tcp_ca_event event)
 141{
 142        if (event == CA_EVENT_TX_START) {
 143                struct bictcp *ca = inet_csk_ca(sk);
 144                u32 now = tcp_jiffies32;
 145                s32 delta;
 146
 147                delta = now - tcp_sk(sk)->lsndtime;
 148
 149                /* We were application limited (idle) for a while.
 150                 * Shift epoch_start to keep cwnd growth to cubic curve.
 151                 */
 152                if (ca->epoch_start && delta > 0) {
 153                        ca->epoch_start += delta;
 154                        if (after(ca->epoch_start, now))
 155                                ca->epoch_start = now;
 156                }
 157                return;
 158        }
 159}
 160
 161/* calculate the cubic root of x using a table lookup followed by one
 162 * Newton-Raphson iteration.
 163 * Avg err ~= 0.195%
 164 */
 165static u32 cubic_root(u64 a)
 166{
 167        u32 x, b, shift;
 168        /*
 169         * cbrt(x) MSB values for x MSB values in [0..63].
 170         * Precomputed then refined by hand - Willy Tarreau
 171         *
 172         * For x in [0..63],
 173         *   v = cbrt(x << 18) - 1
 174         *   cbrt(x) = (v[x] + 10) >> 6
 175         */
 176        static const u8 v[] = {
 177                /* 0x00 */    0,   54,   54,   54,  118,  118,  118,  118,
 178                /* 0x08 */  123,  129,  134,  138,  143,  147,  151,  156,
 179                /* 0x10 */  157,  161,  164,  168,  170,  173,  176,  179,
 180                /* 0x18 */  181,  185,  187,  190,  192,  194,  197,  199,
 181                /* 0x20 */  200,  202,  204,  206,  209,  211,  213,  215,
 182                /* 0x28 */  217,  219,  221,  222,  224,  225,  227,  229,
 183                /* 0x30 */  231,  232,  234,  236,  237,  239,  240,  242,
 184                /* 0x38 */  244,  245,  246,  248,  250,  251,  252,  254,
 185        };
 186
 187        b = fls64(a);
 188        if (b < 7) {
 189                /* a in [0..63] */
 190                return ((u32)v[(u32)a] + 35) >> 6;
 191        }
 192
 193        b = ((b * 84) >> 8) - 1;
 194        shift = (a >> (b * 3));
 195
 196        x = ((u32)(((u32)v[shift] + 10) << b)) >> 6;
 197
 198        /*
 199         * Newton-Raphson iteration
 200         *                         2
 201         * x    = ( 2 * x  +  a / x  ) / 3
 202         *  k+1          k         k
 203         */
 204        x = (2 * x + (u32)div64_u64(a, (u64)x * (u64)(x - 1)));
 205        x = ((x * 341) >> 10);
 206        return x;
 207}
 208
 209/*
 210 * Compute congestion window to use.
 211 */
 212static inline void bictcp_update(struct bictcp *ca, u32 cwnd, u32 acked)
 213{
 214        u32 delta, bic_target, max_cnt;
 215        u64 offs, t;
 216
 217        ca->ack_cnt += acked;   /* count the number of ACKed packets */
 218
 219        if (ca->last_cwnd == cwnd &&
 220            (s32)(tcp_jiffies32 - ca->last_time) <= HZ / 32)
 221                return;
 222
 223        /* The CUBIC function can update ca->cnt at most once per jiffy.
 224         * On all cwnd reduction events, ca->epoch_start is set to 0,
 225         * which will force a recalculation of ca->cnt.
 226         */
 227        if (ca->epoch_start && tcp_jiffies32 == ca->last_time)
 228                goto tcp_friendliness;
 229
 230        ca->last_cwnd = cwnd;
 231        ca->last_time = tcp_jiffies32;
 232
 233        if (ca->epoch_start == 0) {
 234                ca->epoch_start = tcp_jiffies32;        /* record beginning */
 235                ca->ack_cnt = acked;                    /* start counting */
 236                ca->tcp_cwnd = cwnd;                    /* syn with cubic */
 237
 238                if (ca->last_max_cwnd <= cwnd) {
 239                        ca->bic_K = 0;
 240                        ca->bic_origin_point = cwnd;
 241                } else {
 242                        /* Compute new K based on
 243                         * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
 244                         */
 245                        ca->bic_K = cubic_root(cube_factor
 246                                               * (ca->last_max_cwnd - cwnd));
 247                        ca->bic_origin_point = ca->last_max_cwnd;
 248                }
 249        }
 250
 251        /* cubic function - calc*/
 252        /* calculate c * time^3 / rtt,
 253         *  while considering overflow in calculation of time^3
 254         * (so time^3 is done by using 64 bit)
 255         * and without the support of division of 64bit numbers
 256         * (so all divisions are done by using 32 bit)
 257         *  also NOTE the unit of those veriables
 258         *        time  = (t - K) / 2^bictcp_HZ
 259         *        c = bic_scale >> 10
 260         * rtt  = (srtt >> 3) / HZ
 261         * !!! The following code does not have overflow problems,
 262         * if the cwnd < 1 million packets !!!
 263         */
 264
 265        t = (s32)(tcp_jiffies32 - ca->epoch_start);
 266        t += usecs_to_jiffies(ca->delay_min);
 267        /* change the unit from HZ to bictcp_HZ */
 268        t <<= BICTCP_HZ;
 269        do_div(t, HZ);
 270
 271        if (t < ca->bic_K)              /* t - K */
 272                offs = ca->bic_K - t;
 273        else
 274                offs = t - ca->bic_K;
 275
 276        /* c/rtt * (t-K)^3 */
 277        delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ);
 278        if (t < ca->bic_K)                            /* below origin*/
 279                bic_target = ca->bic_origin_point - delta;
 280        else                                          /* above origin*/
 281                bic_target = ca->bic_origin_point + delta;
 282
 283        /* cubic function - calc bictcp_cnt*/
 284        if (bic_target > cwnd) {
 285                ca->cnt = cwnd / (bic_target - cwnd);
 286        } else {
 287                ca->cnt = 100 * cwnd;              /* very small increment*/
 288        }
 289
 290        /*
 291         * The initial growth of cubic function may be too conservative
 292         * when the available bandwidth is still unknown.
 293         */
 294        if (ca->last_max_cwnd == 0 && ca->cnt > 20)
 295                ca->cnt = 20;   /* increase cwnd 5% per RTT */
 296
 297tcp_friendliness:
 298        /* TCP Friendly */
 299        if (tcp_friendliness) {
 300                u32 scale = beta_scale;
 301
 302                delta = (cwnd * scale) >> 3;
 303                while (ca->ack_cnt > delta) {           /* update tcp cwnd */
 304                        ca->ack_cnt -= delta;
 305                        ca->tcp_cwnd++;
 306                }
 307
 308                if (ca->tcp_cwnd > cwnd) {      /* if bic is slower than tcp */
 309                        delta = ca->tcp_cwnd - cwnd;
 310                        max_cnt = cwnd / delta;
 311                        if (ca->cnt > max_cnt)
 312                                ca->cnt = max_cnt;
 313                }
 314        }
 315
 316        /* The maximum rate of cwnd increase CUBIC allows is 1 packet per
 317         * 2 packets ACKed, meaning cwnd grows at 1.5x per RTT.
 318         */
 319        ca->cnt = max(ca->cnt, 2U);
 320}
 321
 322static void cubictcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
 323{
 324        struct tcp_sock *tp = tcp_sk(sk);
 325        struct bictcp *ca = inet_csk_ca(sk);
 326
 327        if (!tcp_is_cwnd_limited(sk))
 328                return;
 329
 330        if (tcp_in_slow_start(tp)) {
 331                if (hystart && after(ack, ca->end_seq))
 332                        bictcp_hystart_reset(sk);
 333                acked = tcp_slow_start(tp, acked);
 334                if (!acked)
 335                        return;
 336        }
 337        bictcp_update(ca, tp->snd_cwnd, acked);
 338        tcp_cong_avoid_ai(tp, ca->cnt, acked);
 339}
 340
 341static u32 cubictcp_recalc_ssthresh(struct sock *sk)
 342{
 343        const struct tcp_sock *tp = tcp_sk(sk);
 344        struct bictcp *ca = inet_csk_ca(sk);
 345
 346        ca->epoch_start = 0;    /* end of epoch */
 347
 348        /* Wmax and fast convergence */
 349        if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence)
 350                ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta))
 351                        / (2 * BICTCP_BETA_SCALE);
 352        else
 353                ca->last_max_cwnd = tp->snd_cwnd;
 354
 355        return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U);
 356}
 357
 358static void cubictcp_state(struct sock *sk, u8 new_state)
 359{
 360        if (new_state == TCP_CA_Loss) {
 361                bictcp_reset(inet_csk_ca(sk));
 362                bictcp_hystart_reset(sk);
 363        }
 364}
 365
 366/* Account for TSO/GRO delays.
 367 * Otherwise short RTT flows could get too small ssthresh, since during
 368 * slow start we begin with small TSO packets and ca->delay_min would
 369 * not account for long aggregation delay when TSO packets get bigger.
 370 * Ideally even with a very small RTT we would like to have at least one
 371 * TSO packet being sent and received by GRO, and another one in qdisc layer.
 372 * We apply another 100% factor because @rate is doubled at this point.
 373 * We cap the cushion to 1ms.
 374 */
 375static u32 hystart_ack_delay(struct sock *sk)
 376{
 377        unsigned long rate;
 378
 379        rate = READ_ONCE(sk->sk_pacing_rate);
 380        if (!rate)
 381                return 0;
 382        return min_t(u64, USEC_PER_MSEC,
 383                     div64_ul((u64)GSO_MAX_SIZE * 4 * USEC_PER_SEC, rate));
 384}
 385
 386static void hystart_update(struct sock *sk, u32 delay)
 387{
 388        struct tcp_sock *tp = tcp_sk(sk);
 389        struct bictcp *ca = inet_csk_ca(sk);
 390        u32 threshold;
 391
 392        if (hystart_detect & HYSTART_ACK_TRAIN) {
 393                u32 now = bictcp_clock_us(sk);
 394
 395                /* first detection parameter - ack-train detection */
 396                if ((s32)(now - ca->last_ack) <= hystart_ack_delta_us) {
 397                        ca->last_ack = now;
 398
 399                        threshold = ca->delay_min + hystart_ack_delay(sk);
 400
 401                        /* Hystart ack train triggers if we get ack past
 402                         * ca->delay_min/2.
 403                         * Pacing might have delayed packets up to RTT/2
 404                         * during slow start.
 405                         */
 406                        if (sk->sk_pacing_status == SK_PACING_NONE)
 407                                threshold >>= 1;
 408
 409                        if ((s32)(now - ca->round_start) > threshold) {
 410                                ca->found = 1;
 411                                pr_debug("hystart_ack_train (%u > %u) delay_min %u (+ ack_delay %u) cwnd %u\n",
 412                                         now - ca->round_start, threshold,
 413                                         ca->delay_min, hystart_ack_delay(sk), tp->snd_cwnd);
 414                                NET_INC_STATS(sock_net(sk),
 415                                              LINUX_MIB_TCPHYSTARTTRAINDETECT);
 416                                NET_ADD_STATS(sock_net(sk),
 417                                              LINUX_MIB_TCPHYSTARTTRAINCWND,
 418                                              tp->snd_cwnd);
 419                                tp->snd_ssthresh = tp->snd_cwnd;
 420                        }
 421                }
 422        }
 423
 424        if (hystart_detect & HYSTART_DELAY) {
 425                /* obtain the minimum delay of more than sampling packets */
 426                if (ca->curr_rtt > delay)
 427                        ca->curr_rtt = delay;
 428                if (ca->sample_cnt < HYSTART_MIN_SAMPLES) {
 429                        ca->sample_cnt++;
 430                } else {
 431                        if (ca->curr_rtt > ca->delay_min +
 432                            HYSTART_DELAY_THRESH(ca->delay_min >> 3)) {
 433                                ca->found = 1;
 434                                NET_INC_STATS(sock_net(sk),
 435                                              LINUX_MIB_TCPHYSTARTDELAYDETECT);
 436                                NET_ADD_STATS(sock_net(sk),
 437                                              LINUX_MIB_TCPHYSTARTDELAYCWND,
 438                                              tp->snd_cwnd);
 439                                tp->snd_ssthresh = tp->snd_cwnd;
 440                        }
 441                }
 442        }
 443}
 444
 445static void cubictcp_acked(struct sock *sk, const struct ack_sample *sample)
 446{
 447        const struct tcp_sock *tp = tcp_sk(sk);
 448        struct bictcp *ca = inet_csk_ca(sk);
 449        u32 delay;
 450
 451        /* Some calls are for duplicates without timetamps */
 452        if (sample->rtt_us < 0)
 453                return;
 454
 455        /* Discard delay samples right after fast recovery */
 456        if (ca->epoch_start && (s32)(tcp_jiffies32 - ca->epoch_start) < HZ)
 457                return;
 458
 459        delay = sample->rtt_us;
 460        if (delay == 0)
 461                delay = 1;
 462
 463        /* first time call or link delay decreases */
 464        if (ca->delay_min == 0 || ca->delay_min > delay)
 465                ca->delay_min = delay;
 466
 467        /* hystart triggers when cwnd is larger than some threshold */
 468        if (!ca->found && tcp_in_slow_start(tp) && hystart &&
 469            tp->snd_cwnd >= hystart_low_window)
 470                hystart_update(sk, delay);
 471}
 472
 473static struct tcp_congestion_ops cubictcp __read_mostly = {
 474        .init           = cubictcp_init,
 475        .ssthresh       = cubictcp_recalc_ssthresh,
 476        .cong_avoid     = cubictcp_cong_avoid,
 477        .set_state      = cubictcp_state,
 478        .undo_cwnd      = tcp_reno_undo_cwnd,
 479        .cwnd_event     = cubictcp_cwnd_event,
 480        .pkts_acked     = cubictcp_acked,
 481        .owner          = THIS_MODULE,
 482        .name           = "cubic",
 483};
 484
 485static int __init cubictcp_register(void)
 486{
 487        BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE);
 488
 489        /* Precompute a bunch of the scaling factors that are used per-packet
 490         * based on SRTT of 100ms
 491         */
 492
 493        beta_scale = 8*(BICTCP_BETA_SCALE+beta) / 3
 494                / (BICTCP_BETA_SCALE - beta);
 495
 496        cube_rtt_scale = (bic_scale * 10);      /* 1024*c/rtt */
 497
 498        /* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
 499         *  so K = cubic_root( (wmax-cwnd)*rtt/c )
 500         * the unit of K is bictcp_HZ=2^10, not HZ
 501         *
 502         *  c = bic_scale >> 10
 503         *  rtt = 100ms
 504         *
 505         * the following code has been designed and tested for
 506         * cwnd < 1 million packets
 507         * RTT < 100 seconds
 508         * HZ < 1,000,00  (corresponding to 10 nano-second)
 509         */
 510
 511        /* 1/c * 2^2*bictcp_HZ * srtt */
 512        cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */
 513
 514        /* divide by bic_scale and by constant Srtt (100ms) */
 515        do_div(cube_factor, bic_scale * 10);
 516
 517        return tcp_register_congestion_control(&cubictcp);
 518}
 519
 520static void __exit cubictcp_unregister(void)
 521{
 522        tcp_unregister_congestion_control(&cubictcp);
 523}
 524
 525module_init(cubictcp_register);
 526module_exit(cubictcp_unregister);
 527
 528MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
 529MODULE_LICENSE("GPL");
 530MODULE_DESCRIPTION("CUBIC TCP");
 531MODULE_VERSION("2.3");
 532