linux/net/netfilter/nf_conntrack_core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Connection state tracking for netfilter.  This is separated from,
   3   but required by, the NAT layer; it can also be used by an iptables
   4   extension. */
   5
   6/* (C) 1999-2001 Paul `Rusty' Russell
   7 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
   8 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
   9 * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
  10 */
  11
  12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  13
  14#include <linux/types.h>
  15#include <linux/netfilter.h>
  16#include <linux/module.h>
  17#include <linux/sched.h>
  18#include <linux/skbuff.h>
  19#include <linux/proc_fs.h>
  20#include <linux/vmalloc.h>
  21#include <linux/stddef.h>
  22#include <linux/slab.h>
  23#include <linux/random.h>
  24#include <linux/siphash.h>
  25#include <linux/err.h>
  26#include <linux/percpu.h>
  27#include <linux/moduleparam.h>
  28#include <linux/notifier.h>
  29#include <linux/kernel.h>
  30#include <linux/netdevice.h>
  31#include <linux/socket.h>
  32#include <linux/mm.h>
  33#include <linux/nsproxy.h>
  34#include <linux/rculist_nulls.h>
  35
  36#include <net/netfilter/nf_conntrack.h>
  37#include <net/netfilter/nf_conntrack_l4proto.h>
  38#include <net/netfilter/nf_conntrack_expect.h>
  39#include <net/netfilter/nf_conntrack_helper.h>
  40#include <net/netfilter/nf_conntrack_seqadj.h>
  41#include <net/netfilter/nf_conntrack_core.h>
  42#include <net/netfilter/nf_conntrack_extend.h>
  43#include <net/netfilter/nf_conntrack_acct.h>
  44#include <net/netfilter/nf_conntrack_ecache.h>
  45#include <net/netfilter/nf_conntrack_zones.h>
  46#include <net/netfilter/nf_conntrack_timestamp.h>
  47#include <net/netfilter/nf_conntrack_timeout.h>
  48#include <net/netfilter/nf_conntrack_labels.h>
  49#include <net/netfilter/nf_conntrack_synproxy.h>
  50#include <net/netfilter/nf_nat.h>
  51#include <net/netfilter/nf_nat_helper.h>
  52#include <net/netns/hash.h>
  53#include <net/ip.h>
  54
  55#include "nf_internals.h"
  56
  57__cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
  58EXPORT_SYMBOL_GPL(nf_conntrack_locks);
  59
  60__cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
  61EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
  62
  63struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
  64EXPORT_SYMBOL_GPL(nf_conntrack_hash);
  65
  66struct conntrack_gc_work {
  67        struct delayed_work     dwork;
  68        u32                     next_bucket;
  69        bool                    exiting;
  70        bool                    early_drop;
  71};
  72
  73static __read_mostly struct kmem_cache *nf_conntrack_cachep;
  74static DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
  75static __read_mostly bool nf_conntrack_locks_all;
  76
  77/* serialize hash resizes and nf_ct_iterate_cleanup */
  78static DEFINE_MUTEX(nf_conntrack_mutex);
  79
  80#define GC_SCAN_INTERVAL        (120u * HZ)
  81#define GC_SCAN_MAX_DURATION    msecs_to_jiffies(10)
  82
  83#define MIN_CHAINLEN    8u
  84#define MAX_CHAINLEN    (32u - MIN_CHAINLEN)
  85
  86static struct conntrack_gc_work conntrack_gc_work;
  87
  88void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
  89{
  90        /* 1) Acquire the lock */
  91        spin_lock(lock);
  92
  93        /* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
  94         * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
  95         */
  96        if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
  97                return;
  98
  99        /* fast path failed, unlock */
 100        spin_unlock(lock);
 101
 102        /* Slow path 1) get global lock */
 103        spin_lock(&nf_conntrack_locks_all_lock);
 104
 105        /* Slow path 2) get the lock we want */
 106        spin_lock(lock);
 107
 108        /* Slow path 3) release the global lock */
 109        spin_unlock(&nf_conntrack_locks_all_lock);
 110}
 111EXPORT_SYMBOL_GPL(nf_conntrack_lock);
 112
 113static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
 114{
 115        h1 %= CONNTRACK_LOCKS;
 116        h2 %= CONNTRACK_LOCKS;
 117        spin_unlock(&nf_conntrack_locks[h1]);
 118        if (h1 != h2)
 119                spin_unlock(&nf_conntrack_locks[h2]);
 120}
 121
 122/* return true if we need to recompute hashes (in case hash table was resized) */
 123static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
 124                                     unsigned int h2, unsigned int sequence)
 125{
 126        h1 %= CONNTRACK_LOCKS;
 127        h2 %= CONNTRACK_LOCKS;
 128        if (h1 <= h2) {
 129                nf_conntrack_lock(&nf_conntrack_locks[h1]);
 130                if (h1 != h2)
 131                        spin_lock_nested(&nf_conntrack_locks[h2],
 132                                         SINGLE_DEPTH_NESTING);
 133        } else {
 134                nf_conntrack_lock(&nf_conntrack_locks[h2]);
 135                spin_lock_nested(&nf_conntrack_locks[h1],
 136                                 SINGLE_DEPTH_NESTING);
 137        }
 138        if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
 139                nf_conntrack_double_unlock(h1, h2);
 140                return true;
 141        }
 142        return false;
 143}
 144
 145static void nf_conntrack_all_lock(void)
 146        __acquires(&nf_conntrack_locks_all_lock)
 147{
 148        int i;
 149
 150        spin_lock(&nf_conntrack_locks_all_lock);
 151
 152        /* For nf_contrack_locks_all, only the latest time when another
 153         * CPU will see an update is controlled, by the "release" of the
 154         * spin_lock below.
 155         * The earliest time is not controlled, an thus KCSAN could detect
 156         * a race when nf_conntract_lock() reads the variable.
 157         * WRITE_ONCE() is used to ensure the compiler will not
 158         * optimize the write.
 159         */
 160        WRITE_ONCE(nf_conntrack_locks_all, true);
 161
 162        for (i = 0; i < CONNTRACK_LOCKS; i++) {
 163                spin_lock(&nf_conntrack_locks[i]);
 164
 165                /* This spin_unlock provides the "release" to ensure that
 166                 * nf_conntrack_locks_all==true is visible to everyone that
 167                 * acquired spin_lock(&nf_conntrack_locks[]).
 168                 */
 169                spin_unlock(&nf_conntrack_locks[i]);
 170        }
 171}
 172
 173static void nf_conntrack_all_unlock(void)
 174        __releases(&nf_conntrack_locks_all_lock)
 175{
 176        /* All prior stores must be complete before we clear
 177         * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
 178         * might observe the false value but not the entire
 179         * critical section.
 180         * It pairs with the smp_load_acquire() in nf_conntrack_lock()
 181         */
 182        smp_store_release(&nf_conntrack_locks_all, false);
 183        spin_unlock(&nf_conntrack_locks_all_lock);
 184}
 185
 186unsigned int nf_conntrack_htable_size __read_mostly;
 187EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
 188
 189unsigned int nf_conntrack_max __read_mostly;
 190EXPORT_SYMBOL_GPL(nf_conntrack_max);
 191seqcount_spinlock_t nf_conntrack_generation __read_mostly;
 192static siphash_key_t nf_conntrack_hash_rnd __read_mostly;
 193
 194static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
 195                              unsigned int zoneid,
 196                              const struct net *net)
 197{
 198        struct {
 199                struct nf_conntrack_man src;
 200                union nf_inet_addr dst_addr;
 201                unsigned int zone;
 202                u32 net_mix;
 203                u16 dport;
 204                u16 proto;
 205        } __aligned(SIPHASH_ALIGNMENT) combined;
 206
 207        get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
 208
 209        memset(&combined, 0, sizeof(combined));
 210
 211        /* The direction must be ignored, so handle usable members manually. */
 212        combined.src = tuple->src;
 213        combined.dst_addr = tuple->dst.u3;
 214        combined.zone = zoneid;
 215        combined.net_mix = net_hash_mix(net);
 216        combined.dport = (__force __u16)tuple->dst.u.all;
 217        combined.proto = tuple->dst.protonum;
 218
 219        return (u32)siphash(&combined, sizeof(combined), &nf_conntrack_hash_rnd);
 220}
 221
 222static u32 scale_hash(u32 hash)
 223{
 224        return reciprocal_scale(hash, nf_conntrack_htable_size);
 225}
 226
 227static u32 __hash_conntrack(const struct net *net,
 228                            const struct nf_conntrack_tuple *tuple,
 229                            unsigned int zoneid,
 230                            unsigned int size)
 231{
 232        return reciprocal_scale(hash_conntrack_raw(tuple, zoneid, net), size);
 233}
 234
 235static u32 hash_conntrack(const struct net *net,
 236                          const struct nf_conntrack_tuple *tuple,
 237                          unsigned int zoneid)
 238{
 239        return scale_hash(hash_conntrack_raw(tuple, zoneid, net));
 240}
 241
 242static bool nf_ct_get_tuple_ports(const struct sk_buff *skb,
 243                                  unsigned int dataoff,
 244                                  struct nf_conntrack_tuple *tuple)
 245{       struct {
 246                __be16 sport;
 247                __be16 dport;
 248        } _inet_hdr, *inet_hdr;
 249
 250        /* Actually only need first 4 bytes to get ports. */
 251        inet_hdr = skb_header_pointer(skb, dataoff, sizeof(_inet_hdr), &_inet_hdr);
 252        if (!inet_hdr)
 253                return false;
 254
 255        tuple->src.u.udp.port = inet_hdr->sport;
 256        tuple->dst.u.udp.port = inet_hdr->dport;
 257        return true;
 258}
 259
 260static bool
 261nf_ct_get_tuple(const struct sk_buff *skb,
 262                unsigned int nhoff,
 263                unsigned int dataoff,
 264                u_int16_t l3num,
 265                u_int8_t protonum,
 266                struct net *net,
 267                struct nf_conntrack_tuple *tuple)
 268{
 269        unsigned int size;
 270        const __be32 *ap;
 271        __be32 _addrs[8];
 272
 273        memset(tuple, 0, sizeof(*tuple));
 274
 275        tuple->src.l3num = l3num;
 276        switch (l3num) {
 277        case NFPROTO_IPV4:
 278                nhoff += offsetof(struct iphdr, saddr);
 279                size = 2 * sizeof(__be32);
 280                break;
 281        case NFPROTO_IPV6:
 282                nhoff += offsetof(struct ipv6hdr, saddr);
 283                size = sizeof(_addrs);
 284                break;
 285        default:
 286                return true;
 287        }
 288
 289        ap = skb_header_pointer(skb, nhoff, size, _addrs);
 290        if (!ap)
 291                return false;
 292
 293        switch (l3num) {
 294        case NFPROTO_IPV4:
 295                tuple->src.u3.ip = ap[0];
 296                tuple->dst.u3.ip = ap[1];
 297                break;
 298        case NFPROTO_IPV6:
 299                memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6));
 300                memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6));
 301                break;
 302        }
 303
 304        tuple->dst.protonum = protonum;
 305        tuple->dst.dir = IP_CT_DIR_ORIGINAL;
 306
 307        switch (protonum) {
 308#if IS_ENABLED(CONFIG_IPV6)
 309        case IPPROTO_ICMPV6:
 310                return icmpv6_pkt_to_tuple(skb, dataoff, net, tuple);
 311#endif
 312        case IPPROTO_ICMP:
 313                return icmp_pkt_to_tuple(skb, dataoff, net, tuple);
 314#ifdef CONFIG_NF_CT_PROTO_GRE
 315        case IPPROTO_GRE:
 316                return gre_pkt_to_tuple(skb, dataoff, net, tuple);
 317#endif
 318        case IPPROTO_TCP:
 319        case IPPROTO_UDP: /* fallthrough */
 320                return nf_ct_get_tuple_ports(skb, dataoff, tuple);
 321#ifdef CONFIG_NF_CT_PROTO_UDPLITE
 322        case IPPROTO_UDPLITE:
 323                return nf_ct_get_tuple_ports(skb, dataoff, tuple);
 324#endif
 325#ifdef CONFIG_NF_CT_PROTO_SCTP
 326        case IPPROTO_SCTP:
 327                return nf_ct_get_tuple_ports(skb, dataoff, tuple);
 328#endif
 329#ifdef CONFIG_NF_CT_PROTO_DCCP
 330        case IPPROTO_DCCP:
 331                return nf_ct_get_tuple_ports(skb, dataoff, tuple);
 332#endif
 333        default:
 334                break;
 335        }
 336
 337        return true;
 338}
 339
 340static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
 341                            u_int8_t *protonum)
 342{
 343        int dataoff = -1;
 344        const struct iphdr *iph;
 345        struct iphdr _iph;
 346
 347        iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
 348        if (!iph)
 349                return -1;
 350
 351        /* Conntrack defragments packets, we might still see fragments
 352         * inside ICMP packets though.
 353         */
 354        if (iph->frag_off & htons(IP_OFFSET))
 355                return -1;
 356
 357        dataoff = nhoff + (iph->ihl << 2);
 358        *protonum = iph->protocol;
 359
 360        /* Check bogus IP headers */
 361        if (dataoff > skb->len) {
 362                pr_debug("bogus IPv4 packet: nhoff %u, ihl %u, skblen %u\n",
 363                         nhoff, iph->ihl << 2, skb->len);
 364                return -1;
 365        }
 366        return dataoff;
 367}
 368
 369#if IS_ENABLED(CONFIG_IPV6)
 370static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
 371                            u8 *protonum)
 372{
 373        int protoff = -1;
 374        unsigned int extoff = nhoff + sizeof(struct ipv6hdr);
 375        __be16 frag_off;
 376        u8 nexthdr;
 377
 378        if (skb_copy_bits(skb, nhoff + offsetof(struct ipv6hdr, nexthdr),
 379                          &nexthdr, sizeof(nexthdr)) != 0) {
 380                pr_debug("can't get nexthdr\n");
 381                return -1;
 382        }
 383        protoff = ipv6_skip_exthdr(skb, extoff, &nexthdr, &frag_off);
 384        /*
 385         * (protoff == skb->len) means the packet has not data, just
 386         * IPv6 and possibly extensions headers, but it is tracked anyway
 387         */
 388        if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
 389                pr_debug("can't find proto in pkt\n");
 390                return -1;
 391        }
 392
 393        *protonum = nexthdr;
 394        return protoff;
 395}
 396#endif
 397
 398static int get_l4proto(const struct sk_buff *skb,
 399                       unsigned int nhoff, u8 pf, u8 *l4num)
 400{
 401        switch (pf) {
 402        case NFPROTO_IPV4:
 403                return ipv4_get_l4proto(skb, nhoff, l4num);
 404#if IS_ENABLED(CONFIG_IPV6)
 405        case NFPROTO_IPV6:
 406                return ipv6_get_l4proto(skb, nhoff, l4num);
 407#endif
 408        default:
 409                *l4num = 0;
 410                break;
 411        }
 412        return -1;
 413}
 414
 415bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
 416                       u_int16_t l3num,
 417                       struct net *net, struct nf_conntrack_tuple *tuple)
 418{
 419        u8 protonum;
 420        int protoff;
 421
 422        protoff = get_l4proto(skb, nhoff, l3num, &protonum);
 423        if (protoff <= 0)
 424                return false;
 425
 426        return nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple);
 427}
 428EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
 429
 430bool
 431nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
 432                   const struct nf_conntrack_tuple *orig)
 433{
 434        memset(inverse, 0, sizeof(*inverse));
 435
 436        inverse->src.l3num = orig->src.l3num;
 437
 438        switch (orig->src.l3num) {
 439        case NFPROTO_IPV4:
 440                inverse->src.u3.ip = orig->dst.u3.ip;
 441                inverse->dst.u3.ip = orig->src.u3.ip;
 442                break;
 443        case NFPROTO_IPV6:
 444                inverse->src.u3.in6 = orig->dst.u3.in6;
 445                inverse->dst.u3.in6 = orig->src.u3.in6;
 446                break;
 447        default:
 448                break;
 449        }
 450
 451        inverse->dst.dir = !orig->dst.dir;
 452
 453        inverse->dst.protonum = orig->dst.protonum;
 454
 455        switch (orig->dst.protonum) {
 456        case IPPROTO_ICMP:
 457                return nf_conntrack_invert_icmp_tuple(inverse, orig);
 458#if IS_ENABLED(CONFIG_IPV6)
 459        case IPPROTO_ICMPV6:
 460                return nf_conntrack_invert_icmpv6_tuple(inverse, orig);
 461#endif
 462        }
 463
 464        inverse->src.u.all = orig->dst.u.all;
 465        inverse->dst.u.all = orig->src.u.all;
 466        return true;
 467}
 468EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
 469
 470/* Generate a almost-unique pseudo-id for a given conntrack.
 471 *
 472 * intentionally doesn't re-use any of the seeds used for hash
 473 * table location, we assume id gets exposed to userspace.
 474 *
 475 * Following nf_conn items do not change throughout lifetime
 476 * of the nf_conn:
 477 *
 478 * 1. nf_conn address
 479 * 2. nf_conn->master address (normally NULL)
 480 * 3. the associated net namespace
 481 * 4. the original direction tuple
 482 */
 483u32 nf_ct_get_id(const struct nf_conn *ct)
 484{
 485        static __read_mostly siphash_key_t ct_id_seed;
 486        unsigned long a, b, c, d;
 487
 488        net_get_random_once(&ct_id_seed, sizeof(ct_id_seed));
 489
 490        a = (unsigned long)ct;
 491        b = (unsigned long)ct->master;
 492        c = (unsigned long)nf_ct_net(ct);
 493        d = (unsigned long)siphash(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
 494                                   sizeof(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple),
 495                                   &ct_id_seed);
 496#ifdef CONFIG_64BIT
 497        return siphash_4u64((u64)a, (u64)b, (u64)c, (u64)d, &ct_id_seed);
 498#else
 499        return siphash_4u32((u32)a, (u32)b, (u32)c, (u32)d, &ct_id_seed);
 500#endif
 501}
 502EXPORT_SYMBOL_GPL(nf_ct_get_id);
 503
 504static void
 505clean_from_lists(struct nf_conn *ct)
 506{
 507        pr_debug("clean_from_lists(%p)\n", ct);
 508        hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
 509        hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
 510
 511        /* Destroy all pending expectations */
 512        nf_ct_remove_expectations(ct);
 513}
 514
 515/* must be called with local_bh_disable */
 516static void nf_ct_add_to_dying_list(struct nf_conn *ct)
 517{
 518        struct ct_pcpu *pcpu;
 519
 520        /* add this conntrack to the (per cpu) dying list */
 521        ct->cpu = smp_processor_id();
 522        pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
 523
 524        spin_lock(&pcpu->lock);
 525        hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
 526                             &pcpu->dying);
 527        spin_unlock(&pcpu->lock);
 528}
 529
 530/* must be called with local_bh_disable */
 531static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
 532{
 533        struct ct_pcpu *pcpu;
 534
 535        /* add this conntrack to the (per cpu) unconfirmed list */
 536        ct->cpu = smp_processor_id();
 537        pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
 538
 539        spin_lock(&pcpu->lock);
 540        hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
 541                             &pcpu->unconfirmed);
 542        spin_unlock(&pcpu->lock);
 543}
 544
 545/* must be called with local_bh_disable */
 546static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
 547{
 548        struct ct_pcpu *pcpu;
 549
 550        /* We overload first tuple to link into unconfirmed or dying list.*/
 551        pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
 552
 553        spin_lock(&pcpu->lock);
 554        BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
 555        hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
 556        spin_unlock(&pcpu->lock);
 557}
 558
 559#define NFCT_ALIGN(len) (((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
 560
 561/* Released via destroy_conntrack() */
 562struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
 563                                 const struct nf_conntrack_zone *zone,
 564                                 gfp_t flags)
 565{
 566        struct nf_conn *tmpl, *p;
 567
 568        if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
 569                tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
 570                if (!tmpl)
 571                        return NULL;
 572
 573                p = tmpl;
 574                tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
 575                if (tmpl != p) {
 576                        tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
 577                        tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
 578                }
 579        } else {
 580                tmpl = kzalloc(sizeof(*tmpl), flags);
 581                if (!tmpl)
 582                        return NULL;
 583        }
 584
 585        tmpl->status = IPS_TEMPLATE;
 586        write_pnet(&tmpl->ct_net, net);
 587        nf_ct_zone_add(tmpl, zone);
 588        atomic_set(&tmpl->ct_general.use, 0);
 589
 590        return tmpl;
 591}
 592EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
 593
 594void nf_ct_tmpl_free(struct nf_conn *tmpl)
 595{
 596        nf_ct_ext_destroy(tmpl);
 597
 598        if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
 599                kfree((char *)tmpl - tmpl->proto.tmpl_padto);
 600        else
 601                kfree(tmpl);
 602}
 603EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
 604
 605static void destroy_gre_conntrack(struct nf_conn *ct)
 606{
 607#ifdef CONFIG_NF_CT_PROTO_GRE
 608        struct nf_conn *master = ct->master;
 609
 610        if (master)
 611                nf_ct_gre_keymap_destroy(master);
 612#endif
 613}
 614
 615static void
 616destroy_conntrack(struct nf_conntrack *nfct)
 617{
 618        struct nf_conn *ct = (struct nf_conn *)nfct;
 619
 620        pr_debug("destroy_conntrack(%p)\n", ct);
 621        WARN_ON(atomic_read(&nfct->use) != 0);
 622
 623        if (unlikely(nf_ct_is_template(ct))) {
 624                nf_ct_tmpl_free(ct);
 625                return;
 626        }
 627
 628        if (unlikely(nf_ct_protonum(ct) == IPPROTO_GRE))
 629                destroy_gre_conntrack(ct);
 630
 631        local_bh_disable();
 632        /* Expectations will have been removed in clean_from_lists,
 633         * except TFTP can create an expectation on the first packet,
 634         * before connection is in the list, so we need to clean here,
 635         * too.
 636         */
 637        nf_ct_remove_expectations(ct);
 638
 639        nf_ct_del_from_dying_or_unconfirmed_list(ct);
 640
 641        local_bh_enable();
 642
 643        if (ct->master)
 644                nf_ct_put(ct->master);
 645
 646        pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
 647        nf_conntrack_free(ct);
 648}
 649
 650static void nf_ct_delete_from_lists(struct nf_conn *ct)
 651{
 652        struct net *net = nf_ct_net(ct);
 653        unsigned int hash, reply_hash;
 654        unsigned int sequence;
 655
 656        nf_ct_helper_destroy(ct);
 657
 658        local_bh_disable();
 659        do {
 660                sequence = read_seqcount_begin(&nf_conntrack_generation);
 661                hash = hash_conntrack(net,
 662                                      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
 663                                      nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL));
 664                reply_hash = hash_conntrack(net,
 665                                           &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
 666                                           nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
 667        } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
 668
 669        clean_from_lists(ct);
 670        nf_conntrack_double_unlock(hash, reply_hash);
 671
 672        nf_ct_add_to_dying_list(ct);
 673
 674        local_bh_enable();
 675}
 676
 677bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
 678{
 679        struct nf_conn_tstamp *tstamp;
 680        struct net *net;
 681
 682        if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
 683                return false;
 684
 685        tstamp = nf_conn_tstamp_find(ct);
 686        if (tstamp) {
 687                s32 timeout = ct->timeout - nfct_time_stamp;
 688
 689                tstamp->stop = ktime_get_real_ns();
 690                if (timeout < 0)
 691                        tstamp->stop -= jiffies_to_nsecs(-timeout);
 692        }
 693
 694        if (nf_conntrack_event_report(IPCT_DESTROY, ct,
 695                                    portid, report) < 0) {
 696                /* destroy event was not delivered. nf_ct_put will
 697                 * be done by event cache worker on redelivery.
 698                 */
 699                nf_ct_delete_from_lists(ct);
 700                nf_conntrack_ecache_work(nf_ct_net(ct), NFCT_ECACHE_DESTROY_FAIL);
 701                return false;
 702        }
 703
 704        net = nf_ct_net(ct);
 705        if (nf_conntrack_ecache_dwork_pending(net))
 706                nf_conntrack_ecache_work(net, NFCT_ECACHE_DESTROY_SENT);
 707        nf_ct_delete_from_lists(ct);
 708        nf_ct_put(ct);
 709        return true;
 710}
 711EXPORT_SYMBOL_GPL(nf_ct_delete);
 712
 713static inline bool
 714nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
 715                const struct nf_conntrack_tuple *tuple,
 716                const struct nf_conntrack_zone *zone,
 717                const struct net *net)
 718{
 719        struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
 720
 721        /* A conntrack can be recreated with the equal tuple,
 722         * so we need to check that the conntrack is confirmed
 723         */
 724        return nf_ct_tuple_equal(tuple, &h->tuple) &&
 725               nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
 726               nf_ct_is_confirmed(ct) &&
 727               net_eq(net, nf_ct_net(ct));
 728}
 729
 730static inline bool
 731nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2)
 732{
 733        return nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
 734                                 &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
 735               nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
 736                                 &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) &&
 737               nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL) &&
 738               nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_REPLY) &&
 739               net_eq(nf_ct_net(ct1), nf_ct_net(ct2));
 740}
 741
 742/* caller must hold rcu readlock and none of the nf_conntrack_locks */
 743static void nf_ct_gc_expired(struct nf_conn *ct)
 744{
 745        if (!atomic_inc_not_zero(&ct->ct_general.use))
 746                return;
 747
 748        if (nf_ct_should_gc(ct))
 749                nf_ct_kill(ct);
 750
 751        nf_ct_put(ct);
 752}
 753
 754/*
 755 * Warning :
 756 * - Caller must take a reference on returned object
 757 *   and recheck nf_ct_tuple_equal(tuple, &h->tuple)
 758 */
 759static struct nf_conntrack_tuple_hash *
 760____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
 761                      const struct nf_conntrack_tuple *tuple, u32 hash)
 762{
 763        struct nf_conntrack_tuple_hash *h;
 764        struct hlist_nulls_head *ct_hash;
 765        struct hlist_nulls_node *n;
 766        unsigned int bucket, hsize;
 767
 768begin:
 769        nf_conntrack_get_ht(&ct_hash, &hsize);
 770        bucket = reciprocal_scale(hash, hsize);
 771
 772        hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
 773                struct nf_conn *ct;
 774
 775                ct = nf_ct_tuplehash_to_ctrack(h);
 776                if (nf_ct_is_expired(ct)) {
 777                        nf_ct_gc_expired(ct);
 778                        continue;
 779                }
 780
 781                if (nf_ct_key_equal(h, tuple, zone, net))
 782                        return h;
 783        }
 784        /*
 785         * if the nulls value we got at the end of this lookup is
 786         * not the expected one, we must restart lookup.
 787         * We probably met an item that was moved to another chain.
 788         */
 789        if (get_nulls_value(n) != bucket) {
 790                NF_CT_STAT_INC_ATOMIC(net, search_restart);
 791                goto begin;
 792        }
 793
 794        return NULL;
 795}
 796
 797/* Find a connection corresponding to a tuple. */
 798static struct nf_conntrack_tuple_hash *
 799__nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
 800                        const struct nf_conntrack_tuple *tuple, u32 hash)
 801{
 802        struct nf_conntrack_tuple_hash *h;
 803        struct nf_conn *ct;
 804
 805        rcu_read_lock();
 806
 807        h = ____nf_conntrack_find(net, zone, tuple, hash);
 808        if (h) {
 809                /* We have a candidate that matches the tuple we're interested
 810                 * in, try to obtain a reference and re-check tuple
 811                 */
 812                ct = nf_ct_tuplehash_to_ctrack(h);
 813                if (likely(atomic_inc_not_zero(&ct->ct_general.use))) {
 814                        if (likely(nf_ct_key_equal(h, tuple, zone, net)))
 815                                goto found;
 816
 817                        /* TYPESAFE_BY_RCU recycled the candidate */
 818                        nf_ct_put(ct);
 819                }
 820
 821                h = NULL;
 822        }
 823found:
 824        rcu_read_unlock();
 825
 826        return h;
 827}
 828
 829struct nf_conntrack_tuple_hash *
 830nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
 831                      const struct nf_conntrack_tuple *tuple)
 832{
 833        unsigned int rid, zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL);
 834        struct nf_conntrack_tuple_hash *thash;
 835
 836        thash = __nf_conntrack_find_get(net, zone, tuple,
 837                                        hash_conntrack_raw(tuple, zone_id, net));
 838
 839        if (thash)
 840                return thash;
 841
 842        rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY);
 843        if (rid != zone_id)
 844                return __nf_conntrack_find_get(net, zone, tuple,
 845                                               hash_conntrack_raw(tuple, rid, net));
 846        return thash;
 847}
 848EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
 849
 850static void __nf_conntrack_hash_insert(struct nf_conn *ct,
 851                                       unsigned int hash,
 852                                       unsigned int reply_hash)
 853{
 854        hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
 855                           &nf_conntrack_hash[hash]);
 856        hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
 857                           &nf_conntrack_hash[reply_hash]);
 858}
 859
 860int
 861nf_conntrack_hash_check_insert(struct nf_conn *ct)
 862{
 863        const struct nf_conntrack_zone *zone;
 864        struct net *net = nf_ct_net(ct);
 865        unsigned int hash, reply_hash;
 866        struct nf_conntrack_tuple_hash *h;
 867        struct hlist_nulls_node *n;
 868        unsigned int max_chainlen;
 869        unsigned int chainlen = 0;
 870        unsigned int sequence;
 871        int err = -EEXIST;
 872
 873        zone = nf_ct_zone(ct);
 874
 875        local_bh_disable();
 876        do {
 877                sequence = read_seqcount_begin(&nf_conntrack_generation);
 878                hash = hash_conntrack(net,
 879                                      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
 880                                      nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL));
 881                reply_hash = hash_conntrack(net,
 882                                           &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
 883                                           nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
 884        } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
 885
 886        max_chainlen = MIN_CHAINLEN + prandom_u32_max(MAX_CHAINLEN);
 887
 888        /* See if there's one in the list already, including reverse */
 889        hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
 890                if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
 891                                    zone, net))
 892                        goto out;
 893
 894                if (chainlen++ > max_chainlen)
 895                        goto chaintoolong;
 896        }
 897
 898        chainlen = 0;
 899
 900        hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
 901                if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
 902                                    zone, net))
 903                        goto out;
 904                if (chainlen++ > max_chainlen)
 905                        goto chaintoolong;
 906        }
 907
 908        smp_wmb();
 909        /* The caller holds a reference to this object */
 910        atomic_set(&ct->ct_general.use, 2);
 911        __nf_conntrack_hash_insert(ct, hash, reply_hash);
 912        nf_conntrack_double_unlock(hash, reply_hash);
 913        NF_CT_STAT_INC(net, insert);
 914        local_bh_enable();
 915        return 0;
 916chaintoolong:
 917        NF_CT_STAT_INC(net, chaintoolong);
 918        err = -ENOSPC;
 919out:
 920        nf_conntrack_double_unlock(hash, reply_hash);
 921        local_bh_enable();
 922        return err;
 923}
 924EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
 925
 926void nf_ct_acct_add(struct nf_conn *ct, u32 dir, unsigned int packets,
 927                    unsigned int bytes)
 928{
 929        struct nf_conn_acct *acct;
 930
 931        acct = nf_conn_acct_find(ct);
 932        if (acct) {
 933                struct nf_conn_counter *counter = acct->counter;
 934
 935                atomic64_add(packets, &counter[dir].packets);
 936                atomic64_add(bytes, &counter[dir].bytes);
 937        }
 938}
 939EXPORT_SYMBOL_GPL(nf_ct_acct_add);
 940
 941static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
 942                             const struct nf_conn *loser_ct)
 943{
 944        struct nf_conn_acct *acct;
 945
 946        acct = nf_conn_acct_find(loser_ct);
 947        if (acct) {
 948                struct nf_conn_counter *counter = acct->counter;
 949                unsigned int bytes;
 950
 951                /* u32 should be fine since we must have seen one packet. */
 952                bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
 953                nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), bytes);
 954        }
 955}
 956
 957static void __nf_conntrack_insert_prepare(struct nf_conn *ct)
 958{
 959        struct nf_conn_tstamp *tstamp;
 960
 961        atomic_inc(&ct->ct_general.use);
 962        ct->status |= IPS_CONFIRMED;
 963
 964        /* set conntrack timestamp, if enabled. */
 965        tstamp = nf_conn_tstamp_find(ct);
 966        if (tstamp)
 967                tstamp->start = ktime_get_real_ns();
 968}
 969
 970/* caller must hold locks to prevent concurrent changes */
 971static int __nf_ct_resolve_clash(struct sk_buff *skb,
 972                                 struct nf_conntrack_tuple_hash *h)
 973{
 974        /* This is the conntrack entry already in hashes that won race. */
 975        struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
 976        enum ip_conntrack_info ctinfo;
 977        struct nf_conn *loser_ct;
 978
 979        loser_ct = nf_ct_get(skb, &ctinfo);
 980
 981        if (nf_ct_is_dying(ct))
 982                return NF_DROP;
 983
 984        if (((ct->status & IPS_NAT_DONE_MASK) == 0) ||
 985            nf_ct_match(ct, loser_ct)) {
 986                struct net *net = nf_ct_net(ct);
 987
 988                nf_conntrack_get(&ct->ct_general);
 989
 990                nf_ct_acct_merge(ct, ctinfo, loser_ct);
 991                nf_ct_add_to_dying_list(loser_ct);
 992                nf_conntrack_put(&loser_ct->ct_general);
 993                nf_ct_set(skb, ct, ctinfo);
 994
 995                NF_CT_STAT_INC(net, clash_resolve);
 996                return NF_ACCEPT;
 997        }
 998
 999        return NF_DROP;
1000}
1001
1002/**
1003 * nf_ct_resolve_clash_harder - attempt to insert clashing conntrack entry
1004 *
1005 * @skb: skb that causes the collision
1006 * @repl_idx: hash slot for reply direction
1007 *
1008 * Called when origin or reply direction had a clash.
1009 * The skb can be handled without packet drop provided the reply direction
1010 * is unique or there the existing entry has the identical tuple in both
1011 * directions.
1012 *
1013 * Caller must hold conntrack table locks to prevent concurrent updates.
1014 *
1015 * Returns NF_DROP if the clash could not be handled.
1016 */
1017static int nf_ct_resolve_clash_harder(struct sk_buff *skb, u32 repl_idx)
1018{
1019        struct nf_conn *loser_ct = (struct nf_conn *)skb_nfct(skb);
1020        const struct nf_conntrack_zone *zone;
1021        struct nf_conntrack_tuple_hash *h;
1022        struct hlist_nulls_node *n;
1023        struct net *net;
1024
1025        zone = nf_ct_zone(loser_ct);
1026        net = nf_ct_net(loser_ct);
1027
1028        /* Reply direction must never result in a clash, unless both origin
1029         * and reply tuples are identical.
1030         */
1031        hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[repl_idx], hnnode) {
1032                if (nf_ct_key_equal(h,
1033                                    &loser_ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1034                                    zone, net))
1035                        return __nf_ct_resolve_clash(skb, h);
1036        }
1037
1038        /* We want the clashing entry to go away real soon: 1 second timeout. */
1039        loser_ct->timeout = nfct_time_stamp + HZ;
1040
1041        /* IPS_NAT_CLASH removes the entry automatically on the first
1042         * reply.  Also prevents UDP tracker from moving the entry to
1043         * ASSURED state, i.e. the entry can always be evicted under
1044         * pressure.
1045         */
1046        loser_ct->status |= IPS_FIXED_TIMEOUT | IPS_NAT_CLASH;
1047
1048        __nf_conntrack_insert_prepare(loser_ct);
1049
1050        /* fake add for ORIGINAL dir: we want lookups to only find the entry
1051         * already in the table.  This also hides the clashing entry from
1052         * ctnetlink iteration, i.e. conntrack -L won't show them.
1053         */
1054        hlist_nulls_add_fake(&loser_ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
1055
1056        hlist_nulls_add_head_rcu(&loser_ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
1057                                 &nf_conntrack_hash[repl_idx]);
1058
1059        NF_CT_STAT_INC(net, clash_resolve);
1060        return NF_ACCEPT;
1061}
1062
1063/**
1064 * nf_ct_resolve_clash - attempt to handle clash without packet drop
1065 *
1066 * @skb: skb that causes the clash
1067 * @h: tuplehash of the clashing entry already in table
1068 * @reply_hash: hash slot for reply direction
1069 *
1070 * A conntrack entry can be inserted to the connection tracking table
1071 * if there is no existing entry with an identical tuple.
1072 *
1073 * If there is one, @skb (and the assocated, unconfirmed conntrack) has
1074 * to be dropped.  In case @skb is retransmitted, next conntrack lookup
1075 * will find the already-existing entry.
1076 *
1077 * The major problem with such packet drop is the extra delay added by
1078 * the packet loss -- it will take some time for a retransmit to occur
1079 * (or the sender to time out when waiting for a reply).
1080 *
1081 * This function attempts to handle the situation without packet drop.
1082 *
1083 * If @skb has no NAT transformation or if the colliding entries are
1084 * exactly the same, only the to-be-confirmed conntrack entry is discarded
1085 * and @skb is associated with the conntrack entry already in the table.
1086 *
1087 * Failing that, the new, unconfirmed conntrack is still added to the table
1088 * provided that the collision only occurs in the ORIGINAL direction.
1089 * The new entry will be added only in the non-clashing REPLY direction,
1090 * so packets in the ORIGINAL direction will continue to match the existing
1091 * entry.  The new entry will also have a fixed timeout so it expires --
1092 * due to the collision, it will only see reply traffic.
1093 *
1094 * Returns NF_DROP if the clash could not be resolved.
1095 */
1096static __cold noinline int
1097nf_ct_resolve_clash(struct sk_buff *skb, struct nf_conntrack_tuple_hash *h,
1098                    u32 reply_hash)
1099{
1100        /* This is the conntrack entry already in hashes that won race. */
1101        struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
1102        const struct nf_conntrack_l4proto *l4proto;
1103        enum ip_conntrack_info ctinfo;
1104        struct nf_conn *loser_ct;
1105        struct net *net;
1106        int ret;
1107
1108        loser_ct = nf_ct_get(skb, &ctinfo);
1109        net = nf_ct_net(loser_ct);
1110
1111        l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1112        if (!l4proto->allow_clash)
1113                goto drop;
1114
1115        ret = __nf_ct_resolve_clash(skb, h);
1116        if (ret == NF_ACCEPT)
1117                return ret;
1118
1119        ret = nf_ct_resolve_clash_harder(skb, reply_hash);
1120        if (ret == NF_ACCEPT)
1121                return ret;
1122
1123drop:
1124        nf_ct_add_to_dying_list(loser_ct);
1125        NF_CT_STAT_INC(net, drop);
1126        NF_CT_STAT_INC(net, insert_failed);
1127        return NF_DROP;
1128}
1129
1130/* Confirm a connection given skb; places it in hash table */
1131int
1132__nf_conntrack_confirm(struct sk_buff *skb)
1133{
1134        unsigned int chainlen = 0, sequence, max_chainlen;
1135        const struct nf_conntrack_zone *zone;
1136        unsigned int hash, reply_hash;
1137        struct nf_conntrack_tuple_hash *h;
1138        struct nf_conn *ct;
1139        struct nf_conn_help *help;
1140        struct hlist_nulls_node *n;
1141        enum ip_conntrack_info ctinfo;
1142        struct net *net;
1143        int ret = NF_DROP;
1144
1145        ct = nf_ct_get(skb, &ctinfo);
1146        net = nf_ct_net(ct);
1147
1148        /* ipt_REJECT uses nf_conntrack_attach to attach related
1149           ICMP/TCP RST packets in other direction.  Actual packet
1150           which created connection will be IP_CT_NEW or for an
1151           expected connection, IP_CT_RELATED. */
1152        if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
1153                return NF_ACCEPT;
1154
1155        zone = nf_ct_zone(ct);
1156        local_bh_disable();
1157
1158        do {
1159                sequence = read_seqcount_begin(&nf_conntrack_generation);
1160                /* reuse the hash saved before */
1161                hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
1162                hash = scale_hash(hash);
1163                reply_hash = hash_conntrack(net,
1164                                           &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1165                                           nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
1166        } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
1167
1168        /* We're not in hash table, and we refuse to set up related
1169         * connections for unconfirmed conns.  But packet copies and
1170         * REJECT will give spurious warnings here.
1171         */
1172
1173        /* Another skb with the same unconfirmed conntrack may
1174         * win the race. This may happen for bridge(br_flood)
1175         * or broadcast/multicast packets do skb_clone with
1176         * unconfirmed conntrack.
1177         */
1178        if (unlikely(nf_ct_is_confirmed(ct))) {
1179                WARN_ON_ONCE(1);
1180                nf_conntrack_double_unlock(hash, reply_hash);
1181                local_bh_enable();
1182                return NF_DROP;
1183        }
1184
1185        pr_debug("Confirming conntrack %p\n", ct);
1186        /* We have to check the DYING flag after unlink to prevent
1187         * a race against nf_ct_get_next_corpse() possibly called from
1188         * user context, else we insert an already 'dead' hash, blocking
1189         * further use of that particular connection -JM.
1190         */
1191        nf_ct_del_from_dying_or_unconfirmed_list(ct);
1192
1193        if (unlikely(nf_ct_is_dying(ct))) {
1194                nf_ct_add_to_dying_list(ct);
1195                NF_CT_STAT_INC(net, insert_failed);
1196                goto dying;
1197        }
1198
1199        max_chainlen = MIN_CHAINLEN + prandom_u32_max(MAX_CHAINLEN);
1200        /* See if there's one in the list already, including reverse:
1201           NAT could have grabbed it without realizing, since we're
1202           not in the hash.  If there is, we lost race. */
1203        hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
1204                if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1205                                    zone, net))
1206                        goto out;
1207                if (chainlen++ > max_chainlen)
1208                        goto chaintoolong;
1209        }
1210
1211        chainlen = 0;
1212        hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
1213                if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1214                                    zone, net))
1215                        goto out;
1216                if (chainlen++ > max_chainlen) {
1217chaintoolong:
1218                        nf_ct_add_to_dying_list(ct);
1219                        NF_CT_STAT_INC(net, chaintoolong);
1220                        NF_CT_STAT_INC(net, insert_failed);
1221                        ret = NF_DROP;
1222                        goto dying;
1223                }
1224        }
1225
1226        /* Timer relative to confirmation time, not original
1227           setting time, otherwise we'd get timer wrap in
1228           weird delay cases. */
1229        ct->timeout += nfct_time_stamp;
1230
1231        __nf_conntrack_insert_prepare(ct);
1232
1233        /* Since the lookup is lockless, hash insertion must be done after
1234         * starting the timer and setting the CONFIRMED bit. The RCU barriers
1235         * guarantee that no other CPU can find the conntrack before the above
1236         * stores are visible.
1237         */
1238        __nf_conntrack_hash_insert(ct, hash, reply_hash);
1239        nf_conntrack_double_unlock(hash, reply_hash);
1240        local_bh_enable();
1241
1242        help = nfct_help(ct);
1243        if (help && help->helper)
1244                nf_conntrack_event_cache(IPCT_HELPER, ct);
1245
1246        nf_conntrack_event_cache(master_ct(ct) ?
1247                                 IPCT_RELATED : IPCT_NEW, ct);
1248        return NF_ACCEPT;
1249
1250out:
1251        ret = nf_ct_resolve_clash(skb, h, reply_hash);
1252dying:
1253        nf_conntrack_double_unlock(hash, reply_hash);
1254        local_bh_enable();
1255        return ret;
1256}
1257EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
1258
1259/* Returns true if a connection correspondings to the tuple (required
1260   for NAT). */
1261int
1262nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
1263                         const struct nf_conn *ignored_conntrack)
1264{
1265        struct net *net = nf_ct_net(ignored_conntrack);
1266        const struct nf_conntrack_zone *zone;
1267        struct nf_conntrack_tuple_hash *h;
1268        struct hlist_nulls_head *ct_hash;
1269        unsigned int hash, hsize;
1270        struct hlist_nulls_node *n;
1271        struct nf_conn *ct;
1272
1273        zone = nf_ct_zone(ignored_conntrack);
1274
1275        rcu_read_lock();
1276 begin:
1277        nf_conntrack_get_ht(&ct_hash, &hsize);
1278        hash = __hash_conntrack(net, tuple, nf_ct_zone_id(zone, IP_CT_DIR_REPLY), hsize);
1279
1280        hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
1281                ct = nf_ct_tuplehash_to_ctrack(h);
1282
1283                if (ct == ignored_conntrack)
1284                        continue;
1285
1286                if (nf_ct_is_expired(ct)) {
1287                        nf_ct_gc_expired(ct);
1288                        continue;
1289                }
1290
1291                if (nf_ct_key_equal(h, tuple, zone, net)) {
1292                        /* Tuple is taken already, so caller will need to find
1293                         * a new source port to use.
1294                         *
1295                         * Only exception:
1296                         * If the *original tuples* are identical, then both
1297                         * conntracks refer to the same flow.
1298                         * This is a rare situation, it can occur e.g. when
1299                         * more than one UDP packet is sent from same socket
1300                         * in different threads.
1301                         *
1302                         * Let nf_ct_resolve_clash() deal with this later.
1303                         */
1304                        if (nf_ct_tuple_equal(&ignored_conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1305                                              &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
1306                                              nf_ct_zone_equal(ct, zone, IP_CT_DIR_ORIGINAL))
1307                                continue;
1308
1309                        NF_CT_STAT_INC_ATOMIC(net, found);
1310                        rcu_read_unlock();
1311                        return 1;
1312                }
1313        }
1314
1315        if (get_nulls_value(n) != hash) {
1316                NF_CT_STAT_INC_ATOMIC(net, search_restart);
1317                goto begin;
1318        }
1319
1320        rcu_read_unlock();
1321
1322        return 0;
1323}
1324EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
1325
1326#define NF_CT_EVICTION_RANGE    8
1327
1328/* There's a small race here where we may free a just-assured
1329   connection.  Too bad: we're in trouble anyway. */
1330static unsigned int early_drop_list(struct net *net,
1331                                    struct hlist_nulls_head *head)
1332{
1333        struct nf_conntrack_tuple_hash *h;
1334        struct hlist_nulls_node *n;
1335        unsigned int drops = 0;
1336        struct nf_conn *tmp;
1337
1338        hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
1339                tmp = nf_ct_tuplehash_to_ctrack(h);
1340
1341                if (test_bit(IPS_OFFLOAD_BIT, &tmp->status))
1342                        continue;
1343
1344                if (nf_ct_is_expired(tmp)) {
1345                        nf_ct_gc_expired(tmp);
1346                        continue;
1347                }
1348
1349                if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
1350                    !net_eq(nf_ct_net(tmp), net) ||
1351                    nf_ct_is_dying(tmp))
1352                        continue;
1353
1354                if (!atomic_inc_not_zero(&tmp->ct_general.use))
1355                        continue;
1356
1357                /* kill only if still in same netns -- might have moved due to
1358                 * SLAB_TYPESAFE_BY_RCU rules.
1359                 *
1360                 * We steal the timer reference.  If that fails timer has
1361                 * already fired or someone else deleted it. Just drop ref
1362                 * and move to next entry.
1363                 */
1364                if (net_eq(nf_ct_net(tmp), net) &&
1365                    nf_ct_is_confirmed(tmp) &&
1366                    nf_ct_delete(tmp, 0, 0))
1367                        drops++;
1368
1369                nf_ct_put(tmp);
1370        }
1371
1372        return drops;
1373}
1374
1375static noinline int early_drop(struct net *net, unsigned int hash)
1376{
1377        unsigned int i, bucket;
1378
1379        for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
1380                struct hlist_nulls_head *ct_hash;
1381                unsigned int hsize, drops;
1382
1383                rcu_read_lock();
1384                nf_conntrack_get_ht(&ct_hash, &hsize);
1385                if (!i)
1386                        bucket = reciprocal_scale(hash, hsize);
1387                else
1388                        bucket = (bucket + 1) % hsize;
1389
1390                drops = early_drop_list(net, &ct_hash[bucket]);
1391                rcu_read_unlock();
1392
1393                if (drops) {
1394                        NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
1395                        return true;
1396                }
1397        }
1398
1399        return false;
1400}
1401
1402static bool gc_worker_skip_ct(const struct nf_conn *ct)
1403{
1404        return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
1405}
1406
1407static bool gc_worker_can_early_drop(const struct nf_conn *ct)
1408{
1409        const struct nf_conntrack_l4proto *l4proto;
1410
1411        if (!test_bit(IPS_ASSURED_BIT, &ct->status))
1412                return true;
1413
1414        l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1415        if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1416                return true;
1417
1418        return false;
1419}
1420
1421static void gc_worker(struct work_struct *work)
1422{
1423        unsigned long end_time = jiffies + GC_SCAN_MAX_DURATION;
1424        unsigned int i, hashsz, nf_conntrack_max95 = 0;
1425        unsigned long next_run = GC_SCAN_INTERVAL;
1426        struct conntrack_gc_work *gc_work;
1427        gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1428
1429        i = gc_work->next_bucket;
1430        if (gc_work->early_drop)
1431                nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1432
1433        do {
1434                struct nf_conntrack_tuple_hash *h;
1435                struct hlist_nulls_head *ct_hash;
1436                struct hlist_nulls_node *n;
1437                struct nf_conn *tmp;
1438
1439                rcu_read_lock();
1440
1441                nf_conntrack_get_ht(&ct_hash, &hashsz);
1442                if (i >= hashsz) {
1443                        rcu_read_unlock();
1444                        break;
1445                }
1446
1447                hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1448                        struct nf_conntrack_net *cnet;
1449                        struct net *net;
1450
1451                        tmp = nf_ct_tuplehash_to_ctrack(h);
1452
1453                        if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) {
1454                                nf_ct_offload_timeout(tmp);
1455                                continue;
1456                        }
1457
1458                        if (nf_ct_is_expired(tmp)) {
1459                                nf_ct_gc_expired(tmp);
1460                                continue;
1461                        }
1462
1463                        if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1464                                continue;
1465
1466                        net = nf_ct_net(tmp);
1467                        cnet = nf_ct_pernet(net);
1468                        if (atomic_read(&cnet->count) < nf_conntrack_max95)
1469                                continue;
1470
1471                        /* need to take reference to avoid possible races */
1472                        if (!atomic_inc_not_zero(&tmp->ct_general.use))
1473                                continue;
1474
1475                        if (gc_worker_skip_ct(tmp)) {
1476                                nf_ct_put(tmp);
1477                                continue;
1478                        }
1479
1480                        if (gc_worker_can_early_drop(tmp))
1481                                nf_ct_kill(tmp);
1482
1483                        nf_ct_put(tmp);
1484                }
1485
1486                /* could check get_nulls_value() here and restart if ct
1487                 * was moved to another chain.  But given gc is best-effort
1488                 * we will just continue with next hash slot.
1489                 */
1490                rcu_read_unlock();
1491                cond_resched();
1492                i++;
1493
1494                if (time_after(jiffies, end_time) && i < hashsz) {
1495                        gc_work->next_bucket = i;
1496                        next_run = 0;
1497                        break;
1498                }
1499        } while (i < hashsz);
1500
1501        if (gc_work->exiting)
1502                return;
1503
1504        /*
1505         * Eviction will normally happen from the packet path, and not
1506         * from this gc worker.
1507         *
1508         * This worker is only here to reap expired entries when system went
1509         * idle after a busy period.
1510         */
1511        if (next_run) {
1512                gc_work->early_drop = false;
1513                gc_work->next_bucket = 0;
1514        }
1515        queue_delayed_work(system_power_efficient_wq, &gc_work->dwork, next_run);
1516}
1517
1518static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1519{
1520        INIT_DEFERRABLE_WORK(&gc_work->dwork, gc_worker);
1521        gc_work->exiting = false;
1522}
1523
1524static struct nf_conn *
1525__nf_conntrack_alloc(struct net *net,
1526                     const struct nf_conntrack_zone *zone,
1527                     const struct nf_conntrack_tuple *orig,
1528                     const struct nf_conntrack_tuple *repl,
1529                     gfp_t gfp, u32 hash)
1530{
1531        struct nf_conntrack_net *cnet = nf_ct_pernet(net);
1532        unsigned int ct_count;
1533        struct nf_conn *ct;
1534
1535        /* We don't want any race condition at early drop stage */
1536        ct_count = atomic_inc_return(&cnet->count);
1537
1538        if (nf_conntrack_max && unlikely(ct_count > nf_conntrack_max)) {
1539                if (!early_drop(net, hash)) {
1540                        if (!conntrack_gc_work.early_drop)
1541                                conntrack_gc_work.early_drop = true;
1542                        atomic_dec(&cnet->count);
1543                        net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1544                        return ERR_PTR(-ENOMEM);
1545                }
1546        }
1547
1548        /*
1549         * Do not use kmem_cache_zalloc(), as this cache uses
1550         * SLAB_TYPESAFE_BY_RCU.
1551         */
1552        ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1553        if (ct == NULL)
1554                goto out;
1555
1556        spin_lock_init(&ct->lock);
1557        ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1558        ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1559        ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1560        /* save hash for reusing when confirming */
1561        *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1562        ct->status = 0;
1563        ct->timeout = 0;
1564        write_pnet(&ct->ct_net, net);
1565        memset(&ct->__nfct_init_offset, 0,
1566               offsetof(struct nf_conn, proto) -
1567               offsetof(struct nf_conn, __nfct_init_offset));
1568
1569        nf_ct_zone_add(ct, zone);
1570
1571        /* Because we use RCU lookups, we set ct_general.use to zero before
1572         * this is inserted in any list.
1573         */
1574        atomic_set(&ct->ct_general.use, 0);
1575        return ct;
1576out:
1577        atomic_dec(&cnet->count);
1578        return ERR_PTR(-ENOMEM);
1579}
1580
1581struct nf_conn *nf_conntrack_alloc(struct net *net,
1582                                   const struct nf_conntrack_zone *zone,
1583                                   const struct nf_conntrack_tuple *orig,
1584                                   const struct nf_conntrack_tuple *repl,
1585                                   gfp_t gfp)
1586{
1587        return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1588}
1589EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1590
1591void nf_conntrack_free(struct nf_conn *ct)
1592{
1593        struct net *net = nf_ct_net(ct);
1594        struct nf_conntrack_net *cnet;
1595
1596        /* A freed object has refcnt == 0, that's
1597         * the golden rule for SLAB_TYPESAFE_BY_RCU
1598         */
1599        WARN_ON(atomic_read(&ct->ct_general.use) != 0);
1600
1601        nf_ct_ext_destroy(ct);
1602        kmem_cache_free(nf_conntrack_cachep, ct);
1603        cnet = nf_ct_pernet(net);
1604
1605        smp_mb__before_atomic();
1606        atomic_dec(&cnet->count);
1607}
1608EXPORT_SYMBOL_GPL(nf_conntrack_free);
1609
1610
1611/* Allocate a new conntrack: we return -ENOMEM if classification
1612   failed due to stress.  Otherwise it really is unclassifiable. */
1613static noinline struct nf_conntrack_tuple_hash *
1614init_conntrack(struct net *net, struct nf_conn *tmpl,
1615               const struct nf_conntrack_tuple *tuple,
1616               struct sk_buff *skb,
1617               unsigned int dataoff, u32 hash)
1618{
1619        struct nf_conn *ct;
1620        struct nf_conn_help *help;
1621        struct nf_conntrack_tuple repl_tuple;
1622        struct nf_conntrack_ecache *ecache;
1623        struct nf_conntrack_expect *exp = NULL;
1624        const struct nf_conntrack_zone *zone;
1625        struct nf_conn_timeout *timeout_ext;
1626        struct nf_conntrack_zone tmp;
1627        struct nf_conntrack_net *cnet;
1628
1629        if (!nf_ct_invert_tuple(&repl_tuple, tuple)) {
1630                pr_debug("Can't invert tuple.\n");
1631                return NULL;
1632        }
1633
1634        zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1635        ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1636                                  hash);
1637        if (IS_ERR(ct))
1638                return (struct nf_conntrack_tuple_hash *)ct;
1639
1640        if (!nf_ct_add_synproxy(ct, tmpl)) {
1641                nf_conntrack_free(ct);
1642                return ERR_PTR(-ENOMEM);
1643        }
1644
1645        timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1646
1647        if (timeout_ext)
1648                nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1649                                      GFP_ATOMIC);
1650
1651        nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1652        nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1653        nf_ct_labels_ext_add(ct);
1654
1655        ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1656        nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1657                                 ecache ? ecache->expmask : 0,
1658                             GFP_ATOMIC);
1659
1660        local_bh_disable();
1661        cnet = nf_ct_pernet(net);
1662        if (cnet->expect_count) {
1663                spin_lock(&nf_conntrack_expect_lock);
1664                exp = nf_ct_find_expectation(net, zone, tuple);
1665                if (exp) {
1666                        pr_debug("expectation arrives ct=%p exp=%p\n",
1667                                 ct, exp);
1668                        /* Welcome, Mr. Bond.  We've been expecting you... */
1669                        __set_bit(IPS_EXPECTED_BIT, &ct->status);
1670                        /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1671                        ct->master = exp->master;
1672                        if (exp->helper) {
1673                                help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
1674                                if (help)
1675                                        rcu_assign_pointer(help->helper, exp->helper);
1676                        }
1677
1678#ifdef CONFIG_NF_CONNTRACK_MARK
1679                        ct->mark = exp->master->mark;
1680#endif
1681#ifdef CONFIG_NF_CONNTRACK_SECMARK
1682                        ct->secmark = exp->master->secmark;
1683#endif
1684                        NF_CT_STAT_INC(net, expect_new);
1685                }
1686                spin_unlock(&nf_conntrack_expect_lock);
1687        }
1688        if (!exp)
1689                __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1690
1691        /* Now it is inserted into the unconfirmed list, bump refcount */
1692        nf_conntrack_get(&ct->ct_general);
1693        nf_ct_add_to_unconfirmed_list(ct);
1694
1695        local_bh_enable();
1696
1697        if (exp) {
1698                if (exp->expectfn)
1699                        exp->expectfn(ct, exp);
1700                nf_ct_expect_put(exp);
1701        }
1702
1703        return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1704}
1705
1706/* On success, returns 0, sets skb->_nfct | ctinfo */
1707static int
1708resolve_normal_ct(struct nf_conn *tmpl,
1709                  struct sk_buff *skb,
1710                  unsigned int dataoff,
1711                  u_int8_t protonum,
1712                  const struct nf_hook_state *state)
1713{
1714        const struct nf_conntrack_zone *zone;
1715        struct nf_conntrack_tuple tuple;
1716        struct nf_conntrack_tuple_hash *h;
1717        enum ip_conntrack_info ctinfo;
1718        struct nf_conntrack_zone tmp;
1719        u32 hash, zone_id, rid;
1720        struct nf_conn *ct;
1721
1722        if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1723                             dataoff, state->pf, protonum, state->net,
1724                             &tuple)) {
1725                pr_debug("Can't get tuple\n");
1726                return 0;
1727        }
1728
1729        /* look for tuple match */
1730        zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1731
1732        zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL);
1733        hash = hash_conntrack_raw(&tuple, zone_id, state->net);
1734        h = __nf_conntrack_find_get(state->net, zone, &tuple, hash);
1735
1736        if (!h) {
1737                rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY);
1738                if (zone_id != rid) {
1739                        u32 tmp = hash_conntrack_raw(&tuple, rid, state->net);
1740
1741                        h = __nf_conntrack_find_get(state->net, zone, &tuple, tmp);
1742                }
1743        }
1744
1745        if (!h) {
1746                h = init_conntrack(state->net, tmpl, &tuple,
1747                                   skb, dataoff, hash);
1748                if (!h)
1749                        return 0;
1750                if (IS_ERR(h))
1751                        return PTR_ERR(h);
1752        }
1753        ct = nf_ct_tuplehash_to_ctrack(h);
1754
1755        /* It exists; we have (non-exclusive) reference. */
1756        if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1757                ctinfo = IP_CT_ESTABLISHED_REPLY;
1758        } else {
1759                /* Once we've had two way comms, always ESTABLISHED. */
1760                if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1761                        pr_debug("normal packet for %p\n", ct);
1762                        ctinfo = IP_CT_ESTABLISHED;
1763                } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1764                        pr_debug("related packet for %p\n", ct);
1765                        ctinfo = IP_CT_RELATED;
1766                } else {
1767                        pr_debug("new packet for %p\n", ct);
1768                        ctinfo = IP_CT_NEW;
1769                }
1770        }
1771        nf_ct_set(skb, ct, ctinfo);
1772        return 0;
1773}
1774
1775/*
1776 * icmp packets need special treatment to handle error messages that are
1777 * related to a connection.
1778 *
1779 * Callers need to check if skb has a conntrack assigned when this
1780 * helper returns; in such case skb belongs to an already known connection.
1781 */
1782static unsigned int __cold
1783nf_conntrack_handle_icmp(struct nf_conn *tmpl,
1784                         struct sk_buff *skb,
1785                         unsigned int dataoff,
1786                         u8 protonum,
1787                         const struct nf_hook_state *state)
1788{
1789        int ret;
1790
1791        if (state->pf == NFPROTO_IPV4 && protonum == IPPROTO_ICMP)
1792                ret = nf_conntrack_icmpv4_error(tmpl, skb, dataoff, state);
1793#if IS_ENABLED(CONFIG_IPV6)
1794        else if (state->pf == NFPROTO_IPV6 && protonum == IPPROTO_ICMPV6)
1795                ret = nf_conntrack_icmpv6_error(tmpl, skb, dataoff, state);
1796#endif
1797        else
1798                return NF_ACCEPT;
1799
1800        if (ret <= 0)
1801                NF_CT_STAT_INC_ATOMIC(state->net, error);
1802
1803        return ret;
1804}
1805
1806static int generic_packet(struct nf_conn *ct, struct sk_buff *skb,
1807                          enum ip_conntrack_info ctinfo)
1808{
1809        const unsigned int *timeout = nf_ct_timeout_lookup(ct);
1810
1811        if (!timeout)
1812                timeout = &nf_generic_pernet(nf_ct_net(ct))->timeout;
1813
1814        nf_ct_refresh_acct(ct, ctinfo, skb, *timeout);
1815        return NF_ACCEPT;
1816}
1817
1818/* Returns verdict for packet, or -1 for invalid. */
1819static int nf_conntrack_handle_packet(struct nf_conn *ct,
1820                                      struct sk_buff *skb,
1821                                      unsigned int dataoff,
1822                                      enum ip_conntrack_info ctinfo,
1823                                      const struct nf_hook_state *state)
1824{
1825        switch (nf_ct_protonum(ct)) {
1826        case IPPROTO_TCP:
1827                return nf_conntrack_tcp_packet(ct, skb, dataoff,
1828                                               ctinfo, state);
1829        case IPPROTO_UDP:
1830                return nf_conntrack_udp_packet(ct, skb, dataoff,
1831                                               ctinfo, state);
1832        case IPPROTO_ICMP:
1833                return nf_conntrack_icmp_packet(ct, skb, ctinfo, state);
1834#if IS_ENABLED(CONFIG_IPV6)
1835        case IPPROTO_ICMPV6:
1836                return nf_conntrack_icmpv6_packet(ct, skb, ctinfo, state);
1837#endif
1838#ifdef CONFIG_NF_CT_PROTO_UDPLITE
1839        case IPPROTO_UDPLITE:
1840                return nf_conntrack_udplite_packet(ct, skb, dataoff,
1841                                                   ctinfo, state);
1842#endif
1843#ifdef CONFIG_NF_CT_PROTO_SCTP
1844        case IPPROTO_SCTP:
1845                return nf_conntrack_sctp_packet(ct, skb, dataoff,
1846                                                ctinfo, state);
1847#endif
1848#ifdef CONFIG_NF_CT_PROTO_DCCP
1849        case IPPROTO_DCCP:
1850                return nf_conntrack_dccp_packet(ct, skb, dataoff,
1851                                                ctinfo, state);
1852#endif
1853#ifdef CONFIG_NF_CT_PROTO_GRE
1854        case IPPROTO_GRE:
1855                return nf_conntrack_gre_packet(ct, skb, dataoff,
1856                                               ctinfo, state);
1857#endif
1858        }
1859
1860        return generic_packet(ct, skb, ctinfo);
1861}
1862
1863unsigned int
1864nf_conntrack_in(struct sk_buff *skb, const struct nf_hook_state *state)
1865{
1866        enum ip_conntrack_info ctinfo;
1867        struct nf_conn *ct, *tmpl;
1868        u_int8_t protonum;
1869        int dataoff, ret;
1870
1871        tmpl = nf_ct_get(skb, &ctinfo);
1872        if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1873                /* Previously seen (loopback or untracked)?  Ignore. */
1874                if ((tmpl && !nf_ct_is_template(tmpl)) ||
1875                     ctinfo == IP_CT_UNTRACKED)
1876                        return NF_ACCEPT;
1877                skb->_nfct = 0;
1878        }
1879
1880        /* rcu_read_lock()ed by nf_hook_thresh */
1881        dataoff = get_l4proto(skb, skb_network_offset(skb), state->pf, &protonum);
1882        if (dataoff <= 0) {
1883                pr_debug("not prepared to track yet or error occurred\n");
1884                NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1885                ret = NF_ACCEPT;
1886                goto out;
1887        }
1888
1889        if (protonum == IPPROTO_ICMP || protonum == IPPROTO_ICMPV6) {
1890                ret = nf_conntrack_handle_icmp(tmpl, skb, dataoff,
1891                                               protonum, state);
1892                if (ret <= 0) {
1893                        ret = -ret;
1894                        goto out;
1895                }
1896                /* ICMP[v6] protocol trackers may assign one conntrack. */
1897                if (skb->_nfct)
1898                        goto out;
1899        }
1900repeat:
1901        ret = resolve_normal_ct(tmpl, skb, dataoff,
1902                                protonum, state);
1903        if (ret < 0) {
1904                /* Too stressed to deal. */
1905                NF_CT_STAT_INC_ATOMIC(state->net, drop);
1906                ret = NF_DROP;
1907                goto out;
1908        }
1909
1910        ct = nf_ct_get(skb, &ctinfo);
1911        if (!ct) {
1912                /* Not valid part of a connection */
1913                NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1914                ret = NF_ACCEPT;
1915                goto out;
1916        }
1917
1918        ret = nf_conntrack_handle_packet(ct, skb, dataoff, ctinfo, state);
1919        if (ret <= 0) {
1920                /* Invalid: inverse of the return code tells
1921                 * the netfilter core what to do */
1922                pr_debug("nf_conntrack_in: Can't track with proto module\n");
1923                nf_conntrack_put(&ct->ct_general);
1924                skb->_nfct = 0;
1925                NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1926                if (ret == -NF_DROP)
1927                        NF_CT_STAT_INC_ATOMIC(state->net, drop);
1928                /* Special case: TCP tracker reports an attempt to reopen a
1929                 * closed/aborted connection. We have to go back and create a
1930                 * fresh conntrack.
1931                 */
1932                if (ret == -NF_REPEAT)
1933                        goto repeat;
1934                ret = -ret;
1935                goto out;
1936        }
1937
1938        if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
1939            !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1940                nf_conntrack_event_cache(IPCT_REPLY, ct);
1941out:
1942        if (tmpl)
1943                nf_ct_put(tmpl);
1944
1945        return ret;
1946}
1947EXPORT_SYMBOL_GPL(nf_conntrack_in);
1948
1949/* Alter reply tuple (maybe alter helper).  This is for NAT, and is
1950   implicitly racy: see __nf_conntrack_confirm */
1951void nf_conntrack_alter_reply(struct nf_conn *ct,
1952                              const struct nf_conntrack_tuple *newreply)
1953{
1954        struct nf_conn_help *help = nfct_help(ct);
1955
1956        /* Should be unconfirmed, so not in hash table yet */
1957        WARN_ON(nf_ct_is_confirmed(ct));
1958
1959        pr_debug("Altering reply tuple of %p to ", ct);
1960        nf_ct_dump_tuple(newreply);
1961
1962        ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1963        if (ct->master || (help && !hlist_empty(&help->expectations)))
1964                return;
1965
1966        rcu_read_lock();
1967        __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1968        rcu_read_unlock();
1969}
1970EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1971
1972/* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
1973void __nf_ct_refresh_acct(struct nf_conn *ct,
1974                          enum ip_conntrack_info ctinfo,
1975                          const struct sk_buff *skb,
1976                          u32 extra_jiffies,
1977                          bool do_acct)
1978{
1979        /* Only update if this is not a fixed timeout */
1980        if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1981                goto acct;
1982
1983        /* If not in hash table, timer will not be active yet */
1984        if (nf_ct_is_confirmed(ct))
1985                extra_jiffies += nfct_time_stamp;
1986
1987        if (READ_ONCE(ct->timeout) != extra_jiffies)
1988                WRITE_ONCE(ct->timeout, extra_jiffies);
1989acct:
1990        if (do_acct)
1991                nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
1992}
1993EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1994
1995bool nf_ct_kill_acct(struct nf_conn *ct,
1996                     enum ip_conntrack_info ctinfo,
1997                     const struct sk_buff *skb)
1998{
1999        nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
2000
2001        return nf_ct_delete(ct, 0, 0);
2002}
2003EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
2004
2005#if IS_ENABLED(CONFIG_NF_CT_NETLINK)
2006
2007#include <linux/netfilter/nfnetlink.h>
2008#include <linux/netfilter/nfnetlink_conntrack.h>
2009#include <linux/mutex.h>
2010
2011/* Generic function for tcp/udp/sctp/dccp and alike. */
2012int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
2013                               const struct nf_conntrack_tuple *tuple)
2014{
2015        if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
2016            nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
2017                goto nla_put_failure;
2018        return 0;
2019
2020nla_put_failure:
2021        return -1;
2022}
2023EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
2024
2025const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
2026        [CTA_PROTO_SRC_PORT]  = { .type = NLA_U16 },
2027        [CTA_PROTO_DST_PORT]  = { .type = NLA_U16 },
2028};
2029EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
2030
2031int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
2032                               struct nf_conntrack_tuple *t,
2033                               u_int32_t flags)
2034{
2035        if (flags & CTA_FILTER_FLAG(CTA_PROTO_SRC_PORT)) {
2036                if (!tb[CTA_PROTO_SRC_PORT])
2037                        return -EINVAL;
2038
2039                t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
2040        }
2041
2042        if (flags & CTA_FILTER_FLAG(CTA_PROTO_DST_PORT)) {
2043                if (!tb[CTA_PROTO_DST_PORT])
2044                        return -EINVAL;
2045
2046                t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
2047        }
2048
2049        return 0;
2050}
2051EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
2052
2053unsigned int nf_ct_port_nlattr_tuple_size(void)
2054{
2055        static unsigned int size __read_mostly;
2056
2057        if (!size)
2058                size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
2059
2060        return size;
2061}
2062EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
2063#endif
2064
2065/* Used by ipt_REJECT and ip6t_REJECT. */
2066static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
2067{
2068        struct nf_conn *ct;
2069        enum ip_conntrack_info ctinfo;
2070
2071        /* This ICMP is in reverse direction to the packet which caused it */
2072        ct = nf_ct_get(skb, &ctinfo);
2073        if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
2074                ctinfo = IP_CT_RELATED_REPLY;
2075        else
2076                ctinfo = IP_CT_RELATED;
2077
2078        /* Attach to new skbuff, and increment count */
2079        nf_ct_set(nskb, ct, ctinfo);
2080        nf_conntrack_get(skb_nfct(nskb));
2081}
2082
2083static int __nf_conntrack_update(struct net *net, struct sk_buff *skb,
2084                                 struct nf_conn *ct,
2085                                 enum ip_conntrack_info ctinfo)
2086{
2087        struct nf_conntrack_tuple_hash *h;
2088        struct nf_conntrack_tuple tuple;
2089        struct nf_nat_hook *nat_hook;
2090        unsigned int status;
2091        int dataoff;
2092        u16 l3num;
2093        u8 l4num;
2094
2095        l3num = nf_ct_l3num(ct);
2096
2097        dataoff = get_l4proto(skb, skb_network_offset(skb), l3num, &l4num);
2098        if (dataoff <= 0)
2099                return -1;
2100
2101        if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
2102                             l4num, net, &tuple))
2103                return -1;
2104
2105        if (ct->status & IPS_SRC_NAT) {
2106                memcpy(tuple.src.u3.all,
2107                       ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.all,
2108                       sizeof(tuple.src.u3.all));
2109                tuple.src.u.all =
2110                        ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.all;
2111        }
2112
2113        if (ct->status & IPS_DST_NAT) {
2114                memcpy(tuple.dst.u3.all,
2115                       ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u3.all,
2116                       sizeof(tuple.dst.u3.all));
2117                tuple.dst.u.all =
2118                        ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.all;
2119        }
2120
2121        h = nf_conntrack_find_get(net, nf_ct_zone(ct), &tuple);
2122        if (!h)
2123                return 0;
2124
2125        /* Store status bits of the conntrack that is clashing to re-do NAT
2126         * mangling according to what it has been done already to this packet.
2127         */
2128        status = ct->status;
2129
2130        nf_ct_put(ct);
2131        ct = nf_ct_tuplehash_to_ctrack(h);
2132        nf_ct_set(skb, ct, ctinfo);
2133
2134        nat_hook = rcu_dereference(nf_nat_hook);
2135        if (!nat_hook)
2136                return 0;
2137
2138        if (status & IPS_SRC_NAT &&
2139            nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_SRC,
2140                                IP_CT_DIR_ORIGINAL) == NF_DROP)
2141                return -1;
2142
2143        if (status & IPS_DST_NAT &&
2144            nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_DST,
2145                                IP_CT_DIR_ORIGINAL) == NF_DROP)
2146                return -1;
2147
2148        return 0;
2149}
2150
2151/* This packet is coming from userspace via nf_queue, complete the packet
2152 * processing after the helper invocation in nf_confirm().
2153 */
2154static int nf_confirm_cthelper(struct sk_buff *skb, struct nf_conn *ct,
2155                               enum ip_conntrack_info ctinfo)
2156{
2157        const struct nf_conntrack_helper *helper;
2158        const struct nf_conn_help *help;
2159        int protoff;
2160
2161        help = nfct_help(ct);
2162        if (!help)
2163                return 0;
2164
2165        helper = rcu_dereference(help->helper);
2166        if (!(helper->flags & NF_CT_HELPER_F_USERSPACE))
2167                return 0;
2168
2169        switch (nf_ct_l3num(ct)) {
2170        case NFPROTO_IPV4:
2171                protoff = skb_network_offset(skb) + ip_hdrlen(skb);
2172                break;
2173#if IS_ENABLED(CONFIG_IPV6)
2174        case NFPROTO_IPV6: {
2175                __be16 frag_off;
2176                u8 pnum;
2177
2178                pnum = ipv6_hdr(skb)->nexthdr;
2179                protoff = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &pnum,
2180                                           &frag_off);
2181                if (protoff < 0 || (frag_off & htons(~0x7)) != 0)
2182                        return 0;
2183                break;
2184        }
2185#endif
2186        default:
2187                return 0;
2188        }
2189
2190        if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
2191            !nf_is_loopback_packet(skb)) {
2192                if (!nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) {
2193                        NF_CT_STAT_INC_ATOMIC(nf_ct_net(ct), drop);
2194                        return -1;
2195                }
2196        }
2197
2198        /* We've seen it coming out the other side: confirm it */
2199        return nf_conntrack_confirm(skb) == NF_DROP ? - 1 : 0;
2200}
2201
2202static int nf_conntrack_update(struct net *net, struct sk_buff *skb)
2203{
2204        enum ip_conntrack_info ctinfo;
2205        struct nf_conn *ct;
2206        int err;
2207
2208        ct = nf_ct_get(skb, &ctinfo);
2209        if (!ct)
2210                return 0;
2211
2212        if (!nf_ct_is_confirmed(ct)) {
2213                err = __nf_conntrack_update(net, skb, ct, ctinfo);
2214                if (err < 0)
2215                        return err;
2216
2217                ct = nf_ct_get(skb, &ctinfo);
2218        }
2219
2220        return nf_confirm_cthelper(skb, ct, ctinfo);
2221}
2222
2223static bool nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple,
2224                                       const struct sk_buff *skb)
2225{
2226        const struct nf_conntrack_tuple *src_tuple;
2227        const struct nf_conntrack_tuple_hash *hash;
2228        struct nf_conntrack_tuple srctuple;
2229        enum ip_conntrack_info ctinfo;
2230        struct nf_conn *ct;
2231
2232        ct = nf_ct_get(skb, &ctinfo);
2233        if (ct) {
2234                src_tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo));
2235                memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2236                return true;
2237        }
2238
2239        if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
2240                               NFPROTO_IPV4, dev_net(skb->dev),
2241                               &srctuple))
2242                return false;
2243
2244        hash = nf_conntrack_find_get(dev_net(skb->dev),
2245                                     &nf_ct_zone_dflt,
2246                                     &srctuple);
2247        if (!hash)
2248                return false;
2249
2250        ct = nf_ct_tuplehash_to_ctrack(hash);
2251        src_tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir);
2252        memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2253        nf_ct_put(ct);
2254
2255        return true;
2256}
2257
2258/* Bring out ya dead! */
2259static struct nf_conn *
2260get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
2261                void *data, unsigned int *bucket)
2262{
2263        struct nf_conntrack_tuple_hash *h;
2264        struct nf_conn *ct;
2265        struct hlist_nulls_node *n;
2266        spinlock_t *lockp;
2267
2268        for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
2269                struct hlist_nulls_head *hslot = &nf_conntrack_hash[*bucket];
2270
2271                if (hlist_nulls_empty(hslot))
2272                        continue;
2273
2274                lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
2275                local_bh_disable();
2276                nf_conntrack_lock(lockp);
2277                hlist_nulls_for_each_entry(h, n, hslot, hnnode) {
2278                        if (NF_CT_DIRECTION(h) != IP_CT_DIR_REPLY)
2279                                continue;
2280                        /* All nf_conn objects are added to hash table twice, one
2281                         * for original direction tuple, once for the reply tuple.
2282                         *
2283                         * Exception: In the IPS_NAT_CLASH case, only the reply
2284                         * tuple is added (the original tuple already existed for
2285                         * a different object).
2286                         *
2287                         * We only need to call the iterator once for each
2288                         * conntrack, so we just use the 'reply' direction
2289                         * tuple while iterating.
2290                         */
2291                        ct = nf_ct_tuplehash_to_ctrack(h);
2292                        if (iter(ct, data))
2293                                goto found;
2294                }
2295                spin_unlock(lockp);
2296                local_bh_enable();
2297                cond_resched();
2298        }
2299
2300        return NULL;
2301found:
2302        atomic_inc(&ct->ct_general.use);
2303        spin_unlock(lockp);
2304        local_bh_enable();
2305        return ct;
2306}
2307
2308static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
2309                                  void *data, u32 portid, int report)
2310{
2311        unsigned int bucket = 0;
2312        struct nf_conn *ct;
2313
2314        might_sleep();
2315
2316        mutex_lock(&nf_conntrack_mutex);
2317        while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
2318                /* Time to push up daises... */
2319
2320                nf_ct_delete(ct, portid, report);
2321                nf_ct_put(ct);
2322                cond_resched();
2323        }
2324        mutex_unlock(&nf_conntrack_mutex);
2325}
2326
2327struct iter_data {
2328        int (*iter)(struct nf_conn *i, void *data);
2329        void *data;
2330        struct net *net;
2331};
2332
2333static int iter_net_only(struct nf_conn *i, void *data)
2334{
2335        struct iter_data *d = data;
2336
2337        if (!net_eq(d->net, nf_ct_net(i)))
2338                return 0;
2339
2340        return d->iter(i, d->data);
2341}
2342
2343static void
2344__nf_ct_unconfirmed_destroy(struct net *net)
2345{
2346        int cpu;
2347
2348        for_each_possible_cpu(cpu) {
2349                struct nf_conntrack_tuple_hash *h;
2350                struct hlist_nulls_node *n;
2351                struct ct_pcpu *pcpu;
2352
2353                pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2354
2355                spin_lock_bh(&pcpu->lock);
2356                hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
2357                        struct nf_conn *ct;
2358
2359                        ct = nf_ct_tuplehash_to_ctrack(h);
2360
2361                        /* we cannot call iter() on unconfirmed list, the
2362                         * owning cpu can reallocate ct->ext at any time.
2363                         */
2364                        set_bit(IPS_DYING_BIT, &ct->status);
2365                }
2366                spin_unlock_bh(&pcpu->lock);
2367                cond_resched();
2368        }
2369}
2370
2371void nf_ct_unconfirmed_destroy(struct net *net)
2372{
2373        struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2374
2375        might_sleep();
2376
2377        if (atomic_read(&cnet->count) > 0) {
2378                __nf_ct_unconfirmed_destroy(net);
2379                nf_queue_nf_hook_drop(net);
2380                synchronize_net();
2381        }
2382}
2383EXPORT_SYMBOL_GPL(nf_ct_unconfirmed_destroy);
2384
2385void nf_ct_iterate_cleanup_net(struct net *net,
2386                               int (*iter)(struct nf_conn *i, void *data),
2387                               void *data, u32 portid, int report)
2388{
2389        struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2390        struct iter_data d;
2391
2392        might_sleep();
2393
2394        if (atomic_read(&cnet->count) == 0)
2395                return;
2396
2397        d.iter = iter;
2398        d.data = data;
2399        d.net = net;
2400
2401        nf_ct_iterate_cleanup(iter_net_only, &d, portid, report);
2402}
2403EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
2404
2405/**
2406 * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
2407 * @iter: callback to invoke for each conntrack
2408 * @data: data to pass to @iter
2409 *
2410 * Like nf_ct_iterate_cleanup, but first marks conntracks on the
2411 * unconfirmed list as dying (so they will not be inserted into
2412 * main table).
2413 *
2414 * Can only be called in module exit path.
2415 */
2416void
2417nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
2418{
2419        struct net *net;
2420
2421        down_read(&net_rwsem);
2422        for_each_net(net) {
2423                struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2424
2425                if (atomic_read(&cnet->count) == 0)
2426                        continue;
2427                __nf_ct_unconfirmed_destroy(net);
2428                nf_queue_nf_hook_drop(net);
2429        }
2430        up_read(&net_rwsem);
2431
2432        /* Need to wait for netns cleanup worker to finish, if its
2433         * running -- it might have deleted a net namespace from
2434         * the global list, so our __nf_ct_unconfirmed_destroy() might
2435         * not have affected all namespaces.
2436         */
2437        net_ns_barrier();
2438
2439        /* a conntrack could have been unlinked from unconfirmed list
2440         * before we grabbed pcpu lock in __nf_ct_unconfirmed_destroy().
2441         * This makes sure its inserted into conntrack table.
2442         */
2443        synchronize_net();
2444
2445        nf_ct_iterate_cleanup(iter, data, 0, 0);
2446}
2447EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
2448
2449static int kill_all(struct nf_conn *i, void *data)
2450{
2451        return net_eq(nf_ct_net(i), data);
2452}
2453
2454void nf_conntrack_cleanup_start(void)
2455{
2456        conntrack_gc_work.exiting = true;
2457        RCU_INIT_POINTER(ip_ct_attach, NULL);
2458}
2459
2460void nf_conntrack_cleanup_end(void)
2461{
2462        RCU_INIT_POINTER(nf_ct_hook, NULL);
2463        cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2464        kvfree(nf_conntrack_hash);
2465
2466        nf_conntrack_proto_fini();
2467        nf_conntrack_seqadj_fini();
2468        nf_conntrack_labels_fini();
2469        nf_conntrack_helper_fini();
2470        nf_conntrack_timeout_fini();
2471        nf_conntrack_ecache_fini();
2472        nf_conntrack_tstamp_fini();
2473        nf_conntrack_acct_fini();
2474        nf_conntrack_expect_fini();
2475
2476        kmem_cache_destroy(nf_conntrack_cachep);
2477}
2478
2479/*
2480 * Mishearing the voices in his head, our hero wonders how he's
2481 * supposed to kill the mall.
2482 */
2483void nf_conntrack_cleanup_net(struct net *net)
2484{
2485        LIST_HEAD(single);
2486
2487        list_add(&net->exit_list, &single);
2488        nf_conntrack_cleanup_net_list(&single);
2489}
2490
2491void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
2492{
2493        int busy;
2494        struct net *net;
2495
2496        /*
2497         * This makes sure all current packets have passed through
2498         *  netfilter framework.  Roll on, two-stage module
2499         *  delete...
2500         */
2501        synchronize_net();
2502i_see_dead_people:
2503        busy = 0;
2504        list_for_each_entry(net, net_exit_list, exit_list) {
2505                struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2506
2507                nf_ct_iterate_cleanup(kill_all, net, 0, 0);
2508                if (atomic_read(&cnet->count) != 0)
2509                        busy = 1;
2510        }
2511        if (busy) {
2512                schedule();
2513                goto i_see_dead_people;
2514        }
2515
2516        list_for_each_entry(net, net_exit_list, exit_list) {
2517                nf_conntrack_ecache_pernet_fini(net);
2518                nf_conntrack_expect_pernet_fini(net);
2519                free_percpu(net->ct.stat);
2520                free_percpu(net->ct.pcpu_lists);
2521        }
2522}
2523
2524void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
2525{
2526        struct hlist_nulls_head *hash;
2527        unsigned int nr_slots, i;
2528
2529        if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
2530                return NULL;
2531
2532        BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
2533        nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
2534
2535        hash = kvcalloc(nr_slots, sizeof(struct hlist_nulls_head), GFP_KERNEL);
2536
2537        if (hash && nulls)
2538                for (i = 0; i < nr_slots; i++)
2539                        INIT_HLIST_NULLS_HEAD(&hash[i], i);
2540
2541        return hash;
2542}
2543EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
2544
2545int nf_conntrack_hash_resize(unsigned int hashsize)
2546{
2547        int i, bucket;
2548        unsigned int old_size;
2549        struct hlist_nulls_head *hash, *old_hash;
2550        struct nf_conntrack_tuple_hash *h;
2551        struct nf_conn *ct;
2552
2553        if (!hashsize)
2554                return -EINVAL;
2555
2556        hash = nf_ct_alloc_hashtable(&hashsize, 1);
2557        if (!hash)
2558                return -ENOMEM;
2559
2560        mutex_lock(&nf_conntrack_mutex);
2561        old_size = nf_conntrack_htable_size;
2562        if (old_size == hashsize) {
2563                mutex_unlock(&nf_conntrack_mutex);
2564                kvfree(hash);
2565                return 0;
2566        }
2567
2568        local_bh_disable();
2569        nf_conntrack_all_lock();
2570        write_seqcount_begin(&nf_conntrack_generation);
2571
2572        /* Lookups in the old hash might happen in parallel, which means we
2573         * might get false negatives during connection lookup. New connections
2574         * created because of a false negative won't make it into the hash
2575         * though since that required taking the locks.
2576         */
2577
2578        for (i = 0; i < nf_conntrack_htable_size; i++) {
2579                while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
2580                        unsigned int zone_id;
2581
2582                        h = hlist_nulls_entry(nf_conntrack_hash[i].first,
2583                                              struct nf_conntrack_tuple_hash, hnnode);
2584                        ct = nf_ct_tuplehash_to_ctrack(h);
2585                        hlist_nulls_del_rcu(&h->hnnode);
2586
2587                        zone_id = nf_ct_zone_id(nf_ct_zone(ct), NF_CT_DIRECTION(h));
2588                        bucket = __hash_conntrack(nf_ct_net(ct),
2589                                                  &h->tuple, zone_id, hashsize);
2590                        hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
2591                }
2592        }
2593        old_size = nf_conntrack_htable_size;
2594        old_hash = nf_conntrack_hash;
2595
2596        nf_conntrack_hash = hash;
2597        nf_conntrack_htable_size = hashsize;
2598
2599        write_seqcount_end(&nf_conntrack_generation);
2600        nf_conntrack_all_unlock();
2601        local_bh_enable();
2602
2603        mutex_unlock(&nf_conntrack_mutex);
2604
2605        synchronize_net();
2606        kvfree(old_hash);
2607        return 0;
2608}
2609
2610int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp)
2611{
2612        unsigned int hashsize;
2613        int rc;
2614
2615        if (current->nsproxy->net_ns != &init_net)
2616                return -EOPNOTSUPP;
2617
2618        /* On boot, we can set this without any fancy locking. */
2619        if (!nf_conntrack_hash)
2620                return param_set_uint(val, kp);
2621
2622        rc = kstrtouint(val, 0, &hashsize);
2623        if (rc)
2624                return rc;
2625
2626        return nf_conntrack_hash_resize(hashsize);
2627}
2628
2629static __always_inline unsigned int total_extension_size(void)
2630{
2631        /* remember to add new extensions below */
2632        BUILD_BUG_ON(NF_CT_EXT_NUM > 9);
2633
2634        return sizeof(struct nf_ct_ext) +
2635               sizeof(struct nf_conn_help)
2636#if IS_ENABLED(CONFIG_NF_NAT)
2637                + sizeof(struct nf_conn_nat)
2638#endif
2639                + sizeof(struct nf_conn_seqadj)
2640                + sizeof(struct nf_conn_acct)
2641#ifdef CONFIG_NF_CONNTRACK_EVENTS
2642                + sizeof(struct nf_conntrack_ecache)
2643#endif
2644#ifdef CONFIG_NF_CONNTRACK_TIMESTAMP
2645                + sizeof(struct nf_conn_tstamp)
2646#endif
2647#ifdef CONFIG_NF_CONNTRACK_TIMEOUT
2648                + sizeof(struct nf_conn_timeout)
2649#endif
2650#ifdef CONFIG_NF_CONNTRACK_LABELS
2651                + sizeof(struct nf_conn_labels)
2652#endif
2653#if IS_ENABLED(CONFIG_NETFILTER_SYNPROXY)
2654                + sizeof(struct nf_conn_synproxy)
2655#endif
2656        ;
2657};
2658
2659int nf_conntrack_init_start(void)
2660{
2661        unsigned long nr_pages = totalram_pages();
2662        int max_factor = 8;
2663        int ret = -ENOMEM;
2664        int i;
2665
2666        /* struct nf_ct_ext uses u8 to store offsets/size */
2667        BUILD_BUG_ON(total_extension_size() > 255u);
2668
2669        seqcount_spinlock_init(&nf_conntrack_generation,
2670                               &nf_conntrack_locks_all_lock);
2671
2672        for (i = 0; i < CONNTRACK_LOCKS; i++)
2673                spin_lock_init(&nf_conntrack_locks[i]);
2674
2675        if (!nf_conntrack_htable_size) {
2676                nf_conntrack_htable_size
2677                        = (((nr_pages << PAGE_SHIFT) / 16384)
2678                           / sizeof(struct hlist_head));
2679                if (BITS_PER_LONG >= 64 &&
2680                    nr_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2681                        nf_conntrack_htable_size = 262144;
2682                else if (nr_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2683                        nf_conntrack_htable_size = 65536;
2684
2685                if (nf_conntrack_htable_size < 1024)
2686                        nf_conntrack_htable_size = 1024;
2687                /* Use a max. factor of one by default to keep the average
2688                 * hash chain length at 2 entries.  Each entry has to be added
2689                 * twice (once for original direction, once for reply).
2690                 * When a table size is given we use the old value of 8 to
2691                 * avoid implicit reduction of the max entries setting.
2692                 */
2693                max_factor = 1;
2694        }
2695
2696        nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2697        if (!nf_conntrack_hash)
2698                return -ENOMEM;
2699
2700        nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2701
2702        nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2703                                                sizeof(struct nf_conn),
2704                                                NFCT_INFOMASK + 1,
2705                                                SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2706        if (!nf_conntrack_cachep)
2707                goto err_cachep;
2708
2709        ret = nf_conntrack_expect_init();
2710        if (ret < 0)
2711                goto err_expect;
2712
2713        ret = nf_conntrack_acct_init();
2714        if (ret < 0)
2715                goto err_acct;
2716
2717        ret = nf_conntrack_tstamp_init();
2718        if (ret < 0)
2719                goto err_tstamp;
2720
2721        ret = nf_conntrack_ecache_init();
2722        if (ret < 0)
2723                goto err_ecache;
2724
2725        ret = nf_conntrack_timeout_init();
2726        if (ret < 0)
2727                goto err_timeout;
2728
2729        ret = nf_conntrack_helper_init();
2730        if (ret < 0)
2731                goto err_helper;
2732
2733        ret = nf_conntrack_labels_init();
2734        if (ret < 0)
2735                goto err_labels;
2736
2737        ret = nf_conntrack_seqadj_init();
2738        if (ret < 0)
2739                goto err_seqadj;
2740
2741        ret = nf_conntrack_proto_init();
2742        if (ret < 0)
2743                goto err_proto;
2744
2745        conntrack_gc_work_init(&conntrack_gc_work);
2746        queue_delayed_work(system_power_efficient_wq, &conntrack_gc_work.dwork, HZ);
2747
2748        return 0;
2749
2750err_proto:
2751        nf_conntrack_seqadj_fini();
2752err_seqadj:
2753        nf_conntrack_labels_fini();
2754err_labels:
2755        nf_conntrack_helper_fini();
2756err_helper:
2757        nf_conntrack_timeout_fini();
2758err_timeout:
2759        nf_conntrack_ecache_fini();
2760err_ecache:
2761        nf_conntrack_tstamp_fini();
2762err_tstamp:
2763        nf_conntrack_acct_fini();
2764err_acct:
2765        nf_conntrack_expect_fini();
2766err_expect:
2767        kmem_cache_destroy(nf_conntrack_cachep);
2768err_cachep:
2769        kvfree(nf_conntrack_hash);
2770        return ret;
2771}
2772
2773static struct nf_ct_hook nf_conntrack_hook = {
2774        .update         = nf_conntrack_update,
2775        .destroy        = destroy_conntrack,
2776        .get_tuple_skb  = nf_conntrack_get_tuple_skb,
2777};
2778
2779void nf_conntrack_init_end(void)
2780{
2781        /* For use by REJECT target */
2782        RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
2783        RCU_INIT_POINTER(nf_ct_hook, &nf_conntrack_hook);
2784}
2785
2786/*
2787 * We need to use special "null" values, not used in hash table
2788 */
2789#define UNCONFIRMED_NULLS_VAL   ((1<<30)+0)
2790#define DYING_NULLS_VAL         ((1<<30)+1)
2791
2792int nf_conntrack_init_net(struct net *net)
2793{
2794        struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2795        int ret = -ENOMEM;
2796        int cpu;
2797
2798        BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2799        BUILD_BUG_ON_NOT_POWER_OF_2(CONNTRACK_LOCKS);
2800        atomic_set(&cnet->count, 0);
2801
2802        net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
2803        if (!net->ct.pcpu_lists)
2804                goto err_stat;
2805
2806        for_each_possible_cpu(cpu) {
2807                struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2808
2809                spin_lock_init(&pcpu->lock);
2810                INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
2811                INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
2812        }
2813
2814        net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2815        if (!net->ct.stat)
2816                goto err_pcpu_lists;
2817
2818        ret = nf_conntrack_expect_pernet_init(net);
2819        if (ret < 0)
2820                goto err_expect;
2821
2822        nf_conntrack_acct_pernet_init(net);
2823        nf_conntrack_tstamp_pernet_init(net);
2824        nf_conntrack_ecache_pernet_init(net);
2825        nf_conntrack_helper_pernet_init(net);
2826        nf_conntrack_proto_pernet_init(net);
2827
2828        return 0;
2829
2830err_expect:
2831        free_percpu(net->ct.stat);
2832err_pcpu_lists:
2833        free_percpu(net->ct.pcpu_lists);
2834err_stat:
2835        return ret;
2836}
2837