linux/net/sched/sch_fq.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
   4 *
   5 *  Copyright (C) 2013-2015 Eric Dumazet <edumazet@google.com>
   6 *
   7 *  Meant to be mostly used for locally generated traffic :
   8 *  Fast classification depends on skb->sk being set before reaching us.
   9 *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
  10 *  All packets belonging to a socket are considered as a 'flow'.
  11 *
  12 *  Flows are dynamically allocated and stored in a hash table of RB trees
  13 *  They are also part of one Round Robin 'queues' (new or old flows)
  14 *
  15 *  Burst avoidance (aka pacing) capability :
  16 *
  17 *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
  18 *  bunch of packets, and this packet scheduler adds delay between
  19 *  packets to respect rate limitation.
  20 *
  21 *  enqueue() :
  22 *   - lookup one RB tree (out of 1024 or more) to find the flow.
  23 *     If non existent flow, create it, add it to the tree.
  24 *     Add skb to the per flow list of skb (fifo).
  25 *   - Use a special fifo for high prio packets
  26 *
  27 *  dequeue() : serves flows in Round Robin
  28 *  Note : When a flow becomes empty, we do not immediately remove it from
  29 *  rb trees, for performance reasons (its expected to send additional packets,
  30 *  or SLAB cache will reuse socket for another flow)
  31 */
  32
  33#include <linux/module.h>
  34#include <linux/types.h>
  35#include <linux/kernel.h>
  36#include <linux/jiffies.h>
  37#include <linux/string.h>
  38#include <linux/in.h>
  39#include <linux/errno.h>
  40#include <linux/init.h>
  41#include <linux/skbuff.h>
  42#include <linux/slab.h>
  43#include <linux/rbtree.h>
  44#include <linux/hash.h>
  45#include <linux/prefetch.h>
  46#include <linux/vmalloc.h>
  47#include <net/netlink.h>
  48#include <net/pkt_sched.h>
  49#include <net/sock.h>
  50#include <net/tcp_states.h>
  51#include <net/tcp.h>
  52
  53struct fq_skb_cb {
  54        u64             time_to_send;
  55};
  56
  57static inline struct fq_skb_cb *fq_skb_cb(struct sk_buff *skb)
  58{
  59        qdisc_cb_private_validate(skb, sizeof(struct fq_skb_cb));
  60        return (struct fq_skb_cb *)qdisc_skb_cb(skb)->data;
  61}
  62
  63/*
  64 * Per flow structure, dynamically allocated.
  65 * If packets have monotically increasing time_to_send, they are placed in O(1)
  66 * in linear list (head,tail), otherwise are placed in a rbtree (t_root).
  67 */
  68struct fq_flow {
  69/* First cache line : used in fq_gc(), fq_enqueue(), fq_dequeue() */
  70        struct rb_root  t_root;
  71        struct sk_buff  *head;          /* list of skbs for this flow : first skb */
  72        union {
  73                struct sk_buff *tail;   /* last skb in the list */
  74                unsigned long  age;     /* (jiffies | 1UL) when flow was emptied, for gc */
  75        };
  76        struct rb_node  fq_node;        /* anchor in fq_root[] trees */
  77        struct sock     *sk;
  78        u32             socket_hash;    /* sk_hash */
  79        int             qlen;           /* number of packets in flow queue */
  80
  81/* Second cache line, used in fq_dequeue() */
  82        int             credit;
  83        /* 32bit hole on 64bit arches */
  84
  85        struct fq_flow *next;           /* next pointer in RR lists */
  86
  87        struct rb_node  rate_node;      /* anchor in q->delayed tree */
  88        u64             time_next_packet;
  89} ____cacheline_aligned_in_smp;
  90
  91struct fq_flow_head {
  92        struct fq_flow *first;
  93        struct fq_flow *last;
  94};
  95
  96struct fq_sched_data {
  97        struct fq_flow_head new_flows;
  98
  99        struct fq_flow_head old_flows;
 100
 101        struct rb_root  delayed;        /* for rate limited flows */
 102        u64             time_next_delayed_flow;
 103        u64             ktime_cache;    /* copy of last ktime_get_ns() */
 104        unsigned long   unthrottle_latency_ns;
 105
 106        struct fq_flow  internal;       /* for non classified or high prio packets */
 107        u32             quantum;
 108        u32             initial_quantum;
 109        u32             flow_refill_delay;
 110        u32             flow_plimit;    /* max packets per flow */
 111        unsigned long   flow_max_rate;  /* optional max rate per flow */
 112        u64             ce_threshold;
 113        u64             horizon;        /* horizon in ns */
 114        u32             orphan_mask;    /* mask for orphaned skb */
 115        u32             low_rate_threshold;
 116        struct rb_root  *fq_root;
 117        u8              rate_enable;
 118        u8              fq_trees_log;
 119        u8              horizon_drop;
 120        u32             flows;
 121        u32             inactive_flows;
 122        u32             throttled_flows;
 123
 124        u64             stat_gc_flows;
 125        u64             stat_internal_packets;
 126        u64             stat_throttled;
 127        u64             stat_ce_mark;
 128        u64             stat_horizon_drops;
 129        u64             stat_horizon_caps;
 130        u64             stat_flows_plimit;
 131        u64             stat_pkts_too_long;
 132        u64             stat_allocation_errors;
 133
 134        u32             timer_slack; /* hrtimer slack in ns */
 135        struct qdisc_watchdog watchdog;
 136};
 137
 138/*
 139 * f->tail and f->age share the same location.
 140 * We can use the low order bit to differentiate if this location points
 141 * to a sk_buff or contains a jiffies value, if we force this value to be odd.
 142 * This assumes f->tail low order bit must be 0 since alignof(struct sk_buff) >= 2
 143 */
 144static void fq_flow_set_detached(struct fq_flow *f)
 145{
 146        f->age = jiffies | 1UL;
 147}
 148
 149static bool fq_flow_is_detached(const struct fq_flow *f)
 150{
 151        return !!(f->age & 1UL);
 152}
 153
 154/* special value to mark a throttled flow (not on old/new list) */
 155static struct fq_flow throttled;
 156
 157static bool fq_flow_is_throttled(const struct fq_flow *f)
 158{
 159        return f->next == &throttled;
 160}
 161
 162static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
 163{
 164        if (head->first)
 165                head->last->next = flow;
 166        else
 167                head->first = flow;
 168        head->last = flow;
 169        flow->next = NULL;
 170}
 171
 172static void fq_flow_unset_throttled(struct fq_sched_data *q, struct fq_flow *f)
 173{
 174        rb_erase(&f->rate_node, &q->delayed);
 175        q->throttled_flows--;
 176        fq_flow_add_tail(&q->old_flows, f);
 177}
 178
 179static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
 180{
 181        struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
 182
 183        while (*p) {
 184                struct fq_flow *aux;
 185
 186                parent = *p;
 187                aux = rb_entry(parent, struct fq_flow, rate_node);
 188                if (f->time_next_packet >= aux->time_next_packet)
 189                        p = &parent->rb_right;
 190                else
 191                        p = &parent->rb_left;
 192        }
 193        rb_link_node(&f->rate_node, parent, p);
 194        rb_insert_color(&f->rate_node, &q->delayed);
 195        q->throttled_flows++;
 196        q->stat_throttled++;
 197
 198        f->next = &throttled;
 199        if (q->time_next_delayed_flow > f->time_next_packet)
 200                q->time_next_delayed_flow = f->time_next_packet;
 201}
 202
 203
 204static struct kmem_cache *fq_flow_cachep __read_mostly;
 205
 206
 207/* limit number of collected flows per round */
 208#define FQ_GC_MAX 8
 209#define FQ_GC_AGE (3*HZ)
 210
 211static bool fq_gc_candidate(const struct fq_flow *f)
 212{
 213        return fq_flow_is_detached(f) &&
 214               time_after(jiffies, f->age + FQ_GC_AGE);
 215}
 216
 217static void fq_gc(struct fq_sched_data *q,
 218                  struct rb_root *root,
 219                  struct sock *sk)
 220{
 221        struct rb_node **p, *parent;
 222        void *tofree[FQ_GC_MAX];
 223        struct fq_flow *f;
 224        int i, fcnt = 0;
 225
 226        p = &root->rb_node;
 227        parent = NULL;
 228        while (*p) {
 229                parent = *p;
 230
 231                f = rb_entry(parent, struct fq_flow, fq_node);
 232                if (f->sk == sk)
 233                        break;
 234
 235                if (fq_gc_candidate(f)) {
 236                        tofree[fcnt++] = f;
 237                        if (fcnt == FQ_GC_MAX)
 238                                break;
 239                }
 240
 241                if (f->sk > sk)
 242                        p = &parent->rb_right;
 243                else
 244                        p = &parent->rb_left;
 245        }
 246
 247        if (!fcnt)
 248                return;
 249
 250        for (i = fcnt; i > 0; ) {
 251                f = tofree[--i];
 252                rb_erase(&f->fq_node, root);
 253        }
 254        q->flows -= fcnt;
 255        q->inactive_flows -= fcnt;
 256        q->stat_gc_flows += fcnt;
 257
 258        kmem_cache_free_bulk(fq_flow_cachep, fcnt, tofree);
 259}
 260
 261static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
 262{
 263        struct rb_node **p, *parent;
 264        struct sock *sk = skb->sk;
 265        struct rb_root *root;
 266        struct fq_flow *f;
 267
 268        /* warning: no starvation prevention... */
 269        if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
 270                return &q->internal;
 271
 272        /* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
 273         * or a listener (SYNCOOKIE mode)
 274         * 1) request sockets are not full blown,
 275         *    they do not contain sk_pacing_rate
 276         * 2) They are not part of a 'flow' yet
 277         * 3) We do not want to rate limit them (eg SYNFLOOD attack),
 278         *    especially if the listener set SO_MAX_PACING_RATE
 279         * 4) We pretend they are orphaned
 280         */
 281        if (!sk || sk_listener(sk)) {
 282                unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
 283
 284                /* By forcing low order bit to 1, we make sure to not
 285                 * collide with a local flow (socket pointers are word aligned)
 286                 */
 287                sk = (struct sock *)((hash << 1) | 1UL);
 288                skb_orphan(skb);
 289        } else if (sk->sk_state == TCP_CLOSE) {
 290                unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
 291                /*
 292                 * Sockets in TCP_CLOSE are non connected.
 293                 * Typical use case is UDP sockets, they can send packets
 294                 * with sendto() to many different destinations.
 295                 * We probably could use a generic bit advertising
 296                 * non connected sockets, instead of sk_state == TCP_CLOSE,
 297                 * if we care enough.
 298                 */
 299                sk = (struct sock *)((hash << 1) | 1UL);
 300        }
 301
 302        root = &q->fq_root[hash_ptr(sk, q->fq_trees_log)];
 303
 304        if (q->flows >= (2U << q->fq_trees_log) &&
 305            q->inactive_flows > q->flows/2)
 306                fq_gc(q, root, sk);
 307
 308        p = &root->rb_node;
 309        parent = NULL;
 310        while (*p) {
 311                parent = *p;
 312
 313                f = rb_entry(parent, struct fq_flow, fq_node);
 314                if (f->sk == sk) {
 315                        /* socket might have been reallocated, so check
 316                         * if its sk_hash is the same.
 317                         * It not, we need to refill credit with
 318                         * initial quantum
 319                         */
 320                        if (unlikely(skb->sk == sk &&
 321                                     f->socket_hash != sk->sk_hash)) {
 322                                f->credit = q->initial_quantum;
 323                                f->socket_hash = sk->sk_hash;
 324                                if (q->rate_enable)
 325                                        smp_store_release(&sk->sk_pacing_status,
 326                                                          SK_PACING_FQ);
 327                                if (fq_flow_is_throttled(f))
 328                                        fq_flow_unset_throttled(q, f);
 329                                f->time_next_packet = 0ULL;
 330                        }
 331                        return f;
 332                }
 333                if (f->sk > sk)
 334                        p = &parent->rb_right;
 335                else
 336                        p = &parent->rb_left;
 337        }
 338
 339        f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
 340        if (unlikely(!f)) {
 341                q->stat_allocation_errors++;
 342                return &q->internal;
 343        }
 344        /* f->t_root is already zeroed after kmem_cache_zalloc() */
 345
 346        fq_flow_set_detached(f);
 347        f->sk = sk;
 348        if (skb->sk == sk) {
 349                f->socket_hash = sk->sk_hash;
 350                if (q->rate_enable)
 351                        smp_store_release(&sk->sk_pacing_status,
 352                                          SK_PACING_FQ);
 353        }
 354        f->credit = q->initial_quantum;
 355
 356        rb_link_node(&f->fq_node, parent, p);
 357        rb_insert_color(&f->fq_node, root);
 358
 359        q->flows++;
 360        q->inactive_flows++;
 361        return f;
 362}
 363
 364static struct sk_buff *fq_peek(struct fq_flow *flow)
 365{
 366        struct sk_buff *skb = skb_rb_first(&flow->t_root);
 367        struct sk_buff *head = flow->head;
 368
 369        if (!skb)
 370                return head;
 371
 372        if (!head)
 373                return skb;
 374
 375        if (fq_skb_cb(skb)->time_to_send < fq_skb_cb(head)->time_to_send)
 376                return skb;
 377        return head;
 378}
 379
 380static void fq_erase_head(struct Qdisc *sch, struct fq_flow *flow,
 381                          struct sk_buff *skb)
 382{
 383        if (skb == flow->head) {
 384                flow->head = skb->next;
 385        } else {
 386                rb_erase(&skb->rbnode, &flow->t_root);
 387                skb->dev = qdisc_dev(sch);
 388        }
 389}
 390
 391/* Remove one skb from flow queue.
 392 * This skb must be the return value of prior fq_peek().
 393 */
 394static void fq_dequeue_skb(struct Qdisc *sch, struct fq_flow *flow,
 395                           struct sk_buff *skb)
 396{
 397        fq_erase_head(sch, flow, skb);
 398        skb_mark_not_on_list(skb);
 399        flow->qlen--;
 400        qdisc_qstats_backlog_dec(sch, skb);
 401        sch->q.qlen--;
 402}
 403
 404static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
 405{
 406        struct rb_node **p, *parent;
 407        struct sk_buff *head, *aux;
 408
 409        head = flow->head;
 410        if (!head ||
 411            fq_skb_cb(skb)->time_to_send >= fq_skb_cb(flow->tail)->time_to_send) {
 412                if (!head)
 413                        flow->head = skb;
 414                else
 415                        flow->tail->next = skb;
 416                flow->tail = skb;
 417                skb->next = NULL;
 418                return;
 419        }
 420
 421        p = &flow->t_root.rb_node;
 422        parent = NULL;
 423
 424        while (*p) {
 425                parent = *p;
 426                aux = rb_to_skb(parent);
 427                if (fq_skb_cb(skb)->time_to_send >= fq_skb_cb(aux)->time_to_send)
 428                        p = &parent->rb_right;
 429                else
 430                        p = &parent->rb_left;
 431        }
 432        rb_link_node(&skb->rbnode, parent, p);
 433        rb_insert_color(&skb->rbnode, &flow->t_root);
 434}
 435
 436static bool fq_packet_beyond_horizon(const struct sk_buff *skb,
 437                                    const struct fq_sched_data *q)
 438{
 439        return unlikely((s64)skb->tstamp > (s64)(q->ktime_cache + q->horizon));
 440}
 441
 442static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
 443                      struct sk_buff **to_free)
 444{
 445        struct fq_sched_data *q = qdisc_priv(sch);
 446        struct fq_flow *f;
 447
 448        if (unlikely(sch->q.qlen >= sch->limit))
 449                return qdisc_drop(skb, sch, to_free);
 450
 451        if (!skb->tstamp) {
 452                fq_skb_cb(skb)->time_to_send = q->ktime_cache = ktime_get_ns();
 453        } else {
 454                /* Check if packet timestamp is too far in the future.
 455                 * Try first if our cached value, to avoid ktime_get_ns()
 456                 * cost in most cases.
 457                 */
 458                if (fq_packet_beyond_horizon(skb, q)) {
 459                        /* Refresh our cache and check another time */
 460                        q->ktime_cache = ktime_get_ns();
 461                        if (fq_packet_beyond_horizon(skb, q)) {
 462                                if (q->horizon_drop) {
 463                                        q->stat_horizon_drops++;
 464                                        return qdisc_drop(skb, sch, to_free);
 465                                }
 466                                q->stat_horizon_caps++;
 467                                skb->tstamp = q->ktime_cache + q->horizon;
 468                        }
 469                }
 470                fq_skb_cb(skb)->time_to_send = skb->tstamp;
 471        }
 472
 473        f = fq_classify(skb, q);
 474        if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
 475                q->stat_flows_plimit++;
 476                return qdisc_drop(skb, sch, to_free);
 477        }
 478
 479        f->qlen++;
 480        qdisc_qstats_backlog_inc(sch, skb);
 481        if (fq_flow_is_detached(f)) {
 482                fq_flow_add_tail(&q->new_flows, f);
 483                if (time_after(jiffies, f->age + q->flow_refill_delay))
 484                        f->credit = max_t(u32, f->credit, q->quantum);
 485                q->inactive_flows--;
 486        }
 487
 488        /* Note: this overwrites f->age */
 489        flow_queue_add(f, skb);
 490
 491        if (unlikely(f == &q->internal)) {
 492                q->stat_internal_packets++;
 493        }
 494        sch->q.qlen++;
 495
 496        return NET_XMIT_SUCCESS;
 497}
 498
 499static void fq_check_throttled(struct fq_sched_data *q, u64 now)
 500{
 501        unsigned long sample;
 502        struct rb_node *p;
 503
 504        if (q->time_next_delayed_flow > now)
 505                return;
 506
 507        /* Update unthrottle latency EWMA.
 508         * This is cheap and can help diagnosing timer/latency problems.
 509         */
 510        sample = (unsigned long)(now - q->time_next_delayed_flow);
 511        q->unthrottle_latency_ns -= q->unthrottle_latency_ns >> 3;
 512        q->unthrottle_latency_ns += sample >> 3;
 513
 514        q->time_next_delayed_flow = ~0ULL;
 515        while ((p = rb_first(&q->delayed)) != NULL) {
 516                struct fq_flow *f = rb_entry(p, struct fq_flow, rate_node);
 517
 518                if (f->time_next_packet > now) {
 519                        q->time_next_delayed_flow = f->time_next_packet;
 520                        break;
 521                }
 522                fq_flow_unset_throttled(q, f);
 523        }
 524}
 525
 526static struct sk_buff *fq_dequeue(struct Qdisc *sch)
 527{
 528        struct fq_sched_data *q = qdisc_priv(sch);
 529        struct fq_flow_head *head;
 530        struct sk_buff *skb;
 531        struct fq_flow *f;
 532        unsigned long rate;
 533        u32 plen;
 534        u64 now;
 535
 536        if (!sch->q.qlen)
 537                return NULL;
 538
 539        skb = fq_peek(&q->internal);
 540        if (unlikely(skb)) {
 541                fq_dequeue_skb(sch, &q->internal, skb);
 542                goto out;
 543        }
 544
 545        q->ktime_cache = now = ktime_get_ns();
 546        fq_check_throttled(q, now);
 547begin:
 548        head = &q->new_flows;
 549        if (!head->first) {
 550                head = &q->old_flows;
 551                if (!head->first) {
 552                        if (q->time_next_delayed_flow != ~0ULL)
 553                                qdisc_watchdog_schedule_range_ns(&q->watchdog,
 554                                                        q->time_next_delayed_flow,
 555                                                        q->timer_slack);
 556                        return NULL;
 557                }
 558        }
 559        f = head->first;
 560
 561        if (f->credit <= 0) {
 562                f->credit += q->quantum;
 563                head->first = f->next;
 564                fq_flow_add_tail(&q->old_flows, f);
 565                goto begin;
 566        }
 567
 568        skb = fq_peek(f);
 569        if (skb) {
 570                u64 time_next_packet = max_t(u64, fq_skb_cb(skb)->time_to_send,
 571                                             f->time_next_packet);
 572
 573                if (now < time_next_packet) {
 574                        head->first = f->next;
 575                        f->time_next_packet = time_next_packet;
 576                        fq_flow_set_throttled(q, f);
 577                        goto begin;
 578                }
 579                prefetch(&skb->end);
 580                if ((s64)(now - time_next_packet - q->ce_threshold) > 0) {
 581                        INET_ECN_set_ce(skb);
 582                        q->stat_ce_mark++;
 583                }
 584                fq_dequeue_skb(sch, f, skb);
 585        } else {
 586                head->first = f->next;
 587                /* force a pass through old_flows to prevent starvation */
 588                if ((head == &q->new_flows) && q->old_flows.first) {
 589                        fq_flow_add_tail(&q->old_flows, f);
 590                } else {
 591                        fq_flow_set_detached(f);
 592                        q->inactive_flows++;
 593                }
 594                goto begin;
 595        }
 596        plen = qdisc_pkt_len(skb);
 597        f->credit -= plen;
 598
 599        if (!q->rate_enable)
 600                goto out;
 601
 602        rate = q->flow_max_rate;
 603
 604        /* If EDT time was provided for this skb, we need to
 605         * update f->time_next_packet only if this qdisc enforces
 606         * a flow max rate.
 607         */
 608        if (!skb->tstamp) {
 609                if (skb->sk)
 610                        rate = min(skb->sk->sk_pacing_rate, rate);
 611
 612                if (rate <= q->low_rate_threshold) {
 613                        f->credit = 0;
 614                } else {
 615                        plen = max(plen, q->quantum);
 616                        if (f->credit > 0)
 617                                goto out;
 618                }
 619        }
 620        if (rate != ~0UL) {
 621                u64 len = (u64)plen * NSEC_PER_SEC;
 622
 623                if (likely(rate))
 624                        len = div64_ul(len, rate);
 625                /* Since socket rate can change later,
 626                 * clamp the delay to 1 second.
 627                 * Really, providers of too big packets should be fixed !
 628                 */
 629                if (unlikely(len > NSEC_PER_SEC)) {
 630                        len = NSEC_PER_SEC;
 631                        q->stat_pkts_too_long++;
 632                }
 633                /* Account for schedule/timers drifts.
 634                 * f->time_next_packet was set when prior packet was sent,
 635                 * and current time (@now) can be too late by tens of us.
 636                 */
 637                if (f->time_next_packet)
 638                        len -= min(len/2, now - f->time_next_packet);
 639                f->time_next_packet = now + len;
 640        }
 641out:
 642        qdisc_bstats_update(sch, skb);
 643        return skb;
 644}
 645
 646static void fq_flow_purge(struct fq_flow *flow)
 647{
 648        struct rb_node *p = rb_first(&flow->t_root);
 649
 650        while (p) {
 651                struct sk_buff *skb = rb_to_skb(p);
 652
 653                p = rb_next(p);
 654                rb_erase(&skb->rbnode, &flow->t_root);
 655                rtnl_kfree_skbs(skb, skb);
 656        }
 657        rtnl_kfree_skbs(flow->head, flow->tail);
 658        flow->head = NULL;
 659        flow->qlen = 0;
 660}
 661
 662static void fq_reset(struct Qdisc *sch)
 663{
 664        struct fq_sched_data *q = qdisc_priv(sch);
 665        struct rb_root *root;
 666        struct rb_node *p;
 667        struct fq_flow *f;
 668        unsigned int idx;
 669
 670        sch->q.qlen = 0;
 671        sch->qstats.backlog = 0;
 672
 673        fq_flow_purge(&q->internal);
 674
 675        if (!q->fq_root)
 676                return;
 677
 678        for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
 679                root = &q->fq_root[idx];
 680                while ((p = rb_first(root)) != NULL) {
 681                        f = rb_entry(p, struct fq_flow, fq_node);
 682                        rb_erase(p, root);
 683
 684                        fq_flow_purge(f);
 685
 686                        kmem_cache_free(fq_flow_cachep, f);
 687                }
 688        }
 689        q->new_flows.first      = NULL;
 690        q->old_flows.first      = NULL;
 691        q->delayed              = RB_ROOT;
 692        q->flows                = 0;
 693        q->inactive_flows       = 0;
 694        q->throttled_flows      = 0;
 695}
 696
 697static void fq_rehash(struct fq_sched_data *q,
 698                      struct rb_root *old_array, u32 old_log,
 699                      struct rb_root *new_array, u32 new_log)
 700{
 701        struct rb_node *op, **np, *parent;
 702        struct rb_root *oroot, *nroot;
 703        struct fq_flow *of, *nf;
 704        int fcnt = 0;
 705        u32 idx;
 706
 707        for (idx = 0; idx < (1U << old_log); idx++) {
 708                oroot = &old_array[idx];
 709                while ((op = rb_first(oroot)) != NULL) {
 710                        rb_erase(op, oroot);
 711                        of = rb_entry(op, struct fq_flow, fq_node);
 712                        if (fq_gc_candidate(of)) {
 713                                fcnt++;
 714                                kmem_cache_free(fq_flow_cachep, of);
 715                                continue;
 716                        }
 717                        nroot = &new_array[hash_ptr(of->sk, new_log)];
 718
 719                        np = &nroot->rb_node;
 720                        parent = NULL;
 721                        while (*np) {
 722                                parent = *np;
 723
 724                                nf = rb_entry(parent, struct fq_flow, fq_node);
 725                                BUG_ON(nf->sk == of->sk);
 726
 727                                if (nf->sk > of->sk)
 728                                        np = &parent->rb_right;
 729                                else
 730                                        np = &parent->rb_left;
 731                        }
 732
 733                        rb_link_node(&of->fq_node, parent, np);
 734                        rb_insert_color(&of->fq_node, nroot);
 735                }
 736        }
 737        q->flows -= fcnt;
 738        q->inactive_flows -= fcnt;
 739        q->stat_gc_flows += fcnt;
 740}
 741
 742static void fq_free(void *addr)
 743{
 744        kvfree(addr);
 745}
 746
 747static int fq_resize(struct Qdisc *sch, u32 log)
 748{
 749        struct fq_sched_data *q = qdisc_priv(sch);
 750        struct rb_root *array;
 751        void *old_fq_root;
 752        u32 idx;
 753
 754        if (q->fq_root && log == q->fq_trees_log)
 755                return 0;
 756
 757        /* If XPS was setup, we can allocate memory on right NUMA node */
 758        array = kvmalloc_node(sizeof(struct rb_root) << log, GFP_KERNEL | __GFP_RETRY_MAYFAIL,
 759                              netdev_queue_numa_node_read(sch->dev_queue));
 760        if (!array)
 761                return -ENOMEM;
 762
 763        for (idx = 0; idx < (1U << log); idx++)
 764                array[idx] = RB_ROOT;
 765
 766        sch_tree_lock(sch);
 767
 768        old_fq_root = q->fq_root;
 769        if (old_fq_root)
 770                fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
 771
 772        q->fq_root = array;
 773        q->fq_trees_log = log;
 774
 775        sch_tree_unlock(sch);
 776
 777        fq_free(old_fq_root);
 778
 779        return 0;
 780}
 781
 782static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
 783        [TCA_FQ_UNSPEC]                 = { .strict_start_type = TCA_FQ_TIMER_SLACK },
 784
 785        [TCA_FQ_PLIMIT]                 = { .type = NLA_U32 },
 786        [TCA_FQ_FLOW_PLIMIT]            = { .type = NLA_U32 },
 787        [TCA_FQ_QUANTUM]                = { .type = NLA_U32 },
 788        [TCA_FQ_INITIAL_QUANTUM]        = { .type = NLA_U32 },
 789        [TCA_FQ_RATE_ENABLE]            = { .type = NLA_U32 },
 790        [TCA_FQ_FLOW_DEFAULT_RATE]      = { .type = NLA_U32 },
 791        [TCA_FQ_FLOW_MAX_RATE]          = { .type = NLA_U32 },
 792        [TCA_FQ_BUCKETS_LOG]            = { .type = NLA_U32 },
 793        [TCA_FQ_FLOW_REFILL_DELAY]      = { .type = NLA_U32 },
 794        [TCA_FQ_ORPHAN_MASK]            = { .type = NLA_U32 },
 795        [TCA_FQ_LOW_RATE_THRESHOLD]     = { .type = NLA_U32 },
 796        [TCA_FQ_CE_THRESHOLD]           = { .type = NLA_U32 },
 797        [TCA_FQ_TIMER_SLACK]            = { .type = NLA_U32 },
 798        [TCA_FQ_HORIZON]                = { .type = NLA_U32 },
 799        [TCA_FQ_HORIZON_DROP]           = { .type = NLA_U8 },
 800};
 801
 802static int fq_change(struct Qdisc *sch, struct nlattr *opt,
 803                     struct netlink_ext_ack *extack)
 804{
 805        struct fq_sched_data *q = qdisc_priv(sch);
 806        struct nlattr *tb[TCA_FQ_MAX + 1];
 807        int err, drop_count = 0;
 808        unsigned drop_len = 0;
 809        u32 fq_log;
 810
 811        if (!opt)
 812                return -EINVAL;
 813
 814        err = nla_parse_nested_deprecated(tb, TCA_FQ_MAX, opt, fq_policy,
 815                                          NULL);
 816        if (err < 0)
 817                return err;
 818
 819        sch_tree_lock(sch);
 820
 821        fq_log = q->fq_trees_log;
 822
 823        if (tb[TCA_FQ_BUCKETS_LOG]) {
 824                u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
 825
 826                if (nval >= 1 && nval <= ilog2(256*1024))
 827                        fq_log = nval;
 828                else
 829                        err = -EINVAL;
 830        }
 831        if (tb[TCA_FQ_PLIMIT])
 832                sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
 833
 834        if (tb[TCA_FQ_FLOW_PLIMIT])
 835                q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
 836
 837        if (tb[TCA_FQ_QUANTUM]) {
 838                u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
 839
 840                if (quantum > 0 && quantum <= (1 << 20)) {
 841                        q->quantum = quantum;
 842                } else {
 843                        NL_SET_ERR_MSG_MOD(extack, "invalid quantum");
 844                        err = -EINVAL;
 845                }
 846        }
 847
 848        if (tb[TCA_FQ_INITIAL_QUANTUM])
 849                q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
 850
 851        if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
 852                pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
 853                                    nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
 854
 855        if (tb[TCA_FQ_FLOW_MAX_RATE]) {
 856                u32 rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
 857
 858                q->flow_max_rate = (rate == ~0U) ? ~0UL : rate;
 859        }
 860        if (tb[TCA_FQ_LOW_RATE_THRESHOLD])
 861                q->low_rate_threshold =
 862                        nla_get_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]);
 863
 864        if (tb[TCA_FQ_RATE_ENABLE]) {
 865                u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
 866
 867                if (enable <= 1)
 868                        q->rate_enable = enable;
 869                else
 870                        err = -EINVAL;
 871        }
 872
 873        if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
 874                u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
 875
 876                q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
 877        }
 878
 879        if (tb[TCA_FQ_ORPHAN_MASK])
 880                q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]);
 881
 882        if (tb[TCA_FQ_CE_THRESHOLD])
 883                q->ce_threshold = (u64)NSEC_PER_USEC *
 884                                  nla_get_u32(tb[TCA_FQ_CE_THRESHOLD]);
 885
 886        if (tb[TCA_FQ_TIMER_SLACK])
 887                q->timer_slack = nla_get_u32(tb[TCA_FQ_TIMER_SLACK]);
 888
 889        if (tb[TCA_FQ_HORIZON])
 890                q->horizon = (u64)NSEC_PER_USEC *
 891                                  nla_get_u32(tb[TCA_FQ_HORIZON]);
 892
 893        if (tb[TCA_FQ_HORIZON_DROP])
 894                q->horizon_drop = nla_get_u8(tb[TCA_FQ_HORIZON_DROP]);
 895
 896        if (!err) {
 897
 898                sch_tree_unlock(sch);
 899                err = fq_resize(sch, fq_log);
 900                sch_tree_lock(sch);
 901        }
 902        while (sch->q.qlen > sch->limit) {
 903                struct sk_buff *skb = fq_dequeue(sch);
 904
 905                if (!skb)
 906                        break;
 907                drop_len += qdisc_pkt_len(skb);
 908                rtnl_kfree_skbs(skb, skb);
 909                drop_count++;
 910        }
 911        qdisc_tree_reduce_backlog(sch, drop_count, drop_len);
 912
 913        sch_tree_unlock(sch);
 914        return err;
 915}
 916
 917static void fq_destroy(struct Qdisc *sch)
 918{
 919        struct fq_sched_data *q = qdisc_priv(sch);
 920
 921        fq_reset(sch);
 922        fq_free(q->fq_root);
 923        qdisc_watchdog_cancel(&q->watchdog);
 924}
 925
 926static int fq_init(struct Qdisc *sch, struct nlattr *opt,
 927                   struct netlink_ext_ack *extack)
 928{
 929        struct fq_sched_data *q = qdisc_priv(sch);
 930        int err;
 931
 932        sch->limit              = 10000;
 933        q->flow_plimit          = 100;
 934        q->quantum              = 2 * psched_mtu(qdisc_dev(sch));
 935        q->initial_quantum      = 10 * psched_mtu(qdisc_dev(sch));
 936        q->flow_refill_delay    = msecs_to_jiffies(40);
 937        q->flow_max_rate        = ~0UL;
 938        q->time_next_delayed_flow = ~0ULL;
 939        q->rate_enable          = 1;
 940        q->new_flows.first      = NULL;
 941        q->old_flows.first      = NULL;
 942        q->delayed              = RB_ROOT;
 943        q->fq_root              = NULL;
 944        q->fq_trees_log         = ilog2(1024);
 945        q->orphan_mask          = 1024 - 1;
 946        q->low_rate_threshold   = 550000 / 8;
 947
 948        q->timer_slack = 10 * NSEC_PER_USEC; /* 10 usec of hrtimer slack */
 949
 950        q->horizon = 10ULL * NSEC_PER_SEC; /* 10 seconds */
 951        q->horizon_drop = 1; /* by default, drop packets beyond horizon */
 952
 953        /* Default ce_threshold of 4294 seconds */
 954        q->ce_threshold         = (u64)NSEC_PER_USEC * ~0U;
 955
 956        qdisc_watchdog_init_clockid(&q->watchdog, sch, CLOCK_MONOTONIC);
 957
 958        if (opt)
 959                err = fq_change(sch, opt, extack);
 960        else
 961                err = fq_resize(sch, q->fq_trees_log);
 962
 963        return err;
 964}
 965
 966static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
 967{
 968        struct fq_sched_data *q = qdisc_priv(sch);
 969        u64 ce_threshold = q->ce_threshold;
 970        u64 horizon = q->horizon;
 971        struct nlattr *opts;
 972
 973        opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
 974        if (opts == NULL)
 975                goto nla_put_failure;
 976
 977        /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
 978
 979        do_div(ce_threshold, NSEC_PER_USEC);
 980        do_div(horizon, NSEC_PER_USEC);
 981
 982        if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
 983            nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
 984            nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
 985            nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
 986            nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
 987            nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE,
 988                        min_t(unsigned long, q->flow_max_rate, ~0U)) ||
 989            nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
 990                        jiffies_to_usecs(q->flow_refill_delay)) ||
 991            nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) ||
 992            nla_put_u32(skb, TCA_FQ_LOW_RATE_THRESHOLD,
 993                        q->low_rate_threshold) ||
 994            nla_put_u32(skb, TCA_FQ_CE_THRESHOLD, (u32)ce_threshold) ||
 995            nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log) ||
 996            nla_put_u32(skb, TCA_FQ_TIMER_SLACK, q->timer_slack) ||
 997            nla_put_u32(skb, TCA_FQ_HORIZON, (u32)horizon) ||
 998            nla_put_u8(skb, TCA_FQ_HORIZON_DROP, q->horizon_drop))
 999                goto nla_put_failure;
1000
1001        return nla_nest_end(skb, opts);
1002
1003nla_put_failure:
1004        return -1;
1005}
1006
1007static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
1008{
1009        struct fq_sched_data *q = qdisc_priv(sch);
1010        struct tc_fq_qd_stats st;
1011
1012        sch_tree_lock(sch);
1013
1014        st.gc_flows               = q->stat_gc_flows;
1015        st.highprio_packets       = q->stat_internal_packets;
1016        st.tcp_retrans            = 0;
1017        st.throttled              = q->stat_throttled;
1018        st.flows_plimit           = q->stat_flows_plimit;
1019        st.pkts_too_long          = q->stat_pkts_too_long;
1020        st.allocation_errors      = q->stat_allocation_errors;
1021        st.time_next_delayed_flow = q->time_next_delayed_flow + q->timer_slack -
1022                                    ktime_get_ns();
1023        st.flows                  = q->flows;
1024        st.inactive_flows         = q->inactive_flows;
1025        st.throttled_flows        = q->throttled_flows;
1026        st.unthrottle_latency_ns  = min_t(unsigned long,
1027                                          q->unthrottle_latency_ns, ~0U);
1028        st.ce_mark                = q->stat_ce_mark;
1029        st.horizon_drops          = q->stat_horizon_drops;
1030        st.horizon_caps           = q->stat_horizon_caps;
1031        sch_tree_unlock(sch);
1032
1033        return gnet_stats_copy_app(d, &st, sizeof(st));
1034}
1035
1036static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
1037        .id             =       "fq",
1038        .priv_size      =       sizeof(struct fq_sched_data),
1039
1040        .enqueue        =       fq_enqueue,
1041        .dequeue        =       fq_dequeue,
1042        .peek           =       qdisc_peek_dequeued,
1043        .init           =       fq_init,
1044        .reset          =       fq_reset,
1045        .destroy        =       fq_destroy,
1046        .change         =       fq_change,
1047        .dump           =       fq_dump,
1048        .dump_stats     =       fq_dump_stats,
1049        .owner          =       THIS_MODULE,
1050};
1051
1052static int __init fq_module_init(void)
1053{
1054        int ret;
1055
1056        fq_flow_cachep = kmem_cache_create("fq_flow_cache",
1057                                           sizeof(struct fq_flow),
1058                                           0, 0, NULL);
1059        if (!fq_flow_cachep)
1060                return -ENOMEM;
1061
1062        ret = register_qdisc(&fq_qdisc_ops);
1063        if (ret)
1064                kmem_cache_destroy(fq_flow_cachep);
1065        return ret;
1066}
1067
1068static void __exit fq_module_exit(void)
1069{
1070        unregister_qdisc(&fq_qdisc_ops);
1071        kmem_cache_destroy(fq_flow_cachep);
1072}
1073
1074module_init(fq_module_init)
1075module_exit(fq_module_exit)
1076MODULE_AUTHOR("Eric Dumazet");
1077MODULE_LICENSE("GPL");
1078MODULE_DESCRIPTION("Fair Queue Packet Scheduler");
1079