linux/net/sched/sch_netem.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * net/sched/sch_netem.c        Network emulator
   4 *
   5 *              Many of the algorithms and ideas for this came from
   6 *              NIST Net which is not copyrighted.
   7 *
   8 * Authors:     Stephen Hemminger <shemminger@osdl.org>
   9 *              Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
  10 */
  11
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/slab.h>
  15#include <linux/types.h>
  16#include <linux/kernel.h>
  17#include <linux/errno.h>
  18#include <linux/skbuff.h>
  19#include <linux/vmalloc.h>
  20#include <linux/rtnetlink.h>
  21#include <linux/reciprocal_div.h>
  22#include <linux/rbtree.h>
  23
  24#include <net/netlink.h>
  25#include <net/pkt_sched.h>
  26#include <net/inet_ecn.h>
  27
  28#define VERSION "1.3"
  29
  30/*      Network Emulation Queuing algorithm.
  31        ====================================
  32
  33        Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
  34                 Network Emulation Tool
  35                 [2] Luigi Rizzo, DummyNet for FreeBSD
  36
  37         ----------------------------------------------------------------
  38
  39         This started out as a simple way to delay outgoing packets to
  40         test TCP but has grown to include most of the functionality
  41         of a full blown network emulator like NISTnet. It can delay
  42         packets and add random jitter (and correlation). The random
  43         distribution can be loaded from a table as well to provide
  44         normal, Pareto, or experimental curves. Packet loss,
  45         duplication, and reordering can also be emulated.
  46
  47         This qdisc does not do classification that can be handled in
  48         layering other disciplines.  It does not need to do bandwidth
  49         control either since that can be handled by using token
  50         bucket or other rate control.
  51
  52     Correlated Loss Generator models
  53
  54        Added generation of correlated loss according to the
  55        "Gilbert-Elliot" model, a 4-state markov model.
  56
  57        References:
  58        [1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
  59        [2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
  60        and intuitive loss model for packet networks and its implementation
  61        in the Netem module in the Linux kernel", available in [1]
  62
  63        Authors: Stefano Salsano <stefano.salsano at uniroma2.it
  64                 Fabio Ludovici <fabio.ludovici at yahoo.it>
  65*/
  66
  67struct disttable {
  68        u32  size;
  69        s16 table[];
  70};
  71
  72struct netem_sched_data {
  73        /* internal t(ime)fifo qdisc uses t_root and sch->limit */
  74        struct rb_root t_root;
  75
  76        /* a linear queue; reduces rbtree rebalancing when jitter is low */
  77        struct sk_buff  *t_head;
  78        struct sk_buff  *t_tail;
  79
  80        /* optional qdisc for classful handling (NULL at netem init) */
  81        struct Qdisc    *qdisc;
  82
  83        struct qdisc_watchdog watchdog;
  84
  85        s64 latency;
  86        s64 jitter;
  87
  88        u32 loss;
  89        u32 ecn;
  90        u32 limit;
  91        u32 counter;
  92        u32 gap;
  93        u32 duplicate;
  94        u32 reorder;
  95        u32 corrupt;
  96        u64 rate;
  97        s32 packet_overhead;
  98        u32 cell_size;
  99        struct reciprocal_value cell_size_reciprocal;
 100        s32 cell_overhead;
 101
 102        struct crndstate {
 103                u32 last;
 104                u32 rho;
 105        } delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
 106
 107        struct disttable *delay_dist;
 108
 109        enum  {
 110                CLG_RANDOM,
 111                CLG_4_STATES,
 112                CLG_GILB_ELL,
 113        } loss_model;
 114
 115        enum {
 116                TX_IN_GAP_PERIOD = 1,
 117                TX_IN_BURST_PERIOD,
 118                LOST_IN_GAP_PERIOD,
 119                LOST_IN_BURST_PERIOD,
 120        } _4_state_model;
 121
 122        enum {
 123                GOOD_STATE = 1,
 124                BAD_STATE,
 125        } GE_state_model;
 126
 127        /* Correlated Loss Generation models */
 128        struct clgstate {
 129                /* state of the Markov chain */
 130                u8 state;
 131
 132                /* 4-states and Gilbert-Elliot models */
 133                u32 a1; /* p13 for 4-states or p for GE */
 134                u32 a2; /* p31 for 4-states or r for GE */
 135                u32 a3; /* p32 for 4-states or h for GE */
 136                u32 a4; /* p14 for 4-states or 1-k for GE */
 137                u32 a5; /* p23 used only in 4-states */
 138        } clg;
 139
 140        struct tc_netem_slot slot_config;
 141        struct slotstate {
 142                u64 slot_next;
 143                s32 packets_left;
 144                s32 bytes_left;
 145        } slot;
 146
 147        struct disttable *slot_dist;
 148};
 149
 150/* Time stamp put into socket buffer control block
 151 * Only valid when skbs are in our internal t(ime)fifo queue.
 152 *
 153 * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp,
 154 * and skb->next & skb->prev are scratch space for a qdisc,
 155 * we save skb->tstamp value in skb->cb[] before destroying it.
 156 */
 157struct netem_skb_cb {
 158        u64             time_to_send;
 159};
 160
 161static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
 162{
 163        /* we assume we can use skb next/prev/tstamp as storage for rb_node */
 164        qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
 165        return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
 166}
 167
 168/* init_crandom - initialize correlated random number generator
 169 * Use entropy source for initial seed.
 170 */
 171static void init_crandom(struct crndstate *state, unsigned long rho)
 172{
 173        state->rho = rho;
 174        state->last = prandom_u32();
 175}
 176
 177/* get_crandom - correlated random number generator
 178 * Next number depends on last value.
 179 * rho is scaled to avoid floating point.
 180 */
 181static u32 get_crandom(struct crndstate *state)
 182{
 183        u64 value, rho;
 184        unsigned long answer;
 185
 186        if (!state || state->rho == 0)  /* no correlation */
 187                return prandom_u32();
 188
 189        value = prandom_u32();
 190        rho = (u64)state->rho + 1;
 191        answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
 192        state->last = answer;
 193        return answer;
 194}
 195
 196/* loss_4state - 4-state model loss generator
 197 * Generates losses according to the 4-state Markov chain adopted in
 198 * the GI (General and Intuitive) loss model.
 199 */
 200static bool loss_4state(struct netem_sched_data *q)
 201{
 202        struct clgstate *clg = &q->clg;
 203        u32 rnd = prandom_u32();
 204
 205        /*
 206         * Makes a comparison between rnd and the transition
 207         * probabilities outgoing from the current state, then decides the
 208         * next state and if the next packet has to be transmitted or lost.
 209         * The four states correspond to:
 210         *   TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
 211         *   LOST_IN_BURST_PERIOD => isolated losses within a gap period
 212         *   LOST_IN_GAP_PERIOD => lost packets within a burst period
 213         *   TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period
 214         */
 215        switch (clg->state) {
 216        case TX_IN_GAP_PERIOD:
 217                if (rnd < clg->a4) {
 218                        clg->state = LOST_IN_BURST_PERIOD;
 219                        return true;
 220                } else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
 221                        clg->state = LOST_IN_GAP_PERIOD;
 222                        return true;
 223                } else if (clg->a1 + clg->a4 < rnd) {
 224                        clg->state = TX_IN_GAP_PERIOD;
 225                }
 226
 227                break;
 228        case TX_IN_BURST_PERIOD:
 229                if (rnd < clg->a5) {
 230                        clg->state = LOST_IN_GAP_PERIOD;
 231                        return true;
 232                } else {
 233                        clg->state = TX_IN_BURST_PERIOD;
 234                }
 235
 236                break;
 237        case LOST_IN_GAP_PERIOD:
 238                if (rnd < clg->a3)
 239                        clg->state = TX_IN_BURST_PERIOD;
 240                else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
 241                        clg->state = TX_IN_GAP_PERIOD;
 242                } else if (clg->a2 + clg->a3 < rnd) {
 243                        clg->state = LOST_IN_GAP_PERIOD;
 244                        return true;
 245                }
 246                break;
 247        case LOST_IN_BURST_PERIOD:
 248                clg->state = TX_IN_GAP_PERIOD;
 249                break;
 250        }
 251
 252        return false;
 253}
 254
 255/* loss_gilb_ell - Gilbert-Elliot model loss generator
 256 * Generates losses according to the Gilbert-Elliot loss model or
 257 * its special cases  (Gilbert or Simple Gilbert)
 258 *
 259 * Makes a comparison between random number and the transition
 260 * probabilities outgoing from the current state, then decides the
 261 * next state. A second random number is extracted and the comparison
 262 * with the loss probability of the current state decides if the next
 263 * packet will be transmitted or lost.
 264 */
 265static bool loss_gilb_ell(struct netem_sched_data *q)
 266{
 267        struct clgstate *clg = &q->clg;
 268
 269        switch (clg->state) {
 270        case GOOD_STATE:
 271                if (prandom_u32() < clg->a1)
 272                        clg->state = BAD_STATE;
 273                if (prandom_u32() < clg->a4)
 274                        return true;
 275                break;
 276        case BAD_STATE:
 277                if (prandom_u32() < clg->a2)
 278                        clg->state = GOOD_STATE;
 279                if (prandom_u32() > clg->a3)
 280                        return true;
 281        }
 282
 283        return false;
 284}
 285
 286static bool loss_event(struct netem_sched_data *q)
 287{
 288        switch (q->loss_model) {
 289        case CLG_RANDOM:
 290                /* Random packet drop 0 => none, ~0 => all */
 291                return q->loss && q->loss >= get_crandom(&q->loss_cor);
 292
 293        case CLG_4_STATES:
 294                /* 4state loss model algorithm (used also for GI model)
 295                * Extracts a value from the markov 4 state loss generator,
 296                * if it is 1 drops a packet and if needed writes the event in
 297                * the kernel logs
 298                */
 299                return loss_4state(q);
 300
 301        case CLG_GILB_ELL:
 302                /* Gilbert-Elliot loss model algorithm
 303                * Extracts a value from the Gilbert-Elliot loss generator,
 304                * if it is 1 drops a packet and if needed writes the event in
 305                * the kernel logs
 306                */
 307                return loss_gilb_ell(q);
 308        }
 309
 310        return false;   /* not reached */
 311}
 312
 313
 314/* tabledist - return a pseudo-randomly distributed value with mean mu and
 315 * std deviation sigma.  Uses table lookup to approximate the desired
 316 * distribution, and a uniformly-distributed pseudo-random source.
 317 */
 318static s64 tabledist(s64 mu, s32 sigma,
 319                     struct crndstate *state,
 320                     const struct disttable *dist)
 321{
 322        s64 x;
 323        long t;
 324        u32 rnd;
 325
 326        if (sigma == 0)
 327                return mu;
 328
 329        rnd = get_crandom(state);
 330
 331        /* default uniform distribution */
 332        if (dist == NULL)
 333                return ((rnd % (2 * (u32)sigma)) + mu) - sigma;
 334
 335        t = dist->table[rnd % dist->size];
 336        x = (sigma % NETEM_DIST_SCALE) * t;
 337        if (x >= 0)
 338                x += NETEM_DIST_SCALE/2;
 339        else
 340                x -= NETEM_DIST_SCALE/2;
 341
 342        return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
 343}
 344
 345static u64 packet_time_ns(u64 len, const struct netem_sched_data *q)
 346{
 347        len += q->packet_overhead;
 348
 349        if (q->cell_size) {
 350                u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
 351
 352                if (len > cells * q->cell_size) /* extra cell needed for remainder */
 353                        cells++;
 354                len = cells * (q->cell_size + q->cell_overhead);
 355        }
 356
 357        return div64_u64(len * NSEC_PER_SEC, q->rate);
 358}
 359
 360static void tfifo_reset(struct Qdisc *sch)
 361{
 362        struct netem_sched_data *q = qdisc_priv(sch);
 363        struct rb_node *p = rb_first(&q->t_root);
 364
 365        while (p) {
 366                struct sk_buff *skb = rb_to_skb(p);
 367
 368                p = rb_next(p);
 369                rb_erase(&skb->rbnode, &q->t_root);
 370                rtnl_kfree_skbs(skb, skb);
 371        }
 372
 373        rtnl_kfree_skbs(q->t_head, q->t_tail);
 374        q->t_head = NULL;
 375        q->t_tail = NULL;
 376}
 377
 378static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
 379{
 380        struct netem_sched_data *q = qdisc_priv(sch);
 381        u64 tnext = netem_skb_cb(nskb)->time_to_send;
 382
 383        if (!q->t_tail || tnext >= netem_skb_cb(q->t_tail)->time_to_send) {
 384                if (q->t_tail)
 385                        q->t_tail->next = nskb;
 386                else
 387                        q->t_head = nskb;
 388                q->t_tail = nskb;
 389        } else {
 390                struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
 391
 392                while (*p) {
 393                        struct sk_buff *skb;
 394
 395                        parent = *p;
 396                        skb = rb_to_skb(parent);
 397                        if (tnext >= netem_skb_cb(skb)->time_to_send)
 398                                p = &parent->rb_right;
 399                        else
 400                                p = &parent->rb_left;
 401                }
 402                rb_link_node(&nskb->rbnode, parent, p);
 403                rb_insert_color(&nskb->rbnode, &q->t_root);
 404        }
 405        sch->q.qlen++;
 406}
 407
 408/* netem can't properly corrupt a megapacket (like we get from GSO), so instead
 409 * when we statistically choose to corrupt one, we instead segment it, returning
 410 * the first packet to be corrupted, and re-enqueue the remaining frames
 411 */
 412static struct sk_buff *netem_segment(struct sk_buff *skb, struct Qdisc *sch,
 413                                     struct sk_buff **to_free)
 414{
 415        struct sk_buff *segs;
 416        netdev_features_t features = netif_skb_features(skb);
 417
 418        segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
 419
 420        if (IS_ERR_OR_NULL(segs)) {
 421                qdisc_drop(skb, sch, to_free);
 422                return NULL;
 423        }
 424        consume_skb(skb);
 425        return segs;
 426}
 427
 428/*
 429 * Insert one skb into qdisc.
 430 * Note: parent depends on return value to account for queue length.
 431 *      NET_XMIT_DROP: queue length didn't change.
 432 *      NET_XMIT_SUCCESS: one skb was queued.
 433 */
 434static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch,
 435                         struct sk_buff **to_free)
 436{
 437        struct netem_sched_data *q = qdisc_priv(sch);
 438        /* We don't fill cb now as skb_unshare() may invalidate it */
 439        struct netem_skb_cb *cb;
 440        struct sk_buff *skb2;
 441        struct sk_buff *segs = NULL;
 442        unsigned int prev_len = qdisc_pkt_len(skb);
 443        int count = 1;
 444        int rc = NET_XMIT_SUCCESS;
 445        int rc_drop = NET_XMIT_DROP;
 446
 447        /* Do not fool qdisc_drop_all() */
 448        skb->prev = NULL;
 449
 450        /* Random duplication */
 451        if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
 452                ++count;
 453
 454        /* Drop packet? */
 455        if (loss_event(q)) {
 456                if (q->ecn && INET_ECN_set_ce(skb))
 457                        qdisc_qstats_drop(sch); /* mark packet */
 458                else
 459                        --count;
 460        }
 461        if (count == 0) {
 462                qdisc_qstats_drop(sch);
 463                __qdisc_drop(skb, to_free);
 464                return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
 465        }
 466
 467        /* If a delay is expected, orphan the skb. (orphaning usually takes
 468         * place at TX completion time, so _before_ the link transit delay)
 469         */
 470        if (q->latency || q->jitter || q->rate)
 471                skb_orphan_partial(skb);
 472
 473        /*
 474         * If we need to duplicate packet, then re-insert at top of the
 475         * qdisc tree, since parent queuer expects that only one
 476         * skb will be queued.
 477         */
 478        if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
 479                struct Qdisc *rootq = qdisc_root_bh(sch);
 480                u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
 481
 482                q->duplicate = 0;
 483                rootq->enqueue(skb2, rootq, to_free);
 484                q->duplicate = dupsave;
 485                rc_drop = NET_XMIT_SUCCESS;
 486        }
 487
 488        /*
 489         * Randomized packet corruption.
 490         * Make copy if needed since we are modifying
 491         * If packet is going to be hardware checksummed, then
 492         * do it now in software before we mangle it.
 493         */
 494        if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
 495                if (skb_is_gso(skb)) {
 496                        skb = netem_segment(skb, sch, to_free);
 497                        if (!skb)
 498                                return rc_drop;
 499                        segs = skb->next;
 500                        skb_mark_not_on_list(skb);
 501                        qdisc_skb_cb(skb)->pkt_len = skb->len;
 502                }
 503
 504                skb = skb_unshare(skb, GFP_ATOMIC);
 505                if (unlikely(!skb)) {
 506                        qdisc_qstats_drop(sch);
 507                        goto finish_segs;
 508                }
 509                if (skb->ip_summed == CHECKSUM_PARTIAL &&
 510                    skb_checksum_help(skb)) {
 511                        qdisc_drop(skb, sch, to_free);
 512                        skb = NULL;
 513                        goto finish_segs;
 514                }
 515
 516                skb->data[prandom_u32() % skb_headlen(skb)] ^=
 517                        1<<(prandom_u32() % 8);
 518        }
 519
 520        if (unlikely(sch->q.qlen >= sch->limit)) {
 521                /* re-link segs, so that qdisc_drop_all() frees them all */
 522                skb->next = segs;
 523                qdisc_drop_all(skb, sch, to_free);
 524                return rc_drop;
 525        }
 526
 527        qdisc_qstats_backlog_inc(sch, skb);
 528
 529        cb = netem_skb_cb(skb);
 530        if (q->gap == 0 ||              /* not doing reordering */
 531            q->counter < q->gap - 1 ||  /* inside last reordering gap */
 532            q->reorder < get_crandom(&q->reorder_cor)) {
 533                u64 now;
 534                s64 delay;
 535
 536                delay = tabledist(q->latency, q->jitter,
 537                                  &q->delay_cor, q->delay_dist);
 538
 539                now = ktime_get_ns();
 540
 541                if (q->rate) {
 542                        struct netem_skb_cb *last = NULL;
 543
 544                        if (sch->q.tail)
 545                                last = netem_skb_cb(sch->q.tail);
 546                        if (q->t_root.rb_node) {
 547                                struct sk_buff *t_skb;
 548                                struct netem_skb_cb *t_last;
 549
 550                                t_skb = skb_rb_last(&q->t_root);
 551                                t_last = netem_skb_cb(t_skb);
 552                                if (!last ||
 553                                    t_last->time_to_send > last->time_to_send)
 554                                        last = t_last;
 555                        }
 556                        if (q->t_tail) {
 557                                struct netem_skb_cb *t_last =
 558                                        netem_skb_cb(q->t_tail);
 559
 560                                if (!last ||
 561                                    t_last->time_to_send > last->time_to_send)
 562                                        last = t_last;
 563                        }
 564
 565                        if (last) {
 566                                /*
 567                                 * Last packet in queue is reference point (now),
 568                                 * calculate this time bonus and subtract
 569                                 * from delay.
 570                                 */
 571                                delay -= last->time_to_send - now;
 572                                delay = max_t(s64, 0, delay);
 573                                now = last->time_to_send;
 574                        }
 575
 576                        delay += packet_time_ns(qdisc_pkt_len(skb), q);
 577                }
 578
 579                cb->time_to_send = now + delay;
 580                ++q->counter;
 581                tfifo_enqueue(skb, sch);
 582        } else {
 583                /*
 584                 * Do re-ordering by putting one out of N packets at the front
 585                 * of the queue.
 586                 */
 587                cb->time_to_send = ktime_get_ns();
 588                q->counter = 0;
 589
 590                __qdisc_enqueue_head(skb, &sch->q);
 591                sch->qstats.requeues++;
 592        }
 593
 594finish_segs:
 595        if (segs) {
 596                unsigned int len, last_len;
 597                int nb;
 598
 599                len = skb ? skb->len : 0;
 600                nb = skb ? 1 : 0;
 601
 602                while (segs) {
 603                        skb2 = segs->next;
 604                        skb_mark_not_on_list(segs);
 605                        qdisc_skb_cb(segs)->pkt_len = segs->len;
 606                        last_len = segs->len;
 607                        rc = qdisc_enqueue(segs, sch, to_free);
 608                        if (rc != NET_XMIT_SUCCESS) {
 609                                if (net_xmit_drop_count(rc))
 610                                        qdisc_qstats_drop(sch);
 611                        } else {
 612                                nb++;
 613                                len += last_len;
 614                        }
 615                        segs = skb2;
 616                }
 617                /* Parent qdiscs accounted for 1 skb of size @prev_len */
 618                qdisc_tree_reduce_backlog(sch, -(nb - 1), -(len - prev_len));
 619        } else if (!skb) {
 620                return NET_XMIT_DROP;
 621        }
 622        return NET_XMIT_SUCCESS;
 623}
 624
 625/* Delay the next round with a new future slot with a
 626 * correct number of bytes and packets.
 627 */
 628
 629static void get_slot_next(struct netem_sched_data *q, u64 now)
 630{
 631        s64 next_delay;
 632
 633        if (!q->slot_dist)
 634                next_delay = q->slot_config.min_delay +
 635                                (prandom_u32() *
 636                                 (q->slot_config.max_delay -
 637                                  q->slot_config.min_delay) >> 32);
 638        else
 639                next_delay = tabledist(q->slot_config.dist_delay,
 640                                       (s32)(q->slot_config.dist_jitter),
 641                                       NULL, q->slot_dist);
 642
 643        q->slot.slot_next = now + next_delay;
 644        q->slot.packets_left = q->slot_config.max_packets;
 645        q->slot.bytes_left = q->slot_config.max_bytes;
 646}
 647
 648static struct sk_buff *netem_peek(struct netem_sched_data *q)
 649{
 650        struct sk_buff *skb = skb_rb_first(&q->t_root);
 651        u64 t1, t2;
 652
 653        if (!skb)
 654                return q->t_head;
 655        if (!q->t_head)
 656                return skb;
 657
 658        t1 = netem_skb_cb(skb)->time_to_send;
 659        t2 = netem_skb_cb(q->t_head)->time_to_send;
 660        if (t1 < t2)
 661                return skb;
 662        return q->t_head;
 663}
 664
 665static void netem_erase_head(struct netem_sched_data *q, struct sk_buff *skb)
 666{
 667        if (skb == q->t_head) {
 668                q->t_head = skb->next;
 669                if (!q->t_head)
 670                        q->t_tail = NULL;
 671        } else {
 672                rb_erase(&skb->rbnode, &q->t_root);
 673        }
 674}
 675
 676static struct sk_buff *netem_dequeue(struct Qdisc *sch)
 677{
 678        struct netem_sched_data *q = qdisc_priv(sch);
 679        struct sk_buff *skb;
 680
 681tfifo_dequeue:
 682        skb = __qdisc_dequeue_head(&sch->q);
 683        if (skb) {
 684                qdisc_qstats_backlog_dec(sch, skb);
 685deliver:
 686                qdisc_bstats_update(sch, skb);
 687                return skb;
 688        }
 689        skb = netem_peek(q);
 690        if (skb) {
 691                u64 time_to_send;
 692                u64 now = ktime_get_ns();
 693
 694                /* if more time remaining? */
 695                time_to_send = netem_skb_cb(skb)->time_to_send;
 696                if (q->slot.slot_next && q->slot.slot_next < time_to_send)
 697                        get_slot_next(q, now);
 698
 699                if (time_to_send <= now && q->slot.slot_next <= now) {
 700                        netem_erase_head(q, skb);
 701                        sch->q.qlen--;
 702                        qdisc_qstats_backlog_dec(sch, skb);
 703                        skb->next = NULL;
 704                        skb->prev = NULL;
 705                        /* skb->dev shares skb->rbnode area,
 706                         * we need to restore its value.
 707                         */
 708                        skb->dev = qdisc_dev(sch);
 709
 710                        if (q->slot.slot_next) {
 711                                q->slot.packets_left--;
 712                                q->slot.bytes_left -= qdisc_pkt_len(skb);
 713                                if (q->slot.packets_left <= 0 ||
 714                                    q->slot.bytes_left <= 0)
 715                                        get_slot_next(q, now);
 716                        }
 717
 718                        if (q->qdisc) {
 719                                unsigned int pkt_len = qdisc_pkt_len(skb);
 720                                struct sk_buff *to_free = NULL;
 721                                int err;
 722
 723                                err = qdisc_enqueue(skb, q->qdisc, &to_free);
 724                                kfree_skb_list(to_free);
 725                                if (err != NET_XMIT_SUCCESS &&
 726                                    net_xmit_drop_count(err)) {
 727                                        qdisc_qstats_drop(sch);
 728                                        qdisc_tree_reduce_backlog(sch, 1,
 729                                                                  pkt_len);
 730                                }
 731                                goto tfifo_dequeue;
 732                        }
 733                        goto deliver;
 734                }
 735
 736                if (q->qdisc) {
 737                        skb = q->qdisc->ops->dequeue(q->qdisc);
 738                        if (skb)
 739                                goto deliver;
 740                }
 741
 742                qdisc_watchdog_schedule_ns(&q->watchdog,
 743                                           max(time_to_send,
 744                                               q->slot.slot_next));
 745        }
 746
 747        if (q->qdisc) {
 748                skb = q->qdisc->ops->dequeue(q->qdisc);
 749                if (skb)
 750                        goto deliver;
 751        }
 752        return NULL;
 753}
 754
 755static void netem_reset(struct Qdisc *sch)
 756{
 757        struct netem_sched_data *q = qdisc_priv(sch);
 758
 759        qdisc_reset_queue(sch);
 760        tfifo_reset(sch);
 761        if (q->qdisc)
 762                qdisc_reset(q->qdisc);
 763        qdisc_watchdog_cancel(&q->watchdog);
 764}
 765
 766static void dist_free(struct disttable *d)
 767{
 768        kvfree(d);
 769}
 770
 771/*
 772 * Distribution data is a variable size payload containing
 773 * signed 16 bit values.
 774 */
 775
 776static int get_dist_table(struct Qdisc *sch, struct disttable **tbl,
 777                          const struct nlattr *attr)
 778{
 779        size_t n = nla_len(attr)/sizeof(__s16);
 780        const __s16 *data = nla_data(attr);
 781        spinlock_t *root_lock;
 782        struct disttable *d;
 783        int i;
 784
 785        if (!n || n > NETEM_DIST_MAX)
 786                return -EINVAL;
 787
 788        d = kvmalloc(sizeof(struct disttable) + n * sizeof(s16), GFP_KERNEL);
 789        if (!d)
 790                return -ENOMEM;
 791
 792        d->size = n;
 793        for (i = 0; i < n; i++)
 794                d->table[i] = data[i];
 795
 796        root_lock = qdisc_root_sleeping_lock(sch);
 797
 798        spin_lock_bh(root_lock);
 799        swap(*tbl, d);
 800        spin_unlock_bh(root_lock);
 801
 802        dist_free(d);
 803        return 0;
 804}
 805
 806static void get_slot(struct netem_sched_data *q, const struct nlattr *attr)
 807{
 808        const struct tc_netem_slot *c = nla_data(attr);
 809
 810        q->slot_config = *c;
 811        if (q->slot_config.max_packets == 0)
 812                q->slot_config.max_packets = INT_MAX;
 813        if (q->slot_config.max_bytes == 0)
 814                q->slot_config.max_bytes = INT_MAX;
 815
 816        /* capping dist_jitter to the range acceptable by tabledist() */
 817        q->slot_config.dist_jitter = min_t(__s64, INT_MAX, abs(q->slot_config.dist_jitter));
 818
 819        q->slot.packets_left = q->slot_config.max_packets;
 820        q->slot.bytes_left = q->slot_config.max_bytes;
 821        if (q->slot_config.min_delay | q->slot_config.max_delay |
 822            q->slot_config.dist_jitter)
 823                q->slot.slot_next = ktime_get_ns();
 824        else
 825                q->slot.slot_next = 0;
 826}
 827
 828static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
 829{
 830        const struct tc_netem_corr *c = nla_data(attr);
 831
 832        init_crandom(&q->delay_cor, c->delay_corr);
 833        init_crandom(&q->loss_cor, c->loss_corr);
 834        init_crandom(&q->dup_cor, c->dup_corr);
 835}
 836
 837static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
 838{
 839        const struct tc_netem_reorder *r = nla_data(attr);
 840
 841        q->reorder = r->probability;
 842        init_crandom(&q->reorder_cor, r->correlation);
 843}
 844
 845static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
 846{
 847        const struct tc_netem_corrupt *r = nla_data(attr);
 848
 849        q->corrupt = r->probability;
 850        init_crandom(&q->corrupt_cor, r->correlation);
 851}
 852
 853static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
 854{
 855        const struct tc_netem_rate *r = nla_data(attr);
 856
 857        q->rate = r->rate;
 858        q->packet_overhead = r->packet_overhead;
 859        q->cell_size = r->cell_size;
 860        q->cell_overhead = r->cell_overhead;
 861        if (q->cell_size)
 862                q->cell_size_reciprocal = reciprocal_value(q->cell_size);
 863        else
 864                q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
 865}
 866
 867static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
 868{
 869        const struct nlattr *la;
 870        int rem;
 871
 872        nla_for_each_nested(la, attr, rem) {
 873                u16 type = nla_type(la);
 874
 875                switch (type) {
 876                case NETEM_LOSS_GI: {
 877                        const struct tc_netem_gimodel *gi = nla_data(la);
 878
 879                        if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
 880                                pr_info("netem: incorrect gi model size\n");
 881                                return -EINVAL;
 882                        }
 883
 884                        q->loss_model = CLG_4_STATES;
 885
 886                        q->clg.state = TX_IN_GAP_PERIOD;
 887                        q->clg.a1 = gi->p13;
 888                        q->clg.a2 = gi->p31;
 889                        q->clg.a3 = gi->p32;
 890                        q->clg.a4 = gi->p14;
 891                        q->clg.a5 = gi->p23;
 892                        break;
 893                }
 894
 895                case NETEM_LOSS_GE: {
 896                        const struct tc_netem_gemodel *ge = nla_data(la);
 897
 898                        if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
 899                                pr_info("netem: incorrect ge model size\n");
 900                                return -EINVAL;
 901                        }
 902
 903                        q->loss_model = CLG_GILB_ELL;
 904                        q->clg.state = GOOD_STATE;
 905                        q->clg.a1 = ge->p;
 906                        q->clg.a2 = ge->r;
 907                        q->clg.a3 = ge->h;
 908                        q->clg.a4 = ge->k1;
 909                        break;
 910                }
 911
 912                default:
 913                        pr_info("netem: unknown loss type %u\n", type);
 914                        return -EINVAL;
 915                }
 916        }
 917
 918        return 0;
 919}
 920
 921static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
 922        [TCA_NETEM_CORR]        = { .len = sizeof(struct tc_netem_corr) },
 923        [TCA_NETEM_REORDER]     = { .len = sizeof(struct tc_netem_reorder) },
 924        [TCA_NETEM_CORRUPT]     = { .len = sizeof(struct tc_netem_corrupt) },
 925        [TCA_NETEM_RATE]        = { .len = sizeof(struct tc_netem_rate) },
 926        [TCA_NETEM_LOSS]        = { .type = NLA_NESTED },
 927        [TCA_NETEM_ECN]         = { .type = NLA_U32 },
 928        [TCA_NETEM_RATE64]      = { .type = NLA_U64 },
 929        [TCA_NETEM_LATENCY64]   = { .type = NLA_S64 },
 930        [TCA_NETEM_JITTER64]    = { .type = NLA_S64 },
 931        [TCA_NETEM_SLOT]        = { .len = sizeof(struct tc_netem_slot) },
 932};
 933
 934static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
 935                      const struct nla_policy *policy, int len)
 936{
 937        int nested_len = nla_len(nla) - NLA_ALIGN(len);
 938
 939        if (nested_len < 0) {
 940                pr_info("netem: invalid attributes len %d\n", nested_len);
 941                return -EINVAL;
 942        }
 943
 944        if (nested_len >= nla_attr_size(0))
 945                return nla_parse_deprecated(tb, maxtype,
 946                                            nla_data(nla) + NLA_ALIGN(len),
 947                                            nested_len, policy, NULL);
 948
 949        memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
 950        return 0;
 951}
 952
 953/* Parse netlink message to set options */
 954static int netem_change(struct Qdisc *sch, struct nlattr *opt,
 955                        struct netlink_ext_ack *extack)
 956{
 957        struct netem_sched_data *q = qdisc_priv(sch);
 958        struct nlattr *tb[TCA_NETEM_MAX + 1];
 959        struct tc_netem_qopt *qopt;
 960        struct clgstate old_clg;
 961        int old_loss_model = CLG_RANDOM;
 962        int ret;
 963
 964        if (opt == NULL)
 965                return -EINVAL;
 966
 967        qopt = nla_data(opt);
 968        ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
 969        if (ret < 0)
 970                return ret;
 971
 972        /* backup q->clg and q->loss_model */
 973        old_clg = q->clg;
 974        old_loss_model = q->loss_model;
 975
 976        if (tb[TCA_NETEM_LOSS]) {
 977                ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
 978                if (ret) {
 979                        q->loss_model = old_loss_model;
 980                        return ret;
 981                }
 982        } else {
 983                q->loss_model = CLG_RANDOM;
 984        }
 985
 986        if (tb[TCA_NETEM_DELAY_DIST]) {
 987                ret = get_dist_table(sch, &q->delay_dist,
 988                                     tb[TCA_NETEM_DELAY_DIST]);
 989                if (ret)
 990                        goto get_table_failure;
 991        }
 992
 993        if (tb[TCA_NETEM_SLOT_DIST]) {
 994                ret = get_dist_table(sch, &q->slot_dist,
 995                                     tb[TCA_NETEM_SLOT_DIST]);
 996                if (ret)
 997                        goto get_table_failure;
 998        }
 999
1000        sch->limit = qopt->limit;
1001
1002        q->latency = PSCHED_TICKS2NS(qopt->latency);
1003        q->jitter = PSCHED_TICKS2NS(qopt->jitter);
1004        q->limit = qopt->limit;
1005        q->gap = qopt->gap;
1006        q->counter = 0;
1007        q->loss = qopt->loss;
1008        q->duplicate = qopt->duplicate;
1009
1010        /* for compatibility with earlier versions.
1011         * if gap is set, need to assume 100% probability
1012         */
1013        if (q->gap)
1014                q->reorder = ~0;
1015
1016        if (tb[TCA_NETEM_CORR])
1017                get_correlation(q, tb[TCA_NETEM_CORR]);
1018
1019        if (tb[TCA_NETEM_REORDER])
1020                get_reorder(q, tb[TCA_NETEM_REORDER]);
1021
1022        if (tb[TCA_NETEM_CORRUPT])
1023                get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
1024
1025        if (tb[TCA_NETEM_RATE])
1026                get_rate(q, tb[TCA_NETEM_RATE]);
1027
1028        if (tb[TCA_NETEM_RATE64])
1029                q->rate = max_t(u64, q->rate,
1030                                nla_get_u64(tb[TCA_NETEM_RATE64]));
1031
1032        if (tb[TCA_NETEM_LATENCY64])
1033                q->latency = nla_get_s64(tb[TCA_NETEM_LATENCY64]);
1034
1035        if (tb[TCA_NETEM_JITTER64])
1036                q->jitter = nla_get_s64(tb[TCA_NETEM_JITTER64]);
1037
1038        if (tb[TCA_NETEM_ECN])
1039                q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
1040
1041        if (tb[TCA_NETEM_SLOT])
1042                get_slot(q, tb[TCA_NETEM_SLOT]);
1043
1044        /* capping jitter to the range acceptable by tabledist() */
1045        q->jitter = min_t(s64, abs(q->jitter), INT_MAX);
1046
1047        return ret;
1048
1049get_table_failure:
1050        /* recover clg and loss_model, in case of
1051         * q->clg and q->loss_model were modified
1052         * in get_loss_clg()
1053         */
1054        q->clg = old_clg;
1055        q->loss_model = old_loss_model;
1056        return ret;
1057}
1058
1059static int netem_init(struct Qdisc *sch, struct nlattr *opt,
1060                      struct netlink_ext_ack *extack)
1061{
1062        struct netem_sched_data *q = qdisc_priv(sch);
1063        int ret;
1064
1065        qdisc_watchdog_init(&q->watchdog, sch);
1066
1067        if (!opt)
1068                return -EINVAL;
1069
1070        q->loss_model = CLG_RANDOM;
1071        ret = netem_change(sch, opt, extack);
1072        if (ret)
1073                pr_info("netem: change failed\n");
1074        return ret;
1075}
1076
1077static void netem_destroy(struct Qdisc *sch)
1078{
1079        struct netem_sched_data *q = qdisc_priv(sch);
1080
1081        qdisc_watchdog_cancel(&q->watchdog);
1082        if (q->qdisc)
1083                qdisc_put(q->qdisc);
1084        dist_free(q->delay_dist);
1085        dist_free(q->slot_dist);
1086}
1087
1088static int dump_loss_model(const struct netem_sched_data *q,
1089                           struct sk_buff *skb)
1090{
1091        struct nlattr *nest;
1092
1093        nest = nla_nest_start_noflag(skb, TCA_NETEM_LOSS);
1094        if (nest == NULL)
1095                goto nla_put_failure;
1096
1097        switch (q->loss_model) {
1098        case CLG_RANDOM:
1099                /* legacy loss model */
1100                nla_nest_cancel(skb, nest);
1101                return 0;       /* no data */
1102
1103        case CLG_4_STATES: {
1104                struct tc_netem_gimodel gi = {
1105                        .p13 = q->clg.a1,
1106                        .p31 = q->clg.a2,
1107                        .p32 = q->clg.a3,
1108                        .p14 = q->clg.a4,
1109                        .p23 = q->clg.a5,
1110                };
1111
1112                if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
1113                        goto nla_put_failure;
1114                break;
1115        }
1116        case CLG_GILB_ELL: {
1117                struct tc_netem_gemodel ge = {
1118                        .p = q->clg.a1,
1119                        .r = q->clg.a2,
1120                        .h = q->clg.a3,
1121                        .k1 = q->clg.a4,
1122                };
1123
1124                if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
1125                        goto nla_put_failure;
1126                break;
1127        }
1128        }
1129
1130        nla_nest_end(skb, nest);
1131        return 0;
1132
1133nla_put_failure:
1134        nla_nest_cancel(skb, nest);
1135        return -1;
1136}
1137
1138static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
1139{
1140        const struct netem_sched_data *q = qdisc_priv(sch);
1141        struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
1142        struct tc_netem_qopt qopt;
1143        struct tc_netem_corr cor;
1144        struct tc_netem_reorder reorder;
1145        struct tc_netem_corrupt corrupt;
1146        struct tc_netem_rate rate;
1147        struct tc_netem_slot slot;
1148
1149        qopt.latency = min_t(psched_tdiff_t, PSCHED_NS2TICKS(q->latency),
1150                             UINT_MAX);
1151        qopt.jitter = min_t(psched_tdiff_t, PSCHED_NS2TICKS(q->jitter),
1152                            UINT_MAX);
1153        qopt.limit = q->limit;
1154        qopt.loss = q->loss;
1155        qopt.gap = q->gap;
1156        qopt.duplicate = q->duplicate;
1157        if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
1158                goto nla_put_failure;
1159
1160        if (nla_put(skb, TCA_NETEM_LATENCY64, sizeof(q->latency), &q->latency))
1161                goto nla_put_failure;
1162
1163        if (nla_put(skb, TCA_NETEM_JITTER64, sizeof(q->jitter), &q->jitter))
1164                goto nla_put_failure;
1165
1166        cor.delay_corr = q->delay_cor.rho;
1167        cor.loss_corr = q->loss_cor.rho;
1168        cor.dup_corr = q->dup_cor.rho;
1169        if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
1170                goto nla_put_failure;
1171
1172        reorder.probability = q->reorder;
1173        reorder.correlation = q->reorder_cor.rho;
1174        if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
1175                goto nla_put_failure;
1176
1177        corrupt.probability = q->corrupt;
1178        corrupt.correlation = q->corrupt_cor.rho;
1179        if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
1180                goto nla_put_failure;
1181
1182        if (q->rate >= (1ULL << 32)) {
1183                if (nla_put_u64_64bit(skb, TCA_NETEM_RATE64, q->rate,
1184                                      TCA_NETEM_PAD))
1185                        goto nla_put_failure;
1186                rate.rate = ~0U;
1187        } else {
1188                rate.rate = q->rate;
1189        }
1190        rate.packet_overhead = q->packet_overhead;
1191        rate.cell_size = q->cell_size;
1192        rate.cell_overhead = q->cell_overhead;
1193        if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
1194                goto nla_put_failure;
1195
1196        if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
1197                goto nla_put_failure;
1198
1199        if (dump_loss_model(q, skb) != 0)
1200                goto nla_put_failure;
1201
1202        if (q->slot_config.min_delay | q->slot_config.max_delay |
1203            q->slot_config.dist_jitter) {
1204                slot = q->slot_config;
1205                if (slot.max_packets == INT_MAX)
1206                        slot.max_packets = 0;
1207                if (slot.max_bytes == INT_MAX)
1208                        slot.max_bytes = 0;
1209                if (nla_put(skb, TCA_NETEM_SLOT, sizeof(slot), &slot))
1210                        goto nla_put_failure;
1211        }
1212
1213        return nla_nest_end(skb, nla);
1214
1215nla_put_failure:
1216        nlmsg_trim(skb, nla);
1217        return -1;
1218}
1219
1220static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
1221                          struct sk_buff *skb, struct tcmsg *tcm)
1222{
1223        struct netem_sched_data *q = qdisc_priv(sch);
1224
1225        if (cl != 1 || !q->qdisc)       /* only one class */
1226                return -ENOENT;
1227
1228        tcm->tcm_handle |= TC_H_MIN(1);
1229        tcm->tcm_info = q->qdisc->handle;
1230
1231        return 0;
1232}
1233
1234static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1235                     struct Qdisc **old, struct netlink_ext_ack *extack)
1236{
1237        struct netem_sched_data *q = qdisc_priv(sch);
1238
1239        *old = qdisc_replace(sch, new, &q->qdisc);
1240        return 0;
1241}
1242
1243static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1244{
1245        struct netem_sched_data *q = qdisc_priv(sch);
1246        return q->qdisc;
1247}
1248
1249static unsigned long netem_find(struct Qdisc *sch, u32 classid)
1250{
1251        return 1;
1252}
1253
1254static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1255{
1256        if (!walker->stop) {
1257                if (walker->count >= walker->skip)
1258                        if (walker->fn(sch, 1, walker) < 0) {
1259                                walker->stop = 1;
1260                                return;
1261                        }
1262                walker->count++;
1263        }
1264}
1265
1266static const struct Qdisc_class_ops netem_class_ops = {
1267        .graft          =       netem_graft,
1268        .leaf           =       netem_leaf,
1269        .find           =       netem_find,
1270        .walk           =       netem_walk,
1271        .dump           =       netem_dump_class,
1272};
1273
1274static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1275        .id             =       "netem",
1276        .cl_ops         =       &netem_class_ops,
1277        .priv_size      =       sizeof(struct netem_sched_data),
1278        .enqueue        =       netem_enqueue,
1279        .dequeue        =       netem_dequeue,
1280        .peek           =       qdisc_peek_dequeued,
1281        .init           =       netem_init,
1282        .reset          =       netem_reset,
1283        .destroy        =       netem_destroy,
1284        .change         =       netem_change,
1285        .dump           =       netem_dump,
1286        .owner          =       THIS_MODULE,
1287};
1288
1289
1290static int __init netem_module_init(void)
1291{
1292        pr_info("netem: version " VERSION "\n");
1293        return register_qdisc(&netem_qdisc_ops);
1294}
1295static void __exit netem_module_exit(void)
1296{
1297        unregister_qdisc(&netem_qdisc_ops);
1298}
1299module_init(netem_module_init)
1300module_exit(netem_module_exit)
1301MODULE_LICENSE("GPL");
1302