linux/net/sctp/auth.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* SCTP kernel implementation
   3 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
   4 *
   5 * This file is part of the SCTP kernel implementation
   6 *
   7 * Please send any bug reports or fixes you make to the
   8 * email address(es):
   9 *    lksctp developers <linux-sctp@vger.kernel.org>
  10 *
  11 * Written or modified by:
  12 *   Vlad Yasevich     <vladislav.yasevich@hp.com>
  13 */
  14
  15#include <crypto/hash.h>
  16#include <linux/slab.h>
  17#include <linux/types.h>
  18#include <linux/scatterlist.h>
  19#include <net/sctp/sctp.h>
  20#include <net/sctp/auth.h>
  21
  22static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
  23        {
  24                /* id 0 is reserved.  as all 0 */
  25                .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
  26        },
  27        {
  28                .hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
  29                .hmac_name = "hmac(sha1)",
  30                .hmac_len = SCTP_SHA1_SIG_SIZE,
  31        },
  32        {
  33                /* id 2 is reserved as well */
  34                .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
  35        },
  36#if IS_ENABLED(CONFIG_CRYPTO_SHA256)
  37        {
  38                .hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
  39                .hmac_name = "hmac(sha256)",
  40                .hmac_len = SCTP_SHA256_SIG_SIZE,
  41        }
  42#endif
  43};
  44
  45
  46void sctp_auth_key_put(struct sctp_auth_bytes *key)
  47{
  48        if (!key)
  49                return;
  50
  51        if (refcount_dec_and_test(&key->refcnt)) {
  52                kfree_sensitive(key);
  53                SCTP_DBG_OBJCNT_DEC(keys);
  54        }
  55}
  56
  57/* Create a new key structure of a given length */
  58static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
  59{
  60        struct sctp_auth_bytes *key;
  61
  62        /* Verify that we are not going to overflow INT_MAX */
  63        if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes)))
  64                return NULL;
  65
  66        /* Allocate the shared key */
  67        key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
  68        if (!key)
  69                return NULL;
  70
  71        key->len = key_len;
  72        refcount_set(&key->refcnt, 1);
  73        SCTP_DBG_OBJCNT_INC(keys);
  74
  75        return key;
  76}
  77
  78/* Create a new shared key container with a give key id */
  79struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
  80{
  81        struct sctp_shared_key *new;
  82
  83        /* Allocate the shared key container */
  84        new = kzalloc(sizeof(struct sctp_shared_key), gfp);
  85        if (!new)
  86                return NULL;
  87
  88        INIT_LIST_HEAD(&new->key_list);
  89        refcount_set(&new->refcnt, 1);
  90        new->key_id = key_id;
  91
  92        return new;
  93}
  94
  95/* Free the shared key structure */
  96static void sctp_auth_shkey_destroy(struct sctp_shared_key *sh_key)
  97{
  98        BUG_ON(!list_empty(&sh_key->key_list));
  99        sctp_auth_key_put(sh_key->key);
 100        sh_key->key = NULL;
 101        kfree(sh_key);
 102}
 103
 104void sctp_auth_shkey_release(struct sctp_shared_key *sh_key)
 105{
 106        if (refcount_dec_and_test(&sh_key->refcnt))
 107                sctp_auth_shkey_destroy(sh_key);
 108}
 109
 110void sctp_auth_shkey_hold(struct sctp_shared_key *sh_key)
 111{
 112        refcount_inc(&sh_key->refcnt);
 113}
 114
 115/* Destroy the entire key list.  This is done during the
 116 * associon and endpoint free process.
 117 */
 118void sctp_auth_destroy_keys(struct list_head *keys)
 119{
 120        struct sctp_shared_key *ep_key;
 121        struct sctp_shared_key *tmp;
 122
 123        if (list_empty(keys))
 124                return;
 125
 126        key_for_each_safe(ep_key, tmp, keys) {
 127                list_del_init(&ep_key->key_list);
 128                sctp_auth_shkey_release(ep_key);
 129        }
 130}
 131
 132/* Compare two byte vectors as numbers.  Return values
 133 * are:
 134 *        0 - vectors are equal
 135 *      < 0 - vector 1 is smaller than vector2
 136 *      > 0 - vector 1 is greater than vector2
 137 *
 138 * Algorithm is:
 139 *      This is performed by selecting the numerically smaller key vector...
 140 *      If the key vectors are equal as numbers but differ in length ...
 141 *      the shorter vector is considered smaller
 142 *
 143 * Examples (with small values):
 144 *      000123456789 > 123456789 (first number is longer)
 145 *      000123456789 < 234567891 (second number is larger numerically)
 146 *      123456789 > 2345678      (first number is both larger & longer)
 147 */
 148static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
 149                              struct sctp_auth_bytes *vector2)
 150{
 151        int diff;
 152        int i;
 153        const __u8 *longer;
 154
 155        diff = vector1->len - vector2->len;
 156        if (diff) {
 157                longer = (diff > 0) ? vector1->data : vector2->data;
 158
 159                /* Check to see if the longer number is
 160                 * lead-zero padded.  If it is not, it
 161                 * is automatically larger numerically.
 162                 */
 163                for (i = 0; i < abs(diff); i++) {
 164                        if (longer[i] != 0)
 165                                return diff;
 166                }
 167        }
 168
 169        /* lengths are the same, compare numbers */
 170        return memcmp(vector1->data, vector2->data, vector1->len);
 171}
 172
 173/*
 174 * Create a key vector as described in SCTP-AUTH, Section 6.1
 175 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
 176 *    parameter sent by each endpoint are concatenated as byte vectors.
 177 *    These parameters include the parameter type, parameter length, and
 178 *    the parameter value, but padding is omitted; all padding MUST be
 179 *    removed from this concatenation before proceeding with further
 180 *    computation of keys.  Parameters which were not sent are simply
 181 *    omitted from the concatenation process.  The resulting two vectors
 182 *    are called the two key vectors.
 183 */
 184static struct sctp_auth_bytes *sctp_auth_make_key_vector(
 185                        struct sctp_random_param *random,
 186                        struct sctp_chunks_param *chunks,
 187                        struct sctp_hmac_algo_param *hmacs,
 188                        gfp_t gfp)
 189{
 190        struct sctp_auth_bytes *new;
 191        __u32   len;
 192        __u32   offset = 0;
 193        __u16   random_len, hmacs_len, chunks_len = 0;
 194
 195        random_len = ntohs(random->param_hdr.length);
 196        hmacs_len = ntohs(hmacs->param_hdr.length);
 197        if (chunks)
 198                chunks_len = ntohs(chunks->param_hdr.length);
 199
 200        len = random_len + hmacs_len + chunks_len;
 201
 202        new = sctp_auth_create_key(len, gfp);
 203        if (!new)
 204                return NULL;
 205
 206        memcpy(new->data, random, random_len);
 207        offset += random_len;
 208
 209        if (chunks) {
 210                memcpy(new->data + offset, chunks, chunks_len);
 211                offset += chunks_len;
 212        }
 213
 214        memcpy(new->data + offset, hmacs, hmacs_len);
 215
 216        return new;
 217}
 218
 219
 220/* Make a key vector based on our local parameters */
 221static struct sctp_auth_bytes *sctp_auth_make_local_vector(
 222                                    const struct sctp_association *asoc,
 223                                    gfp_t gfp)
 224{
 225        return sctp_auth_make_key_vector(
 226                        (struct sctp_random_param *)asoc->c.auth_random,
 227                        (struct sctp_chunks_param *)asoc->c.auth_chunks,
 228                        (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs, gfp);
 229}
 230
 231/* Make a key vector based on peer's parameters */
 232static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
 233                                    const struct sctp_association *asoc,
 234                                    gfp_t gfp)
 235{
 236        return sctp_auth_make_key_vector(asoc->peer.peer_random,
 237                                         asoc->peer.peer_chunks,
 238                                         asoc->peer.peer_hmacs,
 239                                         gfp);
 240}
 241
 242
 243/* Set the value of the association shared key base on the parameters
 244 * given.  The algorithm is:
 245 *    From the endpoint pair shared keys and the key vectors the
 246 *    association shared keys are computed.  This is performed by selecting
 247 *    the numerically smaller key vector and concatenating it to the
 248 *    endpoint pair shared key, and then concatenating the numerically
 249 *    larger key vector to that.  The result of the concatenation is the
 250 *    association shared key.
 251 */
 252static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
 253                        struct sctp_shared_key *ep_key,
 254                        struct sctp_auth_bytes *first_vector,
 255                        struct sctp_auth_bytes *last_vector,
 256                        gfp_t gfp)
 257{
 258        struct sctp_auth_bytes *secret;
 259        __u32 offset = 0;
 260        __u32 auth_len;
 261
 262        auth_len = first_vector->len + last_vector->len;
 263        if (ep_key->key)
 264                auth_len += ep_key->key->len;
 265
 266        secret = sctp_auth_create_key(auth_len, gfp);
 267        if (!secret)
 268                return NULL;
 269
 270        if (ep_key->key) {
 271                memcpy(secret->data, ep_key->key->data, ep_key->key->len);
 272                offset += ep_key->key->len;
 273        }
 274
 275        memcpy(secret->data + offset, first_vector->data, first_vector->len);
 276        offset += first_vector->len;
 277
 278        memcpy(secret->data + offset, last_vector->data, last_vector->len);
 279
 280        return secret;
 281}
 282
 283/* Create an association shared key.  Follow the algorithm
 284 * described in SCTP-AUTH, Section 6.1
 285 */
 286static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
 287                                 const struct sctp_association *asoc,
 288                                 struct sctp_shared_key *ep_key,
 289                                 gfp_t gfp)
 290{
 291        struct sctp_auth_bytes *local_key_vector;
 292        struct sctp_auth_bytes *peer_key_vector;
 293        struct sctp_auth_bytes  *first_vector,
 294                                *last_vector;
 295        struct sctp_auth_bytes  *secret = NULL;
 296        int     cmp;
 297
 298
 299        /* Now we need to build the key vectors
 300         * SCTP-AUTH , Section 6.1
 301         *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
 302         *    parameter sent by each endpoint are concatenated as byte vectors.
 303         *    These parameters include the parameter type, parameter length, and
 304         *    the parameter value, but padding is omitted; all padding MUST be
 305         *    removed from this concatenation before proceeding with further
 306         *    computation of keys.  Parameters which were not sent are simply
 307         *    omitted from the concatenation process.  The resulting two vectors
 308         *    are called the two key vectors.
 309         */
 310
 311        local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
 312        peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
 313
 314        if (!peer_key_vector || !local_key_vector)
 315                goto out;
 316
 317        /* Figure out the order in which the key_vectors will be
 318         * added to the endpoint shared key.
 319         * SCTP-AUTH, Section 6.1:
 320         *   This is performed by selecting the numerically smaller key
 321         *   vector and concatenating it to the endpoint pair shared
 322         *   key, and then concatenating the numerically larger key
 323         *   vector to that.  If the key vectors are equal as numbers
 324         *   but differ in length, then the concatenation order is the
 325         *   endpoint shared key, followed by the shorter key vector,
 326         *   followed by the longer key vector.  Otherwise, the key
 327         *   vectors are identical, and may be concatenated to the
 328         *   endpoint pair key in any order.
 329         */
 330        cmp = sctp_auth_compare_vectors(local_key_vector,
 331                                        peer_key_vector);
 332        if (cmp < 0) {
 333                first_vector = local_key_vector;
 334                last_vector = peer_key_vector;
 335        } else {
 336                first_vector = peer_key_vector;
 337                last_vector = local_key_vector;
 338        }
 339
 340        secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
 341                                            gfp);
 342out:
 343        sctp_auth_key_put(local_key_vector);
 344        sctp_auth_key_put(peer_key_vector);
 345
 346        return secret;
 347}
 348
 349/*
 350 * Populate the association overlay list with the list
 351 * from the endpoint.
 352 */
 353int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
 354                                struct sctp_association *asoc,
 355                                gfp_t gfp)
 356{
 357        struct sctp_shared_key *sh_key;
 358        struct sctp_shared_key *new;
 359
 360        BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
 361
 362        key_for_each(sh_key, &ep->endpoint_shared_keys) {
 363                new = sctp_auth_shkey_create(sh_key->key_id, gfp);
 364                if (!new)
 365                        goto nomem;
 366
 367                new->key = sh_key->key;
 368                sctp_auth_key_hold(new->key);
 369                list_add(&new->key_list, &asoc->endpoint_shared_keys);
 370        }
 371
 372        return 0;
 373
 374nomem:
 375        sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
 376        return -ENOMEM;
 377}
 378
 379
 380/* Public interface to create the association shared key.
 381 * See code above for the algorithm.
 382 */
 383int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
 384{
 385        struct sctp_auth_bytes  *secret;
 386        struct sctp_shared_key *ep_key;
 387        struct sctp_chunk *chunk;
 388
 389        /* If we don't support AUTH, or peer is not capable
 390         * we don't need to do anything.
 391         */
 392        if (!asoc->peer.auth_capable)
 393                return 0;
 394
 395        /* If the key_id is non-zero and we couldn't find an
 396         * endpoint pair shared key, we can't compute the
 397         * secret.
 398         * For key_id 0, endpoint pair shared key is a NULL key.
 399         */
 400        ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
 401        BUG_ON(!ep_key);
 402
 403        secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
 404        if (!secret)
 405                return -ENOMEM;
 406
 407        sctp_auth_key_put(asoc->asoc_shared_key);
 408        asoc->asoc_shared_key = secret;
 409        asoc->shkey = ep_key;
 410
 411        /* Update send queue in case any chunk already in there now
 412         * needs authenticating
 413         */
 414        list_for_each_entry(chunk, &asoc->outqueue.out_chunk_list, list) {
 415                if (sctp_auth_send_cid(chunk->chunk_hdr->type, asoc)) {
 416                        chunk->auth = 1;
 417                        if (!chunk->shkey) {
 418                                chunk->shkey = asoc->shkey;
 419                                sctp_auth_shkey_hold(chunk->shkey);
 420                        }
 421                }
 422        }
 423
 424        return 0;
 425}
 426
 427
 428/* Find the endpoint pair shared key based on the key_id */
 429struct sctp_shared_key *sctp_auth_get_shkey(
 430                                const struct sctp_association *asoc,
 431                                __u16 key_id)
 432{
 433        struct sctp_shared_key *key;
 434
 435        /* First search associations set of endpoint pair shared keys */
 436        key_for_each(key, &asoc->endpoint_shared_keys) {
 437                if (key->key_id == key_id) {
 438                        if (!key->deactivated)
 439                                return key;
 440                        break;
 441                }
 442        }
 443
 444        return NULL;
 445}
 446
 447/*
 448 * Initialize all the possible digest transforms that we can use.  Right
 449 * now, the supported digests are SHA1 and SHA256.  We do this here once
 450 * because of the restrictiong that transforms may only be allocated in
 451 * user context.  This forces us to pre-allocated all possible transforms
 452 * at the endpoint init time.
 453 */
 454int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
 455{
 456        struct crypto_shash *tfm = NULL;
 457        __u16   id;
 458
 459        /* If the transforms are already allocated, we are done */
 460        if (ep->auth_hmacs)
 461                return 0;
 462
 463        /* Allocated the array of pointers to transorms */
 464        ep->auth_hmacs = kcalloc(SCTP_AUTH_NUM_HMACS,
 465                                 sizeof(struct crypto_shash *),
 466                                 gfp);
 467        if (!ep->auth_hmacs)
 468                return -ENOMEM;
 469
 470        for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
 471
 472                /* See is we support the id.  Supported IDs have name and
 473                 * length fields set, so that we can allocated and use
 474                 * them.  We can safely just check for name, for without the
 475                 * name, we can't allocate the TFM.
 476                 */
 477                if (!sctp_hmac_list[id].hmac_name)
 478                        continue;
 479
 480                /* If this TFM has been allocated, we are all set */
 481                if (ep->auth_hmacs[id])
 482                        continue;
 483
 484                /* Allocate the ID */
 485                tfm = crypto_alloc_shash(sctp_hmac_list[id].hmac_name, 0, 0);
 486                if (IS_ERR(tfm))
 487                        goto out_err;
 488
 489                ep->auth_hmacs[id] = tfm;
 490        }
 491
 492        return 0;
 493
 494out_err:
 495        /* Clean up any successful allocations */
 496        sctp_auth_destroy_hmacs(ep->auth_hmacs);
 497        ep->auth_hmacs = NULL;
 498        return -ENOMEM;
 499}
 500
 501/* Destroy the hmac tfm array */
 502void sctp_auth_destroy_hmacs(struct crypto_shash *auth_hmacs[])
 503{
 504        int i;
 505
 506        if (!auth_hmacs)
 507                return;
 508
 509        for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) {
 510                crypto_free_shash(auth_hmacs[i]);
 511        }
 512        kfree(auth_hmacs);
 513}
 514
 515
 516struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
 517{
 518        return &sctp_hmac_list[hmac_id];
 519}
 520
 521/* Get an hmac description information that we can use to build
 522 * the AUTH chunk
 523 */
 524struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
 525{
 526        struct sctp_hmac_algo_param *hmacs;
 527        __u16 n_elt;
 528        __u16 id = 0;
 529        int i;
 530
 531        /* If we have a default entry, use it */
 532        if (asoc->default_hmac_id)
 533                return &sctp_hmac_list[asoc->default_hmac_id];
 534
 535        /* Since we do not have a default entry, find the first entry
 536         * we support and return that.  Do not cache that id.
 537         */
 538        hmacs = asoc->peer.peer_hmacs;
 539        if (!hmacs)
 540                return NULL;
 541
 542        n_elt = (ntohs(hmacs->param_hdr.length) -
 543                 sizeof(struct sctp_paramhdr)) >> 1;
 544        for (i = 0; i < n_elt; i++) {
 545                id = ntohs(hmacs->hmac_ids[i]);
 546
 547                /* Check the id is in the supported range. And
 548                 * see if we support the id.  Supported IDs have name and
 549                 * length fields set, so that we can allocate and use
 550                 * them.  We can safely just check for name, for without the
 551                 * name, we can't allocate the TFM.
 552                 */
 553                if (id > SCTP_AUTH_HMAC_ID_MAX ||
 554                    !sctp_hmac_list[id].hmac_name) {
 555                        id = 0;
 556                        continue;
 557                }
 558
 559                break;
 560        }
 561
 562        if (id == 0)
 563                return NULL;
 564
 565        return &sctp_hmac_list[id];
 566}
 567
 568static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
 569{
 570        int  found = 0;
 571        int  i;
 572
 573        for (i = 0; i < n_elts; i++) {
 574                if (hmac_id == hmacs[i]) {
 575                        found = 1;
 576                        break;
 577                }
 578        }
 579
 580        return found;
 581}
 582
 583/* See if the HMAC_ID is one that we claim as supported */
 584int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
 585                                    __be16 hmac_id)
 586{
 587        struct sctp_hmac_algo_param *hmacs;
 588        __u16 n_elt;
 589
 590        if (!asoc)
 591                return 0;
 592
 593        hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
 594        n_elt = (ntohs(hmacs->param_hdr.length) -
 595                 sizeof(struct sctp_paramhdr)) >> 1;
 596
 597        return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
 598}
 599
 600
 601/* Cache the default HMAC id.  This to follow this text from SCTP-AUTH:
 602 * Section 6.1:
 603 *   The receiver of a HMAC-ALGO parameter SHOULD use the first listed
 604 *   algorithm it supports.
 605 */
 606void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
 607                                     struct sctp_hmac_algo_param *hmacs)
 608{
 609        struct sctp_endpoint *ep;
 610        __u16   id;
 611        int     i;
 612        int     n_params;
 613
 614        /* if the default id is already set, use it */
 615        if (asoc->default_hmac_id)
 616                return;
 617
 618        n_params = (ntohs(hmacs->param_hdr.length) -
 619                    sizeof(struct sctp_paramhdr)) >> 1;
 620        ep = asoc->ep;
 621        for (i = 0; i < n_params; i++) {
 622                id = ntohs(hmacs->hmac_ids[i]);
 623
 624                /* Check the id is in the supported range */
 625                if (id > SCTP_AUTH_HMAC_ID_MAX)
 626                        continue;
 627
 628                /* If this TFM has been allocated, use this id */
 629                if (ep->auth_hmacs[id]) {
 630                        asoc->default_hmac_id = id;
 631                        break;
 632                }
 633        }
 634}
 635
 636
 637/* Check to see if the given chunk is supposed to be authenticated */
 638static int __sctp_auth_cid(enum sctp_cid chunk, struct sctp_chunks_param *param)
 639{
 640        unsigned short len;
 641        int found = 0;
 642        int i;
 643
 644        if (!param || param->param_hdr.length == 0)
 645                return 0;
 646
 647        len = ntohs(param->param_hdr.length) - sizeof(struct sctp_paramhdr);
 648
 649        /* SCTP-AUTH, Section 3.2
 650         *    The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
 651         *    chunks MUST NOT be listed in the CHUNKS parameter.  However, if
 652         *    a CHUNKS parameter is received then the types for INIT, INIT-ACK,
 653         *    SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
 654         */
 655        for (i = 0; !found && i < len; i++) {
 656                switch (param->chunks[i]) {
 657                case SCTP_CID_INIT:
 658                case SCTP_CID_INIT_ACK:
 659                case SCTP_CID_SHUTDOWN_COMPLETE:
 660                case SCTP_CID_AUTH:
 661                        break;
 662
 663                default:
 664                        if (param->chunks[i] == chunk)
 665                                found = 1;
 666                        break;
 667                }
 668        }
 669
 670        return found;
 671}
 672
 673/* Check if peer requested that this chunk is authenticated */
 674int sctp_auth_send_cid(enum sctp_cid chunk, const struct sctp_association *asoc)
 675{
 676        if (!asoc)
 677                return 0;
 678
 679        if (!asoc->peer.auth_capable)
 680                return 0;
 681
 682        return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
 683}
 684
 685/* Check if we requested that peer authenticate this chunk. */
 686int sctp_auth_recv_cid(enum sctp_cid chunk, const struct sctp_association *asoc)
 687{
 688        if (!asoc)
 689                return 0;
 690
 691        if (!asoc->peer.auth_capable)
 692                return 0;
 693
 694        return __sctp_auth_cid(chunk,
 695                              (struct sctp_chunks_param *)asoc->c.auth_chunks);
 696}
 697
 698/* SCTP-AUTH: Section 6.2:
 699 *    The sender MUST calculate the MAC as described in RFC2104 [2] using
 700 *    the hash function H as described by the MAC Identifier and the shared
 701 *    association key K based on the endpoint pair shared key described by
 702 *    the shared key identifier.  The 'data' used for the computation of
 703 *    the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
 704 *    zero (as shown in Figure 6) followed by all chunks that are placed
 705 *    after the AUTH chunk in the SCTP packet.
 706 */
 707void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
 708                              struct sk_buff *skb, struct sctp_auth_chunk *auth,
 709                              struct sctp_shared_key *ep_key, gfp_t gfp)
 710{
 711        struct sctp_auth_bytes *asoc_key;
 712        struct crypto_shash *tfm;
 713        __u16 key_id, hmac_id;
 714        unsigned char *end;
 715        int free_key = 0;
 716        __u8 *digest;
 717
 718        /* Extract the info we need:
 719         * - hmac id
 720         * - key id
 721         */
 722        key_id = ntohs(auth->auth_hdr.shkey_id);
 723        hmac_id = ntohs(auth->auth_hdr.hmac_id);
 724
 725        if (key_id == asoc->active_key_id)
 726                asoc_key = asoc->asoc_shared_key;
 727        else {
 728                /* ep_key can't be NULL here */
 729                asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
 730                if (!asoc_key)
 731                        return;
 732
 733                free_key = 1;
 734        }
 735
 736        /* set up scatter list */
 737        end = skb_tail_pointer(skb);
 738
 739        tfm = asoc->ep->auth_hmacs[hmac_id];
 740
 741        digest = auth->auth_hdr.hmac;
 742        if (crypto_shash_setkey(tfm, &asoc_key->data[0], asoc_key->len))
 743                goto free;
 744
 745        crypto_shash_tfm_digest(tfm, (u8 *)auth, end - (unsigned char *)auth,
 746                                digest);
 747
 748free:
 749        if (free_key)
 750                sctp_auth_key_put(asoc_key);
 751}
 752
 753/* API Helpers */
 754
 755/* Add a chunk to the endpoint authenticated chunk list */
 756int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
 757{
 758        struct sctp_chunks_param *p = ep->auth_chunk_list;
 759        __u16 nchunks;
 760        __u16 param_len;
 761
 762        /* If this chunk is already specified, we are done */
 763        if (__sctp_auth_cid(chunk_id, p))
 764                return 0;
 765
 766        /* Check if we can add this chunk to the array */
 767        param_len = ntohs(p->param_hdr.length);
 768        nchunks = param_len - sizeof(struct sctp_paramhdr);
 769        if (nchunks == SCTP_NUM_CHUNK_TYPES)
 770                return -EINVAL;
 771
 772        p->chunks[nchunks] = chunk_id;
 773        p->param_hdr.length = htons(param_len + 1);
 774        return 0;
 775}
 776
 777/* Add hmac identifires to the endpoint list of supported hmac ids */
 778int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
 779                           struct sctp_hmacalgo *hmacs)
 780{
 781        int has_sha1 = 0;
 782        __u16 id;
 783        int i;
 784
 785        /* Scan the list looking for unsupported id.  Also make sure that
 786         * SHA1 is specified.
 787         */
 788        for (i = 0; i < hmacs->shmac_num_idents; i++) {
 789                id = hmacs->shmac_idents[i];
 790
 791                if (id > SCTP_AUTH_HMAC_ID_MAX)
 792                        return -EOPNOTSUPP;
 793
 794                if (SCTP_AUTH_HMAC_ID_SHA1 == id)
 795                        has_sha1 = 1;
 796
 797                if (!sctp_hmac_list[id].hmac_name)
 798                        return -EOPNOTSUPP;
 799        }
 800
 801        if (!has_sha1)
 802                return -EINVAL;
 803
 804        for (i = 0; i < hmacs->shmac_num_idents; i++)
 805                ep->auth_hmacs_list->hmac_ids[i] =
 806                                htons(hmacs->shmac_idents[i]);
 807        ep->auth_hmacs_list->param_hdr.length =
 808                        htons(sizeof(struct sctp_paramhdr) +
 809                        hmacs->shmac_num_idents * sizeof(__u16));
 810        return 0;
 811}
 812
 813/* Set a new shared key on either endpoint or association.  If the
 814 * key with a same ID already exists, replace the key (remove the
 815 * old key and add a new one).
 816 */
 817int sctp_auth_set_key(struct sctp_endpoint *ep,
 818                      struct sctp_association *asoc,
 819                      struct sctp_authkey *auth_key)
 820{
 821        struct sctp_shared_key *cur_key, *shkey;
 822        struct sctp_auth_bytes *key;
 823        struct list_head *sh_keys;
 824        int replace = 0;
 825
 826        /* Try to find the given key id to see if
 827         * we are doing a replace, or adding a new key
 828         */
 829        if (asoc) {
 830                if (!asoc->peer.auth_capable)
 831                        return -EACCES;
 832                sh_keys = &asoc->endpoint_shared_keys;
 833        } else {
 834                if (!ep->auth_enable)
 835                        return -EACCES;
 836                sh_keys = &ep->endpoint_shared_keys;
 837        }
 838
 839        key_for_each(shkey, sh_keys) {
 840                if (shkey->key_id == auth_key->sca_keynumber) {
 841                        replace = 1;
 842                        break;
 843                }
 844        }
 845
 846        cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber, GFP_KERNEL);
 847        if (!cur_key)
 848                return -ENOMEM;
 849
 850        /* Create a new key data based on the info passed in */
 851        key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
 852        if (!key) {
 853                kfree(cur_key);
 854                return -ENOMEM;
 855        }
 856
 857        memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
 858        cur_key->key = key;
 859
 860        if (!replace) {
 861                list_add(&cur_key->key_list, sh_keys);
 862                return 0;
 863        }
 864
 865        list_del_init(&shkey->key_list);
 866        sctp_auth_shkey_release(shkey);
 867        list_add(&cur_key->key_list, sh_keys);
 868
 869        if (asoc && asoc->active_key_id == auth_key->sca_keynumber)
 870                sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
 871
 872        return 0;
 873}
 874
 875int sctp_auth_set_active_key(struct sctp_endpoint *ep,
 876                             struct sctp_association *asoc,
 877                             __u16  key_id)
 878{
 879        struct sctp_shared_key *key;
 880        struct list_head *sh_keys;
 881        int found = 0;
 882
 883        /* The key identifier MUST correst to an existing key */
 884        if (asoc) {
 885                if (!asoc->peer.auth_capable)
 886                        return -EACCES;
 887                sh_keys = &asoc->endpoint_shared_keys;
 888        } else {
 889                if (!ep->auth_enable)
 890                        return -EACCES;
 891                sh_keys = &ep->endpoint_shared_keys;
 892        }
 893
 894        key_for_each(key, sh_keys) {
 895                if (key->key_id == key_id) {
 896                        found = 1;
 897                        break;
 898                }
 899        }
 900
 901        if (!found || key->deactivated)
 902                return -EINVAL;
 903
 904        if (asoc) {
 905                asoc->active_key_id = key_id;
 906                sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
 907        } else
 908                ep->active_key_id = key_id;
 909
 910        return 0;
 911}
 912
 913int sctp_auth_del_key_id(struct sctp_endpoint *ep,
 914                         struct sctp_association *asoc,
 915                         __u16  key_id)
 916{
 917        struct sctp_shared_key *key;
 918        struct list_head *sh_keys;
 919        int found = 0;
 920
 921        /* The key identifier MUST NOT be the current active key
 922         * The key identifier MUST correst to an existing key
 923         */
 924        if (asoc) {
 925                if (!asoc->peer.auth_capable)
 926                        return -EACCES;
 927                if (asoc->active_key_id == key_id)
 928                        return -EINVAL;
 929
 930                sh_keys = &asoc->endpoint_shared_keys;
 931        } else {
 932                if (!ep->auth_enable)
 933                        return -EACCES;
 934                if (ep->active_key_id == key_id)
 935                        return -EINVAL;
 936
 937                sh_keys = &ep->endpoint_shared_keys;
 938        }
 939
 940        key_for_each(key, sh_keys) {
 941                if (key->key_id == key_id) {
 942                        found = 1;
 943                        break;
 944                }
 945        }
 946
 947        if (!found)
 948                return -EINVAL;
 949
 950        /* Delete the shared key */
 951        list_del_init(&key->key_list);
 952        sctp_auth_shkey_release(key);
 953
 954        return 0;
 955}
 956
 957int sctp_auth_deact_key_id(struct sctp_endpoint *ep,
 958                           struct sctp_association *asoc, __u16  key_id)
 959{
 960        struct sctp_shared_key *key;
 961        struct list_head *sh_keys;
 962        int found = 0;
 963
 964        /* The key identifier MUST NOT be the current active key
 965         * The key identifier MUST correst to an existing key
 966         */
 967        if (asoc) {
 968                if (!asoc->peer.auth_capable)
 969                        return -EACCES;
 970                if (asoc->active_key_id == key_id)
 971                        return -EINVAL;
 972
 973                sh_keys = &asoc->endpoint_shared_keys;
 974        } else {
 975                if (!ep->auth_enable)
 976                        return -EACCES;
 977                if (ep->active_key_id == key_id)
 978                        return -EINVAL;
 979
 980                sh_keys = &ep->endpoint_shared_keys;
 981        }
 982
 983        key_for_each(key, sh_keys) {
 984                if (key->key_id == key_id) {
 985                        found = 1;
 986                        break;
 987                }
 988        }
 989
 990        if (!found)
 991                return -EINVAL;
 992
 993        /* refcnt == 1 and !list_empty mean it's not being used anywhere
 994         * and deactivated will be set, so it's time to notify userland
 995         * that this shkey can be freed.
 996         */
 997        if (asoc && !list_empty(&key->key_list) &&
 998            refcount_read(&key->refcnt) == 1) {
 999                struct sctp_ulpevent *ev;
1000
1001                ev = sctp_ulpevent_make_authkey(asoc, key->key_id,
1002                                                SCTP_AUTH_FREE_KEY, GFP_KERNEL);
1003                if (ev)
1004                        asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
1005        }
1006
1007        key->deactivated = 1;
1008
1009        return 0;
1010}
1011
1012int sctp_auth_init(struct sctp_endpoint *ep, gfp_t gfp)
1013{
1014        int err = -ENOMEM;
1015
1016        /* Allocate space for HMACS and CHUNKS authentication
1017         * variables.  There are arrays that we encode directly
1018         * into parameters to make the rest of the operations easier.
1019         */
1020        if (!ep->auth_hmacs_list) {
1021                struct sctp_hmac_algo_param *auth_hmacs;
1022
1023                auth_hmacs = kzalloc(struct_size(auth_hmacs, hmac_ids,
1024                                                 SCTP_AUTH_NUM_HMACS), gfp);
1025                if (!auth_hmacs)
1026                        goto nomem;
1027                /* Initialize the HMACS parameter.
1028                 * SCTP-AUTH: Section 3.3
1029                 *    Every endpoint supporting SCTP chunk authentication MUST
1030                 *    support the HMAC based on the SHA-1 algorithm.
1031                 */
1032                auth_hmacs->param_hdr.type = SCTP_PARAM_HMAC_ALGO;
1033                auth_hmacs->param_hdr.length =
1034                                htons(sizeof(struct sctp_paramhdr) + 2);
1035                auth_hmacs->hmac_ids[0] = htons(SCTP_AUTH_HMAC_ID_SHA1);
1036                ep->auth_hmacs_list = auth_hmacs;
1037        }
1038
1039        if (!ep->auth_chunk_list) {
1040                struct sctp_chunks_param *auth_chunks;
1041
1042                auth_chunks = kzalloc(sizeof(*auth_chunks) +
1043                                      SCTP_NUM_CHUNK_TYPES, gfp);
1044                if (!auth_chunks)
1045                        goto nomem;
1046                /* Initialize the CHUNKS parameter */
1047                auth_chunks->param_hdr.type = SCTP_PARAM_CHUNKS;
1048                auth_chunks->param_hdr.length =
1049                                htons(sizeof(struct sctp_paramhdr));
1050                ep->auth_chunk_list = auth_chunks;
1051        }
1052
1053        /* Allocate and initialize transorms arrays for supported
1054         * HMACs.
1055         */
1056        err = sctp_auth_init_hmacs(ep, gfp);
1057        if (err)
1058                goto nomem;
1059
1060        return 0;
1061
1062nomem:
1063        /* Free all allocations */
1064        kfree(ep->auth_hmacs_list);
1065        kfree(ep->auth_chunk_list);
1066        ep->auth_hmacs_list = NULL;
1067        ep->auth_chunk_list = NULL;
1068        return err;
1069}
1070
1071void sctp_auth_free(struct sctp_endpoint *ep)
1072{
1073        kfree(ep->auth_hmacs_list);
1074        kfree(ep->auth_chunk_list);
1075        ep->auth_hmacs_list = NULL;
1076        ep->auth_chunk_list = NULL;
1077        sctp_auth_destroy_hmacs(ep->auth_hmacs);
1078        ep->auth_hmacs = NULL;
1079}
1080