linux/net/sunrpc/sched.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/net/sunrpc/sched.c
   4 *
   5 * Scheduling for synchronous and asynchronous RPC requests.
   6 *
   7 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
   8 *
   9 * TCP NFS related read + write fixes
  10 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
  11 */
  12
  13#include <linux/module.h>
  14
  15#include <linux/sched.h>
  16#include <linux/interrupt.h>
  17#include <linux/slab.h>
  18#include <linux/mempool.h>
  19#include <linux/smp.h>
  20#include <linux/spinlock.h>
  21#include <linux/mutex.h>
  22#include <linux/freezer.h>
  23#include <linux/sched/mm.h>
  24
  25#include <linux/sunrpc/clnt.h>
  26#include <linux/sunrpc/metrics.h>
  27
  28#include "sunrpc.h"
  29
  30#define CREATE_TRACE_POINTS
  31#include <trace/events/sunrpc.h>
  32
  33/*
  34 * RPC slabs and memory pools
  35 */
  36#define RPC_BUFFER_MAXSIZE      (2048)
  37#define RPC_BUFFER_POOLSIZE     (8)
  38#define RPC_TASK_POOLSIZE       (8)
  39static struct kmem_cache        *rpc_task_slabp __read_mostly;
  40static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
  41static mempool_t        *rpc_task_mempool __read_mostly;
  42static mempool_t        *rpc_buffer_mempool __read_mostly;
  43
  44static void                     rpc_async_schedule(struct work_struct *);
  45static void                      rpc_release_task(struct rpc_task *task);
  46static void __rpc_queue_timer_fn(struct work_struct *);
  47
  48/*
  49 * RPC tasks sit here while waiting for conditions to improve.
  50 */
  51static struct rpc_wait_queue delay_queue;
  52
  53/*
  54 * rpciod-related stuff
  55 */
  56struct workqueue_struct *rpciod_workqueue __read_mostly;
  57struct workqueue_struct *xprtiod_workqueue __read_mostly;
  58EXPORT_SYMBOL_GPL(xprtiod_workqueue);
  59
  60unsigned long
  61rpc_task_timeout(const struct rpc_task *task)
  62{
  63        unsigned long timeout = READ_ONCE(task->tk_timeout);
  64
  65        if (timeout != 0) {
  66                unsigned long now = jiffies;
  67                if (time_before(now, timeout))
  68                        return timeout - now;
  69        }
  70        return 0;
  71}
  72EXPORT_SYMBOL_GPL(rpc_task_timeout);
  73
  74/*
  75 * Disable the timer for a given RPC task. Should be called with
  76 * queue->lock and bh_disabled in order to avoid races within
  77 * rpc_run_timer().
  78 */
  79static void
  80__rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
  81{
  82        if (list_empty(&task->u.tk_wait.timer_list))
  83                return;
  84        task->tk_timeout = 0;
  85        list_del(&task->u.tk_wait.timer_list);
  86        if (list_empty(&queue->timer_list.list))
  87                cancel_delayed_work(&queue->timer_list.dwork);
  88}
  89
  90static void
  91rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
  92{
  93        unsigned long now = jiffies;
  94        queue->timer_list.expires = expires;
  95        if (time_before_eq(expires, now))
  96                expires = 0;
  97        else
  98                expires -= now;
  99        mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires);
 100}
 101
 102/*
 103 * Set up a timer for the current task.
 104 */
 105static void
 106__rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
 107                unsigned long timeout)
 108{
 109        task->tk_timeout = timeout;
 110        if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires))
 111                rpc_set_queue_timer(queue, timeout);
 112        list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
 113}
 114
 115static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
 116{
 117        if (queue->priority != priority) {
 118                queue->priority = priority;
 119                queue->nr = 1U << priority;
 120        }
 121}
 122
 123static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
 124{
 125        rpc_set_waitqueue_priority(queue, queue->maxpriority);
 126}
 127
 128/*
 129 * Add a request to a queue list
 130 */
 131static void
 132__rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
 133{
 134        struct rpc_task *t;
 135
 136        list_for_each_entry(t, q, u.tk_wait.list) {
 137                if (t->tk_owner == task->tk_owner) {
 138                        list_add_tail(&task->u.tk_wait.links,
 139                                        &t->u.tk_wait.links);
 140                        /* Cache the queue head in task->u.tk_wait.list */
 141                        task->u.tk_wait.list.next = q;
 142                        task->u.tk_wait.list.prev = NULL;
 143                        return;
 144                }
 145        }
 146        INIT_LIST_HEAD(&task->u.tk_wait.links);
 147        list_add_tail(&task->u.tk_wait.list, q);
 148}
 149
 150/*
 151 * Remove request from a queue list
 152 */
 153static void
 154__rpc_list_dequeue_task(struct rpc_task *task)
 155{
 156        struct list_head *q;
 157        struct rpc_task *t;
 158
 159        if (task->u.tk_wait.list.prev == NULL) {
 160                list_del(&task->u.tk_wait.links);
 161                return;
 162        }
 163        if (!list_empty(&task->u.tk_wait.links)) {
 164                t = list_first_entry(&task->u.tk_wait.links,
 165                                struct rpc_task,
 166                                u.tk_wait.links);
 167                /* Assume __rpc_list_enqueue_task() cached the queue head */
 168                q = t->u.tk_wait.list.next;
 169                list_add_tail(&t->u.tk_wait.list, q);
 170                list_del(&task->u.tk_wait.links);
 171        }
 172        list_del(&task->u.tk_wait.list);
 173}
 174
 175/*
 176 * Add new request to a priority queue.
 177 */
 178static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
 179                struct rpc_task *task,
 180                unsigned char queue_priority)
 181{
 182        if (unlikely(queue_priority > queue->maxpriority))
 183                queue_priority = queue->maxpriority;
 184        __rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
 185}
 186
 187/*
 188 * Add new request to wait queue.
 189 *
 190 * Swapper tasks always get inserted at the head of the queue.
 191 * This should avoid many nasty memory deadlocks and hopefully
 192 * improve overall performance.
 193 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
 194 */
 195static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
 196                struct rpc_task *task,
 197                unsigned char queue_priority)
 198{
 199        INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
 200        if (RPC_IS_PRIORITY(queue))
 201                __rpc_add_wait_queue_priority(queue, task, queue_priority);
 202        else if (RPC_IS_SWAPPER(task))
 203                list_add(&task->u.tk_wait.list, &queue->tasks[0]);
 204        else
 205                list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
 206        task->tk_waitqueue = queue;
 207        queue->qlen++;
 208        /* barrier matches the read in rpc_wake_up_task_queue_locked() */
 209        smp_wmb();
 210        rpc_set_queued(task);
 211}
 212
 213/*
 214 * Remove request from a priority queue.
 215 */
 216static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
 217{
 218        __rpc_list_dequeue_task(task);
 219}
 220
 221/*
 222 * Remove request from queue.
 223 * Note: must be called with spin lock held.
 224 */
 225static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
 226{
 227        __rpc_disable_timer(queue, task);
 228        if (RPC_IS_PRIORITY(queue))
 229                __rpc_remove_wait_queue_priority(task);
 230        else
 231                list_del(&task->u.tk_wait.list);
 232        queue->qlen--;
 233}
 234
 235static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
 236{
 237        int i;
 238
 239        spin_lock_init(&queue->lock);
 240        for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
 241                INIT_LIST_HEAD(&queue->tasks[i]);
 242        queue->maxpriority = nr_queues - 1;
 243        rpc_reset_waitqueue_priority(queue);
 244        queue->qlen = 0;
 245        queue->timer_list.expires = 0;
 246        INIT_DELAYED_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn);
 247        INIT_LIST_HEAD(&queue->timer_list.list);
 248        rpc_assign_waitqueue_name(queue, qname);
 249}
 250
 251void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
 252{
 253        __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
 254}
 255EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
 256
 257void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
 258{
 259        __rpc_init_priority_wait_queue(queue, qname, 1);
 260}
 261EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
 262
 263void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
 264{
 265        cancel_delayed_work_sync(&queue->timer_list.dwork);
 266}
 267EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
 268
 269static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
 270{
 271        freezable_schedule_unsafe();
 272        if (signal_pending_state(mode, current))
 273                return -ERESTARTSYS;
 274        return 0;
 275}
 276
 277#if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
 278static void rpc_task_set_debuginfo(struct rpc_task *task)
 279{
 280        static atomic_t rpc_pid;
 281
 282        task->tk_pid = atomic_inc_return(&rpc_pid);
 283}
 284#else
 285static inline void rpc_task_set_debuginfo(struct rpc_task *task)
 286{
 287}
 288#endif
 289
 290static void rpc_set_active(struct rpc_task *task)
 291{
 292        rpc_task_set_debuginfo(task);
 293        set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
 294        trace_rpc_task_begin(task, NULL);
 295}
 296
 297/*
 298 * Mark an RPC call as having completed by clearing the 'active' bit
 299 * and then waking up all tasks that were sleeping.
 300 */
 301static int rpc_complete_task(struct rpc_task *task)
 302{
 303        void *m = &task->tk_runstate;
 304        wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
 305        struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
 306        unsigned long flags;
 307        int ret;
 308
 309        trace_rpc_task_complete(task, NULL);
 310
 311        spin_lock_irqsave(&wq->lock, flags);
 312        clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
 313        ret = atomic_dec_and_test(&task->tk_count);
 314        if (waitqueue_active(wq))
 315                __wake_up_locked_key(wq, TASK_NORMAL, &k);
 316        spin_unlock_irqrestore(&wq->lock, flags);
 317        return ret;
 318}
 319
 320/*
 321 * Allow callers to wait for completion of an RPC call
 322 *
 323 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
 324 * to enforce taking of the wq->lock and hence avoid races with
 325 * rpc_complete_task().
 326 */
 327int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
 328{
 329        if (action == NULL)
 330                action = rpc_wait_bit_killable;
 331        return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
 332                        action, TASK_KILLABLE);
 333}
 334EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
 335
 336/*
 337 * Make an RPC task runnable.
 338 *
 339 * Note: If the task is ASYNC, and is being made runnable after sitting on an
 340 * rpc_wait_queue, this must be called with the queue spinlock held to protect
 341 * the wait queue operation.
 342 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
 343 * which is needed to ensure that __rpc_execute() doesn't loop (due to the
 344 * lockless RPC_IS_QUEUED() test) before we've had a chance to test
 345 * the RPC_TASK_RUNNING flag.
 346 */
 347static void rpc_make_runnable(struct workqueue_struct *wq,
 348                struct rpc_task *task)
 349{
 350        bool need_wakeup = !rpc_test_and_set_running(task);
 351
 352        rpc_clear_queued(task);
 353        if (!need_wakeup)
 354                return;
 355        if (RPC_IS_ASYNC(task)) {
 356                INIT_WORK(&task->u.tk_work, rpc_async_schedule);
 357                queue_work(wq, &task->u.tk_work);
 358        } else
 359                wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
 360}
 361
 362/*
 363 * Prepare for sleeping on a wait queue.
 364 * By always appending tasks to the list we ensure FIFO behavior.
 365 * NB: An RPC task will only receive interrupt-driven events as long
 366 * as it's on a wait queue.
 367 */
 368static void __rpc_do_sleep_on_priority(struct rpc_wait_queue *q,
 369                struct rpc_task *task,
 370                unsigned char queue_priority)
 371{
 372        trace_rpc_task_sleep(task, q);
 373
 374        __rpc_add_wait_queue(q, task, queue_priority);
 375}
 376
 377static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
 378                struct rpc_task *task,
 379                unsigned char queue_priority)
 380{
 381        if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
 382                return;
 383        __rpc_do_sleep_on_priority(q, task, queue_priority);
 384}
 385
 386static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
 387                struct rpc_task *task, unsigned long timeout,
 388                unsigned char queue_priority)
 389{
 390        if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
 391                return;
 392        if (time_is_after_jiffies(timeout)) {
 393                __rpc_do_sleep_on_priority(q, task, queue_priority);
 394                __rpc_add_timer(q, task, timeout);
 395        } else
 396                task->tk_status = -ETIMEDOUT;
 397}
 398
 399static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
 400{
 401        if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
 402                task->tk_callback = action;
 403}
 404
 405static bool rpc_sleep_check_activated(struct rpc_task *task)
 406{
 407        /* We shouldn't ever put an inactive task to sleep */
 408        if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
 409                task->tk_status = -EIO;
 410                rpc_put_task_async(task);
 411                return false;
 412        }
 413        return true;
 414}
 415
 416void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
 417                                rpc_action action, unsigned long timeout)
 418{
 419        if (!rpc_sleep_check_activated(task))
 420                return;
 421
 422        rpc_set_tk_callback(task, action);
 423
 424        /*
 425         * Protect the queue operations.
 426         */
 427        spin_lock(&q->lock);
 428        __rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
 429        spin_unlock(&q->lock);
 430}
 431EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
 432
 433void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
 434                                rpc_action action)
 435{
 436        if (!rpc_sleep_check_activated(task))
 437                return;
 438
 439        rpc_set_tk_callback(task, action);
 440
 441        WARN_ON_ONCE(task->tk_timeout != 0);
 442        /*
 443         * Protect the queue operations.
 444         */
 445        spin_lock(&q->lock);
 446        __rpc_sleep_on_priority(q, task, task->tk_priority);
 447        spin_unlock(&q->lock);
 448}
 449EXPORT_SYMBOL_GPL(rpc_sleep_on);
 450
 451void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
 452                struct rpc_task *task, unsigned long timeout, int priority)
 453{
 454        if (!rpc_sleep_check_activated(task))
 455                return;
 456
 457        priority -= RPC_PRIORITY_LOW;
 458        /*
 459         * Protect the queue operations.
 460         */
 461        spin_lock(&q->lock);
 462        __rpc_sleep_on_priority_timeout(q, task, timeout, priority);
 463        spin_unlock(&q->lock);
 464}
 465EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
 466
 467void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
 468                int priority)
 469{
 470        if (!rpc_sleep_check_activated(task))
 471                return;
 472
 473        WARN_ON_ONCE(task->tk_timeout != 0);
 474        priority -= RPC_PRIORITY_LOW;
 475        /*
 476         * Protect the queue operations.
 477         */
 478        spin_lock(&q->lock);
 479        __rpc_sleep_on_priority(q, task, priority);
 480        spin_unlock(&q->lock);
 481}
 482EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
 483
 484/**
 485 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
 486 * @wq: workqueue on which to run task
 487 * @queue: wait queue
 488 * @task: task to be woken up
 489 *
 490 * Caller must hold queue->lock, and have cleared the task queued flag.
 491 */
 492static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
 493                struct rpc_wait_queue *queue,
 494                struct rpc_task *task)
 495{
 496        /* Has the task been executed yet? If not, we cannot wake it up! */
 497        if (!RPC_IS_ACTIVATED(task)) {
 498                printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
 499                return;
 500        }
 501
 502        trace_rpc_task_wakeup(task, queue);
 503
 504        __rpc_remove_wait_queue(queue, task);
 505
 506        rpc_make_runnable(wq, task);
 507}
 508
 509/*
 510 * Wake up a queued task while the queue lock is being held
 511 */
 512static struct rpc_task *
 513rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
 514                struct rpc_wait_queue *queue, struct rpc_task *task,
 515                bool (*action)(struct rpc_task *, void *), void *data)
 516{
 517        if (RPC_IS_QUEUED(task)) {
 518                smp_rmb();
 519                if (task->tk_waitqueue == queue) {
 520                        if (action == NULL || action(task, data)) {
 521                                __rpc_do_wake_up_task_on_wq(wq, queue, task);
 522                                return task;
 523                        }
 524                }
 525        }
 526        return NULL;
 527}
 528
 529/*
 530 * Wake up a queued task while the queue lock is being held
 531 */
 532static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue,
 533                                          struct rpc_task *task)
 534{
 535        rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
 536                                                   task, NULL, NULL);
 537}
 538
 539/*
 540 * Wake up a task on a specific queue
 541 */
 542void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
 543{
 544        if (!RPC_IS_QUEUED(task))
 545                return;
 546        spin_lock(&queue->lock);
 547        rpc_wake_up_task_queue_locked(queue, task);
 548        spin_unlock(&queue->lock);
 549}
 550EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
 551
 552static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
 553{
 554        task->tk_status = *(int *)status;
 555        return true;
 556}
 557
 558static void
 559rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
 560                struct rpc_task *task, int status)
 561{
 562        rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
 563                        task, rpc_task_action_set_status, &status);
 564}
 565
 566/**
 567 * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
 568 * @queue: pointer to rpc_wait_queue
 569 * @task: pointer to rpc_task
 570 * @status: integer error value
 571 *
 572 * If @task is queued on @queue, then it is woken up, and @task->tk_status is
 573 * set to the value of @status.
 574 */
 575void
 576rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
 577                struct rpc_task *task, int status)
 578{
 579        if (!RPC_IS_QUEUED(task))
 580                return;
 581        spin_lock(&queue->lock);
 582        rpc_wake_up_task_queue_set_status_locked(queue, task, status);
 583        spin_unlock(&queue->lock);
 584}
 585
 586/*
 587 * Wake up the next task on a priority queue.
 588 */
 589static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
 590{
 591        struct list_head *q;
 592        struct rpc_task *task;
 593
 594        /*
 595         * Service the privileged queue.
 596         */
 597        q = &queue->tasks[RPC_NR_PRIORITY - 1];
 598        if (queue->maxpriority > RPC_PRIORITY_PRIVILEGED && !list_empty(q)) {
 599                task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
 600                goto out;
 601        }
 602
 603        /*
 604         * Service a batch of tasks from a single owner.
 605         */
 606        q = &queue->tasks[queue->priority];
 607        if (!list_empty(q) && queue->nr) {
 608                queue->nr--;
 609                task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
 610                goto out;
 611        }
 612
 613        /*
 614         * Service the next queue.
 615         */
 616        do {
 617                if (q == &queue->tasks[0])
 618                        q = &queue->tasks[queue->maxpriority];
 619                else
 620                        q = q - 1;
 621                if (!list_empty(q)) {
 622                        task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
 623                        goto new_queue;
 624                }
 625        } while (q != &queue->tasks[queue->priority]);
 626
 627        rpc_reset_waitqueue_priority(queue);
 628        return NULL;
 629
 630new_queue:
 631        rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
 632out:
 633        return task;
 634}
 635
 636static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
 637{
 638        if (RPC_IS_PRIORITY(queue))
 639                return __rpc_find_next_queued_priority(queue);
 640        if (!list_empty(&queue->tasks[0]))
 641                return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
 642        return NULL;
 643}
 644
 645/*
 646 * Wake up the first task on the wait queue.
 647 */
 648struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
 649                struct rpc_wait_queue *queue,
 650                bool (*func)(struct rpc_task *, void *), void *data)
 651{
 652        struct rpc_task *task = NULL;
 653
 654        spin_lock(&queue->lock);
 655        task = __rpc_find_next_queued(queue);
 656        if (task != NULL)
 657                task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
 658                                task, func, data);
 659        spin_unlock(&queue->lock);
 660
 661        return task;
 662}
 663
 664/*
 665 * Wake up the first task on the wait queue.
 666 */
 667struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
 668                bool (*func)(struct rpc_task *, void *), void *data)
 669{
 670        return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
 671}
 672EXPORT_SYMBOL_GPL(rpc_wake_up_first);
 673
 674static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
 675{
 676        return true;
 677}
 678
 679/*
 680 * Wake up the next task on the wait queue.
 681*/
 682struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
 683{
 684        return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
 685}
 686EXPORT_SYMBOL_GPL(rpc_wake_up_next);
 687
 688/**
 689 * rpc_wake_up_locked - wake up all rpc_tasks
 690 * @queue: rpc_wait_queue on which the tasks are sleeping
 691 *
 692 */
 693static void rpc_wake_up_locked(struct rpc_wait_queue *queue)
 694{
 695        struct rpc_task *task;
 696
 697        for (;;) {
 698                task = __rpc_find_next_queued(queue);
 699                if (task == NULL)
 700                        break;
 701                rpc_wake_up_task_queue_locked(queue, task);
 702        }
 703}
 704
 705/**
 706 * rpc_wake_up - wake up all rpc_tasks
 707 * @queue: rpc_wait_queue on which the tasks are sleeping
 708 *
 709 * Grabs queue->lock
 710 */
 711void rpc_wake_up(struct rpc_wait_queue *queue)
 712{
 713        spin_lock(&queue->lock);
 714        rpc_wake_up_locked(queue);
 715        spin_unlock(&queue->lock);
 716}
 717EXPORT_SYMBOL_GPL(rpc_wake_up);
 718
 719/**
 720 * rpc_wake_up_status_locked - wake up all rpc_tasks and set their status value.
 721 * @queue: rpc_wait_queue on which the tasks are sleeping
 722 * @status: status value to set
 723 */
 724static void rpc_wake_up_status_locked(struct rpc_wait_queue *queue, int status)
 725{
 726        struct rpc_task *task;
 727
 728        for (;;) {
 729                task = __rpc_find_next_queued(queue);
 730                if (task == NULL)
 731                        break;
 732                rpc_wake_up_task_queue_set_status_locked(queue, task, status);
 733        }
 734}
 735
 736/**
 737 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
 738 * @queue: rpc_wait_queue on which the tasks are sleeping
 739 * @status: status value to set
 740 *
 741 * Grabs queue->lock
 742 */
 743void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
 744{
 745        spin_lock(&queue->lock);
 746        rpc_wake_up_status_locked(queue, status);
 747        spin_unlock(&queue->lock);
 748}
 749EXPORT_SYMBOL_GPL(rpc_wake_up_status);
 750
 751static void __rpc_queue_timer_fn(struct work_struct *work)
 752{
 753        struct rpc_wait_queue *queue = container_of(work,
 754                        struct rpc_wait_queue,
 755                        timer_list.dwork.work);
 756        struct rpc_task *task, *n;
 757        unsigned long expires, now, timeo;
 758
 759        spin_lock(&queue->lock);
 760        expires = now = jiffies;
 761        list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
 762                timeo = task->tk_timeout;
 763                if (time_after_eq(now, timeo)) {
 764                        trace_rpc_task_timeout(task, task->tk_action);
 765                        task->tk_status = -ETIMEDOUT;
 766                        rpc_wake_up_task_queue_locked(queue, task);
 767                        continue;
 768                }
 769                if (expires == now || time_after(expires, timeo))
 770                        expires = timeo;
 771        }
 772        if (!list_empty(&queue->timer_list.list))
 773                rpc_set_queue_timer(queue, expires);
 774        spin_unlock(&queue->lock);
 775}
 776
 777static void __rpc_atrun(struct rpc_task *task)
 778{
 779        if (task->tk_status == -ETIMEDOUT)
 780                task->tk_status = 0;
 781}
 782
 783/*
 784 * Run a task at a later time
 785 */
 786void rpc_delay(struct rpc_task *task, unsigned long delay)
 787{
 788        rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
 789}
 790EXPORT_SYMBOL_GPL(rpc_delay);
 791
 792/*
 793 * Helper to call task->tk_ops->rpc_call_prepare
 794 */
 795void rpc_prepare_task(struct rpc_task *task)
 796{
 797        task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
 798}
 799
 800static void
 801rpc_init_task_statistics(struct rpc_task *task)
 802{
 803        /* Initialize retry counters */
 804        task->tk_garb_retry = 2;
 805        task->tk_cred_retry = 2;
 806        task->tk_rebind_retry = 2;
 807
 808        /* starting timestamp */
 809        task->tk_start = ktime_get();
 810}
 811
 812static void
 813rpc_reset_task_statistics(struct rpc_task *task)
 814{
 815        task->tk_timeouts = 0;
 816        task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
 817        rpc_init_task_statistics(task);
 818}
 819
 820/*
 821 * Helper that calls task->tk_ops->rpc_call_done if it exists
 822 */
 823void rpc_exit_task(struct rpc_task *task)
 824{
 825        trace_rpc_task_end(task, task->tk_action);
 826        task->tk_action = NULL;
 827        if (task->tk_ops->rpc_count_stats)
 828                task->tk_ops->rpc_count_stats(task, task->tk_calldata);
 829        else if (task->tk_client)
 830                rpc_count_iostats(task, task->tk_client->cl_metrics);
 831        if (task->tk_ops->rpc_call_done != NULL) {
 832                task->tk_ops->rpc_call_done(task, task->tk_calldata);
 833                if (task->tk_action != NULL) {
 834                        /* Always release the RPC slot and buffer memory */
 835                        xprt_release(task);
 836                        rpc_reset_task_statistics(task);
 837                }
 838        }
 839}
 840
 841void rpc_signal_task(struct rpc_task *task)
 842{
 843        struct rpc_wait_queue *queue;
 844
 845        if (!RPC_IS_ACTIVATED(task))
 846                return;
 847
 848        trace_rpc_task_signalled(task, task->tk_action);
 849        set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
 850        smp_mb__after_atomic();
 851        queue = READ_ONCE(task->tk_waitqueue);
 852        if (queue)
 853                rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS);
 854}
 855
 856void rpc_exit(struct rpc_task *task, int status)
 857{
 858        task->tk_status = status;
 859        task->tk_action = rpc_exit_task;
 860        rpc_wake_up_queued_task(task->tk_waitqueue, task);
 861}
 862EXPORT_SYMBOL_GPL(rpc_exit);
 863
 864void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
 865{
 866        if (ops->rpc_release != NULL)
 867                ops->rpc_release(calldata);
 868}
 869
 870/*
 871 * This is the RPC `scheduler' (or rather, the finite state machine).
 872 */
 873static void __rpc_execute(struct rpc_task *task)
 874{
 875        struct rpc_wait_queue *queue;
 876        int task_is_async = RPC_IS_ASYNC(task);
 877        int status = 0;
 878
 879        WARN_ON_ONCE(RPC_IS_QUEUED(task));
 880        if (RPC_IS_QUEUED(task))
 881                return;
 882
 883        for (;;) {
 884                void (*do_action)(struct rpc_task *);
 885
 886                /*
 887                 * Perform the next FSM step or a pending callback.
 888                 *
 889                 * tk_action may be NULL if the task has been killed.
 890                 * In particular, note that rpc_killall_tasks may
 891                 * do this at any time, so beware when dereferencing.
 892                 */
 893                do_action = task->tk_action;
 894                if (task->tk_callback) {
 895                        do_action = task->tk_callback;
 896                        task->tk_callback = NULL;
 897                }
 898                if (!do_action)
 899                        break;
 900                trace_rpc_task_run_action(task, do_action);
 901                do_action(task);
 902
 903                /*
 904                 * Lockless check for whether task is sleeping or not.
 905                 */
 906                if (!RPC_IS_QUEUED(task))
 907                        continue;
 908
 909                /*
 910                 * Signalled tasks should exit rather than sleep.
 911                 */
 912                if (RPC_SIGNALLED(task)) {
 913                        task->tk_rpc_status = -ERESTARTSYS;
 914                        rpc_exit(task, -ERESTARTSYS);
 915                }
 916
 917                /*
 918                 * The queue->lock protects against races with
 919                 * rpc_make_runnable().
 920                 *
 921                 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
 922                 * rpc_task, rpc_make_runnable() can assign it to a
 923                 * different workqueue. We therefore cannot assume that the
 924                 * rpc_task pointer may still be dereferenced.
 925                 */
 926                queue = task->tk_waitqueue;
 927                spin_lock(&queue->lock);
 928                if (!RPC_IS_QUEUED(task)) {
 929                        spin_unlock(&queue->lock);
 930                        continue;
 931                }
 932                rpc_clear_running(task);
 933                spin_unlock(&queue->lock);
 934                if (task_is_async)
 935                        return;
 936
 937                /* sync task: sleep here */
 938                trace_rpc_task_sync_sleep(task, task->tk_action);
 939                status = out_of_line_wait_on_bit(&task->tk_runstate,
 940                                RPC_TASK_QUEUED, rpc_wait_bit_killable,
 941                                TASK_KILLABLE);
 942                if (status < 0) {
 943                        /*
 944                         * When a sync task receives a signal, it exits with
 945                         * -ERESTARTSYS. In order to catch any callbacks that
 946                         * clean up after sleeping on some queue, we don't
 947                         * break the loop here, but go around once more.
 948                         */
 949                        trace_rpc_task_signalled(task, task->tk_action);
 950                        set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
 951                        task->tk_rpc_status = -ERESTARTSYS;
 952                        rpc_exit(task, -ERESTARTSYS);
 953                }
 954                trace_rpc_task_sync_wake(task, task->tk_action);
 955        }
 956
 957        /* Release all resources associated with the task */
 958        rpc_release_task(task);
 959}
 960
 961/*
 962 * User-visible entry point to the scheduler.
 963 *
 964 * This may be called recursively if e.g. an async NFS task updates
 965 * the attributes and finds that dirty pages must be flushed.
 966 * NOTE: Upon exit of this function the task is guaranteed to be
 967 *       released. In particular note that tk_release() will have
 968 *       been called, so your task memory may have been freed.
 969 */
 970void rpc_execute(struct rpc_task *task)
 971{
 972        bool is_async = RPC_IS_ASYNC(task);
 973
 974        rpc_set_active(task);
 975        rpc_make_runnable(rpciod_workqueue, task);
 976        if (!is_async) {
 977                unsigned int pflags = memalloc_nofs_save();
 978                __rpc_execute(task);
 979                memalloc_nofs_restore(pflags);
 980        }
 981}
 982
 983static void rpc_async_schedule(struct work_struct *work)
 984{
 985        unsigned int pflags = memalloc_nofs_save();
 986
 987        __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
 988        memalloc_nofs_restore(pflags);
 989}
 990
 991/**
 992 * rpc_malloc - allocate RPC buffer resources
 993 * @task: RPC task
 994 *
 995 * A single memory region is allocated, which is split between the
 996 * RPC call and RPC reply that this task is being used for. When
 997 * this RPC is retired, the memory is released by calling rpc_free.
 998 *
 999 * To prevent rpciod from hanging, this allocator never sleeps,
1000 * returning -ENOMEM and suppressing warning if the request cannot
1001 * be serviced immediately. The caller can arrange to sleep in a
1002 * way that is safe for rpciod.
1003 *
1004 * Most requests are 'small' (under 2KiB) and can be serviced from a
1005 * mempool, ensuring that NFS reads and writes can always proceed,
1006 * and that there is good locality of reference for these buffers.
1007 */
1008int rpc_malloc(struct rpc_task *task)
1009{
1010        struct rpc_rqst *rqst = task->tk_rqstp;
1011        size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1012        struct rpc_buffer *buf;
1013        gfp_t gfp = GFP_NOFS;
1014
1015        if (RPC_IS_SWAPPER(task))
1016                gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
1017
1018        size += sizeof(struct rpc_buffer);
1019        if (size <= RPC_BUFFER_MAXSIZE)
1020                buf = mempool_alloc(rpc_buffer_mempool, gfp);
1021        else
1022                buf = kmalloc(size, gfp);
1023
1024        if (!buf)
1025                return -ENOMEM;
1026
1027        buf->len = size;
1028        rqst->rq_buffer = buf->data;
1029        rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1030        return 0;
1031}
1032EXPORT_SYMBOL_GPL(rpc_malloc);
1033
1034/**
1035 * rpc_free - free RPC buffer resources allocated via rpc_malloc
1036 * @task: RPC task
1037 *
1038 */
1039void rpc_free(struct rpc_task *task)
1040{
1041        void *buffer = task->tk_rqstp->rq_buffer;
1042        size_t size;
1043        struct rpc_buffer *buf;
1044
1045        buf = container_of(buffer, struct rpc_buffer, data);
1046        size = buf->len;
1047
1048        if (size <= RPC_BUFFER_MAXSIZE)
1049                mempool_free(buf, rpc_buffer_mempool);
1050        else
1051                kfree(buf);
1052}
1053EXPORT_SYMBOL_GPL(rpc_free);
1054
1055/*
1056 * Creation and deletion of RPC task structures
1057 */
1058static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1059{
1060        memset(task, 0, sizeof(*task));
1061        atomic_set(&task->tk_count, 1);
1062        task->tk_flags  = task_setup_data->flags;
1063        task->tk_ops = task_setup_data->callback_ops;
1064        task->tk_calldata = task_setup_data->callback_data;
1065        INIT_LIST_HEAD(&task->tk_task);
1066
1067        task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1068        task->tk_owner = current->tgid;
1069
1070        /* Initialize workqueue for async tasks */
1071        task->tk_workqueue = task_setup_data->workqueue;
1072
1073        task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client,
1074                        xprt_get(task_setup_data->rpc_xprt));
1075
1076        task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1077
1078        if (task->tk_ops->rpc_call_prepare != NULL)
1079                task->tk_action = rpc_prepare_task;
1080
1081        rpc_init_task_statistics(task);
1082}
1083
1084static struct rpc_task *
1085rpc_alloc_task(void)
1086{
1087        return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
1088}
1089
1090/*
1091 * Create a new task for the specified client.
1092 */
1093struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1094{
1095        struct rpc_task *task = setup_data->task;
1096        unsigned short flags = 0;
1097
1098        if (task == NULL) {
1099                task = rpc_alloc_task();
1100                flags = RPC_TASK_DYNAMIC;
1101        }
1102
1103        rpc_init_task(task, setup_data);
1104        task->tk_flags |= flags;
1105        return task;
1106}
1107
1108/*
1109 * rpc_free_task - release rpc task and perform cleanups
1110 *
1111 * Note that we free up the rpc_task _after_ rpc_release_calldata()
1112 * in order to work around a workqueue dependency issue.
1113 *
1114 * Tejun Heo states:
1115 * "Workqueue currently considers two work items to be the same if they're
1116 * on the same address and won't execute them concurrently - ie. it
1117 * makes a work item which is queued again while being executed wait
1118 * for the previous execution to complete.
1119 *
1120 * If a work function frees the work item, and then waits for an event
1121 * which should be performed by another work item and *that* work item
1122 * recycles the freed work item, it can create a false dependency loop.
1123 * There really is no reliable way to detect this short of verifying
1124 * every memory free."
1125 *
1126 */
1127static void rpc_free_task(struct rpc_task *task)
1128{
1129        unsigned short tk_flags = task->tk_flags;
1130
1131        put_rpccred(task->tk_op_cred);
1132        rpc_release_calldata(task->tk_ops, task->tk_calldata);
1133
1134        if (tk_flags & RPC_TASK_DYNAMIC)
1135                mempool_free(task, rpc_task_mempool);
1136}
1137
1138static void rpc_async_release(struct work_struct *work)
1139{
1140        unsigned int pflags = memalloc_nofs_save();
1141
1142        rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1143        memalloc_nofs_restore(pflags);
1144}
1145
1146static void rpc_release_resources_task(struct rpc_task *task)
1147{
1148        xprt_release(task);
1149        if (task->tk_msg.rpc_cred) {
1150                if (!(task->tk_flags & RPC_TASK_CRED_NOREF))
1151                        put_cred(task->tk_msg.rpc_cred);
1152                task->tk_msg.rpc_cred = NULL;
1153        }
1154        rpc_task_release_client(task);
1155}
1156
1157static void rpc_final_put_task(struct rpc_task *task,
1158                struct workqueue_struct *q)
1159{
1160        if (q != NULL) {
1161                INIT_WORK(&task->u.tk_work, rpc_async_release);
1162                queue_work(q, &task->u.tk_work);
1163        } else
1164                rpc_free_task(task);
1165}
1166
1167static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1168{
1169        if (atomic_dec_and_test(&task->tk_count)) {
1170                rpc_release_resources_task(task);
1171                rpc_final_put_task(task, q);
1172        }
1173}
1174
1175void rpc_put_task(struct rpc_task *task)
1176{
1177        rpc_do_put_task(task, NULL);
1178}
1179EXPORT_SYMBOL_GPL(rpc_put_task);
1180
1181void rpc_put_task_async(struct rpc_task *task)
1182{
1183        rpc_do_put_task(task, task->tk_workqueue);
1184}
1185EXPORT_SYMBOL_GPL(rpc_put_task_async);
1186
1187static void rpc_release_task(struct rpc_task *task)
1188{
1189        WARN_ON_ONCE(RPC_IS_QUEUED(task));
1190
1191        rpc_release_resources_task(task);
1192
1193        /*
1194         * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1195         * so it should be safe to use task->tk_count as a test for whether
1196         * or not any other processes still hold references to our rpc_task.
1197         */
1198        if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1199                /* Wake up anyone who may be waiting for task completion */
1200                if (!rpc_complete_task(task))
1201                        return;
1202        } else {
1203                if (!atomic_dec_and_test(&task->tk_count))
1204                        return;
1205        }
1206        rpc_final_put_task(task, task->tk_workqueue);
1207}
1208
1209int rpciod_up(void)
1210{
1211        return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1212}
1213
1214void rpciod_down(void)
1215{
1216        module_put(THIS_MODULE);
1217}
1218
1219/*
1220 * Start up the rpciod workqueue.
1221 */
1222static int rpciod_start(void)
1223{
1224        struct workqueue_struct *wq;
1225
1226        /*
1227         * Create the rpciod thread and wait for it to start.
1228         */
1229        wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1230        if (!wq)
1231                goto out_failed;
1232        rpciod_workqueue = wq;
1233        /* Note: highpri because network receive is latency sensitive */
1234        wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0);
1235        if (!wq)
1236                goto free_rpciod;
1237        xprtiod_workqueue = wq;
1238        return 1;
1239free_rpciod:
1240        wq = rpciod_workqueue;
1241        rpciod_workqueue = NULL;
1242        destroy_workqueue(wq);
1243out_failed:
1244        return 0;
1245}
1246
1247static void rpciod_stop(void)
1248{
1249        struct workqueue_struct *wq = NULL;
1250
1251        if (rpciod_workqueue == NULL)
1252                return;
1253
1254        wq = rpciod_workqueue;
1255        rpciod_workqueue = NULL;
1256        destroy_workqueue(wq);
1257        wq = xprtiod_workqueue;
1258        xprtiod_workqueue = NULL;
1259        destroy_workqueue(wq);
1260}
1261
1262void
1263rpc_destroy_mempool(void)
1264{
1265        rpciod_stop();
1266        mempool_destroy(rpc_buffer_mempool);
1267        mempool_destroy(rpc_task_mempool);
1268        kmem_cache_destroy(rpc_task_slabp);
1269        kmem_cache_destroy(rpc_buffer_slabp);
1270        rpc_destroy_wait_queue(&delay_queue);
1271}
1272
1273int
1274rpc_init_mempool(void)
1275{
1276        /*
1277         * The following is not strictly a mempool initialisation,
1278         * but there is no harm in doing it here
1279         */
1280        rpc_init_wait_queue(&delay_queue, "delayq");
1281        if (!rpciod_start())
1282                goto err_nomem;
1283
1284        rpc_task_slabp = kmem_cache_create("rpc_tasks",
1285                                             sizeof(struct rpc_task),
1286                                             0, SLAB_HWCACHE_ALIGN,
1287                                             NULL);
1288        if (!rpc_task_slabp)
1289                goto err_nomem;
1290        rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1291                                             RPC_BUFFER_MAXSIZE,
1292                                             0, SLAB_HWCACHE_ALIGN,
1293                                             NULL);
1294        if (!rpc_buffer_slabp)
1295                goto err_nomem;
1296        rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1297                                                    rpc_task_slabp);
1298        if (!rpc_task_mempool)
1299                goto err_nomem;
1300        rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1301                                                      rpc_buffer_slabp);
1302        if (!rpc_buffer_mempool)
1303                goto err_nomem;
1304        return 0;
1305err_nomem:
1306        rpc_destroy_mempool();
1307        return -ENOMEM;
1308}
1309