linux/net/tipc/crypto.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * net/tipc/crypto.c: TIPC crypto for key handling & packet en/decryption
   4 *
   5 * Copyright (c) 2019, Ericsson AB
   6 * All rights reserved.
   7 *
   8 * Redistribution and use in source and binary forms, with or without
   9 * modification, are permitted provided that the following conditions are met:
  10 *
  11 * 1. Redistributions of source code must retain the above copyright
  12 *    notice, this list of conditions and the following disclaimer.
  13 * 2. Redistributions in binary form must reproduce the above copyright
  14 *    notice, this list of conditions and the following disclaimer in the
  15 *    documentation and/or other materials provided with the distribution.
  16 * 3. Neither the names of the copyright holders nor the names of its
  17 *    contributors may be used to endorse or promote products derived from
  18 *    this software without specific prior written permission.
  19 *
  20 * Alternatively, this software may be distributed under the terms of the
  21 * GNU General Public License ("GPL") version 2 as published by the Free
  22 * Software Foundation.
  23 *
  24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  25 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  27 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  28 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  34 * POSSIBILITY OF SUCH DAMAGE.
  35 */
  36
  37#include <crypto/aead.h>
  38#include <crypto/aes.h>
  39#include <crypto/rng.h>
  40#include "crypto.h"
  41#include "msg.h"
  42#include "bcast.h"
  43
  44#define TIPC_TX_GRACE_PERIOD    msecs_to_jiffies(5000) /* 5s */
  45#define TIPC_TX_LASTING_TIME    msecs_to_jiffies(10000) /* 10s */
  46#define TIPC_RX_ACTIVE_LIM      msecs_to_jiffies(3000) /* 3s */
  47#define TIPC_RX_PASSIVE_LIM     msecs_to_jiffies(15000) /* 15s */
  48
  49#define TIPC_MAX_TFMS_DEF       10
  50#define TIPC_MAX_TFMS_LIM       1000
  51
  52#define TIPC_REKEYING_INTV_DEF  (60 * 24) /* default: 1 day */
  53
  54/*
  55 * TIPC Key ids
  56 */
  57enum {
  58        KEY_MASTER = 0,
  59        KEY_MIN = KEY_MASTER,
  60        KEY_1 = 1,
  61        KEY_2,
  62        KEY_3,
  63        KEY_MAX = KEY_3,
  64};
  65
  66/*
  67 * TIPC Crypto statistics
  68 */
  69enum {
  70        STAT_OK,
  71        STAT_NOK,
  72        STAT_ASYNC,
  73        STAT_ASYNC_OK,
  74        STAT_ASYNC_NOK,
  75        STAT_BADKEYS, /* tx only */
  76        STAT_BADMSGS = STAT_BADKEYS, /* rx only */
  77        STAT_NOKEYS,
  78        STAT_SWITCHES,
  79
  80        MAX_STATS,
  81};
  82
  83/* TIPC crypto statistics' header */
  84static const char *hstats[MAX_STATS] = {"ok", "nok", "async", "async_ok",
  85                                        "async_nok", "badmsgs", "nokeys",
  86                                        "switches"};
  87
  88/* Max TFMs number per key */
  89int sysctl_tipc_max_tfms __read_mostly = TIPC_MAX_TFMS_DEF;
  90/* Key exchange switch, default: on */
  91int sysctl_tipc_key_exchange_enabled __read_mostly = 1;
  92
  93/*
  94 * struct tipc_key - TIPC keys' status indicator
  95 *
  96 *         7     6     5     4     3     2     1     0
  97 *      +-----+-----+-----+-----+-----+-----+-----+-----+
  98 * key: | (reserved)|passive idx| active idx|pending idx|
  99 *      +-----+-----+-----+-----+-----+-----+-----+-----+
 100 */
 101struct tipc_key {
 102#define KEY_BITS (2)
 103#define KEY_MASK ((1 << KEY_BITS) - 1)
 104        union {
 105                struct {
 106#if defined(__LITTLE_ENDIAN_BITFIELD)
 107                        u8 pending:2,
 108                           active:2,
 109                           passive:2, /* rx only */
 110                           reserved:2;
 111#elif defined(__BIG_ENDIAN_BITFIELD)
 112                        u8 reserved:2,
 113                           passive:2, /* rx only */
 114                           active:2,
 115                           pending:2;
 116#else
 117#error  "Please fix <asm/byteorder.h>"
 118#endif
 119                } __packed;
 120                u8 keys;
 121        };
 122};
 123
 124/**
 125 * struct tipc_tfm - TIPC TFM structure to form a list of TFMs
 126 * @tfm: cipher handle/key
 127 * @list: linked list of TFMs
 128 */
 129struct tipc_tfm {
 130        struct crypto_aead *tfm;
 131        struct list_head list;
 132};
 133
 134/**
 135 * struct tipc_aead - TIPC AEAD key structure
 136 * @tfm_entry: per-cpu pointer to one entry in TFM list
 137 * @crypto: TIPC crypto owns this key
 138 * @cloned: reference to the source key in case cloning
 139 * @users: the number of the key users (TX/RX)
 140 * @salt: the key's SALT value
 141 * @authsize: authentication tag size (max = 16)
 142 * @mode: crypto mode is applied to the key
 143 * @hint: a hint for user key
 144 * @rcu: struct rcu_head
 145 * @key: the aead key
 146 * @gen: the key's generation
 147 * @seqno: the key seqno (cluster scope)
 148 * @refcnt: the key reference counter
 149 */
 150struct tipc_aead {
 151#define TIPC_AEAD_HINT_LEN (5)
 152        struct tipc_tfm * __percpu *tfm_entry;
 153        struct tipc_crypto *crypto;
 154        struct tipc_aead *cloned;
 155        atomic_t users;
 156        u32 salt;
 157        u8 authsize;
 158        u8 mode;
 159        char hint[2 * TIPC_AEAD_HINT_LEN + 1];
 160        struct rcu_head rcu;
 161        struct tipc_aead_key *key;
 162        u16 gen;
 163
 164        atomic64_t seqno ____cacheline_aligned;
 165        refcount_t refcnt ____cacheline_aligned;
 166
 167} ____cacheline_aligned;
 168
 169/**
 170 * struct tipc_crypto_stats - TIPC Crypto statistics
 171 * @stat: array of crypto statistics
 172 */
 173struct tipc_crypto_stats {
 174        unsigned int stat[MAX_STATS];
 175};
 176
 177/**
 178 * struct tipc_crypto - TIPC TX/RX crypto structure
 179 * @net: struct net
 180 * @node: TIPC node (RX)
 181 * @aead: array of pointers to AEAD keys for encryption/decryption
 182 * @peer_rx_active: replicated peer RX active key index
 183 * @key_gen: TX/RX key generation
 184 * @key: the key states
 185 * @skey_mode: session key's mode
 186 * @skey: received session key
 187 * @wq: common workqueue on TX crypto
 188 * @work: delayed work sched for TX/RX
 189 * @key_distr: key distributing state
 190 * @rekeying_intv: rekeying interval (in minutes)
 191 * @stats: the crypto statistics
 192 * @name: the crypto name
 193 * @sndnxt: the per-peer sndnxt (TX)
 194 * @timer1: general timer 1 (jiffies)
 195 * @timer2: general timer 2 (jiffies)
 196 * @working: the crypto is working or not
 197 * @key_master: flag indicates if master key exists
 198 * @legacy_user: flag indicates if a peer joins w/o master key (for bwd comp.)
 199 * @nokey: no key indication
 200 * @flags: combined flags field
 201 * @lock: tipc_key lock
 202 */
 203struct tipc_crypto {
 204        struct net *net;
 205        struct tipc_node *node;
 206        struct tipc_aead __rcu *aead[KEY_MAX + 1];
 207        atomic_t peer_rx_active;
 208        u16 key_gen;
 209        struct tipc_key key;
 210        u8 skey_mode;
 211        struct tipc_aead_key *skey;
 212        struct workqueue_struct *wq;
 213        struct delayed_work work;
 214#define KEY_DISTR_SCHED         1
 215#define KEY_DISTR_COMPL         2
 216        atomic_t key_distr;
 217        u32 rekeying_intv;
 218
 219        struct tipc_crypto_stats __percpu *stats;
 220        char name[48];
 221
 222        atomic64_t sndnxt ____cacheline_aligned;
 223        unsigned long timer1;
 224        unsigned long timer2;
 225        union {
 226                struct {
 227                        u8 working:1;
 228                        u8 key_master:1;
 229                        u8 legacy_user:1;
 230                        u8 nokey: 1;
 231                };
 232                u8 flags;
 233        };
 234        spinlock_t lock; /* crypto lock */
 235
 236} ____cacheline_aligned;
 237
 238/* struct tipc_crypto_tx_ctx - TX context for callbacks */
 239struct tipc_crypto_tx_ctx {
 240        struct tipc_aead *aead;
 241        struct tipc_bearer *bearer;
 242        struct tipc_media_addr dst;
 243};
 244
 245/* struct tipc_crypto_rx_ctx - RX context for callbacks */
 246struct tipc_crypto_rx_ctx {
 247        struct tipc_aead *aead;
 248        struct tipc_bearer *bearer;
 249};
 250
 251static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead);
 252static inline void tipc_aead_put(struct tipc_aead *aead);
 253static void tipc_aead_free(struct rcu_head *rp);
 254static int tipc_aead_users(struct tipc_aead __rcu *aead);
 255static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim);
 256static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim);
 257static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val);
 258static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead);
 259static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
 260                          u8 mode);
 261static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src);
 262static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
 263                                 unsigned int crypto_ctx_size,
 264                                 u8 **iv, struct aead_request **req,
 265                                 struct scatterlist **sg, int nsg);
 266static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
 267                             struct tipc_bearer *b,
 268                             struct tipc_media_addr *dst,
 269                             struct tipc_node *__dnode);
 270static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err);
 271static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
 272                             struct sk_buff *skb, struct tipc_bearer *b);
 273static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err);
 274static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr);
 275static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
 276                           u8 tx_key, struct sk_buff *skb,
 277                           struct tipc_crypto *__rx);
 278static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
 279                                             u8 new_passive,
 280                                             u8 new_active,
 281                                             u8 new_pending);
 282static int tipc_crypto_key_attach(struct tipc_crypto *c,
 283                                  struct tipc_aead *aead, u8 pos,
 284                                  bool master_key);
 285static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending);
 286static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
 287                                                 struct tipc_crypto *rx,
 288                                                 struct sk_buff *skb,
 289                                                 u8 tx_key);
 290static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb);
 291static int tipc_crypto_key_revoke(struct net *net, u8 tx_key);
 292static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
 293                                         struct tipc_bearer *b,
 294                                         struct tipc_media_addr *dst,
 295                                         struct tipc_node *__dnode, u8 type);
 296static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
 297                                     struct tipc_bearer *b,
 298                                     struct sk_buff **skb, int err);
 299static void tipc_crypto_do_cmd(struct net *net, int cmd);
 300static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf);
 301static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
 302                                  char *buf);
 303static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
 304                                u16 gen, u8 mode, u32 dnode);
 305static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr);
 306static void tipc_crypto_work_tx(struct work_struct *work);
 307static void tipc_crypto_work_rx(struct work_struct *work);
 308static int tipc_aead_key_generate(struct tipc_aead_key *skey);
 309
 310#define is_tx(crypto) (!(crypto)->node)
 311#define is_rx(crypto) (!is_tx(crypto))
 312
 313#define key_next(cur) ((cur) % KEY_MAX + 1)
 314
 315#define tipc_aead_rcu_ptr(rcu_ptr, lock)                                \
 316        rcu_dereference_protected((rcu_ptr), lockdep_is_held(lock))
 317
 318#define tipc_aead_rcu_replace(rcu_ptr, ptr, lock)                       \
 319do {                                                                    \
 320        struct tipc_aead *__tmp = rcu_dereference_protected((rcu_ptr),  \
 321                                                lockdep_is_held(lock)); \
 322        rcu_assign_pointer((rcu_ptr), (ptr));                           \
 323        tipc_aead_put(__tmp);                                           \
 324} while (0)
 325
 326#define tipc_crypto_key_detach(rcu_ptr, lock)                           \
 327        tipc_aead_rcu_replace((rcu_ptr), NULL, lock)
 328
 329/**
 330 * tipc_aead_key_validate - Validate a AEAD user key
 331 * @ukey: pointer to user key data
 332 * @info: netlink info pointer
 333 */
 334int tipc_aead_key_validate(struct tipc_aead_key *ukey, struct genl_info *info)
 335{
 336        int keylen;
 337
 338        /* Check if algorithm exists */
 339        if (unlikely(!crypto_has_alg(ukey->alg_name, 0, 0))) {
 340                GENL_SET_ERR_MSG(info, "unable to load the algorithm (module existed?)");
 341                return -ENODEV;
 342        }
 343
 344        /* Currently, we only support the "gcm(aes)" cipher algorithm */
 345        if (strcmp(ukey->alg_name, "gcm(aes)")) {
 346                GENL_SET_ERR_MSG(info, "not supported yet the algorithm");
 347                return -ENOTSUPP;
 348        }
 349
 350        /* Check if key size is correct */
 351        keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
 352        if (unlikely(keylen != TIPC_AES_GCM_KEY_SIZE_128 &&
 353                     keylen != TIPC_AES_GCM_KEY_SIZE_192 &&
 354                     keylen != TIPC_AES_GCM_KEY_SIZE_256)) {
 355                GENL_SET_ERR_MSG(info, "incorrect key length (20, 28 or 36 octets?)");
 356                return -EKEYREJECTED;
 357        }
 358
 359        return 0;
 360}
 361
 362/**
 363 * tipc_aead_key_generate - Generate new session key
 364 * @skey: input/output key with new content
 365 *
 366 * Return: 0 in case of success, otherwise < 0
 367 */
 368static int tipc_aead_key_generate(struct tipc_aead_key *skey)
 369{
 370        int rc = 0;
 371
 372        /* Fill the key's content with a random value via RNG cipher */
 373        rc = crypto_get_default_rng();
 374        if (likely(!rc)) {
 375                rc = crypto_rng_get_bytes(crypto_default_rng, skey->key,
 376                                          skey->keylen);
 377                crypto_put_default_rng();
 378        }
 379
 380        return rc;
 381}
 382
 383static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead)
 384{
 385        struct tipc_aead *tmp;
 386
 387        rcu_read_lock();
 388        tmp = rcu_dereference(aead);
 389        if (unlikely(!tmp || !refcount_inc_not_zero(&tmp->refcnt)))
 390                tmp = NULL;
 391        rcu_read_unlock();
 392
 393        return tmp;
 394}
 395
 396static inline void tipc_aead_put(struct tipc_aead *aead)
 397{
 398        if (aead && refcount_dec_and_test(&aead->refcnt))
 399                call_rcu(&aead->rcu, tipc_aead_free);
 400}
 401
 402/**
 403 * tipc_aead_free - Release AEAD key incl. all the TFMs in the list
 404 * @rp: rcu head pointer
 405 */
 406static void tipc_aead_free(struct rcu_head *rp)
 407{
 408        struct tipc_aead *aead = container_of(rp, struct tipc_aead, rcu);
 409        struct tipc_tfm *tfm_entry, *head, *tmp;
 410
 411        if (aead->cloned) {
 412                tipc_aead_put(aead->cloned);
 413        } else {
 414                head = *get_cpu_ptr(aead->tfm_entry);
 415                put_cpu_ptr(aead->tfm_entry);
 416                list_for_each_entry_safe(tfm_entry, tmp, &head->list, list) {
 417                        crypto_free_aead(tfm_entry->tfm);
 418                        list_del(&tfm_entry->list);
 419                        kfree(tfm_entry);
 420                }
 421                /* Free the head */
 422                crypto_free_aead(head->tfm);
 423                list_del(&head->list);
 424                kfree(head);
 425        }
 426        free_percpu(aead->tfm_entry);
 427        kfree_sensitive(aead->key);
 428        kfree(aead);
 429}
 430
 431static int tipc_aead_users(struct tipc_aead __rcu *aead)
 432{
 433        struct tipc_aead *tmp;
 434        int users = 0;
 435
 436        rcu_read_lock();
 437        tmp = rcu_dereference(aead);
 438        if (tmp)
 439                users = atomic_read(&tmp->users);
 440        rcu_read_unlock();
 441
 442        return users;
 443}
 444
 445static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim)
 446{
 447        struct tipc_aead *tmp;
 448
 449        rcu_read_lock();
 450        tmp = rcu_dereference(aead);
 451        if (tmp)
 452                atomic_add_unless(&tmp->users, 1, lim);
 453        rcu_read_unlock();
 454}
 455
 456static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim)
 457{
 458        struct tipc_aead *tmp;
 459
 460        rcu_read_lock();
 461        tmp = rcu_dereference(aead);
 462        if (tmp)
 463                atomic_add_unless(&rcu_dereference(aead)->users, -1, lim);
 464        rcu_read_unlock();
 465}
 466
 467static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val)
 468{
 469        struct tipc_aead *tmp;
 470        int cur;
 471
 472        rcu_read_lock();
 473        tmp = rcu_dereference(aead);
 474        if (tmp) {
 475                do {
 476                        cur = atomic_read(&tmp->users);
 477                        if (cur == val)
 478                                break;
 479                } while (atomic_cmpxchg(&tmp->users, cur, val) != cur);
 480        }
 481        rcu_read_unlock();
 482}
 483
 484/**
 485 * tipc_aead_tfm_next - Move TFM entry to the next one in list and return it
 486 * @aead: the AEAD key pointer
 487 */
 488static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead)
 489{
 490        struct tipc_tfm **tfm_entry;
 491        struct crypto_aead *tfm;
 492
 493        tfm_entry = get_cpu_ptr(aead->tfm_entry);
 494        *tfm_entry = list_next_entry(*tfm_entry, list);
 495        tfm = (*tfm_entry)->tfm;
 496        put_cpu_ptr(tfm_entry);
 497
 498        return tfm;
 499}
 500
 501/**
 502 * tipc_aead_init - Initiate TIPC AEAD
 503 * @aead: returned new TIPC AEAD key handle pointer
 504 * @ukey: pointer to user key data
 505 * @mode: the key mode
 506 *
 507 * Allocate a (list of) new cipher transformation (TFM) with the specific user
 508 * key data if valid. The number of the allocated TFMs can be set via the sysfs
 509 * "net/tipc/max_tfms" first.
 510 * Also, all the other AEAD data are also initialized.
 511 *
 512 * Return: 0 if the initiation is successful, otherwise: < 0
 513 */
 514static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
 515                          u8 mode)
 516{
 517        struct tipc_tfm *tfm_entry, *head;
 518        struct crypto_aead *tfm;
 519        struct tipc_aead *tmp;
 520        int keylen, err, cpu;
 521        int tfm_cnt = 0;
 522
 523        if (unlikely(*aead))
 524                return -EEXIST;
 525
 526        /* Allocate a new AEAD */
 527        tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC);
 528        if (unlikely(!tmp))
 529                return -ENOMEM;
 530
 531        /* The key consists of two parts: [AES-KEY][SALT] */
 532        keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
 533
 534        /* Allocate per-cpu TFM entry pointer */
 535        tmp->tfm_entry = alloc_percpu(struct tipc_tfm *);
 536        if (!tmp->tfm_entry) {
 537                kfree_sensitive(tmp);
 538                return -ENOMEM;
 539        }
 540
 541        /* Make a list of TFMs with the user key data */
 542        do {
 543                tfm = crypto_alloc_aead(ukey->alg_name, 0, 0);
 544                if (IS_ERR(tfm)) {
 545                        err = PTR_ERR(tfm);
 546                        break;
 547                }
 548
 549                if (unlikely(!tfm_cnt &&
 550                             crypto_aead_ivsize(tfm) != TIPC_AES_GCM_IV_SIZE)) {
 551                        crypto_free_aead(tfm);
 552                        err = -ENOTSUPP;
 553                        break;
 554                }
 555
 556                err = crypto_aead_setauthsize(tfm, TIPC_AES_GCM_TAG_SIZE);
 557                err |= crypto_aead_setkey(tfm, ukey->key, keylen);
 558                if (unlikely(err)) {
 559                        crypto_free_aead(tfm);
 560                        break;
 561                }
 562
 563                tfm_entry = kmalloc(sizeof(*tfm_entry), GFP_KERNEL);
 564                if (unlikely(!tfm_entry)) {
 565                        crypto_free_aead(tfm);
 566                        err = -ENOMEM;
 567                        break;
 568                }
 569                INIT_LIST_HEAD(&tfm_entry->list);
 570                tfm_entry->tfm = tfm;
 571
 572                /* First entry? */
 573                if (!tfm_cnt) {
 574                        head = tfm_entry;
 575                        for_each_possible_cpu(cpu) {
 576                                *per_cpu_ptr(tmp->tfm_entry, cpu) = head;
 577                        }
 578                } else {
 579                        list_add_tail(&tfm_entry->list, &head->list);
 580                }
 581
 582        } while (++tfm_cnt < sysctl_tipc_max_tfms);
 583
 584        /* Not any TFM is allocated? */
 585        if (!tfm_cnt) {
 586                free_percpu(tmp->tfm_entry);
 587                kfree_sensitive(tmp);
 588                return err;
 589        }
 590
 591        /* Form a hex string of some last bytes as the key's hint */
 592        bin2hex(tmp->hint, ukey->key + keylen - TIPC_AEAD_HINT_LEN,
 593                TIPC_AEAD_HINT_LEN);
 594
 595        /* Initialize the other data */
 596        tmp->mode = mode;
 597        tmp->cloned = NULL;
 598        tmp->authsize = TIPC_AES_GCM_TAG_SIZE;
 599        tmp->key = kmemdup(ukey, tipc_aead_key_size(ukey), GFP_KERNEL);
 600        memcpy(&tmp->salt, ukey->key + keylen, TIPC_AES_GCM_SALT_SIZE);
 601        atomic_set(&tmp->users, 0);
 602        atomic64_set(&tmp->seqno, 0);
 603        refcount_set(&tmp->refcnt, 1);
 604
 605        *aead = tmp;
 606        return 0;
 607}
 608
 609/**
 610 * tipc_aead_clone - Clone a TIPC AEAD key
 611 * @dst: dest key for the cloning
 612 * @src: source key to clone from
 613 *
 614 * Make a "copy" of the source AEAD key data to the dest, the TFMs list is
 615 * common for the keys.
 616 * A reference to the source is hold in the "cloned" pointer for the later
 617 * freeing purposes.
 618 *
 619 * Note: this must be done in cluster-key mode only!
 620 * Return: 0 in case of success, otherwise < 0
 621 */
 622static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src)
 623{
 624        struct tipc_aead *aead;
 625        int cpu;
 626
 627        if (!src)
 628                return -ENOKEY;
 629
 630        if (src->mode != CLUSTER_KEY)
 631                return -EINVAL;
 632
 633        if (unlikely(*dst))
 634                return -EEXIST;
 635
 636        aead = kzalloc(sizeof(*aead), GFP_ATOMIC);
 637        if (unlikely(!aead))
 638                return -ENOMEM;
 639
 640        aead->tfm_entry = alloc_percpu_gfp(struct tipc_tfm *, GFP_ATOMIC);
 641        if (unlikely(!aead->tfm_entry)) {
 642                kfree_sensitive(aead);
 643                return -ENOMEM;
 644        }
 645
 646        for_each_possible_cpu(cpu) {
 647                *per_cpu_ptr(aead->tfm_entry, cpu) =
 648                                *per_cpu_ptr(src->tfm_entry, cpu);
 649        }
 650
 651        memcpy(aead->hint, src->hint, sizeof(src->hint));
 652        aead->mode = src->mode;
 653        aead->salt = src->salt;
 654        aead->authsize = src->authsize;
 655        atomic_set(&aead->users, 0);
 656        atomic64_set(&aead->seqno, 0);
 657        refcount_set(&aead->refcnt, 1);
 658
 659        WARN_ON(!refcount_inc_not_zero(&src->refcnt));
 660        aead->cloned = src;
 661
 662        *dst = aead;
 663        return 0;
 664}
 665
 666/**
 667 * tipc_aead_mem_alloc - Allocate memory for AEAD request operations
 668 * @tfm: cipher handle to be registered with the request
 669 * @crypto_ctx_size: size of crypto context for callback
 670 * @iv: returned pointer to IV data
 671 * @req: returned pointer to AEAD request data
 672 * @sg: returned pointer to SG lists
 673 * @nsg: number of SG lists to be allocated
 674 *
 675 * Allocate memory to store the crypto context data, AEAD request, IV and SG
 676 * lists, the memory layout is as follows:
 677 * crypto_ctx || iv || aead_req || sg[]
 678 *
 679 * Return: the pointer to the memory areas in case of success, otherwise NULL
 680 */
 681static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
 682                                 unsigned int crypto_ctx_size,
 683                                 u8 **iv, struct aead_request **req,
 684                                 struct scatterlist **sg, int nsg)
 685{
 686        unsigned int iv_size, req_size;
 687        unsigned int len;
 688        u8 *mem;
 689
 690        iv_size = crypto_aead_ivsize(tfm);
 691        req_size = sizeof(**req) + crypto_aead_reqsize(tfm);
 692
 693        len = crypto_ctx_size;
 694        len += iv_size;
 695        len += crypto_aead_alignmask(tfm) & ~(crypto_tfm_ctx_alignment() - 1);
 696        len = ALIGN(len, crypto_tfm_ctx_alignment());
 697        len += req_size;
 698        len = ALIGN(len, __alignof__(struct scatterlist));
 699        len += nsg * sizeof(**sg);
 700
 701        mem = kmalloc(len, GFP_ATOMIC);
 702        if (!mem)
 703                return NULL;
 704
 705        *iv = (u8 *)PTR_ALIGN(mem + crypto_ctx_size,
 706                              crypto_aead_alignmask(tfm) + 1);
 707        *req = (struct aead_request *)PTR_ALIGN(*iv + iv_size,
 708                                                crypto_tfm_ctx_alignment());
 709        *sg = (struct scatterlist *)PTR_ALIGN((u8 *)*req + req_size,
 710                                              __alignof__(struct scatterlist));
 711
 712        return (void *)mem;
 713}
 714
 715/**
 716 * tipc_aead_encrypt - Encrypt a message
 717 * @aead: TIPC AEAD key for the message encryption
 718 * @skb: the input/output skb
 719 * @b: TIPC bearer where the message will be delivered after the encryption
 720 * @dst: the destination media address
 721 * @__dnode: TIPC dest node if "known"
 722 *
 723 * Return:
 724 * * 0                   : if the encryption has completed
 725 * * -EINPROGRESS/-EBUSY : if a callback will be performed
 726 * * < 0                 : the encryption has failed
 727 */
 728static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
 729                             struct tipc_bearer *b,
 730                             struct tipc_media_addr *dst,
 731                             struct tipc_node *__dnode)
 732{
 733        struct crypto_aead *tfm = tipc_aead_tfm_next(aead);
 734        struct tipc_crypto_tx_ctx *tx_ctx;
 735        struct aead_request *req;
 736        struct sk_buff *trailer;
 737        struct scatterlist *sg;
 738        struct tipc_ehdr *ehdr;
 739        int ehsz, len, tailen, nsg, rc;
 740        void *ctx;
 741        u32 salt;
 742        u8 *iv;
 743
 744        /* Make sure message len at least 4-byte aligned */
 745        len = ALIGN(skb->len, 4);
 746        tailen = len - skb->len + aead->authsize;
 747
 748        /* Expand skb tail for authentication tag:
 749         * As for simplicity, we'd have made sure skb having enough tailroom
 750         * for authentication tag @skb allocation. Even when skb is nonlinear
 751         * but there is no frag_list, it should be still fine!
 752         * Otherwise, we must cow it to be a writable buffer with the tailroom.
 753         */
 754        SKB_LINEAR_ASSERT(skb);
 755        if (tailen > skb_tailroom(skb)) {
 756                pr_debug("TX(): skb tailroom is not enough: %d, requires: %d\n",
 757                         skb_tailroom(skb), tailen);
 758        }
 759
 760        if (unlikely(!skb_cloned(skb) && tailen <= skb_tailroom(skb))) {
 761                nsg = 1;
 762                trailer = skb;
 763        } else {
 764                /* TODO: We could avoid skb_cow_data() if skb has no frag_list
 765                 * e.g. by skb_fill_page_desc() to add another page to the skb
 766                 * with the wanted tailen... However, page skbs look not often,
 767                 * so take it easy now!
 768                 * Cloned skbs e.g. from link_xmit() seems no choice though :(
 769                 */
 770                nsg = skb_cow_data(skb, tailen, &trailer);
 771                if (unlikely(nsg < 0)) {
 772                        pr_err("TX: skb_cow_data() returned %d\n", nsg);
 773                        return nsg;
 774                }
 775        }
 776
 777        pskb_put(skb, trailer, tailen);
 778
 779        /* Allocate memory for the AEAD operation */
 780        ctx = tipc_aead_mem_alloc(tfm, sizeof(*tx_ctx), &iv, &req, &sg, nsg);
 781        if (unlikely(!ctx))
 782                return -ENOMEM;
 783        TIPC_SKB_CB(skb)->crypto_ctx = ctx;
 784
 785        /* Map skb to the sg lists */
 786        sg_init_table(sg, nsg);
 787        rc = skb_to_sgvec(skb, sg, 0, skb->len);
 788        if (unlikely(rc < 0)) {
 789                pr_err("TX: skb_to_sgvec() returned %d, nsg %d!\n", rc, nsg);
 790                goto exit;
 791        }
 792
 793        /* Prepare IV: [SALT (4 octets)][SEQNO (8 octets)]
 794         * In case we're in cluster-key mode, SALT is varied by xor-ing with
 795         * the source address (or w0 of id), otherwise with the dest address
 796         * if dest is known.
 797         */
 798        ehdr = (struct tipc_ehdr *)skb->data;
 799        salt = aead->salt;
 800        if (aead->mode == CLUSTER_KEY)
 801                salt ^= __be32_to_cpu(ehdr->addr);
 802        else if (__dnode)
 803                salt ^= tipc_node_get_addr(__dnode);
 804        memcpy(iv, &salt, 4);
 805        memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
 806
 807        /* Prepare request */
 808        ehsz = tipc_ehdr_size(ehdr);
 809        aead_request_set_tfm(req, tfm);
 810        aead_request_set_ad(req, ehsz);
 811        aead_request_set_crypt(req, sg, sg, len - ehsz, iv);
 812
 813        /* Set callback function & data */
 814        aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
 815                                  tipc_aead_encrypt_done, skb);
 816        tx_ctx = (struct tipc_crypto_tx_ctx *)ctx;
 817        tx_ctx->aead = aead;
 818        tx_ctx->bearer = b;
 819        memcpy(&tx_ctx->dst, dst, sizeof(*dst));
 820
 821        /* Hold bearer */
 822        if (unlikely(!tipc_bearer_hold(b))) {
 823                rc = -ENODEV;
 824                goto exit;
 825        }
 826
 827        /* Now, do encrypt */
 828        rc = crypto_aead_encrypt(req);
 829        if (rc == -EINPROGRESS || rc == -EBUSY)
 830                return rc;
 831
 832        tipc_bearer_put(b);
 833
 834exit:
 835        kfree(ctx);
 836        TIPC_SKB_CB(skb)->crypto_ctx = NULL;
 837        return rc;
 838}
 839
 840static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err)
 841{
 842        struct sk_buff *skb = base->data;
 843        struct tipc_crypto_tx_ctx *tx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
 844        struct tipc_bearer *b = tx_ctx->bearer;
 845        struct tipc_aead *aead = tx_ctx->aead;
 846        struct tipc_crypto *tx = aead->crypto;
 847        struct net *net = tx->net;
 848
 849        switch (err) {
 850        case 0:
 851                this_cpu_inc(tx->stats->stat[STAT_ASYNC_OK]);
 852                rcu_read_lock();
 853                if (likely(test_bit(0, &b->up)))
 854                        b->media->send_msg(net, skb, b, &tx_ctx->dst);
 855                else
 856                        kfree_skb(skb);
 857                rcu_read_unlock();
 858                break;
 859        case -EINPROGRESS:
 860                return;
 861        default:
 862                this_cpu_inc(tx->stats->stat[STAT_ASYNC_NOK]);
 863                kfree_skb(skb);
 864                break;
 865        }
 866
 867        kfree(tx_ctx);
 868        tipc_bearer_put(b);
 869        tipc_aead_put(aead);
 870}
 871
 872/**
 873 * tipc_aead_decrypt - Decrypt an encrypted message
 874 * @net: struct net
 875 * @aead: TIPC AEAD for the message decryption
 876 * @skb: the input/output skb
 877 * @b: TIPC bearer where the message has been received
 878 *
 879 * Return:
 880 * * 0                   : if the decryption has completed
 881 * * -EINPROGRESS/-EBUSY : if a callback will be performed
 882 * * < 0                 : the decryption has failed
 883 */
 884static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
 885                             struct sk_buff *skb, struct tipc_bearer *b)
 886{
 887        struct tipc_crypto_rx_ctx *rx_ctx;
 888        struct aead_request *req;
 889        struct crypto_aead *tfm;
 890        struct sk_buff *unused;
 891        struct scatterlist *sg;
 892        struct tipc_ehdr *ehdr;
 893        int ehsz, nsg, rc;
 894        void *ctx;
 895        u32 salt;
 896        u8 *iv;
 897
 898        if (unlikely(!aead))
 899                return -ENOKEY;
 900
 901        nsg = skb_cow_data(skb, 0, &unused);
 902        if (unlikely(nsg < 0)) {
 903                pr_err("RX: skb_cow_data() returned %d\n", nsg);
 904                return nsg;
 905        }
 906
 907        /* Allocate memory for the AEAD operation */
 908        tfm = tipc_aead_tfm_next(aead);
 909        ctx = tipc_aead_mem_alloc(tfm, sizeof(*rx_ctx), &iv, &req, &sg, nsg);
 910        if (unlikely(!ctx))
 911                return -ENOMEM;
 912        TIPC_SKB_CB(skb)->crypto_ctx = ctx;
 913
 914        /* Map skb to the sg lists */
 915        sg_init_table(sg, nsg);
 916        rc = skb_to_sgvec(skb, sg, 0, skb->len);
 917        if (unlikely(rc < 0)) {
 918                pr_err("RX: skb_to_sgvec() returned %d, nsg %d\n", rc, nsg);
 919                goto exit;
 920        }
 921
 922        /* Reconstruct IV: */
 923        ehdr = (struct tipc_ehdr *)skb->data;
 924        salt = aead->salt;
 925        if (aead->mode == CLUSTER_KEY)
 926                salt ^= __be32_to_cpu(ehdr->addr);
 927        else if (ehdr->destined)
 928                salt ^= tipc_own_addr(net);
 929        memcpy(iv, &salt, 4);
 930        memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
 931
 932        /* Prepare request */
 933        ehsz = tipc_ehdr_size(ehdr);
 934        aead_request_set_tfm(req, tfm);
 935        aead_request_set_ad(req, ehsz);
 936        aead_request_set_crypt(req, sg, sg, skb->len - ehsz, iv);
 937
 938        /* Set callback function & data */
 939        aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
 940                                  tipc_aead_decrypt_done, skb);
 941        rx_ctx = (struct tipc_crypto_rx_ctx *)ctx;
 942        rx_ctx->aead = aead;
 943        rx_ctx->bearer = b;
 944
 945        /* Hold bearer */
 946        if (unlikely(!tipc_bearer_hold(b))) {
 947                rc = -ENODEV;
 948                goto exit;
 949        }
 950
 951        /* Now, do decrypt */
 952        rc = crypto_aead_decrypt(req);
 953        if (rc == -EINPROGRESS || rc == -EBUSY)
 954                return rc;
 955
 956        tipc_bearer_put(b);
 957
 958exit:
 959        kfree(ctx);
 960        TIPC_SKB_CB(skb)->crypto_ctx = NULL;
 961        return rc;
 962}
 963
 964static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err)
 965{
 966        struct sk_buff *skb = base->data;
 967        struct tipc_crypto_rx_ctx *rx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
 968        struct tipc_bearer *b = rx_ctx->bearer;
 969        struct tipc_aead *aead = rx_ctx->aead;
 970        struct tipc_crypto_stats __percpu *stats = aead->crypto->stats;
 971        struct net *net = aead->crypto->net;
 972
 973        switch (err) {
 974        case 0:
 975                this_cpu_inc(stats->stat[STAT_ASYNC_OK]);
 976                break;
 977        case -EINPROGRESS:
 978                return;
 979        default:
 980                this_cpu_inc(stats->stat[STAT_ASYNC_NOK]);
 981                break;
 982        }
 983
 984        kfree(rx_ctx);
 985        tipc_crypto_rcv_complete(net, aead, b, &skb, err);
 986        if (likely(skb)) {
 987                if (likely(test_bit(0, &b->up)))
 988                        tipc_rcv(net, skb, b);
 989                else
 990                        kfree_skb(skb);
 991        }
 992
 993        tipc_bearer_put(b);
 994}
 995
 996static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr)
 997{
 998        return (ehdr->user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
 999}
1000
1001/**
1002 * tipc_ehdr_validate - Validate an encryption message
1003 * @skb: the message buffer
1004 *
1005 * Return: "true" if this is a valid encryption message, otherwise "false"
1006 */
1007bool tipc_ehdr_validate(struct sk_buff *skb)
1008{
1009        struct tipc_ehdr *ehdr;
1010        int ehsz;
1011
1012        if (unlikely(!pskb_may_pull(skb, EHDR_MIN_SIZE)))
1013                return false;
1014
1015        ehdr = (struct tipc_ehdr *)skb->data;
1016        if (unlikely(ehdr->version != TIPC_EVERSION))
1017                return false;
1018        ehsz = tipc_ehdr_size(ehdr);
1019        if (unlikely(!pskb_may_pull(skb, ehsz)))
1020                return false;
1021        if (unlikely(skb->len <= ehsz + TIPC_AES_GCM_TAG_SIZE))
1022                return false;
1023
1024        return true;
1025}
1026
1027/**
1028 * tipc_ehdr_build - Build TIPC encryption message header
1029 * @net: struct net
1030 * @aead: TX AEAD key to be used for the message encryption
1031 * @tx_key: key id used for the message encryption
1032 * @skb: input/output message skb
1033 * @__rx: RX crypto handle if dest is "known"
1034 *
1035 * Return: the header size if the building is successful, otherwise < 0
1036 */
1037static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
1038                           u8 tx_key, struct sk_buff *skb,
1039                           struct tipc_crypto *__rx)
1040{
1041        struct tipc_msg *hdr = buf_msg(skb);
1042        struct tipc_ehdr *ehdr;
1043        u32 user = msg_user(hdr);
1044        u64 seqno;
1045        int ehsz;
1046
1047        /* Make room for encryption header */
1048        ehsz = (user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
1049        WARN_ON(skb_headroom(skb) < ehsz);
1050        ehdr = (struct tipc_ehdr *)skb_push(skb, ehsz);
1051
1052        /* Obtain a seqno first:
1053         * Use the key seqno (= cluster wise) if dest is unknown or we're in
1054         * cluster key mode, otherwise it's better for a per-peer seqno!
1055         */
1056        if (!__rx || aead->mode == CLUSTER_KEY)
1057                seqno = atomic64_inc_return(&aead->seqno);
1058        else
1059                seqno = atomic64_inc_return(&__rx->sndnxt);
1060
1061        /* Revoke the key if seqno is wrapped around */
1062        if (unlikely(!seqno))
1063                return tipc_crypto_key_revoke(net, tx_key);
1064
1065        /* Word 1-2 */
1066        ehdr->seqno = cpu_to_be64(seqno);
1067
1068        /* Words 0, 3- */
1069        ehdr->version = TIPC_EVERSION;
1070        ehdr->user = 0;
1071        ehdr->keepalive = 0;
1072        ehdr->tx_key = tx_key;
1073        ehdr->destined = (__rx) ? 1 : 0;
1074        ehdr->rx_key_active = (__rx) ? __rx->key.active : 0;
1075        ehdr->rx_nokey = (__rx) ? __rx->nokey : 0;
1076        ehdr->master_key = aead->crypto->key_master;
1077        ehdr->reserved_1 = 0;
1078        ehdr->reserved_2 = 0;
1079
1080        switch (user) {
1081        case LINK_CONFIG:
1082                ehdr->user = LINK_CONFIG;
1083                memcpy(ehdr->id, tipc_own_id(net), NODE_ID_LEN);
1084                break;
1085        default:
1086                if (user == LINK_PROTOCOL && msg_type(hdr) == STATE_MSG) {
1087                        ehdr->user = LINK_PROTOCOL;
1088                        ehdr->keepalive = msg_is_keepalive(hdr);
1089                }
1090                ehdr->addr = hdr->hdr[3];
1091                break;
1092        }
1093
1094        return ehsz;
1095}
1096
1097static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
1098                                             u8 new_passive,
1099                                             u8 new_active,
1100                                             u8 new_pending)
1101{
1102        struct tipc_key old = c->key;
1103        char buf[32];
1104
1105        c->key.keys = ((new_passive & KEY_MASK) << (KEY_BITS * 2)) |
1106                      ((new_active  & KEY_MASK) << (KEY_BITS)) |
1107                      ((new_pending & KEY_MASK));
1108
1109        pr_debug("%s: key changing %s ::%pS\n", c->name,
1110                 tipc_key_change_dump(old, c->key, buf),
1111                 __builtin_return_address(0));
1112}
1113
1114/**
1115 * tipc_crypto_key_init - Initiate a new user / AEAD key
1116 * @c: TIPC crypto to which new key is attached
1117 * @ukey: the user key
1118 * @mode: the key mode (CLUSTER_KEY or PER_NODE_KEY)
1119 * @master_key: specify this is a cluster master key
1120 *
1121 * A new TIPC AEAD key will be allocated and initiated with the specified user
1122 * key, then attached to the TIPC crypto.
1123 *
1124 * Return: new key id in case of success, otherwise: < 0
1125 */
1126int tipc_crypto_key_init(struct tipc_crypto *c, struct tipc_aead_key *ukey,
1127                         u8 mode, bool master_key)
1128{
1129        struct tipc_aead *aead = NULL;
1130        int rc = 0;
1131
1132        /* Initiate with the new user key */
1133        rc = tipc_aead_init(&aead, ukey, mode);
1134
1135        /* Attach it to the crypto */
1136        if (likely(!rc)) {
1137                rc = tipc_crypto_key_attach(c, aead, 0, master_key);
1138                if (rc < 0)
1139                        tipc_aead_free(&aead->rcu);
1140        }
1141
1142        return rc;
1143}
1144
1145/**
1146 * tipc_crypto_key_attach - Attach a new AEAD key to TIPC crypto
1147 * @c: TIPC crypto to which the new AEAD key is attached
1148 * @aead: the new AEAD key pointer
1149 * @pos: desired slot in the crypto key array, = 0 if any!
1150 * @master_key: specify this is a cluster master key
1151 *
1152 * Return: new key id in case of success, otherwise: -EBUSY
1153 */
1154static int tipc_crypto_key_attach(struct tipc_crypto *c,
1155                                  struct tipc_aead *aead, u8 pos,
1156                                  bool master_key)
1157{
1158        struct tipc_key key;
1159        int rc = -EBUSY;
1160        u8 new_key;
1161
1162        spin_lock_bh(&c->lock);
1163        key = c->key;
1164        if (master_key) {
1165                new_key = KEY_MASTER;
1166                goto attach;
1167        }
1168        if (key.active && key.passive)
1169                goto exit;
1170        if (key.pending) {
1171                if (tipc_aead_users(c->aead[key.pending]) > 0)
1172                        goto exit;
1173                /* if (pos): ok with replacing, will be aligned when needed */
1174                /* Replace it */
1175                new_key = key.pending;
1176        } else {
1177                if (pos) {
1178                        if (key.active && pos != key_next(key.active)) {
1179                                key.passive = pos;
1180                                new_key = pos;
1181                                goto attach;
1182                        } else if (!key.active && !key.passive) {
1183                                key.pending = pos;
1184                                new_key = pos;
1185                                goto attach;
1186                        }
1187                }
1188                key.pending = key_next(key.active ?: key.passive);
1189                new_key = key.pending;
1190        }
1191
1192attach:
1193        aead->crypto = c;
1194        aead->gen = (is_tx(c)) ? ++c->key_gen : c->key_gen;
1195        tipc_aead_rcu_replace(c->aead[new_key], aead, &c->lock);
1196        if (likely(c->key.keys != key.keys))
1197                tipc_crypto_key_set_state(c, key.passive, key.active,
1198                                          key.pending);
1199        c->working = 1;
1200        c->nokey = 0;
1201        c->key_master |= master_key;
1202        rc = new_key;
1203
1204exit:
1205        spin_unlock_bh(&c->lock);
1206        return rc;
1207}
1208
1209void tipc_crypto_key_flush(struct tipc_crypto *c)
1210{
1211        struct tipc_crypto *tx, *rx;
1212        int k;
1213
1214        spin_lock_bh(&c->lock);
1215        if (is_rx(c)) {
1216                /* Try to cancel pending work */
1217                rx = c;
1218                tx = tipc_net(rx->net)->crypto_tx;
1219                if (cancel_delayed_work(&rx->work)) {
1220                        kfree(rx->skey);
1221                        rx->skey = NULL;
1222                        atomic_xchg(&rx->key_distr, 0);
1223                        tipc_node_put(rx->node);
1224                }
1225                /* RX stopping => decrease TX key users if any */
1226                k = atomic_xchg(&rx->peer_rx_active, 0);
1227                if (k) {
1228                        tipc_aead_users_dec(tx->aead[k], 0);
1229                        /* Mark the point TX key users changed */
1230                        tx->timer1 = jiffies;
1231                }
1232        }
1233
1234        c->flags = 0;
1235        tipc_crypto_key_set_state(c, 0, 0, 0);
1236        for (k = KEY_MIN; k <= KEY_MAX; k++)
1237                tipc_crypto_key_detach(c->aead[k], &c->lock);
1238        atomic64_set(&c->sndnxt, 0);
1239        spin_unlock_bh(&c->lock);
1240}
1241
1242/**
1243 * tipc_crypto_key_try_align - Align RX keys if possible
1244 * @rx: RX crypto handle
1245 * @new_pending: new pending slot if aligned (= TX key from peer)
1246 *
1247 * Peer has used an unknown key slot, this only happens when peer has left and
1248 * rejoned, or we are newcomer.
1249 * That means, there must be no active key but a pending key at unaligned slot.
1250 * If so, we try to move the pending key to the new slot.
1251 * Note: A potential passive key can exist, it will be shifted correspondingly!
1252 *
1253 * Return: "true" if key is successfully aligned, otherwise "false"
1254 */
1255static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending)
1256{
1257        struct tipc_aead *tmp1, *tmp2 = NULL;
1258        struct tipc_key key;
1259        bool aligned = false;
1260        u8 new_passive = 0;
1261        int x;
1262
1263        spin_lock(&rx->lock);
1264        key = rx->key;
1265        if (key.pending == new_pending) {
1266                aligned = true;
1267                goto exit;
1268        }
1269        if (key.active)
1270                goto exit;
1271        if (!key.pending)
1272                goto exit;
1273        if (tipc_aead_users(rx->aead[key.pending]) > 0)
1274                goto exit;
1275
1276        /* Try to "isolate" this pending key first */
1277        tmp1 = tipc_aead_rcu_ptr(rx->aead[key.pending], &rx->lock);
1278        if (!refcount_dec_if_one(&tmp1->refcnt))
1279                goto exit;
1280        rcu_assign_pointer(rx->aead[key.pending], NULL);
1281
1282        /* Move passive key if any */
1283        if (key.passive) {
1284                tmp2 = rcu_replace_pointer(rx->aead[key.passive], tmp2, lockdep_is_held(&rx->lock));
1285                x = (key.passive - key.pending + new_pending) % KEY_MAX;
1286                new_passive = (x <= 0) ? x + KEY_MAX : x;
1287        }
1288
1289        /* Re-allocate the key(s) */
1290        tipc_crypto_key_set_state(rx, new_passive, 0, new_pending);
1291        rcu_assign_pointer(rx->aead[new_pending], tmp1);
1292        if (new_passive)
1293                rcu_assign_pointer(rx->aead[new_passive], tmp2);
1294        refcount_set(&tmp1->refcnt, 1);
1295        aligned = true;
1296        pr_info_ratelimited("%s: key[%d] -> key[%d]\n", rx->name, key.pending,
1297                            new_pending);
1298
1299exit:
1300        spin_unlock(&rx->lock);
1301        return aligned;
1302}
1303
1304/**
1305 * tipc_crypto_key_pick_tx - Pick one TX key for message decryption
1306 * @tx: TX crypto handle
1307 * @rx: RX crypto handle (can be NULL)
1308 * @skb: the message skb which will be decrypted later
1309 * @tx_key: peer TX key id
1310 *
1311 * This function looks up the existing TX keys and pick one which is suitable
1312 * for the message decryption, that must be a cluster key and not used before
1313 * on the same message (i.e. recursive).
1314 *
1315 * Return: the TX AEAD key handle in case of success, otherwise NULL
1316 */
1317static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
1318                                                 struct tipc_crypto *rx,
1319                                                 struct sk_buff *skb,
1320                                                 u8 tx_key)
1321{
1322        struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(skb);
1323        struct tipc_aead *aead = NULL;
1324        struct tipc_key key = tx->key;
1325        u8 k, i = 0;
1326
1327        /* Initialize data if not yet */
1328        if (!skb_cb->tx_clone_deferred) {
1329                skb_cb->tx_clone_deferred = 1;
1330                memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1331        }
1332
1333        skb_cb->tx_clone_ctx.rx = rx;
1334        if (++skb_cb->tx_clone_ctx.recurs > 2)
1335                return NULL;
1336
1337        /* Pick one TX key */
1338        spin_lock(&tx->lock);
1339        if (tx_key == KEY_MASTER) {
1340                aead = tipc_aead_rcu_ptr(tx->aead[KEY_MASTER], &tx->lock);
1341                goto done;
1342        }
1343        do {
1344                k = (i == 0) ? key.pending :
1345                        ((i == 1) ? key.active : key.passive);
1346                if (!k)
1347                        continue;
1348                aead = tipc_aead_rcu_ptr(tx->aead[k], &tx->lock);
1349                if (!aead)
1350                        continue;
1351                if (aead->mode != CLUSTER_KEY ||
1352                    aead == skb_cb->tx_clone_ctx.last) {
1353                        aead = NULL;
1354                        continue;
1355                }
1356                /* Ok, found one cluster key */
1357                skb_cb->tx_clone_ctx.last = aead;
1358                WARN_ON(skb->next);
1359                skb->next = skb_clone(skb, GFP_ATOMIC);
1360                if (unlikely(!skb->next))
1361                        pr_warn("Failed to clone skb for next round if any\n");
1362                break;
1363        } while (++i < 3);
1364
1365done:
1366        if (likely(aead))
1367                WARN_ON(!refcount_inc_not_zero(&aead->refcnt));
1368        spin_unlock(&tx->lock);
1369
1370        return aead;
1371}
1372
1373/**
1374 * tipc_crypto_key_synch: Synch own key data according to peer key status
1375 * @rx: RX crypto handle
1376 * @skb: TIPCv2 message buffer (incl. the ehdr from peer)
1377 *
1378 * This function updates the peer node related data as the peer RX active key
1379 * has changed, so the number of TX keys' users on this node are increased and
1380 * decreased correspondingly.
1381 *
1382 * It also considers if peer has no key, then we need to make own master key
1383 * (if any) taking over i.e. starting grace period and also trigger key
1384 * distributing process.
1385 *
1386 * The "per-peer" sndnxt is also reset when the peer key has switched.
1387 */
1388static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb)
1389{
1390        struct tipc_ehdr *ehdr = (struct tipc_ehdr *)skb_network_header(skb);
1391        struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
1392        struct tipc_msg *hdr = buf_msg(skb);
1393        u32 self = tipc_own_addr(rx->net);
1394        u8 cur, new;
1395        unsigned long delay;
1396
1397        /* Update RX 'key_master' flag according to peer, also mark "legacy" if
1398         * a peer has no master key.
1399         */
1400        rx->key_master = ehdr->master_key;
1401        if (!rx->key_master)
1402                tx->legacy_user = 1;
1403
1404        /* For later cases, apply only if message is destined to this node */
1405        if (!ehdr->destined || msg_short(hdr) || msg_destnode(hdr) != self)
1406                return;
1407
1408        /* Case 1: Peer has no keys, let's make master key take over */
1409        if (ehdr->rx_nokey) {
1410                /* Set or extend grace period */
1411                tx->timer2 = jiffies;
1412                /* Schedule key distributing for the peer if not yet */
1413                if (tx->key.keys &&
1414                    !atomic_cmpxchg(&rx->key_distr, 0, KEY_DISTR_SCHED)) {
1415                        get_random_bytes(&delay, 2);
1416                        delay %= 5;
1417                        delay = msecs_to_jiffies(500 * ++delay);
1418                        if (queue_delayed_work(tx->wq, &rx->work, delay))
1419                                tipc_node_get(rx->node);
1420                }
1421        } else {
1422                /* Cancel a pending key distributing if any */
1423                atomic_xchg(&rx->key_distr, 0);
1424        }
1425
1426        /* Case 2: Peer RX active key has changed, let's update own TX users */
1427        cur = atomic_read(&rx->peer_rx_active);
1428        new = ehdr->rx_key_active;
1429        if (tx->key.keys &&
1430            cur != new &&
1431            atomic_cmpxchg(&rx->peer_rx_active, cur, new) == cur) {
1432                if (new)
1433                        tipc_aead_users_inc(tx->aead[new], INT_MAX);
1434                if (cur)
1435                        tipc_aead_users_dec(tx->aead[cur], 0);
1436
1437                atomic64_set(&rx->sndnxt, 0);
1438                /* Mark the point TX key users changed */
1439                tx->timer1 = jiffies;
1440
1441                pr_debug("%s: key users changed %d-- %d++, peer %s\n",
1442                         tx->name, cur, new, rx->name);
1443        }
1444}
1445
1446static int tipc_crypto_key_revoke(struct net *net, u8 tx_key)
1447{
1448        struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1449        struct tipc_key key;
1450
1451        spin_lock(&tx->lock);
1452        key = tx->key;
1453        WARN_ON(!key.active || tx_key != key.active);
1454
1455        /* Free the active key */
1456        tipc_crypto_key_set_state(tx, key.passive, 0, key.pending);
1457        tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1458        spin_unlock(&tx->lock);
1459
1460        pr_warn("%s: key is revoked\n", tx->name);
1461        return -EKEYREVOKED;
1462}
1463
1464int tipc_crypto_start(struct tipc_crypto **crypto, struct net *net,
1465                      struct tipc_node *node)
1466{
1467        struct tipc_crypto *c;
1468
1469        if (*crypto)
1470                return -EEXIST;
1471
1472        /* Allocate crypto */
1473        c = kzalloc(sizeof(*c), GFP_ATOMIC);
1474        if (!c)
1475                return -ENOMEM;
1476
1477        /* Allocate workqueue on TX */
1478        if (!node) {
1479                c->wq = alloc_ordered_workqueue("tipc_crypto", 0);
1480                if (!c->wq) {
1481                        kfree(c);
1482                        return -ENOMEM;
1483                }
1484        }
1485
1486        /* Allocate statistic structure */
1487        c->stats = alloc_percpu_gfp(struct tipc_crypto_stats, GFP_ATOMIC);
1488        if (!c->stats) {
1489                if (c->wq)
1490                        destroy_workqueue(c->wq);
1491                kfree_sensitive(c);
1492                return -ENOMEM;
1493        }
1494
1495        c->flags = 0;
1496        c->net = net;
1497        c->node = node;
1498        get_random_bytes(&c->key_gen, 2);
1499        tipc_crypto_key_set_state(c, 0, 0, 0);
1500        atomic_set(&c->key_distr, 0);
1501        atomic_set(&c->peer_rx_active, 0);
1502        atomic64_set(&c->sndnxt, 0);
1503        c->timer1 = jiffies;
1504        c->timer2 = jiffies;
1505        c->rekeying_intv = TIPC_REKEYING_INTV_DEF;
1506        spin_lock_init(&c->lock);
1507        scnprintf(c->name, 48, "%s(%s)", (is_rx(c)) ? "RX" : "TX",
1508                  (is_rx(c)) ? tipc_node_get_id_str(c->node) :
1509                               tipc_own_id_string(c->net));
1510
1511        if (is_rx(c))
1512                INIT_DELAYED_WORK(&c->work, tipc_crypto_work_rx);
1513        else
1514                INIT_DELAYED_WORK(&c->work, tipc_crypto_work_tx);
1515
1516        *crypto = c;
1517        return 0;
1518}
1519
1520void tipc_crypto_stop(struct tipc_crypto **crypto)
1521{
1522        struct tipc_crypto *c = *crypto;
1523        u8 k;
1524
1525        if (!c)
1526                return;
1527
1528        /* Flush any queued works & destroy wq */
1529        if (is_tx(c)) {
1530                c->rekeying_intv = 0;
1531                cancel_delayed_work_sync(&c->work);
1532                destroy_workqueue(c->wq);
1533        }
1534
1535        /* Release AEAD keys */
1536        rcu_read_lock();
1537        for (k = KEY_MIN; k <= KEY_MAX; k++)
1538                tipc_aead_put(rcu_dereference(c->aead[k]));
1539        rcu_read_unlock();
1540        pr_debug("%s: has been stopped\n", c->name);
1541
1542        /* Free this crypto statistics */
1543        free_percpu(c->stats);
1544
1545        *crypto = NULL;
1546        kfree_sensitive(c);
1547}
1548
1549void tipc_crypto_timeout(struct tipc_crypto *rx)
1550{
1551        struct tipc_net *tn = tipc_net(rx->net);
1552        struct tipc_crypto *tx = tn->crypto_tx;
1553        struct tipc_key key;
1554        int cmd;
1555
1556        /* TX pending: taking all users & stable -> active */
1557        spin_lock(&tx->lock);
1558        key = tx->key;
1559        if (key.active && tipc_aead_users(tx->aead[key.active]) > 0)
1560                goto s1;
1561        if (!key.pending || tipc_aead_users(tx->aead[key.pending]) <= 0)
1562                goto s1;
1563        if (time_before(jiffies, tx->timer1 + TIPC_TX_LASTING_TIME))
1564                goto s1;
1565
1566        tipc_crypto_key_set_state(tx, key.passive, key.pending, 0);
1567        if (key.active)
1568                tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1569        this_cpu_inc(tx->stats->stat[STAT_SWITCHES]);
1570        pr_info("%s: key[%d] is activated\n", tx->name, key.pending);
1571
1572s1:
1573        spin_unlock(&tx->lock);
1574
1575        /* RX pending: having user -> active */
1576        spin_lock(&rx->lock);
1577        key = rx->key;
1578        if (!key.pending || tipc_aead_users(rx->aead[key.pending]) <= 0)
1579                goto s2;
1580
1581        if (key.active)
1582                key.passive = key.active;
1583        key.active = key.pending;
1584        rx->timer2 = jiffies;
1585        tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
1586        this_cpu_inc(rx->stats->stat[STAT_SWITCHES]);
1587        pr_info("%s: key[%d] is activated\n", rx->name, key.pending);
1588        goto s5;
1589
1590s2:
1591        /* RX pending: not working -> remove */
1592        if (!key.pending || tipc_aead_users(rx->aead[key.pending]) > -10)
1593                goto s3;
1594
1595        tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
1596        tipc_crypto_key_detach(rx->aead[key.pending], &rx->lock);
1597        pr_debug("%s: key[%d] is removed\n", rx->name, key.pending);
1598        goto s5;
1599
1600s3:
1601        /* RX active: timed out or no user -> pending */
1602        if (!key.active)
1603                goto s4;
1604        if (time_before(jiffies, rx->timer1 + TIPC_RX_ACTIVE_LIM) &&
1605            tipc_aead_users(rx->aead[key.active]) > 0)
1606                goto s4;
1607
1608        if (key.pending)
1609                key.passive = key.active;
1610        else
1611                key.pending = key.active;
1612        rx->timer2 = jiffies;
1613        tipc_crypto_key_set_state(rx, key.passive, 0, key.pending);
1614        tipc_aead_users_set(rx->aead[key.pending], 0);
1615        pr_debug("%s: key[%d] is deactivated\n", rx->name, key.active);
1616        goto s5;
1617
1618s4:
1619        /* RX passive: outdated or not working -> free */
1620        if (!key.passive)
1621                goto s5;
1622        if (time_before(jiffies, rx->timer2 + TIPC_RX_PASSIVE_LIM) &&
1623            tipc_aead_users(rx->aead[key.passive]) > -10)
1624                goto s5;
1625
1626        tipc_crypto_key_set_state(rx, 0, key.active, key.pending);
1627        tipc_crypto_key_detach(rx->aead[key.passive], &rx->lock);
1628        pr_debug("%s: key[%d] is freed\n", rx->name, key.passive);
1629
1630s5:
1631        spin_unlock(&rx->lock);
1632
1633        /* Relax it here, the flag will be set again if it really is, but only
1634         * when we are not in grace period for safety!
1635         */
1636        if (time_after(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD))
1637                tx->legacy_user = 0;
1638
1639        /* Limit max_tfms & do debug commands if needed */
1640        if (likely(sysctl_tipc_max_tfms <= TIPC_MAX_TFMS_LIM))
1641                return;
1642
1643        cmd = sysctl_tipc_max_tfms;
1644        sysctl_tipc_max_tfms = TIPC_MAX_TFMS_DEF;
1645        tipc_crypto_do_cmd(rx->net, cmd);
1646}
1647
1648static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
1649                                         struct tipc_bearer *b,
1650                                         struct tipc_media_addr *dst,
1651                                         struct tipc_node *__dnode, u8 type)
1652{
1653        struct sk_buff *skb;
1654
1655        skb = skb_clone(_skb, GFP_ATOMIC);
1656        if (skb) {
1657                TIPC_SKB_CB(skb)->xmit_type = type;
1658                tipc_crypto_xmit(net, &skb, b, dst, __dnode);
1659                if (skb)
1660                        b->media->send_msg(net, skb, b, dst);
1661        }
1662}
1663
1664/**
1665 * tipc_crypto_xmit - Build & encrypt TIPC message for xmit
1666 * @net: struct net
1667 * @skb: input/output message skb pointer
1668 * @b: bearer used for xmit later
1669 * @dst: destination media address
1670 * @__dnode: destination node for reference if any
1671 *
1672 * First, build an encryption message header on the top of the message, then
1673 * encrypt the original TIPC message by using the pending, master or active
1674 * key with this preference order.
1675 * If the encryption is successful, the encrypted skb is returned directly or
1676 * via the callback.
1677 * Otherwise, the skb is freed!
1678 *
1679 * Return:
1680 * * 0                   : the encryption has succeeded (or no encryption)
1681 * * -EINPROGRESS/-EBUSY : the encryption is ongoing, a callback will be made
1682 * * -ENOKEK             : the encryption has failed due to no key
1683 * * -EKEYREVOKED        : the encryption has failed due to key revoked
1684 * * -ENOMEM             : the encryption has failed due to no memory
1685 * * < 0                 : the encryption has failed due to other reasons
1686 */
1687int tipc_crypto_xmit(struct net *net, struct sk_buff **skb,
1688                     struct tipc_bearer *b, struct tipc_media_addr *dst,
1689                     struct tipc_node *__dnode)
1690{
1691        struct tipc_crypto *__rx = tipc_node_crypto_rx(__dnode);
1692        struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1693        struct tipc_crypto_stats __percpu *stats = tx->stats;
1694        struct tipc_msg *hdr = buf_msg(*skb);
1695        struct tipc_key key = tx->key;
1696        struct tipc_aead *aead = NULL;
1697        u32 user = msg_user(hdr);
1698        u32 type = msg_type(hdr);
1699        int rc = -ENOKEY;
1700        u8 tx_key = 0;
1701
1702        /* No encryption? */
1703        if (!tx->working)
1704                return 0;
1705
1706        /* Pending key if peer has active on it or probing time */
1707        if (unlikely(key.pending)) {
1708                tx_key = key.pending;
1709                if (!tx->key_master && !key.active)
1710                        goto encrypt;
1711                if (__rx && atomic_read(&__rx->peer_rx_active) == tx_key)
1712                        goto encrypt;
1713                if (TIPC_SKB_CB(*skb)->xmit_type == SKB_PROBING) {
1714                        pr_debug("%s: probing for key[%d]\n", tx->name,
1715                                 key.pending);
1716                        goto encrypt;
1717                }
1718                if (user == LINK_CONFIG || user == LINK_PROTOCOL)
1719                        tipc_crypto_clone_msg(net, *skb, b, dst, __dnode,
1720                                              SKB_PROBING);
1721        }
1722
1723        /* Master key if this is a *vital* message or in grace period */
1724        if (tx->key_master) {
1725                tx_key = KEY_MASTER;
1726                if (!key.active)
1727                        goto encrypt;
1728                if (TIPC_SKB_CB(*skb)->xmit_type == SKB_GRACING) {
1729                        pr_debug("%s: gracing for msg (%d %d)\n", tx->name,
1730                                 user, type);
1731                        goto encrypt;
1732                }
1733                if (user == LINK_CONFIG ||
1734                    (user == LINK_PROTOCOL && type == RESET_MSG) ||
1735                    (user == MSG_CRYPTO && type == KEY_DISTR_MSG) ||
1736                    time_before(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD)) {
1737                        if (__rx && __rx->key_master &&
1738                            !atomic_read(&__rx->peer_rx_active))
1739                                goto encrypt;
1740                        if (!__rx) {
1741                                if (likely(!tx->legacy_user))
1742                                        goto encrypt;
1743                                tipc_crypto_clone_msg(net, *skb, b, dst,
1744                                                      __dnode, SKB_GRACING);
1745                        }
1746                }
1747        }
1748
1749        /* Else, use the active key if any */
1750        if (likely(key.active)) {
1751                tx_key = key.active;
1752                goto encrypt;
1753        }
1754
1755        goto exit;
1756
1757encrypt:
1758        aead = tipc_aead_get(tx->aead[tx_key]);
1759        if (unlikely(!aead))
1760                goto exit;
1761        rc = tipc_ehdr_build(net, aead, tx_key, *skb, __rx);
1762        if (likely(rc > 0))
1763                rc = tipc_aead_encrypt(aead, *skb, b, dst, __dnode);
1764
1765exit:
1766        switch (rc) {
1767        case 0:
1768                this_cpu_inc(stats->stat[STAT_OK]);
1769                break;
1770        case -EINPROGRESS:
1771        case -EBUSY:
1772                this_cpu_inc(stats->stat[STAT_ASYNC]);
1773                *skb = NULL;
1774                return rc;
1775        default:
1776                this_cpu_inc(stats->stat[STAT_NOK]);
1777                if (rc == -ENOKEY)
1778                        this_cpu_inc(stats->stat[STAT_NOKEYS]);
1779                else if (rc == -EKEYREVOKED)
1780                        this_cpu_inc(stats->stat[STAT_BADKEYS]);
1781                kfree_skb(*skb);
1782                *skb = NULL;
1783                break;
1784        }
1785
1786        tipc_aead_put(aead);
1787        return rc;
1788}
1789
1790/**
1791 * tipc_crypto_rcv - Decrypt an encrypted TIPC message from peer
1792 * @net: struct net
1793 * @rx: RX crypto handle
1794 * @skb: input/output message skb pointer
1795 * @b: bearer where the message has been received
1796 *
1797 * If the decryption is successful, the decrypted skb is returned directly or
1798 * as the callback, the encryption header and auth tag will be trimed out
1799 * before forwarding to tipc_rcv() via the tipc_crypto_rcv_complete().
1800 * Otherwise, the skb will be freed!
1801 * Note: RX key(s) can be re-aligned, or in case of no key suitable, TX
1802 * cluster key(s) can be taken for decryption (- recursive).
1803 *
1804 * Return:
1805 * * 0                   : the decryption has successfully completed
1806 * * -EINPROGRESS/-EBUSY : the decryption is ongoing, a callback will be made
1807 * * -ENOKEY             : the decryption has failed due to no key
1808 * * -EBADMSG            : the decryption has failed due to bad message
1809 * * -ENOMEM             : the decryption has failed due to no memory
1810 * * < 0                 : the decryption has failed due to other reasons
1811 */
1812int tipc_crypto_rcv(struct net *net, struct tipc_crypto *rx,
1813                    struct sk_buff **skb, struct tipc_bearer *b)
1814{
1815        struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1816        struct tipc_crypto_stats __percpu *stats;
1817        struct tipc_aead *aead = NULL;
1818        struct tipc_key key;
1819        int rc = -ENOKEY;
1820        u8 tx_key, n;
1821
1822        tx_key = ((struct tipc_ehdr *)(*skb)->data)->tx_key;
1823
1824        /* New peer?
1825         * Let's try with TX key (i.e. cluster mode) & verify the skb first!
1826         */
1827        if (unlikely(!rx || tx_key == KEY_MASTER))
1828                goto pick_tx;
1829
1830        /* Pick RX key according to TX key if any */
1831        key = rx->key;
1832        if (tx_key == key.active || tx_key == key.pending ||
1833            tx_key == key.passive)
1834                goto decrypt;
1835
1836        /* Unknown key, let's try to align RX key(s) */
1837        if (tipc_crypto_key_try_align(rx, tx_key))
1838                goto decrypt;
1839
1840pick_tx:
1841        /* No key suitable? Try to pick one from TX... */
1842        aead = tipc_crypto_key_pick_tx(tx, rx, *skb, tx_key);
1843        if (aead)
1844                goto decrypt;
1845        goto exit;
1846
1847decrypt:
1848        rcu_read_lock();
1849        if (!aead)
1850                aead = tipc_aead_get(rx->aead[tx_key]);
1851        rc = tipc_aead_decrypt(net, aead, *skb, b);
1852        rcu_read_unlock();
1853
1854exit:
1855        stats = ((rx) ?: tx)->stats;
1856        switch (rc) {
1857        case 0:
1858                this_cpu_inc(stats->stat[STAT_OK]);
1859                break;
1860        case -EINPROGRESS:
1861        case -EBUSY:
1862                this_cpu_inc(stats->stat[STAT_ASYNC]);
1863                *skb = NULL;
1864                return rc;
1865        default:
1866                this_cpu_inc(stats->stat[STAT_NOK]);
1867                if (rc == -ENOKEY) {
1868                        kfree_skb(*skb);
1869                        *skb = NULL;
1870                        if (rx) {
1871                                /* Mark rx->nokey only if we dont have a
1872                                 * pending received session key, nor a newer
1873                                 * one i.e. in the next slot.
1874                                 */
1875                                n = key_next(tx_key);
1876                                rx->nokey = !(rx->skey ||
1877                                              rcu_access_pointer(rx->aead[n]));
1878                                pr_debug_ratelimited("%s: nokey %d, key %d/%x\n",
1879                                                     rx->name, rx->nokey,
1880                                                     tx_key, rx->key.keys);
1881                                tipc_node_put(rx->node);
1882                        }
1883                        this_cpu_inc(stats->stat[STAT_NOKEYS]);
1884                        return rc;
1885                } else if (rc == -EBADMSG) {
1886                        this_cpu_inc(stats->stat[STAT_BADMSGS]);
1887                }
1888                break;
1889        }
1890
1891        tipc_crypto_rcv_complete(net, aead, b, skb, rc);
1892        return rc;
1893}
1894
1895static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
1896                                     struct tipc_bearer *b,
1897                                     struct sk_buff **skb, int err)
1898{
1899        struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(*skb);
1900        struct tipc_crypto *rx = aead->crypto;
1901        struct tipc_aead *tmp = NULL;
1902        struct tipc_ehdr *ehdr;
1903        struct tipc_node *n;
1904
1905        /* Is this completed by TX? */
1906        if (unlikely(is_tx(aead->crypto))) {
1907                rx = skb_cb->tx_clone_ctx.rx;
1908                pr_debug("TX->RX(%s): err %d, aead %p, skb->next %p, flags %x\n",
1909                         (rx) ? tipc_node_get_id_str(rx->node) : "-", err, aead,
1910                         (*skb)->next, skb_cb->flags);
1911                pr_debug("skb_cb [recurs %d, last %p], tx->aead [%p %p %p]\n",
1912                         skb_cb->tx_clone_ctx.recurs, skb_cb->tx_clone_ctx.last,
1913                         aead->crypto->aead[1], aead->crypto->aead[2],
1914                         aead->crypto->aead[3]);
1915                if (unlikely(err)) {
1916                        if (err == -EBADMSG && (*skb)->next)
1917                                tipc_rcv(net, (*skb)->next, b);
1918                        goto free_skb;
1919                }
1920
1921                if (likely((*skb)->next)) {
1922                        kfree_skb((*skb)->next);
1923                        (*skb)->next = NULL;
1924                }
1925                ehdr = (struct tipc_ehdr *)(*skb)->data;
1926                if (!rx) {
1927                        WARN_ON(ehdr->user != LINK_CONFIG);
1928                        n = tipc_node_create(net, 0, ehdr->id, 0xffffu, 0,
1929                                             true);
1930                        rx = tipc_node_crypto_rx(n);
1931                        if (unlikely(!rx))
1932                                goto free_skb;
1933                }
1934
1935                /* Ignore cloning if it was TX master key */
1936                if (ehdr->tx_key == KEY_MASTER)
1937                        goto rcv;
1938                if (tipc_aead_clone(&tmp, aead) < 0)
1939                        goto rcv;
1940                WARN_ON(!refcount_inc_not_zero(&tmp->refcnt));
1941                if (tipc_crypto_key_attach(rx, tmp, ehdr->tx_key, false) < 0) {
1942                        tipc_aead_free(&tmp->rcu);
1943                        goto rcv;
1944                }
1945                tipc_aead_put(aead);
1946                aead = tmp;
1947        }
1948
1949        if (unlikely(err)) {
1950                tipc_aead_users_dec((struct tipc_aead __force __rcu *)aead, INT_MIN);
1951                goto free_skb;
1952        }
1953
1954        /* Set the RX key's user */
1955        tipc_aead_users_set((struct tipc_aead __force __rcu *)aead, 1);
1956
1957        /* Mark this point, RX works */
1958        rx->timer1 = jiffies;
1959
1960rcv:
1961        /* Remove ehdr & auth. tag prior to tipc_rcv() */
1962        ehdr = (struct tipc_ehdr *)(*skb)->data;
1963
1964        /* Mark this point, RX passive still works */
1965        if (rx->key.passive && ehdr->tx_key == rx->key.passive)
1966                rx->timer2 = jiffies;
1967
1968        skb_reset_network_header(*skb);
1969        skb_pull(*skb, tipc_ehdr_size(ehdr));
1970        pskb_trim(*skb, (*skb)->len - aead->authsize);
1971
1972        /* Validate TIPCv2 message */
1973        if (unlikely(!tipc_msg_validate(skb))) {
1974                pr_err_ratelimited("Packet dropped after decryption!\n");
1975                goto free_skb;
1976        }
1977
1978        /* Ok, everything's fine, try to synch own keys according to peers' */
1979        tipc_crypto_key_synch(rx, *skb);
1980
1981        /* Mark skb decrypted */
1982        skb_cb->decrypted = 1;
1983
1984        /* Clear clone cxt if any */
1985        if (likely(!skb_cb->tx_clone_deferred))
1986                goto exit;
1987        skb_cb->tx_clone_deferred = 0;
1988        memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1989        goto exit;
1990
1991free_skb:
1992        kfree_skb(*skb);
1993        *skb = NULL;
1994
1995exit:
1996        tipc_aead_put(aead);
1997        if (rx)
1998                tipc_node_put(rx->node);
1999}
2000
2001static void tipc_crypto_do_cmd(struct net *net, int cmd)
2002{
2003        struct tipc_net *tn = tipc_net(net);
2004        struct tipc_crypto *tx = tn->crypto_tx, *rx;
2005        struct list_head *p;
2006        unsigned int stat;
2007        int i, j, cpu;
2008        char buf[200];
2009
2010        /* Currently only one command is supported */
2011        switch (cmd) {
2012        case 0xfff1:
2013                goto print_stats;
2014        default:
2015                return;
2016        }
2017
2018print_stats:
2019        /* Print a header */
2020        pr_info("\n=============== TIPC Crypto Statistics ===============\n\n");
2021
2022        /* Print key status */
2023        pr_info("Key status:\n");
2024        pr_info("TX(%7.7s)\n%s", tipc_own_id_string(net),
2025                tipc_crypto_key_dump(tx, buf));
2026
2027        rcu_read_lock();
2028        for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
2029                rx = tipc_node_crypto_rx_by_list(p);
2030                pr_info("RX(%7.7s)\n%s", tipc_node_get_id_str(rx->node),
2031                        tipc_crypto_key_dump(rx, buf));
2032        }
2033        rcu_read_unlock();
2034
2035        /* Print crypto statistics */
2036        for (i = 0, j = 0; i < MAX_STATS; i++)
2037                j += scnprintf(buf + j, 200 - j, "|%11s ", hstats[i]);
2038        pr_info("Counter     %s", buf);
2039
2040        memset(buf, '-', 115);
2041        buf[115] = '\0';
2042        pr_info("%s\n", buf);
2043
2044        j = scnprintf(buf, 200, "TX(%7.7s) ", tipc_own_id_string(net));
2045        for_each_possible_cpu(cpu) {
2046                for (i = 0; i < MAX_STATS; i++) {
2047                        stat = per_cpu_ptr(tx->stats, cpu)->stat[i];
2048                        j += scnprintf(buf + j, 200 - j, "|%11d ", stat);
2049                }
2050                pr_info("%s", buf);
2051                j = scnprintf(buf, 200, "%12s", " ");
2052        }
2053
2054        rcu_read_lock();
2055        for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
2056                rx = tipc_node_crypto_rx_by_list(p);
2057                j = scnprintf(buf, 200, "RX(%7.7s) ",
2058                              tipc_node_get_id_str(rx->node));
2059                for_each_possible_cpu(cpu) {
2060                        for (i = 0; i < MAX_STATS; i++) {
2061                                stat = per_cpu_ptr(rx->stats, cpu)->stat[i];
2062                                j += scnprintf(buf + j, 200 - j, "|%11d ",
2063                                               stat);
2064                        }
2065                        pr_info("%s", buf);
2066                        j = scnprintf(buf, 200, "%12s", " ");
2067                }
2068        }
2069        rcu_read_unlock();
2070
2071        pr_info("\n======================== Done ========================\n");
2072}
2073
2074static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf)
2075{
2076        struct tipc_key key = c->key;
2077        struct tipc_aead *aead;
2078        int k, i = 0;
2079        char *s;
2080
2081        for (k = KEY_MIN; k <= KEY_MAX; k++) {
2082                if (k == KEY_MASTER) {
2083                        if (is_rx(c))
2084                                continue;
2085                        if (time_before(jiffies,
2086                                        c->timer2 + TIPC_TX_GRACE_PERIOD))
2087                                s = "ACT";
2088                        else
2089                                s = "PAS";
2090                } else {
2091                        if (k == key.passive)
2092                                s = "PAS";
2093                        else if (k == key.active)
2094                                s = "ACT";
2095                        else if (k == key.pending)
2096                                s = "PEN";
2097                        else
2098                                s = "-";
2099                }
2100                i += scnprintf(buf + i, 200 - i, "\tKey%d: %s", k, s);
2101
2102                rcu_read_lock();
2103                aead = rcu_dereference(c->aead[k]);
2104                if (aead)
2105                        i += scnprintf(buf + i, 200 - i,
2106                                       "{\"0x...%s\", \"%s\"}/%d:%d",
2107                                       aead->hint,
2108                                       (aead->mode == CLUSTER_KEY) ? "c" : "p",
2109                                       atomic_read(&aead->users),
2110                                       refcount_read(&aead->refcnt));
2111                rcu_read_unlock();
2112                i += scnprintf(buf + i, 200 - i, "\n");
2113        }
2114
2115        if (is_rx(c))
2116                i += scnprintf(buf + i, 200 - i, "\tPeer RX active: %d\n",
2117                               atomic_read(&c->peer_rx_active));
2118
2119        return buf;
2120}
2121
2122static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
2123                                  char *buf)
2124{
2125        struct tipc_key *key = &old;
2126        int k, i = 0;
2127        char *s;
2128
2129        /* Output format: "[%s %s %s] -> [%s %s %s]", max len = 32 */
2130again:
2131        i += scnprintf(buf + i, 32 - i, "[");
2132        for (k = KEY_1; k <= KEY_3; k++) {
2133                if (k == key->passive)
2134                        s = "pas";
2135                else if (k == key->active)
2136                        s = "act";
2137                else if (k == key->pending)
2138                        s = "pen";
2139                else
2140                        s = "-";
2141                i += scnprintf(buf + i, 32 - i,
2142                               (k != KEY_3) ? "%s " : "%s", s);
2143        }
2144        if (key != &new) {
2145                i += scnprintf(buf + i, 32 - i, "] -> ");
2146                key = &new;
2147                goto again;
2148        }
2149        i += scnprintf(buf + i, 32 - i, "]");
2150        return buf;
2151}
2152
2153/**
2154 * tipc_crypto_msg_rcv - Common 'MSG_CRYPTO' processing point
2155 * @net: the struct net
2156 * @skb: the receiving message buffer
2157 */
2158void tipc_crypto_msg_rcv(struct net *net, struct sk_buff *skb)
2159{
2160        struct tipc_crypto *rx;
2161        struct tipc_msg *hdr;
2162
2163        if (unlikely(skb_linearize(skb)))
2164                goto exit;
2165
2166        hdr = buf_msg(skb);
2167        rx = tipc_node_crypto_rx_by_addr(net, msg_prevnode(hdr));
2168        if (unlikely(!rx))
2169                goto exit;
2170
2171        switch (msg_type(hdr)) {
2172        case KEY_DISTR_MSG:
2173                if (tipc_crypto_key_rcv(rx, hdr))
2174                        goto exit;
2175                break;
2176        default:
2177                break;
2178        }
2179
2180        tipc_node_put(rx->node);
2181
2182exit:
2183        kfree_skb(skb);
2184}
2185
2186/**
2187 * tipc_crypto_key_distr - Distribute a TX key
2188 * @tx: the TX crypto
2189 * @key: the key's index
2190 * @dest: the destination tipc node, = NULL if distributing to all nodes
2191 *
2192 * Return: 0 in case of success, otherwise < 0
2193 */
2194int tipc_crypto_key_distr(struct tipc_crypto *tx, u8 key,
2195                          struct tipc_node *dest)
2196{
2197        struct tipc_aead *aead;
2198        u32 dnode = tipc_node_get_addr(dest);
2199        int rc = -ENOKEY;
2200
2201        if (!sysctl_tipc_key_exchange_enabled)
2202                return 0;
2203
2204        if (key) {
2205                rcu_read_lock();
2206                aead = tipc_aead_get(tx->aead[key]);
2207                if (likely(aead)) {
2208                        rc = tipc_crypto_key_xmit(tx->net, aead->key,
2209                                                  aead->gen, aead->mode,
2210                                                  dnode);
2211                        tipc_aead_put(aead);
2212                }
2213                rcu_read_unlock();
2214        }
2215
2216        return rc;
2217}
2218
2219/**
2220 * tipc_crypto_key_xmit - Send a session key
2221 * @net: the struct net
2222 * @skey: the session key to be sent
2223 * @gen: the key's generation
2224 * @mode: the key's mode
2225 * @dnode: the destination node address, = 0 if broadcasting to all nodes
2226 *
2227 * The session key 'skey' is packed in a TIPC v2 'MSG_CRYPTO/KEY_DISTR_MSG'
2228 * as its data section, then xmit-ed through the uc/bc link.
2229 *
2230 * Return: 0 in case of success, otherwise < 0
2231 */
2232static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
2233                                u16 gen, u8 mode, u32 dnode)
2234{
2235        struct sk_buff_head pkts;
2236        struct tipc_msg *hdr;
2237        struct sk_buff *skb;
2238        u16 size, cong_link_cnt;
2239        u8 *data;
2240        int rc;
2241
2242        size = tipc_aead_key_size(skey);
2243        skb = tipc_buf_acquire(INT_H_SIZE + size, GFP_ATOMIC);
2244        if (!skb)
2245                return -ENOMEM;
2246
2247        hdr = buf_msg(skb);
2248        tipc_msg_init(tipc_own_addr(net), hdr, MSG_CRYPTO, KEY_DISTR_MSG,
2249                      INT_H_SIZE, dnode);
2250        msg_set_size(hdr, INT_H_SIZE + size);
2251        msg_set_key_gen(hdr, gen);
2252        msg_set_key_mode(hdr, mode);
2253
2254        data = msg_data(hdr);
2255        *((__be32 *)(data + TIPC_AEAD_ALG_NAME)) = htonl(skey->keylen);
2256        memcpy(data, skey->alg_name, TIPC_AEAD_ALG_NAME);
2257        memcpy(data + TIPC_AEAD_ALG_NAME + sizeof(__be32), skey->key,
2258               skey->keylen);
2259
2260        __skb_queue_head_init(&pkts);
2261        __skb_queue_tail(&pkts, skb);
2262        if (dnode)
2263                rc = tipc_node_xmit(net, &pkts, dnode, 0);
2264        else
2265                rc = tipc_bcast_xmit(net, &pkts, &cong_link_cnt);
2266
2267        return rc;
2268}
2269
2270/**
2271 * tipc_crypto_key_rcv - Receive a session key
2272 * @rx: the RX crypto
2273 * @hdr: the TIPC v2 message incl. the receiving session key in its data
2274 *
2275 * This function retrieves the session key in the message from peer, then
2276 * schedules a RX work to attach the key to the corresponding RX crypto.
2277 *
2278 * Return: "true" if the key has been scheduled for attaching, otherwise
2279 * "false".
2280 */
2281static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr)
2282{
2283        struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
2284        struct tipc_aead_key *skey = NULL;
2285        u16 key_gen = msg_key_gen(hdr);
2286        u16 size = msg_data_sz(hdr);
2287        u8 *data = msg_data(hdr);
2288        unsigned int keylen;
2289
2290        /* Verify whether the size can exist in the packet */
2291        if (unlikely(size < sizeof(struct tipc_aead_key) + TIPC_AEAD_KEYLEN_MIN)) {
2292                pr_debug("%s: message data size is too small\n", rx->name);
2293                goto exit;
2294        }
2295
2296        keylen = ntohl(*((__be32 *)(data + TIPC_AEAD_ALG_NAME)));
2297
2298        /* Verify the supplied size values */
2299        if (unlikely(size != keylen + sizeof(struct tipc_aead_key) ||
2300                     keylen > TIPC_AEAD_KEY_SIZE_MAX)) {
2301                pr_debug("%s: invalid MSG_CRYPTO key size\n", rx->name);
2302                goto exit;
2303        }
2304
2305        spin_lock(&rx->lock);
2306        if (unlikely(rx->skey || (key_gen == rx->key_gen && rx->key.keys))) {
2307                pr_err("%s: key existed <%p>, gen %d vs %d\n", rx->name,
2308                       rx->skey, key_gen, rx->key_gen);
2309                goto exit_unlock;
2310        }
2311
2312        /* Allocate memory for the key */
2313        skey = kmalloc(size, GFP_ATOMIC);
2314        if (unlikely(!skey)) {
2315                pr_err("%s: unable to allocate memory for skey\n", rx->name);
2316                goto exit_unlock;
2317        }
2318
2319        /* Copy key from msg data */
2320        skey->keylen = keylen;
2321        memcpy(skey->alg_name, data, TIPC_AEAD_ALG_NAME);
2322        memcpy(skey->key, data + TIPC_AEAD_ALG_NAME + sizeof(__be32),
2323               skey->keylen);
2324
2325        rx->key_gen = key_gen;
2326        rx->skey_mode = msg_key_mode(hdr);
2327        rx->skey = skey;
2328        rx->nokey = 0;
2329        mb(); /* for nokey flag */
2330
2331exit_unlock:
2332        spin_unlock(&rx->lock);
2333
2334exit:
2335        /* Schedule the key attaching on this crypto */
2336        if (likely(skey && queue_delayed_work(tx->wq, &rx->work, 0)))
2337                return true;
2338
2339        return false;
2340}
2341
2342/**
2343 * tipc_crypto_work_rx - Scheduled RX works handler
2344 * @work: the struct RX work
2345 *
2346 * The function processes the previous scheduled works i.e. distributing TX key
2347 * or attaching a received session key on RX crypto.
2348 */
2349static void tipc_crypto_work_rx(struct work_struct *work)
2350{
2351        struct delayed_work *dwork = to_delayed_work(work);
2352        struct tipc_crypto *rx = container_of(dwork, struct tipc_crypto, work);
2353        struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
2354        unsigned long delay = msecs_to_jiffies(5000);
2355        bool resched = false;
2356        u8 key;
2357        int rc;
2358
2359        /* Case 1: Distribute TX key to peer if scheduled */
2360        if (atomic_cmpxchg(&rx->key_distr,
2361                           KEY_DISTR_SCHED,
2362                           KEY_DISTR_COMPL) == KEY_DISTR_SCHED) {
2363                /* Always pick the newest one for distributing */
2364                key = tx->key.pending ?: tx->key.active;
2365                rc = tipc_crypto_key_distr(tx, key, rx->node);
2366                if (unlikely(rc))
2367                        pr_warn("%s: unable to distr key[%d] to %s, err %d\n",
2368                                tx->name, key, tipc_node_get_id_str(rx->node),
2369                                rc);
2370
2371                /* Sched for key_distr releasing */
2372                resched = true;
2373        } else {
2374                atomic_cmpxchg(&rx->key_distr, KEY_DISTR_COMPL, 0);
2375        }
2376
2377        /* Case 2: Attach a pending received session key from peer if any */
2378        if (rx->skey) {
2379                rc = tipc_crypto_key_init(rx, rx->skey, rx->skey_mode, false);
2380                if (unlikely(rc < 0))
2381                        pr_warn("%s: unable to attach received skey, err %d\n",
2382                                rx->name, rc);
2383                switch (rc) {
2384                case -EBUSY:
2385                case -ENOMEM:
2386                        /* Resched the key attaching */
2387                        resched = true;
2388                        break;
2389                default:
2390                        synchronize_rcu();
2391                        kfree(rx->skey);
2392                        rx->skey = NULL;
2393                        break;
2394                }
2395        }
2396
2397        if (resched && queue_delayed_work(tx->wq, &rx->work, delay))
2398                return;
2399
2400        tipc_node_put(rx->node);
2401}
2402
2403/**
2404 * tipc_crypto_rekeying_sched - (Re)schedule rekeying w/o new interval
2405 * @tx: TX crypto
2406 * @changed: if the rekeying needs to be rescheduled with new interval
2407 * @new_intv: new rekeying interval (when "changed" = true)
2408 */
2409void tipc_crypto_rekeying_sched(struct tipc_crypto *tx, bool changed,
2410                                u32 new_intv)
2411{
2412        unsigned long delay;
2413        bool now = false;
2414
2415        if (changed) {
2416                if (new_intv == TIPC_REKEYING_NOW)
2417                        now = true;
2418                else
2419                        tx->rekeying_intv = new_intv;
2420                cancel_delayed_work_sync(&tx->work);
2421        }
2422
2423        if (tx->rekeying_intv || now) {
2424                delay = (now) ? 0 : tx->rekeying_intv * 60 * 1000;
2425                queue_delayed_work(tx->wq, &tx->work, msecs_to_jiffies(delay));
2426        }
2427}
2428
2429/**
2430 * tipc_crypto_work_tx - Scheduled TX works handler
2431 * @work: the struct TX work
2432 *
2433 * The function processes the previous scheduled work, i.e. key rekeying, by
2434 * generating a new session key based on current one, then attaching it to the
2435 * TX crypto and finally distributing it to peers. It also re-schedules the
2436 * rekeying if needed.
2437 */
2438static void tipc_crypto_work_tx(struct work_struct *work)
2439{
2440        struct delayed_work *dwork = to_delayed_work(work);
2441        struct tipc_crypto *tx = container_of(dwork, struct tipc_crypto, work);
2442        struct tipc_aead_key *skey = NULL;
2443        struct tipc_key key = tx->key;
2444        struct tipc_aead *aead;
2445        int rc = -ENOMEM;
2446
2447        if (unlikely(key.pending))
2448                goto resched;
2449
2450        /* Take current key as a template */
2451        rcu_read_lock();
2452        aead = rcu_dereference(tx->aead[key.active ?: KEY_MASTER]);
2453        if (unlikely(!aead)) {
2454                rcu_read_unlock();
2455                /* At least one key should exist for securing */
2456                return;
2457        }
2458
2459        /* Lets duplicate it first */
2460        skey = kmemdup(aead->key, tipc_aead_key_size(aead->key), GFP_ATOMIC);
2461        rcu_read_unlock();
2462
2463        /* Now, generate new key, initiate & distribute it */
2464        if (likely(skey)) {
2465                rc = tipc_aead_key_generate(skey) ?:
2466                     tipc_crypto_key_init(tx, skey, PER_NODE_KEY, false);
2467                if (likely(rc > 0))
2468                        rc = tipc_crypto_key_distr(tx, rc, NULL);
2469                kfree_sensitive(skey);
2470        }
2471
2472        if (unlikely(rc))
2473                pr_warn_ratelimited("%s: rekeying returns %d\n", tx->name, rc);
2474
2475resched:
2476        /* Re-schedule rekeying if any */
2477        tipc_crypto_rekeying_sched(tx, false, 0);
2478}
2479