linux/net/tls/tls_sw.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
   3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
   4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
   5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
   6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
   7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
   8 *
   9 * This software is available to you under a choice of one of two
  10 * licenses.  You may choose to be licensed under the terms of the GNU
  11 * General Public License (GPL) Version 2, available from the file
  12 * COPYING in the main directory of this source tree, or the
  13 * OpenIB.org BSD license below:
  14 *
  15 *     Redistribution and use in source and binary forms, with or
  16 *     without modification, are permitted provided that the following
  17 *     conditions are met:
  18 *
  19 *      - Redistributions of source code must retain the above
  20 *        copyright notice, this list of conditions and the following
  21 *        disclaimer.
  22 *
  23 *      - Redistributions in binary form must reproduce the above
  24 *        copyright notice, this list of conditions and the following
  25 *        disclaimer in the documentation and/or other materials
  26 *        provided with the distribution.
  27 *
  28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  35 * SOFTWARE.
  36 */
  37
  38#include <linux/bug.h>
  39#include <linux/sched/signal.h>
  40#include <linux/module.h>
  41#include <linux/splice.h>
  42#include <crypto/aead.h>
  43
  44#include <net/strparser.h>
  45#include <net/tls.h>
  46
  47noinline void tls_err_abort(struct sock *sk, int err)
  48{
  49        WARN_ON_ONCE(err >= 0);
  50        /* sk->sk_err should contain a positive error code. */
  51        sk->sk_err = -err;
  52        sk_error_report(sk);
  53}
  54
  55static int __skb_nsg(struct sk_buff *skb, int offset, int len,
  56                     unsigned int recursion_level)
  57{
  58        int start = skb_headlen(skb);
  59        int i, chunk = start - offset;
  60        struct sk_buff *frag_iter;
  61        int elt = 0;
  62
  63        if (unlikely(recursion_level >= 24))
  64                return -EMSGSIZE;
  65
  66        if (chunk > 0) {
  67                if (chunk > len)
  68                        chunk = len;
  69                elt++;
  70                len -= chunk;
  71                if (len == 0)
  72                        return elt;
  73                offset += chunk;
  74        }
  75
  76        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  77                int end;
  78
  79                WARN_ON(start > offset + len);
  80
  81                end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
  82                chunk = end - offset;
  83                if (chunk > 0) {
  84                        if (chunk > len)
  85                                chunk = len;
  86                        elt++;
  87                        len -= chunk;
  88                        if (len == 0)
  89                                return elt;
  90                        offset += chunk;
  91                }
  92                start = end;
  93        }
  94
  95        if (unlikely(skb_has_frag_list(skb))) {
  96                skb_walk_frags(skb, frag_iter) {
  97                        int end, ret;
  98
  99                        WARN_ON(start > offset + len);
 100
 101                        end = start + frag_iter->len;
 102                        chunk = end - offset;
 103                        if (chunk > 0) {
 104                                if (chunk > len)
 105                                        chunk = len;
 106                                ret = __skb_nsg(frag_iter, offset - start, chunk,
 107                                                recursion_level + 1);
 108                                if (unlikely(ret < 0))
 109                                        return ret;
 110                                elt += ret;
 111                                len -= chunk;
 112                                if (len == 0)
 113                                        return elt;
 114                                offset += chunk;
 115                        }
 116                        start = end;
 117                }
 118        }
 119        BUG_ON(len);
 120        return elt;
 121}
 122
 123/* Return the number of scatterlist elements required to completely map the
 124 * skb, or -EMSGSIZE if the recursion depth is exceeded.
 125 */
 126static int skb_nsg(struct sk_buff *skb, int offset, int len)
 127{
 128        return __skb_nsg(skb, offset, len, 0);
 129}
 130
 131static int padding_length(struct tls_sw_context_rx *ctx,
 132                          struct tls_prot_info *prot, struct sk_buff *skb)
 133{
 134        struct strp_msg *rxm = strp_msg(skb);
 135        int sub = 0;
 136
 137        /* Determine zero-padding length */
 138        if (prot->version == TLS_1_3_VERSION) {
 139                char content_type = 0;
 140                int err;
 141                int back = 17;
 142
 143                while (content_type == 0) {
 144                        if (back > rxm->full_len - prot->prepend_size)
 145                                return -EBADMSG;
 146                        err = skb_copy_bits(skb,
 147                                            rxm->offset + rxm->full_len - back,
 148                                            &content_type, 1);
 149                        if (err)
 150                                return err;
 151                        if (content_type)
 152                                break;
 153                        sub++;
 154                        back++;
 155                }
 156                ctx->control = content_type;
 157        }
 158        return sub;
 159}
 160
 161static void tls_decrypt_done(struct crypto_async_request *req, int err)
 162{
 163        struct aead_request *aead_req = (struct aead_request *)req;
 164        struct scatterlist *sgout = aead_req->dst;
 165        struct scatterlist *sgin = aead_req->src;
 166        struct tls_sw_context_rx *ctx;
 167        struct tls_context *tls_ctx;
 168        struct tls_prot_info *prot;
 169        struct scatterlist *sg;
 170        struct sk_buff *skb;
 171        unsigned int pages;
 172        int pending;
 173
 174        skb = (struct sk_buff *)req->data;
 175        tls_ctx = tls_get_ctx(skb->sk);
 176        ctx = tls_sw_ctx_rx(tls_ctx);
 177        prot = &tls_ctx->prot_info;
 178
 179        /* Propagate if there was an err */
 180        if (err) {
 181                if (err == -EBADMSG)
 182                        TLS_INC_STATS(sock_net(skb->sk),
 183                                      LINUX_MIB_TLSDECRYPTERROR);
 184                ctx->async_wait.err = err;
 185                tls_err_abort(skb->sk, err);
 186        } else {
 187                struct strp_msg *rxm = strp_msg(skb);
 188                int pad;
 189
 190                pad = padding_length(ctx, prot, skb);
 191                if (pad < 0) {
 192                        ctx->async_wait.err = pad;
 193                        tls_err_abort(skb->sk, pad);
 194                } else {
 195                        rxm->full_len -= pad;
 196                        rxm->offset += prot->prepend_size;
 197                        rxm->full_len -= prot->overhead_size;
 198                }
 199        }
 200
 201        /* After using skb->sk to propagate sk through crypto async callback
 202         * we need to NULL it again.
 203         */
 204        skb->sk = NULL;
 205
 206
 207        /* Free the destination pages if skb was not decrypted inplace */
 208        if (sgout != sgin) {
 209                /* Skip the first S/G entry as it points to AAD */
 210                for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
 211                        if (!sg)
 212                                break;
 213                        put_page(sg_page(sg));
 214                }
 215        }
 216
 217        kfree(aead_req);
 218
 219        spin_lock_bh(&ctx->decrypt_compl_lock);
 220        pending = atomic_dec_return(&ctx->decrypt_pending);
 221
 222        if (!pending && ctx->async_notify)
 223                complete(&ctx->async_wait.completion);
 224        spin_unlock_bh(&ctx->decrypt_compl_lock);
 225}
 226
 227static int tls_do_decryption(struct sock *sk,
 228                             struct sk_buff *skb,
 229                             struct scatterlist *sgin,
 230                             struct scatterlist *sgout,
 231                             char *iv_recv,
 232                             size_t data_len,
 233                             struct aead_request *aead_req,
 234                             bool async)
 235{
 236        struct tls_context *tls_ctx = tls_get_ctx(sk);
 237        struct tls_prot_info *prot = &tls_ctx->prot_info;
 238        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
 239        int ret;
 240
 241        aead_request_set_tfm(aead_req, ctx->aead_recv);
 242        aead_request_set_ad(aead_req, prot->aad_size);
 243        aead_request_set_crypt(aead_req, sgin, sgout,
 244                               data_len + prot->tag_size,
 245                               (u8 *)iv_recv);
 246
 247        if (async) {
 248                /* Using skb->sk to push sk through to crypto async callback
 249                 * handler. This allows propagating errors up to the socket
 250                 * if needed. It _must_ be cleared in the async handler
 251                 * before consume_skb is called. We _know_ skb->sk is NULL
 252                 * because it is a clone from strparser.
 253                 */
 254                skb->sk = sk;
 255                aead_request_set_callback(aead_req,
 256                                          CRYPTO_TFM_REQ_MAY_BACKLOG,
 257                                          tls_decrypt_done, skb);
 258                atomic_inc(&ctx->decrypt_pending);
 259        } else {
 260                aead_request_set_callback(aead_req,
 261                                          CRYPTO_TFM_REQ_MAY_BACKLOG,
 262                                          crypto_req_done, &ctx->async_wait);
 263        }
 264
 265        ret = crypto_aead_decrypt(aead_req);
 266        if (ret == -EINPROGRESS) {
 267                if (async)
 268                        return ret;
 269
 270                ret = crypto_wait_req(ret, &ctx->async_wait);
 271        }
 272
 273        if (async)
 274                atomic_dec(&ctx->decrypt_pending);
 275
 276        return ret;
 277}
 278
 279static void tls_trim_both_msgs(struct sock *sk, int target_size)
 280{
 281        struct tls_context *tls_ctx = tls_get_ctx(sk);
 282        struct tls_prot_info *prot = &tls_ctx->prot_info;
 283        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 284        struct tls_rec *rec = ctx->open_rec;
 285
 286        sk_msg_trim(sk, &rec->msg_plaintext, target_size);
 287        if (target_size > 0)
 288                target_size += prot->overhead_size;
 289        sk_msg_trim(sk, &rec->msg_encrypted, target_size);
 290}
 291
 292static int tls_alloc_encrypted_msg(struct sock *sk, int len)
 293{
 294        struct tls_context *tls_ctx = tls_get_ctx(sk);
 295        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 296        struct tls_rec *rec = ctx->open_rec;
 297        struct sk_msg *msg_en = &rec->msg_encrypted;
 298
 299        return sk_msg_alloc(sk, msg_en, len, 0);
 300}
 301
 302static int tls_clone_plaintext_msg(struct sock *sk, int required)
 303{
 304        struct tls_context *tls_ctx = tls_get_ctx(sk);
 305        struct tls_prot_info *prot = &tls_ctx->prot_info;
 306        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 307        struct tls_rec *rec = ctx->open_rec;
 308        struct sk_msg *msg_pl = &rec->msg_plaintext;
 309        struct sk_msg *msg_en = &rec->msg_encrypted;
 310        int skip, len;
 311
 312        /* We add page references worth len bytes from encrypted sg
 313         * at the end of plaintext sg. It is guaranteed that msg_en
 314         * has enough required room (ensured by caller).
 315         */
 316        len = required - msg_pl->sg.size;
 317
 318        /* Skip initial bytes in msg_en's data to be able to use
 319         * same offset of both plain and encrypted data.
 320         */
 321        skip = prot->prepend_size + msg_pl->sg.size;
 322
 323        return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
 324}
 325
 326static struct tls_rec *tls_get_rec(struct sock *sk)
 327{
 328        struct tls_context *tls_ctx = tls_get_ctx(sk);
 329        struct tls_prot_info *prot = &tls_ctx->prot_info;
 330        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 331        struct sk_msg *msg_pl, *msg_en;
 332        struct tls_rec *rec;
 333        int mem_size;
 334
 335        mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
 336
 337        rec = kzalloc(mem_size, sk->sk_allocation);
 338        if (!rec)
 339                return NULL;
 340
 341        msg_pl = &rec->msg_plaintext;
 342        msg_en = &rec->msg_encrypted;
 343
 344        sk_msg_init(msg_pl);
 345        sk_msg_init(msg_en);
 346
 347        sg_init_table(rec->sg_aead_in, 2);
 348        sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
 349        sg_unmark_end(&rec->sg_aead_in[1]);
 350
 351        sg_init_table(rec->sg_aead_out, 2);
 352        sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
 353        sg_unmark_end(&rec->sg_aead_out[1]);
 354
 355        return rec;
 356}
 357
 358static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
 359{
 360        sk_msg_free(sk, &rec->msg_encrypted);
 361        sk_msg_free(sk, &rec->msg_plaintext);
 362        kfree(rec);
 363}
 364
 365static void tls_free_open_rec(struct sock *sk)
 366{
 367        struct tls_context *tls_ctx = tls_get_ctx(sk);
 368        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 369        struct tls_rec *rec = ctx->open_rec;
 370
 371        if (rec) {
 372                tls_free_rec(sk, rec);
 373                ctx->open_rec = NULL;
 374        }
 375}
 376
 377int tls_tx_records(struct sock *sk, int flags)
 378{
 379        struct tls_context *tls_ctx = tls_get_ctx(sk);
 380        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 381        struct tls_rec *rec, *tmp;
 382        struct sk_msg *msg_en;
 383        int tx_flags, rc = 0;
 384
 385        if (tls_is_partially_sent_record(tls_ctx)) {
 386                rec = list_first_entry(&ctx->tx_list,
 387                                       struct tls_rec, list);
 388
 389                if (flags == -1)
 390                        tx_flags = rec->tx_flags;
 391                else
 392                        tx_flags = flags;
 393
 394                rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
 395                if (rc)
 396                        goto tx_err;
 397
 398                /* Full record has been transmitted.
 399                 * Remove the head of tx_list
 400                 */
 401                list_del(&rec->list);
 402                sk_msg_free(sk, &rec->msg_plaintext);
 403                kfree(rec);
 404        }
 405
 406        /* Tx all ready records */
 407        list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
 408                if (READ_ONCE(rec->tx_ready)) {
 409                        if (flags == -1)
 410                                tx_flags = rec->tx_flags;
 411                        else
 412                                tx_flags = flags;
 413
 414                        msg_en = &rec->msg_encrypted;
 415                        rc = tls_push_sg(sk, tls_ctx,
 416                                         &msg_en->sg.data[msg_en->sg.curr],
 417                                         0, tx_flags);
 418                        if (rc)
 419                                goto tx_err;
 420
 421                        list_del(&rec->list);
 422                        sk_msg_free(sk, &rec->msg_plaintext);
 423                        kfree(rec);
 424                } else {
 425                        break;
 426                }
 427        }
 428
 429tx_err:
 430        if (rc < 0 && rc != -EAGAIN)
 431                tls_err_abort(sk, -EBADMSG);
 432
 433        return rc;
 434}
 435
 436static void tls_encrypt_done(struct crypto_async_request *req, int err)
 437{
 438        struct aead_request *aead_req = (struct aead_request *)req;
 439        struct sock *sk = req->data;
 440        struct tls_context *tls_ctx = tls_get_ctx(sk);
 441        struct tls_prot_info *prot = &tls_ctx->prot_info;
 442        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 443        struct scatterlist *sge;
 444        struct sk_msg *msg_en;
 445        struct tls_rec *rec;
 446        bool ready = false;
 447        int pending;
 448
 449        rec = container_of(aead_req, struct tls_rec, aead_req);
 450        msg_en = &rec->msg_encrypted;
 451
 452        sge = sk_msg_elem(msg_en, msg_en->sg.curr);
 453        sge->offset -= prot->prepend_size;
 454        sge->length += prot->prepend_size;
 455
 456        /* Check if error is previously set on socket */
 457        if (err || sk->sk_err) {
 458                rec = NULL;
 459
 460                /* If err is already set on socket, return the same code */
 461                if (sk->sk_err) {
 462                        ctx->async_wait.err = -sk->sk_err;
 463                } else {
 464                        ctx->async_wait.err = err;
 465                        tls_err_abort(sk, err);
 466                }
 467        }
 468
 469        if (rec) {
 470                struct tls_rec *first_rec;
 471
 472                /* Mark the record as ready for transmission */
 473                smp_store_mb(rec->tx_ready, true);
 474
 475                /* If received record is at head of tx_list, schedule tx */
 476                first_rec = list_first_entry(&ctx->tx_list,
 477                                             struct tls_rec, list);
 478                if (rec == first_rec)
 479                        ready = true;
 480        }
 481
 482        spin_lock_bh(&ctx->encrypt_compl_lock);
 483        pending = atomic_dec_return(&ctx->encrypt_pending);
 484
 485        if (!pending && ctx->async_notify)
 486                complete(&ctx->async_wait.completion);
 487        spin_unlock_bh(&ctx->encrypt_compl_lock);
 488
 489        if (!ready)
 490                return;
 491
 492        /* Schedule the transmission */
 493        if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
 494                schedule_delayed_work(&ctx->tx_work.work, 1);
 495}
 496
 497static int tls_do_encryption(struct sock *sk,
 498                             struct tls_context *tls_ctx,
 499                             struct tls_sw_context_tx *ctx,
 500                             struct aead_request *aead_req,
 501                             size_t data_len, u32 start)
 502{
 503        struct tls_prot_info *prot = &tls_ctx->prot_info;
 504        struct tls_rec *rec = ctx->open_rec;
 505        struct sk_msg *msg_en = &rec->msg_encrypted;
 506        struct scatterlist *sge = sk_msg_elem(msg_en, start);
 507        int rc, iv_offset = 0;
 508
 509        /* For CCM based ciphers, first byte of IV is a constant */
 510        if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
 511                rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
 512                iv_offset = 1;
 513        }
 514
 515        memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
 516               prot->iv_size + prot->salt_size);
 517
 518        xor_iv_with_seq(prot, rec->iv_data, tls_ctx->tx.rec_seq);
 519
 520        sge->offset += prot->prepend_size;
 521        sge->length -= prot->prepend_size;
 522
 523        msg_en->sg.curr = start;
 524
 525        aead_request_set_tfm(aead_req, ctx->aead_send);
 526        aead_request_set_ad(aead_req, prot->aad_size);
 527        aead_request_set_crypt(aead_req, rec->sg_aead_in,
 528                               rec->sg_aead_out,
 529                               data_len, rec->iv_data);
 530
 531        aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
 532                                  tls_encrypt_done, sk);
 533
 534        /* Add the record in tx_list */
 535        list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
 536        atomic_inc(&ctx->encrypt_pending);
 537
 538        rc = crypto_aead_encrypt(aead_req);
 539        if (!rc || rc != -EINPROGRESS) {
 540                atomic_dec(&ctx->encrypt_pending);
 541                sge->offset -= prot->prepend_size;
 542                sge->length += prot->prepend_size;
 543        }
 544
 545        if (!rc) {
 546                WRITE_ONCE(rec->tx_ready, true);
 547        } else if (rc != -EINPROGRESS) {
 548                list_del(&rec->list);
 549                return rc;
 550        }
 551
 552        /* Unhook the record from context if encryption is not failure */
 553        ctx->open_rec = NULL;
 554        tls_advance_record_sn(sk, prot, &tls_ctx->tx);
 555        return rc;
 556}
 557
 558static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
 559                                 struct tls_rec **to, struct sk_msg *msg_opl,
 560                                 struct sk_msg *msg_oen, u32 split_point,
 561                                 u32 tx_overhead_size, u32 *orig_end)
 562{
 563        u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
 564        struct scatterlist *sge, *osge, *nsge;
 565        u32 orig_size = msg_opl->sg.size;
 566        struct scatterlist tmp = { };
 567        struct sk_msg *msg_npl;
 568        struct tls_rec *new;
 569        int ret;
 570
 571        new = tls_get_rec(sk);
 572        if (!new)
 573                return -ENOMEM;
 574        ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
 575                           tx_overhead_size, 0);
 576        if (ret < 0) {
 577                tls_free_rec(sk, new);
 578                return ret;
 579        }
 580
 581        *orig_end = msg_opl->sg.end;
 582        i = msg_opl->sg.start;
 583        sge = sk_msg_elem(msg_opl, i);
 584        while (apply && sge->length) {
 585                if (sge->length > apply) {
 586                        u32 len = sge->length - apply;
 587
 588                        get_page(sg_page(sge));
 589                        sg_set_page(&tmp, sg_page(sge), len,
 590                                    sge->offset + apply);
 591                        sge->length = apply;
 592                        bytes += apply;
 593                        apply = 0;
 594                } else {
 595                        apply -= sge->length;
 596                        bytes += sge->length;
 597                }
 598
 599                sk_msg_iter_var_next(i);
 600                if (i == msg_opl->sg.end)
 601                        break;
 602                sge = sk_msg_elem(msg_opl, i);
 603        }
 604
 605        msg_opl->sg.end = i;
 606        msg_opl->sg.curr = i;
 607        msg_opl->sg.copybreak = 0;
 608        msg_opl->apply_bytes = 0;
 609        msg_opl->sg.size = bytes;
 610
 611        msg_npl = &new->msg_plaintext;
 612        msg_npl->apply_bytes = apply;
 613        msg_npl->sg.size = orig_size - bytes;
 614
 615        j = msg_npl->sg.start;
 616        nsge = sk_msg_elem(msg_npl, j);
 617        if (tmp.length) {
 618                memcpy(nsge, &tmp, sizeof(*nsge));
 619                sk_msg_iter_var_next(j);
 620                nsge = sk_msg_elem(msg_npl, j);
 621        }
 622
 623        osge = sk_msg_elem(msg_opl, i);
 624        while (osge->length) {
 625                memcpy(nsge, osge, sizeof(*nsge));
 626                sg_unmark_end(nsge);
 627                sk_msg_iter_var_next(i);
 628                sk_msg_iter_var_next(j);
 629                if (i == *orig_end)
 630                        break;
 631                osge = sk_msg_elem(msg_opl, i);
 632                nsge = sk_msg_elem(msg_npl, j);
 633        }
 634
 635        msg_npl->sg.end = j;
 636        msg_npl->sg.curr = j;
 637        msg_npl->sg.copybreak = 0;
 638
 639        *to = new;
 640        return 0;
 641}
 642
 643static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
 644                                  struct tls_rec *from, u32 orig_end)
 645{
 646        struct sk_msg *msg_npl = &from->msg_plaintext;
 647        struct sk_msg *msg_opl = &to->msg_plaintext;
 648        struct scatterlist *osge, *nsge;
 649        u32 i, j;
 650
 651        i = msg_opl->sg.end;
 652        sk_msg_iter_var_prev(i);
 653        j = msg_npl->sg.start;
 654
 655        osge = sk_msg_elem(msg_opl, i);
 656        nsge = sk_msg_elem(msg_npl, j);
 657
 658        if (sg_page(osge) == sg_page(nsge) &&
 659            osge->offset + osge->length == nsge->offset) {
 660                osge->length += nsge->length;
 661                put_page(sg_page(nsge));
 662        }
 663
 664        msg_opl->sg.end = orig_end;
 665        msg_opl->sg.curr = orig_end;
 666        msg_opl->sg.copybreak = 0;
 667        msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
 668        msg_opl->sg.size += msg_npl->sg.size;
 669
 670        sk_msg_free(sk, &to->msg_encrypted);
 671        sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
 672
 673        kfree(from);
 674}
 675
 676static int tls_push_record(struct sock *sk, int flags,
 677                           unsigned char record_type)
 678{
 679        struct tls_context *tls_ctx = tls_get_ctx(sk);
 680        struct tls_prot_info *prot = &tls_ctx->prot_info;
 681        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 682        struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
 683        u32 i, split_point, orig_end;
 684        struct sk_msg *msg_pl, *msg_en;
 685        struct aead_request *req;
 686        bool split;
 687        int rc;
 688
 689        if (!rec)
 690                return 0;
 691
 692        msg_pl = &rec->msg_plaintext;
 693        msg_en = &rec->msg_encrypted;
 694
 695        split_point = msg_pl->apply_bytes;
 696        split = split_point && split_point < msg_pl->sg.size;
 697        if (unlikely((!split &&
 698                      msg_pl->sg.size +
 699                      prot->overhead_size > msg_en->sg.size) ||
 700                     (split &&
 701                      split_point +
 702                      prot->overhead_size > msg_en->sg.size))) {
 703                split = true;
 704                split_point = msg_en->sg.size;
 705        }
 706        if (split) {
 707                rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
 708                                           split_point, prot->overhead_size,
 709                                           &orig_end);
 710                if (rc < 0)
 711                        return rc;
 712                /* This can happen if above tls_split_open_record allocates
 713                 * a single large encryption buffer instead of two smaller
 714                 * ones. In this case adjust pointers and continue without
 715                 * split.
 716                 */
 717                if (!msg_pl->sg.size) {
 718                        tls_merge_open_record(sk, rec, tmp, orig_end);
 719                        msg_pl = &rec->msg_plaintext;
 720                        msg_en = &rec->msg_encrypted;
 721                        split = false;
 722                }
 723                sk_msg_trim(sk, msg_en, msg_pl->sg.size +
 724                            prot->overhead_size);
 725        }
 726
 727        rec->tx_flags = flags;
 728        req = &rec->aead_req;
 729
 730        i = msg_pl->sg.end;
 731        sk_msg_iter_var_prev(i);
 732
 733        rec->content_type = record_type;
 734        if (prot->version == TLS_1_3_VERSION) {
 735                /* Add content type to end of message.  No padding added */
 736                sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
 737                sg_mark_end(&rec->sg_content_type);
 738                sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
 739                         &rec->sg_content_type);
 740        } else {
 741                sg_mark_end(sk_msg_elem(msg_pl, i));
 742        }
 743
 744        if (msg_pl->sg.end < msg_pl->sg.start) {
 745                sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
 746                         MAX_SKB_FRAGS - msg_pl->sg.start + 1,
 747                         msg_pl->sg.data);
 748        }
 749
 750        i = msg_pl->sg.start;
 751        sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
 752
 753        i = msg_en->sg.end;
 754        sk_msg_iter_var_prev(i);
 755        sg_mark_end(sk_msg_elem(msg_en, i));
 756
 757        i = msg_en->sg.start;
 758        sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
 759
 760        tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
 761                     tls_ctx->tx.rec_seq, record_type, prot);
 762
 763        tls_fill_prepend(tls_ctx,
 764                         page_address(sg_page(&msg_en->sg.data[i])) +
 765                         msg_en->sg.data[i].offset,
 766                         msg_pl->sg.size + prot->tail_size,
 767                         record_type);
 768
 769        tls_ctx->pending_open_record_frags = false;
 770
 771        rc = tls_do_encryption(sk, tls_ctx, ctx, req,
 772                               msg_pl->sg.size + prot->tail_size, i);
 773        if (rc < 0) {
 774                if (rc != -EINPROGRESS) {
 775                        tls_err_abort(sk, -EBADMSG);
 776                        if (split) {
 777                                tls_ctx->pending_open_record_frags = true;
 778                                tls_merge_open_record(sk, rec, tmp, orig_end);
 779                        }
 780                }
 781                ctx->async_capable = 1;
 782                return rc;
 783        } else if (split) {
 784                msg_pl = &tmp->msg_plaintext;
 785                msg_en = &tmp->msg_encrypted;
 786                sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
 787                tls_ctx->pending_open_record_frags = true;
 788                ctx->open_rec = tmp;
 789        }
 790
 791        return tls_tx_records(sk, flags);
 792}
 793
 794static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
 795                               bool full_record, u8 record_type,
 796                               ssize_t *copied, int flags)
 797{
 798        struct tls_context *tls_ctx = tls_get_ctx(sk);
 799        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 800        struct sk_msg msg_redir = { };
 801        struct sk_psock *psock;
 802        struct sock *sk_redir;
 803        struct tls_rec *rec;
 804        bool enospc, policy;
 805        int err = 0, send;
 806        u32 delta = 0;
 807
 808        policy = !(flags & MSG_SENDPAGE_NOPOLICY);
 809        psock = sk_psock_get(sk);
 810        if (!psock || !policy) {
 811                err = tls_push_record(sk, flags, record_type);
 812                if (err && sk->sk_err == EBADMSG) {
 813                        *copied -= sk_msg_free(sk, msg);
 814                        tls_free_open_rec(sk);
 815                        err = -sk->sk_err;
 816                }
 817                if (psock)
 818                        sk_psock_put(sk, psock);
 819                return err;
 820        }
 821more_data:
 822        enospc = sk_msg_full(msg);
 823        if (psock->eval == __SK_NONE) {
 824                delta = msg->sg.size;
 825                psock->eval = sk_psock_msg_verdict(sk, psock, msg);
 826                delta -= msg->sg.size;
 827        }
 828        if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
 829            !enospc && !full_record) {
 830                err = -ENOSPC;
 831                goto out_err;
 832        }
 833        msg->cork_bytes = 0;
 834        send = msg->sg.size;
 835        if (msg->apply_bytes && msg->apply_bytes < send)
 836                send = msg->apply_bytes;
 837
 838        switch (psock->eval) {
 839        case __SK_PASS:
 840                err = tls_push_record(sk, flags, record_type);
 841                if (err && sk->sk_err == EBADMSG) {
 842                        *copied -= sk_msg_free(sk, msg);
 843                        tls_free_open_rec(sk);
 844                        err = -sk->sk_err;
 845                        goto out_err;
 846                }
 847                break;
 848        case __SK_REDIRECT:
 849                sk_redir = psock->sk_redir;
 850                memcpy(&msg_redir, msg, sizeof(*msg));
 851                if (msg->apply_bytes < send)
 852                        msg->apply_bytes = 0;
 853                else
 854                        msg->apply_bytes -= send;
 855                sk_msg_return_zero(sk, msg, send);
 856                msg->sg.size -= send;
 857                release_sock(sk);
 858                err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
 859                lock_sock(sk);
 860                if (err < 0) {
 861                        *copied -= sk_msg_free_nocharge(sk, &msg_redir);
 862                        msg->sg.size = 0;
 863                }
 864                if (msg->sg.size == 0)
 865                        tls_free_open_rec(sk);
 866                break;
 867        case __SK_DROP:
 868        default:
 869                sk_msg_free_partial(sk, msg, send);
 870                if (msg->apply_bytes < send)
 871                        msg->apply_bytes = 0;
 872                else
 873                        msg->apply_bytes -= send;
 874                if (msg->sg.size == 0)
 875                        tls_free_open_rec(sk);
 876                *copied -= (send + delta);
 877                err = -EACCES;
 878        }
 879
 880        if (likely(!err)) {
 881                bool reset_eval = !ctx->open_rec;
 882
 883                rec = ctx->open_rec;
 884                if (rec) {
 885                        msg = &rec->msg_plaintext;
 886                        if (!msg->apply_bytes)
 887                                reset_eval = true;
 888                }
 889                if (reset_eval) {
 890                        psock->eval = __SK_NONE;
 891                        if (psock->sk_redir) {
 892                                sock_put(psock->sk_redir);
 893                                psock->sk_redir = NULL;
 894                        }
 895                }
 896                if (rec)
 897                        goto more_data;
 898        }
 899 out_err:
 900        sk_psock_put(sk, psock);
 901        return err;
 902}
 903
 904static int tls_sw_push_pending_record(struct sock *sk, int flags)
 905{
 906        struct tls_context *tls_ctx = tls_get_ctx(sk);
 907        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 908        struct tls_rec *rec = ctx->open_rec;
 909        struct sk_msg *msg_pl;
 910        size_t copied;
 911
 912        if (!rec)
 913                return 0;
 914
 915        msg_pl = &rec->msg_plaintext;
 916        copied = msg_pl->sg.size;
 917        if (!copied)
 918                return 0;
 919
 920        return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
 921                                   &copied, flags);
 922}
 923
 924int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
 925{
 926        long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
 927        struct tls_context *tls_ctx = tls_get_ctx(sk);
 928        struct tls_prot_info *prot = &tls_ctx->prot_info;
 929        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 930        bool async_capable = ctx->async_capable;
 931        unsigned char record_type = TLS_RECORD_TYPE_DATA;
 932        bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
 933        bool eor = !(msg->msg_flags & MSG_MORE);
 934        size_t try_to_copy;
 935        ssize_t copied = 0;
 936        struct sk_msg *msg_pl, *msg_en;
 937        struct tls_rec *rec;
 938        int required_size;
 939        int num_async = 0;
 940        bool full_record;
 941        int record_room;
 942        int num_zc = 0;
 943        int orig_size;
 944        int ret = 0;
 945        int pending;
 946
 947        if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
 948                               MSG_CMSG_COMPAT))
 949                return -EOPNOTSUPP;
 950
 951        mutex_lock(&tls_ctx->tx_lock);
 952        lock_sock(sk);
 953
 954        if (unlikely(msg->msg_controllen)) {
 955                ret = tls_proccess_cmsg(sk, msg, &record_type);
 956                if (ret) {
 957                        if (ret == -EINPROGRESS)
 958                                num_async++;
 959                        else if (ret != -EAGAIN)
 960                                goto send_end;
 961                }
 962        }
 963
 964        while (msg_data_left(msg)) {
 965                if (sk->sk_err) {
 966                        ret = -sk->sk_err;
 967                        goto send_end;
 968                }
 969
 970                if (ctx->open_rec)
 971                        rec = ctx->open_rec;
 972                else
 973                        rec = ctx->open_rec = tls_get_rec(sk);
 974                if (!rec) {
 975                        ret = -ENOMEM;
 976                        goto send_end;
 977                }
 978
 979                msg_pl = &rec->msg_plaintext;
 980                msg_en = &rec->msg_encrypted;
 981
 982                orig_size = msg_pl->sg.size;
 983                full_record = false;
 984                try_to_copy = msg_data_left(msg);
 985                record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
 986                if (try_to_copy >= record_room) {
 987                        try_to_copy = record_room;
 988                        full_record = true;
 989                }
 990
 991                required_size = msg_pl->sg.size + try_to_copy +
 992                                prot->overhead_size;
 993
 994                if (!sk_stream_memory_free(sk))
 995                        goto wait_for_sndbuf;
 996
 997alloc_encrypted:
 998                ret = tls_alloc_encrypted_msg(sk, required_size);
 999                if (ret) {
1000                        if (ret != -ENOSPC)
1001                                goto wait_for_memory;
1002
1003                        /* Adjust try_to_copy according to the amount that was
1004                         * actually allocated. The difference is due
1005                         * to max sg elements limit
1006                         */
1007                        try_to_copy -= required_size - msg_en->sg.size;
1008                        full_record = true;
1009                }
1010
1011                if (!is_kvec && (full_record || eor) && !async_capable) {
1012                        u32 first = msg_pl->sg.end;
1013
1014                        ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1015                                                        msg_pl, try_to_copy);
1016                        if (ret)
1017                                goto fallback_to_reg_send;
1018
1019                        num_zc++;
1020                        copied += try_to_copy;
1021
1022                        sk_msg_sg_copy_set(msg_pl, first);
1023                        ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1024                                                  record_type, &copied,
1025                                                  msg->msg_flags);
1026                        if (ret) {
1027                                if (ret == -EINPROGRESS)
1028                                        num_async++;
1029                                else if (ret == -ENOMEM)
1030                                        goto wait_for_memory;
1031                                else if (ctx->open_rec && ret == -ENOSPC)
1032                                        goto rollback_iter;
1033                                else if (ret != -EAGAIN)
1034                                        goto send_end;
1035                        }
1036                        continue;
1037rollback_iter:
1038                        copied -= try_to_copy;
1039                        sk_msg_sg_copy_clear(msg_pl, first);
1040                        iov_iter_revert(&msg->msg_iter,
1041                                        msg_pl->sg.size - orig_size);
1042fallback_to_reg_send:
1043                        sk_msg_trim(sk, msg_pl, orig_size);
1044                }
1045
1046                required_size = msg_pl->sg.size + try_to_copy;
1047
1048                ret = tls_clone_plaintext_msg(sk, required_size);
1049                if (ret) {
1050                        if (ret != -ENOSPC)
1051                                goto send_end;
1052
1053                        /* Adjust try_to_copy according to the amount that was
1054                         * actually allocated. The difference is due
1055                         * to max sg elements limit
1056                         */
1057                        try_to_copy -= required_size - msg_pl->sg.size;
1058                        full_record = true;
1059                        sk_msg_trim(sk, msg_en,
1060                                    msg_pl->sg.size + prot->overhead_size);
1061                }
1062
1063                if (try_to_copy) {
1064                        ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1065                                                       msg_pl, try_to_copy);
1066                        if (ret < 0)
1067                                goto trim_sgl;
1068                }
1069
1070                /* Open records defined only if successfully copied, otherwise
1071                 * we would trim the sg but not reset the open record frags.
1072                 */
1073                tls_ctx->pending_open_record_frags = true;
1074                copied += try_to_copy;
1075                if (full_record || eor) {
1076                        ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1077                                                  record_type, &copied,
1078                                                  msg->msg_flags);
1079                        if (ret) {
1080                                if (ret == -EINPROGRESS)
1081                                        num_async++;
1082                                else if (ret == -ENOMEM)
1083                                        goto wait_for_memory;
1084                                else if (ret != -EAGAIN) {
1085                                        if (ret == -ENOSPC)
1086                                                ret = 0;
1087                                        goto send_end;
1088                                }
1089                        }
1090                }
1091
1092                continue;
1093
1094wait_for_sndbuf:
1095                set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1096wait_for_memory:
1097                ret = sk_stream_wait_memory(sk, &timeo);
1098                if (ret) {
1099trim_sgl:
1100                        if (ctx->open_rec)
1101                                tls_trim_both_msgs(sk, orig_size);
1102                        goto send_end;
1103                }
1104
1105                if (ctx->open_rec && msg_en->sg.size < required_size)
1106                        goto alloc_encrypted;
1107        }
1108
1109        if (!num_async) {
1110                goto send_end;
1111        } else if (num_zc) {
1112                /* Wait for pending encryptions to get completed */
1113                spin_lock_bh(&ctx->encrypt_compl_lock);
1114                ctx->async_notify = true;
1115
1116                pending = atomic_read(&ctx->encrypt_pending);
1117                spin_unlock_bh(&ctx->encrypt_compl_lock);
1118                if (pending)
1119                        crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1120                else
1121                        reinit_completion(&ctx->async_wait.completion);
1122
1123                /* There can be no concurrent accesses, since we have no
1124                 * pending encrypt operations
1125                 */
1126                WRITE_ONCE(ctx->async_notify, false);
1127
1128                if (ctx->async_wait.err) {
1129                        ret = ctx->async_wait.err;
1130                        copied = 0;
1131                }
1132        }
1133
1134        /* Transmit if any encryptions have completed */
1135        if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1136                cancel_delayed_work(&ctx->tx_work.work);
1137                tls_tx_records(sk, msg->msg_flags);
1138        }
1139
1140send_end:
1141        ret = sk_stream_error(sk, msg->msg_flags, ret);
1142
1143        release_sock(sk);
1144        mutex_unlock(&tls_ctx->tx_lock);
1145        return copied > 0 ? copied : ret;
1146}
1147
1148static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1149                              int offset, size_t size, int flags)
1150{
1151        long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1152        struct tls_context *tls_ctx = tls_get_ctx(sk);
1153        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1154        struct tls_prot_info *prot = &tls_ctx->prot_info;
1155        unsigned char record_type = TLS_RECORD_TYPE_DATA;
1156        struct sk_msg *msg_pl;
1157        struct tls_rec *rec;
1158        int num_async = 0;
1159        ssize_t copied = 0;
1160        bool full_record;
1161        int record_room;
1162        int ret = 0;
1163        bool eor;
1164
1165        eor = !(flags & MSG_SENDPAGE_NOTLAST);
1166        sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1167
1168        /* Call the sk_stream functions to manage the sndbuf mem. */
1169        while (size > 0) {
1170                size_t copy, required_size;
1171
1172                if (sk->sk_err) {
1173                        ret = -sk->sk_err;
1174                        goto sendpage_end;
1175                }
1176
1177                if (ctx->open_rec)
1178                        rec = ctx->open_rec;
1179                else
1180                        rec = ctx->open_rec = tls_get_rec(sk);
1181                if (!rec) {
1182                        ret = -ENOMEM;
1183                        goto sendpage_end;
1184                }
1185
1186                msg_pl = &rec->msg_plaintext;
1187
1188                full_record = false;
1189                record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1190                copy = size;
1191                if (copy >= record_room) {
1192                        copy = record_room;
1193                        full_record = true;
1194                }
1195
1196                required_size = msg_pl->sg.size + copy + prot->overhead_size;
1197
1198                if (!sk_stream_memory_free(sk))
1199                        goto wait_for_sndbuf;
1200alloc_payload:
1201                ret = tls_alloc_encrypted_msg(sk, required_size);
1202                if (ret) {
1203                        if (ret != -ENOSPC)
1204                                goto wait_for_memory;
1205
1206                        /* Adjust copy according to the amount that was
1207                         * actually allocated. The difference is due
1208                         * to max sg elements limit
1209                         */
1210                        copy -= required_size - msg_pl->sg.size;
1211                        full_record = true;
1212                }
1213
1214                sk_msg_page_add(msg_pl, page, copy, offset);
1215                sk_mem_charge(sk, copy);
1216
1217                offset += copy;
1218                size -= copy;
1219                copied += copy;
1220
1221                tls_ctx->pending_open_record_frags = true;
1222                if (full_record || eor || sk_msg_full(msg_pl)) {
1223                        ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1224                                                  record_type, &copied, flags);
1225                        if (ret) {
1226                                if (ret == -EINPROGRESS)
1227                                        num_async++;
1228                                else if (ret == -ENOMEM)
1229                                        goto wait_for_memory;
1230                                else if (ret != -EAGAIN) {
1231                                        if (ret == -ENOSPC)
1232                                                ret = 0;
1233                                        goto sendpage_end;
1234                                }
1235                        }
1236                }
1237                continue;
1238wait_for_sndbuf:
1239                set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1240wait_for_memory:
1241                ret = sk_stream_wait_memory(sk, &timeo);
1242                if (ret) {
1243                        if (ctx->open_rec)
1244                                tls_trim_both_msgs(sk, msg_pl->sg.size);
1245                        goto sendpage_end;
1246                }
1247
1248                if (ctx->open_rec)
1249                        goto alloc_payload;
1250        }
1251
1252        if (num_async) {
1253                /* Transmit if any encryptions have completed */
1254                if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1255                        cancel_delayed_work(&ctx->tx_work.work);
1256                        tls_tx_records(sk, flags);
1257                }
1258        }
1259sendpage_end:
1260        ret = sk_stream_error(sk, flags, ret);
1261        return copied > 0 ? copied : ret;
1262}
1263
1264int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1265                           int offset, size_t size, int flags)
1266{
1267        if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1268                      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1269                      MSG_NO_SHARED_FRAGS))
1270                return -EOPNOTSUPP;
1271
1272        return tls_sw_do_sendpage(sk, page, offset, size, flags);
1273}
1274
1275int tls_sw_sendpage(struct sock *sk, struct page *page,
1276                    int offset, size_t size, int flags)
1277{
1278        struct tls_context *tls_ctx = tls_get_ctx(sk);
1279        int ret;
1280
1281        if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1282                      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1283                return -EOPNOTSUPP;
1284
1285        mutex_lock(&tls_ctx->tx_lock);
1286        lock_sock(sk);
1287        ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1288        release_sock(sk);
1289        mutex_unlock(&tls_ctx->tx_lock);
1290        return ret;
1291}
1292
1293static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1294                                     bool nonblock, long timeo, int *err)
1295{
1296        struct tls_context *tls_ctx = tls_get_ctx(sk);
1297        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1298        struct sk_buff *skb;
1299        DEFINE_WAIT_FUNC(wait, woken_wake_function);
1300
1301        while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1302                if (sk->sk_err) {
1303                        *err = sock_error(sk);
1304                        return NULL;
1305                }
1306
1307                if (!skb_queue_empty(&sk->sk_receive_queue)) {
1308                        __strp_unpause(&ctx->strp);
1309                        if (ctx->recv_pkt)
1310                                return ctx->recv_pkt;
1311                }
1312
1313                if (sk->sk_shutdown & RCV_SHUTDOWN)
1314                        return NULL;
1315
1316                if (sock_flag(sk, SOCK_DONE))
1317                        return NULL;
1318
1319                if (nonblock || !timeo) {
1320                        *err = -EAGAIN;
1321                        return NULL;
1322                }
1323
1324                add_wait_queue(sk_sleep(sk), &wait);
1325                sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1326                sk_wait_event(sk, &timeo,
1327                              ctx->recv_pkt != skb ||
1328                              !sk_psock_queue_empty(psock),
1329                              &wait);
1330                sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1331                remove_wait_queue(sk_sleep(sk), &wait);
1332
1333                /* Handle signals */
1334                if (signal_pending(current)) {
1335                        *err = sock_intr_errno(timeo);
1336                        return NULL;
1337                }
1338        }
1339
1340        return skb;
1341}
1342
1343static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1344                               int length, int *pages_used,
1345                               unsigned int *size_used,
1346                               struct scatterlist *to,
1347                               int to_max_pages)
1348{
1349        int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1350        struct page *pages[MAX_SKB_FRAGS];
1351        unsigned int size = *size_used;
1352        ssize_t copied, use;
1353        size_t offset;
1354
1355        while (length > 0) {
1356                i = 0;
1357                maxpages = to_max_pages - num_elem;
1358                if (maxpages == 0) {
1359                        rc = -EFAULT;
1360                        goto out;
1361                }
1362                copied = iov_iter_get_pages(from, pages,
1363                                            length,
1364                                            maxpages, &offset);
1365                if (copied <= 0) {
1366                        rc = -EFAULT;
1367                        goto out;
1368                }
1369
1370                iov_iter_advance(from, copied);
1371
1372                length -= copied;
1373                size += copied;
1374                while (copied) {
1375                        use = min_t(int, copied, PAGE_SIZE - offset);
1376
1377                        sg_set_page(&to[num_elem],
1378                                    pages[i], use, offset);
1379                        sg_unmark_end(&to[num_elem]);
1380                        /* We do not uncharge memory from this API */
1381
1382                        offset = 0;
1383                        copied -= use;
1384
1385                        i++;
1386                        num_elem++;
1387                }
1388        }
1389        /* Mark the end in the last sg entry if newly added */
1390        if (num_elem > *pages_used)
1391                sg_mark_end(&to[num_elem - 1]);
1392out:
1393        if (rc)
1394                iov_iter_revert(from, size - *size_used);
1395        *size_used = size;
1396        *pages_used = num_elem;
1397
1398        return rc;
1399}
1400
1401/* This function decrypts the input skb into either out_iov or in out_sg
1402 * or in skb buffers itself. The input parameter 'zc' indicates if
1403 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1404 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1405 * NULL, then the decryption happens inside skb buffers itself, i.e.
1406 * zero-copy gets disabled and 'zc' is updated.
1407 */
1408
1409static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1410                            struct iov_iter *out_iov,
1411                            struct scatterlist *out_sg,
1412                            int *chunk, bool *zc, bool async)
1413{
1414        struct tls_context *tls_ctx = tls_get_ctx(sk);
1415        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1416        struct tls_prot_info *prot = &tls_ctx->prot_info;
1417        struct strp_msg *rxm = strp_msg(skb);
1418        int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1419        struct aead_request *aead_req;
1420        struct sk_buff *unused;
1421        u8 *aad, *iv, *mem = NULL;
1422        struct scatterlist *sgin = NULL;
1423        struct scatterlist *sgout = NULL;
1424        const int data_len = rxm->full_len - prot->overhead_size +
1425                             prot->tail_size;
1426        int iv_offset = 0;
1427
1428        if (*zc && (out_iov || out_sg)) {
1429                if (out_iov)
1430                        n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1431                else
1432                        n_sgout = sg_nents(out_sg);
1433                n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1434                                 rxm->full_len - prot->prepend_size);
1435        } else {
1436                n_sgout = 0;
1437                *zc = false;
1438                n_sgin = skb_cow_data(skb, 0, &unused);
1439        }
1440
1441        if (n_sgin < 1)
1442                return -EBADMSG;
1443
1444        /* Increment to accommodate AAD */
1445        n_sgin = n_sgin + 1;
1446
1447        nsg = n_sgin + n_sgout;
1448
1449        aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1450        mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1451        mem_size = mem_size + prot->aad_size;
1452        mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1453
1454        /* Allocate a single block of memory which contains
1455         * aead_req || sgin[] || sgout[] || aad || iv.
1456         * This order achieves correct alignment for aead_req, sgin, sgout.
1457         */
1458        mem = kmalloc(mem_size, sk->sk_allocation);
1459        if (!mem)
1460                return -ENOMEM;
1461
1462        /* Segment the allocated memory */
1463        aead_req = (struct aead_request *)mem;
1464        sgin = (struct scatterlist *)(mem + aead_size);
1465        sgout = sgin + n_sgin;
1466        aad = (u8 *)(sgout + n_sgout);
1467        iv = aad + prot->aad_size;
1468
1469        /* For CCM based ciphers, first byte of nonce+iv is always '2' */
1470        if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
1471                iv[0] = 2;
1472                iv_offset = 1;
1473        }
1474
1475        /* Prepare IV */
1476        err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1477                            iv + iv_offset + prot->salt_size,
1478                            prot->iv_size);
1479        if (err < 0) {
1480                kfree(mem);
1481                return err;
1482        }
1483        if (prot->version == TLS_1_3_VERSION ||
1484            prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305)
1485                memcpy(iv + iv_offset, tls_ctx->rx.iv,
1486                       crypto_aead_ivsize(ctx->aead_recv));
1487        else
1488                memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1489
1490        xor_iv_with_seq(prot, iv, tls_ctx->rx.rec_seq);
1491
1492        /* Prepare AAD */
1493        tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1494                     prot->tail_size,
1495                     tls_ctx->rx.rec_seq, ctx->control, prot);
1496
1497        /* Prepare sgin */
1498        sg_init_table(sgin, n_sgin);
1499        sg_set_buf(&sgin[0], aad, prot->aad_size);
1500        err = skb_to_sgvec(skb, &sgin[1],
1501                           rxm->offset + prot->prepend_size,
1502                           rxm->full_len - prot->prepend_size);
1503        if (err < 0) {
1504                kfree(mem);
1505                return err;
1506        }
1507
1508        if (n_sgout) {
1509                if (out_iov) {
1510                        sg_init_table(sgout, n_sgout);
1511                        sg_set_buf(&sgout[0], aad, prot->aad_size);
1512
1513                        *chunk = 0;
1514                        err = tls_setup_from_iter(sk, out_iov, data_len,
1515                                                  &pages, chunk, &sgout[1],
1516                                                  (n_sgout - 1));
1517                        if (err < 0)
1518                                goto fallback_to_reg_recv;
1519                } else if (out_sg) {
1520                        memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1521                } else {
1522                        goto fallback_to_reg_recv;
1523                }
1524        } else {
1525fallback_to_reg_recv:
1526                sgout = sgin;
1527                pages = 0;
1528                *chunk = data_len;
1529                *zc = false;
1530        }
1531
1532        /* Prepare and submit AEAD request */
1533        err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1534                                data_len, aead_req, async);
1535        if (err == -EINPROGRESS)
1536                return err;
1537
1538        /* Release the pages in case iov was mapped to pages */
1539        for (; pages > 0; pages--)
1540                put_page(sg_page(&sgout[pages]));
1541
1542        kfree(mem);
1543        return err;
1544}
1545
1546static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1547                              struct iov_iter *dest, int *chunk, bool *zc,
1548                              bool async)
1549{
1550        struct tls_context *tls_ctx = tls_get_ctx(sk);
1551        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1552        struct tls_prot_info *prot = &tls_ctx->prot_info;
1553        struct strp_msg *rxm = strp_msg(skb);
1554        int pad, err = 0;
1555
1556        if (!ctx->decrypted) {
1557                if (tls_ctx->rx_conf == TLS_HW) {
1558                        err = tls_device_decrypted(sk, tls_ctx, skb, rxm);
1559                        if (err < 0)
1560                                return err;
1561                }
1562
1563                /* Still not decrypted after tls_device */
1564                if (!ctx->decrypted) {
1565                        err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1566                                               async);
1567                        if (err < 0) {
1568                                if (err == -EINPROGRESS)
1569                                        tls_advance_record_sn(sk, prot,
1570                                                              &tls_ctx->rx);
1571                                else if (err == -EBADMSG)
1572                                        TLS_INC_STATS(sock_net(sk),
1573                                                      LINUX_MIB_TLSDECRYPTERROR);
1574                                return err;
1575                        }
1576                } else {
1577                        *zc = false;
1578                }
1579
1580                pad = padding_length(ctx, prot, skb);
1581                if (pad < 0)
1582                        return pad;
1583
1584                rxm->full_len -= pad;
1585                rxm->offset += prot->prepend_size;
1586                rxm->full_len -= prot->overhead_size;
1587                tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1588                ctx->decrypted = 1;
1589                ctx->saved_data_ready(sk);
1590        } else {
1591                *zc = false;
1592        }
1593
1594        return err;
1595}
1596
1597int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1598                struct scatterlist *sgout)
1599{
1600        bool zc = true;
1601        int chunk;
1602
1603        return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1604}
1605
1606static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1607                               unsigned int len)
1608{
1609        struct tls_context *tls_ctx = tls_get_ctx(sk);
1610        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1611
1612        if (skb) {
1613                struct strp_msg *rxm = strp_msg(skb);
1614
1615                if (len < rxm->full_len) {
1616                        rxm->offset += len;
1617                        rxm->full_len -= len;
1618                        return false;
1619                }
1620                consume_skb(skb);
1621        }
1622
1623        /* Finished with message */
1624        ctx->recv_pkt = NULL;
1625        __strp_unpause(&ctx->strp);
1626
1627        return true;
1628}
1629
1630/* This function traverses the rx_list in tls receive context to copies the
1631 * decrypted records into the buffer provided by caller zero copy is not
1632 * true. Further, the records are removed from the rx_list if it is not a peek
1633 * case and the record has been consumed completely.
1634 */
1635static int process_rx_list(struct tls_sw_context_rx *ctx,
1636                           struct msghdr *msg,
1637                           u8 *control,
1638                           bool *cmsg,
1639                           size_t skip,
1640                           size_t len,
1641                           bool zc,
1642                           bool is_peek)
1643{
1644        struct sk_buff *skb = skb_peek(&ctx->rx_list);
1645        u8 ctrl = *control;
1646        u8 msgc = *cmsg;
1647        struct tls_msg *tlm;
1648        ssize_t copied = 0;
1649
1650        /* Set the record type in 'control' if caller didn't pass it */
1651        if (!ctrl && skb) {
1652                tlm = tls_msg(skb);
1653                ctrl = tlm->control;
1654        }
1655
1656        while (skip && skb) {
1657                struct strp_msg *rxm = strp_msg(skb);
1658                tlm = tls_msg(skb);
1659
1660                /* Cannot process a record of different type */
1661                if (ctrl != tlm->control)
1662                        return 0;
1663
1664                if (skip < rxm->full_len)
1665                        break;
1666
1667                skip = skip - rxm->full_len;
1668                skb = skb_peek_next(skb, &ctx->rx_list);
1669        }
1670
1671        while (len && skb) {
1672                struct sk_buff *next_skb;
1673                struct strp_msg *rxm = strp_msg(skb);
1674                int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1675
1676                tlm = tls_msg(skb);
1677
1678                /* Cannot process a record of different type */
1679                if (ctrl != tlm->control)
1680                        return 0;
1681
1682                /* Set record type if not already done. For a non-data record,
1683                 * do not proceed if record type could not be copied.
1684                 */
1685                if (!msgc) {
1686                        int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1687                                            sizeof(ctrl), &ctrl);
1688                        msgc = true;
1689                        if (ctrl != TLS_RECORD_TYPE_DATA) {
1690                                if (cerr || msg->msg_flags & MSG_CTRUNC)
1691                                        return -EIO;
1692
1693                                *cmsg = msgc;
1694                        }
1695                }
1696
1697                if (!zc || (rxm->full_len - skip) > len) {
1698                        int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1699                                                    msg, chunk);
1700                        if (err < 0)
1701                                return err;
1702                }
1703
1704                len = len - chunk;
1705                copied = copied + chunk;
1706
1707                /* Consume the data from record if it is non-peek case*/
1708                if (!is_peek) {
1709                        rxm->offset = rxm->offset + chunk;
1710                        rxm->full_len = rxm->full_len - chunk;
1711
1712                        /* Return if there is unconsumed data in the record */
1713                        if (rxm->full_len - skip)
1714                                break;
1715                }
1716
1717                /* The remaining skip-bytes must lie in 1st record in rx_list.
1718                 * So from the 2nd record, 'skip' should be 0.
1719                 */
1720                skip = 0;
1721
1722                if (msg)
1723                        msg->msg_flags |= MSG_EOR;
1724
1725                next_skb = skb_peek_next(skb, &ctx->rx_list);
1726
1727                if (!is_peek) {
1728                        skb_unlink(skb, &ctx->rx_list);
1729                        consume_skb(skb);
1730                }
1731
1732                skb = next_skb;
1733        }
1734
1735        *control = ctrl;
1736        return copied;
1737}
1738
1739int tls_sw_recvmsg(struct sock *sk,
1740                   struct msghdr *msg,
1741                   size_t len,
1742                   int nonblock,
1743                   int flags,
1744                   int *addr_len)
1745{
1746        struct tls_context *tls_ctx = tls_get_ctx(sk);
1747        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1748        struct tls_prot_info *prot = &tls_ctx->prot_info;
1749        struct sk_psock *psock;
1750        unsigned char control = 0;
1751        ssize_t decrypted = 0;
1752        struct strp_msg *rxm;
1753        struct tls_msg *tlm;
1754        struct sk_buff *skb;
1755        ssize_t copied = 0;
1756        bool cmsg = false;
1757        int target, err = 0;
1758        long timeo;
1759        bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1760        bool is_peek = flags & MSG_PEEK;
1761        bool bpf_strp_enabled;
1762        int num_async = 0;
1763        int pending;
1764
1765        flags |= nonblock;
1766
1767        if (unlikely(flags & MSG_ERRQUEUE))
1768                return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1769
1770        psock = sk_psock_get(sk);
1771        lock_sock(sk);
1772        bpf_strp_enabled = sk_psock_strp_enabled(psock);
1773
1774        /* Process pending decrypted records. It must be non-zero-copy */
1775        err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1776                              is_peek);
1777        if (err < 0) {
1778                tls_err_abort(sk, err);
1779                goto end;
1780        } else {
1781                copied = err;
1782        }
1783
1784        if (len <= copied)
1785                goto recv_end;
1786
1787        target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1788        len = len - copied;
1789        timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1790
1791        while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1792                bool retain_skb = false;
1793                bool zc = false;
1794                int to_decrypt;
1795                int chunk = 0;
1796                bool async_capable;
1797                bool async = false;
1798
1799                skb = tls_wait_data(sk, psock, flags & MSG_DONTWAIT, timeo, &err);
1800                if (!skb) {
1801                        if (psock) {
1802                                int ret = sk_msg_recvmsg(sk, psock, msg, len,
1803                                                         flags);
1804
1805                                if (ret > 0) {
1806                                        decrypted += ret;
1807                                        len -= ret;
1808                                        continue;
1809                                }
1810                        }
1811                        goto recv_end;
1812                } else {
1813                        tlm = tls_msg(skb);
1814                        if (prot->version == TLS_1_3_VERSION)
1815                                tlm->control = 0;
1816                        else
1817                                tlm->control = ctx->control;
1818                }
1819
1820                rxm = strp_msg(skb);
1821
1822                to_decrypt = rxm->full_len - prot->overhead_size;
1823
1824                if (to_decrypt <= len && !is_kvec && !is_peek &&
1825                    ctx->control == TLS_RECORD_TYPE_DATA &&
1826                    prot->version != TLS_1_3_VERSION &&
1827                    !bpf_strp_enabled)
1828                        zc = true;
1829
1830                /* Do not use async mode if record is non-data */
1831                if (ctx->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1832                        async_capable = ctx->async_capable;
1833                else
1834                        async_capable = false;
1835
1836                err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1837                                         &chunk, &zc, async_capable);
1838                if (err < 0 && err != -EINPROGRESS) {
1839                        tls_err_abort(sk, -EBADMSG);
1840                        goto recv_end;
1841                }
1842
1843                if (err == -EINPROGRESS) {
1844                        async = true;
1845                        num_async++;
1846                } else if (prot->version == TLS_1_3_VERSION) {
1847                        tlm->control = ctx->control;
1848                }
1849
1850                /* If the type of records being processed is not known yet,
1851                 * set it to record type just dequeued. If it is already known,
1852                 * but does not match the record type just dequeued, go to end.
1853                 * We always get record type here since for tls1.2, record type
1854                 * is known just after record is dequeued from stream parser.
1855                 * For tls1.3, we disable async.
1856                 */
1857
1858                if (!control)
1859                        control = tlm->control;
1860                else if (control != tlm->control)
1861                        goto recv_end;
1862
1863                if (!cmsg) {
1864                        int cerr;
1865
1866                        cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1867                                        sizeof(control), &control);
1868                        cmsg = true;
1869                        if (control != TLS_RECORD_TYPE_DATA) {
1870                                if (cerr || msg->msg_flags & MSG_CTRUNC) {
1871                                        err = -EIO;
1872                                        goto recv_end;
1873                                }
1874                        }
1875                }
1876
1877                if (async)
1878                        goto pick_next_record;
1879
1880                if (!zc) {
1881                        if (bpf_strp_enabled) {
1882                                err = sk_psock_tls_strp_read(psock, skb);
1883                                if (err != __SK_PASS) {
1884                                        rxm->offset = rxm->offset + rxm->full_len;
1885                                        rxm->full_len = 0;
1886                                        if (err == __SK_DROP)
1887                                                consume_skb(skb);
1888                                        ctx->recv_pkt = NULL;
1889                                        __strp_unpause(&ctx->strp);
1890                                        continue;
1891                                }
1892                        }
1893
1894                        if (rxm->full_len > len) {
1895                                retain_skb = true;
1896                                chunk = len;
1897                        } else {
1898                                chunk = rxm->full_len;
1899                        }
1900
1901                        err = skb_copy_datagram_msg(skb, rxm->offset,
1902                                                    msg, chunk);
1903                        if (err < 0)
1904                                goto recv_end;
1905
1906                        if (!is_peek) {
1907                                rxm->offset = rxm->offset + chunk;
1908                                rxm->full_len = rxm->full_len - chunk;
1909                        }
1910                }
1911
1912pick_next_record:
1913                if (chunk > len)
1914                        chunk = len;
1915
1916                decrypted += chunk;
1917                len -= chunk;
1918
1919                /* For async or peek case, queue the current skb */
1920                if (async || is_peek || retain_skb) {
1921                        skb_queue_tail(&ctx->rx_list, skb);
1922                        skb = NULL;
1923                }
1924
1925                if (tls_sw_advance_skb(sk, skb, chunk)) {
1926                        /* Return full control message to
1927                         * userspace before trying to parse
1928                         * another message type
1929                         */
1930                        msg->msg_flags |= MSG_EOR;
1931                        if (control != TLS_RECORD_TYPE_DATA)
1932                                goto recv_end;
1933                } else {
1934                        break;
1935                }
1936        }
1937
1938recv_end:
1939        if (num_async) {
1940                /* Wait for all previously submitted records to be decrypted */
1941                spin_lock_bh(&ctx->decrypt_compl_lock);
1942                ctx->async_notify = true;
1943                pending = atomic_read(&ctx->decrypt_pending);
1944                spin_unlock_bh(&ctx->decrypt_compl_lock);
1945                if (pending) {
1946                        err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1947                        if (err) {
1948                                /* one of async decrypt failed */
1949                                tls_err_abort(sk, err);
1950                                copied = 0;
1951                                decrypted = 0;
1952                                goto end;
1953                        }
1954                } else {
1955                        reinit_completion(&ctx->async_wait.completion);
1956                }
1957
1958                /* There can be no concurrent accesses, since we have no
1959                 * pending decrypt operations
1960                 */
1961                WRITE_ONCE(ctx->async_notify, false);
1962
1963                /* Drain records from the rx_list & copy if required */
1964                if (is_peek || is_kvec)
1965                        err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1966                                              decrypted, false, is_peek);
1967                else
1968                        err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1969                                              decrypted, true, is_peek);
1970                if (err < 0) {
1971                        tls_err_abort(sk, err);
1972                        copied = 0;
1973                        goto end;
1974                }
1975        }
1976
1977        copied += decrypted;
1978
1979end:
1980        release_sock(sk);
1981        if (psock)
1982                sk_psock_put(sk, psock);
1983        return copied ? : err;
1984}
1985
1986ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1987                           struct pipe_inode_info *pipe,
1988                           size_t len, unsigned int flags)
1989{
1990        struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1991        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1992        struct strp_msg *rxm = NULL;
1993        struct sock *sk = sock->sk;
1994        struct sk_buff *skb;
1995        ssize_t copied = 0;
1996        int err = 0;
1997        long timeo;
1998        int chunk;
1999        bool zc = false;
2000
2001        lock_sock(sk);
2002
2003        timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
2004
2005        skb = tls_wait_data(sk, NULL, flags & SPLICE_F_NONBLOCK, timeo, &err);
2006        if (!skb)
2007                goto splice_read_end;
2008
2009        if (!ctx->decrypted) {
2010                err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
2011
2012                /* splice does not support reading control messages */
2013                if (ctx->control != TLS_RECORD_TYPE_DATA) {
2014                        err = -EINVAL;
2015                        goto splice_read_end;
2016                }
2017
2018                if (err < 0) {
2019                        tls_err_abort(sk, -EBADMSG);
2020                        goto splice_read_end;
2021                }
2022                ctx->decrypted = 1;
2023        }
2024        rxm = strp_msg(skb);
2025
2026        chunk = min_t(unsigned int, rxm->full_len, len);
2027        copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2028        if (copied < 0)
2029                goto splice_read_end;
2030
2031        tls_sw_advance_skb(sk, skb, copied);
2032
2033splice_read_end:
2034        release_sock(sk);
2035        return copied ? : err;
2036}
2037
2038bool tls_sw_sock_is_readable(struct sock *sk)
2039{
2040        struct tls_context *tls_ctx = tls_get_ctx(sk);
2041        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2042        bool ingress_empty = true;
2043        struct sk_psock *psock;
2044
2045        rcu_read_lock();
2046        psock = sk_psock(sk);
2047        if (psock)
2048                ingress_empty = list_empty(&psock->ingress_msg);
2049        rcu_read_unlock();
2050
2051        return !ingress_empty || ctx->recv_pkt ||
2052                !skb_queue_empty(&ctx->rx_list);
2053}
2054
2055static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2056{
2057        struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2058        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2059        struct tls_prot_info *prot = &tls_ctx->prot_info;
2060        char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2061        struct strp_msg *rxm = strp_msg(skb);
2062        size_t cipher_overhead;
2063        size_t data_len = 0;
2064        int ret;
2065
2066        /* Verify that we have a full TLS header, or wait for more data */
2067        if (rxm->offset + prot->prepend_size > skb->len)
2068                return 0;
2069
2070        /* Sanity-check size of on-stack buffer. */
2071        if (WARN_ON(prot->prepend_size > sizeof(header))) {
2072                ret = -EINVAL;
2073                goto read_failure;
2074        }
2075
2076        /* Linearize header to local buffer */
2077        ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2078
2079        if (ret < 0)
2080                goto read_failure;
2081
2082        ctx->control = header[0];
2083
2084        data_len = ((header[4] & 0xFF) | (header[3] << 8));
2085
2086        cipher_overhead = prot->tag_size;
2087        if (prot->version != TLS_1_3_VERSION &&
2088            prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2089                cipher_overhead += prot->iv_size;
2090
2091        if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2092            prot->tail_size) {
2093                ret = -EMSGSIZE;
2094                goto read_failure;
2095        }
2096        if (data_len < cipher_overhead) {
2097                ret = -EBADMSG;
2098                goto read_failure;
2099        }
2100
2101        /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2102        if (header[1] != TLS_1_2_VERSION_MINOR ||
2103            header[2] != TLS_1_2_VERSION_MAJOR) {
2104                ret = -EINVAL;
2105                goto read_failure;
2106        }
2107
2108        tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2109                                     TCP_SKB_CB(skb)->seq + rxm->offset);
2110        return data_len + TLS_HEADER_SIZE;
2111
2112read_failure:
2113        tls_err_abort(strp->sk, ret);
2114
2115        return ret;
2116}
2117
2118static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2119{
2120        struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2121        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2122
2123        ctx->decrypted = 0;
2124
2125        ctx->recv_pkt = skb;
2126        strp_pause(strp);
2127
2128        ctx->saved_data_ready(strp->sk);
2129}
2130
2131static void tls_data_ready(struct sock *sk)
2132{
2133        struct tls_context *tls_ctx = tls_get_ctx(sk);
2134        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2135        struct sk_psock *psock;
2136
2137        strp_data_ready(&ctx->strp);
2138
2139        psock = sk_psock_get(sk);
2140        if (psock) {
2141                if (!list_empty(&psock->ingress_msg))
2142                        ctx->saved_data_ready(sk);
2143                sk_psock_put(sk, psock);
2144        }
2145}
2146
2147void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2148{
2149        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2150
2151        set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2152        set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2153        cancel_delayed_work_sync(&ctx->tx_work.work);
2154}
2155
2156void tls_sw_release_resources_tx(struct sock *sk)
2157{
2158        struct tls_context *tls_ctx = tls_get_ctx(sk);
2159        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2160        struct tls_rec *rec, *tmp;
2161        int pending;
2162
2163        /* Wait for any pending async encryptions to complete */
2164        spin_lock_bh(&ctx->encrypt_compl_lock);
2165        ctx->async_notify = true;
2166        pending = atomic_read(&ctx->encrypt_pending);
2167        spin_unlock_bh(&ctx->encrypt_compl_lock);
2168
2169        if (pending)
2170                crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2171
2172        tls_tx_records(sk, -1);
2173
2174        /* Free up un-sent records in tx_list. First, free
2175         * the partially sent record if any at head of tx_list.
2176         */
2177        if (tls_ctx->partially_sent_record) {
2178                tls_free_partial_record(sk, tls_ctx);
2179                rec = list_first_entry(&ctx->tx_list,
2180                                       struct tls_rec, list);
2181                list_del(&rec->list);
2182                sk_msg_free(sk, &rec->msg_plaintext);
2183                kfree(rec);
2184        }
2185
2186        list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2187                list_del(&rec->list);
2188                sk_msg_free(sk, &rec->msg_encrypted);
2189                sk_msg_free(sk, &rec->msg_plaintext);
2190                kfree(rec);
2191        }
2192
2193        crypto_free_aead(ctx->aead_send);
2194        tls_free_open_rec(sk);
2195}
2196
2197void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2198{
2199        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2200
2201        kfree(ctx);
2202}
2203
2204void tls_sw_release_resources_rx(struct sock *sk)
2205{
2206        struct tls_context *tls_ctx = tls_get_ctx(sk);
2207        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2208
2209        kfree(tls_ctx->rx.rec_seq);
2210        kfree(tls_ctx->rx.iv);
2211
2212        if (ctx->aead_recv) {
2213                kfree_skb(ctx->recv_pkt);
2214                ctx->recv_pkt = NULL;
2215                skb_queue_purge(&ctx->rx_list);
2216                crypto_free_aead(ctx->aead_recv);
2217                strp_stop(&ctx->strp);
2218                /* If tls_sw_strparser_arm() was not called (cleanup paths)
2219                 * we still want to strp_stop(), but sk->sk_data_ready was
2220                 * never swapped.
2221                 */
2222                if (ctx->saved_data_ready) {
2223                        write_lock_bh(&sk->sk_callback_lock);
2224                        sk->sk_data_ready = ctx->saved_data_ready;
2225                        write_unlock_bh(&sk->sk_callback_lock);
2226                }
2227        }
2228}
2229
2230void tls_sw_strparser_done(struct tls_context *tls_ctx)
2231{
2232        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2233
2234        strp_done(&ctx->strp);
2235}
2236
2237void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2238{
2239        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2240
2241        kfree(ctx);
2242}
2243
2244void tls_sw_free_resources_rx(struct sock *sk)
2245{
2246        struct tls_context *tls_ctx = tls_get_ctx(sk);
2247
2248        tls_sw_release_resources_rx(sk);
2249        tls_sw_free_ctx_rx(tls_ctx);
2250}
2251
2252/* The work handler to transmitt the encrypted records in tx_list */
2253static void tx_work_handler(struct work_struct *work)
2254{
2255        struct delayed_work *delayed_work = to_delayed_work(work);
2256        struct tx_work *tx_work = container_of(delayed_work,
2257                                               struct tx_work, work);
2258        struct sock *sk = tx_work->sk;
2259        struct tls_context *tls_ctx = tls_get_ctx(sk);
2260        struct tls_sw_context_tx *ctx;
2261
2262        if (unlikely(!tls_ctx))
2263                return;
2264
2265        ctx = tls_sw_ctx_tx(tls_ctx);
2266        if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2267                return;
2268
2269        if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2270                return;
2271        mutex_lock(&tls_ctx->tx_lock);
2272        lock_sock(sk);
2273        tls_tx_records(sk, -1);
2274        release_sock(sk);
2275        mutex_unlock(&tls_ctx->tx_lock);
2276}
2277
2278void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2279{
2280        struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2281
2282        /* Schedule the transmission if tx list is ready */
2283        if (is_tx_ready(tx_ctx) &&
2284            !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2285                schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2286}
2287
2288void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2289{
2290        struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2291
2292        write_lock_bh(&sk->sk_callback_lock);
2293        rx_ctx->saved_data_ready = sk->sk_data_ready;
2294        sk->sk_data_ready = tls_data_ready;
2295        write_unlock_bh(&sk->sk_callback_lock);
2296
2297        strp_check_rcv(&rx_ctx->strp);
2298}
2299
2300int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2301{
2302        struct tls_context *tls_ctx = tls_get_ctx(sk);
2303        struct tls_prot_info *prot = &tls_ctx->prot_info;
2304        struct tls_crypto_info *crypto_info;
2305        struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2306        struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2307        struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2308        struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
2309        struct tls_sw_context_tx *sw_ctx_tx = NULL;
2310        struct tls_sw_context_rx *sw_ctx_rx = NULL;
2311        struct cipher_context *cctx;
2312        struct crypto_aead **aead;
2313        struct strp_callbacks cb;
2314        u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2315        struct crypto_tfm *tfm;
2316        char *iv, *rec_seq, *key, *salt, *cipher_name;
2317        size_t keysize;
2318        int rc = 0;
2319
2320        if (!ctx) {
2321                rc = -EINVAL;
2322                goto out;
2323        }
2324
2325        if (tx) {
2326                if (!ctx->priv_ctx_tx) {
2327                        sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2328                        if (!sw_ctx_tx) {
2329                                rc = -ENOMEM;
2330                                goto out;
2331                        }
2332                        ctx->priv_ctx_tx = sw_ctx_tx;
2333                } else {
2334                        sw_ctx_tx =
2335                                (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2336                }
2337        } else {
2338                if (!ctx->priv_ctx_rx) {
2339                        sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2340                        if (!sw_ctx_rx) {
2341                                rc = -ENOMEM;
2342                                goto out;
2343                        }
2344                        ctx->priv_ctx_rx = sw_ctx_rx;
2345                } else {
2346                        sw_ctx_rx =
2347                                (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2348                }
2349        }
2350
2351        if (tx) {
2352                crypto_init_wait(&sw_ctx_tx->async_wait);
2353                spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2354                crypto_info = &ctx->crypto_send.info;
2355                cctx = &ctx->tx;
2356                aead = &sw_ctx_tx->aead_send;
2357                INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2358                INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2359                sw_ctx_tx->tx_work.sk = sk;
2360        } else {
2361                crypto_init_wait(&sw_ctx_rx->async_wait);
2362                spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2363                crypto_info = &ctx->crypto_recv.info;
2364                cctx = &ctx->rx;
2365                skb_queue_head_init(&sw_ctx_rx->rx_list);
2366                aead = &sw_ctx_rx->aead_recv;
2367        }
2368
2369        switch (crypto_info->cipher_type) {
2370        case TLS_CIPHER_AES_GCM_128: {
2371                nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2372                tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2373                iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2374                iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2375                rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2376                rec_seq =
2377                 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2378                gcm_128_info =
2379                        (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2380                keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2381                key = gcm_128_info->key;
2382                salt = gcm_128_info->salt;
2383                salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2384                cipher_name = "gcm(aes)";
2385                break;
2386        }
2387        case TLS_CIPHER_AES_GCM_256: {
2388                nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2389                tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2390                iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2391                iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2392                rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2393                rec_seq =
2394                 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2395                gcm_256_info =
2396                        (struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2397                keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2398                key = gcm_256_info->key;
2399                salt = gcm_256_info->salt;
2400                salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2401                cipher_name = "gcm(aes)";
2402                break;
2403        }
2404        case TLS_CIPHER_AES_CCM_128: {
2405                nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2406                tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2407                iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2408                iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2409                rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2410                rec_seq =
2411                ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2412                ccm_128_info =
2413                (struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2414                keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2415                key = ccm_128_info->key;
2416                salt = ccm_128_info->salt;
2417                salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2418                cipher_name = "ccm(aes)";
2419                break;
2420        }
2421        case TLS_CIPHER_CHACHA20_POLY1305: {
2422                chacha20_poly1305_info = (void *)crypto_info;
2423                nonce_size = 0;
2424                tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
2425                iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
2426                iv = chacha20_poly1305_info->iv;
2427                rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
2428                rec_seq = chacha20_poly1305_info->rec_seq;
2429                keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
2430                key = chacha20_poly1305_info->key;
2431                salt = chacha20_poly1305_info->salt;
2432                salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
2433                cipher_name = "rfc7539(chacha20,poly1305)";
2434                break;
2435        }
2436        default:
2437                rc = -EINVAL;
2438                goto free_priv;
2439        }
2440
2441        /* Sanity-check the sizes for stack allocations. */
2442        if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2443            rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
2444                rc = -EINVAL;
2445                goto free_priv;
2446        }
2447
2448        if (crypto_info->version == TLS_1_3_VERSION) {
2449                nonce_size = 0;
2450                prot->aad_size = TLS_HEADER_SIZE;
2451                prot->tail_size = 1;
2452        } else {
2453                prot->aad_size = TLS_AAD_SPACE_SIZE;
2454                prot->tail_size = 0;
2455        }
2456
2457        prot->version = crypto_info->version;
2458        prot->cipher_type = crypto_info->cipher_type;
2459        prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2460        prot->tag_size = tag_size;
2461        prot->overhead_size = prot->prepend_size +
2462                              prot->tag_size + prot->tail_size;
2463        prot->iv_size = iv_size;
2464        prot->salt_size = salt_size;
2465        cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2466        if (!cctx->iv) {
2467                rc = -ENOMEM;
2468                goto free_priv;
2469        }
2470        /* Note: 128 & 256 bit salt are the same size */
2471        prot->rec_seq_size = rec_seq_size;
2472        memcpy(cctx->iv, salt, salt_size);
2473        memcpy(cctx->iv + salt_size, iv, iv_size);
2474        cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2475        if (!cctx->rec_seq) {
2476                rc = -ENOMEM;
2477                goto free_iv;
2478        }
2479
2480        if (!*aead) {
2481                *aead = crypto_alloc_aead(cipher_name, 0, 0);
2482                if (IS_ERR(*aead)) {
2483                        rc = PTR_ERR(*aead);
2484                        *aead = NULL;
2485                        goto free_rec_seq;
2486                }
2487        }
2488
2489        ctx->push_pending_record = tls_sw_push_pending_record;
2490
2491        rc = crypto_aead_setkey(*aead, key, keysize);
2492
2493        if (rc)
2494                goto free_aead;
2495
2496        rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2497        if (rc)
2498                goto free_aead;
2499
2500        if (sw_ctx_rx) {
2501                tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2502
2503                if (crypto_info->version == TLS_1_3_VERSION)
2504                        sw_ctx_rx->async_capable = 0;
2505                else
2506                        sw_ctx_rx->async_capable =
2507                                !!(tfm->__crt_alg->cra_flags &
2508                                   CRYPTO_ALG_ASYNC);
2509
2510                /* Set up strparser */
2511                memset(&cb, 0, sizeof(cb));
2512                cb.rcv_msg = tls_queue;
2513                cb.parse_msg = tls_read_size;
2514
2515                strp_init(&sw_ctx_rx->strp, sk, &cb);
2516        }
2517
2518        goto out;
2519
2520free_aead:
2521        crypto_free_aead(*aead);
2522        *aead = NULL;
2523free_rec_seq:
2524        kfree(cctx->rec_seq);
2525        cctx->rec_seq = NULL;
2526free_iv:
2527        kfree(cctx->iv);
2528        cctx->iv = NULL;
2529free_priv:
2530        if (tx) {
2531                kfree(ctx->priv_ctx_tx);
2532                ctx->priv_ctx_tx = NULL;
2533        } else {
2534                kfree(ctx->priv_ctx_rx);
2535                ctx->priv_ctx_rx = NULL;
2536        }
2537out:
2538        return rc;
2539}
2540