linux/net/vmw_vsock/af_vsock.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * VMware vSockets Driver
   4 *
   5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
   6 */
   7
   8/* Implementation notes:
   9 *
  10 * - There are two kinds of sockets: those created by user action (such as
  11 * calling socket(2)) and those created by incoming connection request packets.
  12 *
  13 * - There are two "global" tables, one for bound sockets (sockets that have
  14 * specified an address that they are responsible for) and one for connected
  15 * sockets (sockets that have established a connection with another socket).
  16 * These tables are "global" in that all sockets on the system are placed
  17 * within them. - Note, though, that the bound table contains an extra entry
  18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
  19 * that list. The bound table is used solely for lookup of sockets when packets
  20 * are received and that's not necessary for SOCK_DGRAM sockets since we create
  21 * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
  22 * sockets out of the bound hash buckets will reduce the chance of collisions
  23 * when looking for SOCK_STREAM sockets and prevents us from having to check the
  24 * socket type in the hash table lookups.
  25 *
  26 * - Sockets created by user action will either be "client" sockets that
  27 * initiate a connection or "server" sockets that listen for connections; we do
  28 * not support simultaneous connects (two "client" sockets connecting).
  29 *
  30 * - "Server" sockets are referred to as listener sockets throughout this
  31 * implementation because they are in the TCP_LISTEN state.  When a
  32 * connection request is received (the second kind of socket mentioned above),
  33 * we create a new socket and refer to it as a pending socket.  These pending
  34 * sockets are placed on the pending connection list of the listener socket.
  35 * When future packets are received for the address the listener socket is
  36 * bound to, we check if the source of the packet is from one that has an
  37 * existing pending connection.  If it does, we process the packet for the
  38 * pending socket.  When that socket reaches the connected state, it is removed
  39 * from the listener socket's pending list and enqueued in the listener
  40 * socket's accept queue.  Callers of accept(2) will accept connected sockets
  41 * from the listener socket's accept queue.  If the socket cannot be accepted
  42 * for some reason then it is marked rejected.  Once the connection is
  43 * accepted, it is owned by the user process and the responsibility for cleanup
  44 * falls with that user process.
  45 *
  46 * - It is possible that these pending sockets will never reach the connected
  47 * state; in fact, we may never receive another packet after the connection
  48 * request.  Because of this, we must schedule a cleanup function to run in the
  49 * future, after some amount of time passes where a connection should have been
  50 * established.  This function ensures that the socket is off all lists so it
  51 * cannot be retrieved, then drops all references to the socket so it is cleaned
  52 * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
  53 * function will also cleanup rejected sockets, those that reach the connected
  54 * state but leave it before they have been accepted.
  55 *
  56 * - Lock ordering for pending or accept queue sockets is:
  57 *
  58 *     lock_sock(listener);
  59 *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
  60 *
  61 * Using explicit nested locking keeps lockdep happy since normally only one
  62 * lock of a given class may be taken at a time.
  63 *
  64 * - Sockets created by user action will be cleaned up when the user process
  65 * calls close(2), causing our release implementation to be called. Our release
  66 * implementation will perform some cleanup then drop the last reference so our
  67 * sk_destruct implementation is invoked.  Our sk_destruct implementation will
  68 * perform additional cleanup that's common for both types of sockets.
  69 *
  70 * - A socket's reference count is what ensures that the structure won't be
  71 * freed.  Each entry in a list (such as the "global" bound and connected tables
  72 * and the listener socket's pending list and connected queue) ensures a
  73 * reference.  When we defer work until process context and pass a socket as our
  74 * argument, we must ensure the reference count is increased to ensure the
  75 * socket isn't freed before the function is run; the deferred function will
  76 * then drop the reference.
  77 *
  78 * - sk->sk_state uses the TCP state constants because they are widely used by
  79 * other address families and exposed to userspace tools like ss(8):
  80 *
  81 *   TCP_CLOSE - unconnected
  82 *   TCP_SYN_SENT - connecting
  83 *   TCP_ESTABLISHED - connected
  84 *   TCP_CLOSING - disconnecting
  85 *   TCP_LISTEN - listening
  86 */
  87
  88#include <linux/types.h>
  89#include <linux/bitops.h>
  90#include <linux/cred.h>
  91#include <linux/init.h>
  92#include <linux/io.h>
  93#include <linux/kernel.h>
  94#include <linux/sched/signal.h>
  95#include <linux/kmod.h>
  96#include <linux/list.h>
  97#include <linux/miscdevice.h>
  98#include <linux/module.h>
  99#include <linux/mutex.h>
 100#include <linux/net.h>
 101#include <linux/poll.h>
 102#include <linux/random.h>
 103#include <linux/skbuff.h>
 104#include <linux/smp.h>
 105#include <linux/socket.h>
 106#include <linux/stddef.h>
 107#include <linux/unistd.h>
 108#include <linux/wait.h>
 109#include <linux/workqueue.h>
 110#include <net/sock.h>
 111#include <net/af_vsock.h>
 112
 113static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
 114static void vsock_sk_destruct(struct sock *sk);
 115static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
 116
 117/* Protocol family. */
 118static struct proto vsock_proto = {
 119        .name = "AF_VSOCK",
 120        .owner = THIS_MODULE,
 121        .obj_size = sizeof(struct vsock_sock),
 122};
 123
 124/* The default peer timeout indicates how long we will wait for a peer response
 125 * to a control message.
 126 */
 127#define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
 128
 129#define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
 130#define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
 131#define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
 132
 133/* Transport used for host->guest communication */
 134static const struct vsock_transport *transport_h2g;
 135/* Transport used for guest->host communication */
 136static const struct vsock_transport *transport_g2h;
 137/* Transport used for DGRAM communication */
 138static const struct vsock_transport *transport_dgram;
 139/* Transport used for local communication */
 140static const struct vsock_transport *transport_local;
 141static DEFINE_MUTEX(vsock_register_mutex);
 142
 143/**** UTILS ****/
 144
 145/* Each bound VSocket is stored in the bind hash table and each connected
 146 * VSocket is stored in the connected hash table.
 147 *
 148 * Unbound sockets are all put on the same list attached to the end of the hash
 149 * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
 150 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
 151 * represents the list that addr hashes to).
 152 *
 153 * Specifically, we initialize the vsock_bind_table array to a size of
 154 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
 155 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
 156 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
 157 * mods with VSOCK_HASH_SIZE to ensure this.
 158 */
 159#define MAX_PORT_RETRIES        24
 160
 161#define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
 162#define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
 163#define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
 164
 165/* XXX This can probably be implemented in a better way. */
 166#define VSOCK_CONN_HASH(src, dst)                               \
 167        (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
 168#define vsock_connected_sockets(src, dst)               \
 169        (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
 170#define vsock_connected_sockets_vsk(vsk)                                \
 171        vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
 172
 173struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
 174EXPORT_SYMBOL_GPL(vsock_bind_table);
 175struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
 176EXPORT_SYMBOL_GPL(vsock_connected_table);
 177DEFINE_SPINLOCK(vsock_table_lock);
 178EXPORT_SYMBOL_GPL(vsock_table_lock);
 179
 180/* Autobind this socket to the local address if necessary. */
 181static int vsock_auto_bind(struct vsock_sock *vsk)
 182{
 183        struct sock *sk = sk_vsock(vsk);
 184        struct sockaddr_vm local_addr;
 185
 186        if (vsock_addr_bound(&vsk->local_addr))
 187                return 0;
 188        vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 189        return __vsock_bind(sk, &local_addr);
 190}
 191
 192static void vsock_init_tables(void)
 193{
 194        int i;
 195
 196        for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
 197                INIT_LIST_HEAD(&vsock_bind_table[i]);
 198
 199        for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
 200                INIT_LIST_HEAD(&vsock_connected_table[i]);
 201}
 202
 203static void __vsock_insert_bound(struct list_head *list,
 204                                 struct vsock_sock *vsk)
 205{
 206        sock_hold(&vsk->sk);
 207        list_add(&vsk->bound_table, list);
 208}
 209
 210static void __vsock_insert_connected(struct list_head *list,
 211                                     struct vsock_sock *vsk)
 212{
 213        sock_hold(&vsk->sk);
 214        list_add(&vsk->connected_table, list);
 215}
 216
 217static void __vsock_remove_bound(struct vsock_sock *vsk)
 218{
 219        list_del_init(&vsk->bound_table);
 220        sock_put(&vsk->sk);
 221}
 222
 223static void __vsock_remove_connected(struct vsock_sock *vsk)
 224{
 225        list_del_init(&vsk->connected_table);
 226        sock_put(&vsk->sk);
 227}
 228
 229static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
 230{
 231        struct vsock_sock *vsk;
 232
 233        list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
 234                if (vsock_addr_equals_addr(addr, &vsk->local_addr))
 235                        return sk_vsock(vsk);
 236
 237                if (addr->svm_port == vsk->local_addr.svm_port &&
 238                    (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
 239                     addr->svm_cid == VMADDR_CID_ANY))
 240                        return sk_vsock(vsk);
 241        }
 242
 243        return NULL;
 244}
 245
 246static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
 247                                                  struct sockaddr_vm *dst)
 248{
 249        struct vsock_sock *vsk;
 250
 251        list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
 252                            connected_table) {
 253                if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
 254                    dst->svm_port == vsk->local_addr.svm_port) {
 255                        return sk_vsock(vsk);
 256                }
 257        }
 258
 259        return NULL;
 260}
 261
 262static void vsock_insert_unbound(struct vsock_sock *vsk)
 263{
 264        spin_lock_bh(&vsock_table_lock);
 265        __vsock_insert_bound(vsock_unbound_sockets, vsk);
 266        spin_unlock_bh(&vsock_table_lock);
 267}
 268
 269void vsock_insert_connected(struct vsock_sock *vsk)
 270{
 271        struct list_head *list = vsock_connected_sockets(
 272                &vsk->remote_addr, &vsk->local_addr);
 273
 274        spin_lock_bh(&vsock_table_lock);
 275        __vsock_insert_connected(list, vsk);
 276        spin_unlock_bh(&vsock_table_lock);
 277}
 278EXPORT_SYMBOL_GPL(vsock_insert_connected);
 279
 280void vsock_remove_bound(struct vsock_sock *vsk)
 281{
 282        spin_lock_bh(&vsock_table_lock);
 283        if (__vsock_in_bound_table(vsk))
 284                __vsock_remove_bound(vsk);
 285        spin_unlock_bh(&vsock_table_lock);
 286}
 287EXPORT_SYMBOL_GPL(vsock_remove_bound);
 288
 289void vsock_remove_connected(struct vsock_sock *vsk)
 290{
 291        spin_lock_bh(&vsock_table_lock);
 292        if (__vsock_in_connected_table(vsk))
 293                __vsock_remove_connected(vsk);
 294        spin_unlock_bh(&vsock_table_lock);
 295}
 296EXPORT_SYMBOL_GPL(vsock_remove_connected);
 297
 298struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
 299{
 300        struct sock *sk;
 301
 302        spin_lock_bh(&vsock_table_lock);
 303        sk = __vsock_find_bound_socket(addr);
 304        if (sk)
 305                sock_hold(sk);
 306
 307        spin_unlock_bh(&vsock_table_lock);
 308
 309        return sk;
 310}
 311EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
 312
 313struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
 314                                         struct sockaddr_vm *dst)
 315{
 316        struct sock *sk;
 317
 318        spin_lock_bh(&vsock_table_lock);
 319        sk = __vsock_find_connected_socket(src, dst);
 320        if (sk)
 321                sock_hold(sk);
 322
 323        spin_unlock_bh(&vsock_table_lock);
 324
 325        return sk;
 326}
 327EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
 328
 329void vsock_remove_sock(struct vsock_sock *vsk)
 330{
 331        vsock_remove_bound(vsk);
 332        vsock_remove_connected(vsk);
 333}
 334EXPORT_SYMBOL_GPL(vsock_remove_sock);
 335
 336void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
 337{
 338        int i;
 339
 340        spin_lock_bh(&vsock_table_lock);
 341
 342        for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
 343                struct vsock_sock *vsk;
 344                list_for_each_entry(vsk, &vsock_connected_table[i],
 345                                    connected_table)
 346                        fn(sk_vsock(vsk));
 347        }
 348
 349        spin_unlock_bh(&vsock_table_lock);
 350}
 351EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
 352
 353void vsock_add_pending(struct sock *listener, struct sock *pending)
 354{
 355        struct vsock_sock *vlistener;
 356        struct vsock_sock *vpending;
 357
 358        vlistener = vsock_sk(listener);
 359        vpending = vsock_sk(pending);
 360
 361        sock_hold(pending);
 362        sock_hold(listener);
 363        list_add_tail(&vpending->pending_links, &vlistener->pending_links);
 364}
 365EXPORT_SYMBOL_GPL(vsock_add_pending);
 366
 367void vsock_remove_pending(struct sock *listener, struct sock *pending)
 368{
 369        struct vsock_sock *vpending = vsock_sk(pending);
 370
 371        list_del_init(&vpending->pending_links);
 372        sock_put(listener);
 373        sock_put(pending);
 374}
 375EXPORT_SYMBOL_GPL(vsock_remove_pending);
 376
 377void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
 378{
 379        struct vsock_sock *vlistener;
 380        struct vsock_sock *vconnected;
 381
 382        vlistener = vsock_sk(listener);
 383        vconnected = vsock_sk(connected);
 384
 385        sock_hold(connected);
 386        sock_hold(listener);
 387        list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
 388}
 389EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
 390
 391static bool vsock_use_local_transport(unsigned int remote_cid)
 392{
 393        if (!transport_local)
 394                return false;
 395
 396        if (remote_cid == VMADDR_CID_LOCAL)
 397                return true;
 398
 399        if (transport_g2h) {
 400                return remote_cid == transport_g2h->get_local_cid();
 401        } else {
 402                return remote_cid == VMADDR_CID_HOST;
 403        }
 404}
 405
 406static void vsock_deassign_transport(struct vsock_sock *vsk)
 407{
 408        if (!vsk->transport)
 409                return;
 410
 411        vsk->transport->destruct(vsk);
 412        module_put(vsk->transport->module);
 413        vsk->transport = NULL;
 414}
 415
 416/* Assign a transport to a socket and call the .init transport callback.
 417 *
 418 * Note: for connection oriented socket this must be called when vsk->remote_addr
 419 * is set (e.g. during the connect() or when a connection request on a listener
 420 * socket is received).
 421 * The vsk->remote_addr is used to decide which transport to use:
 422 *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
 423 *    g2h is not loaded, will use local transport;
 424 *  - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
 425 *    includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
 426 *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
 427 */
 428int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
 429{
 430        const struct vsock_transport *new_transport;
 431        struct sock *sk = sk_vsock(vsk);
 432        unsigned int remote_cid = vsk->remote_addr.svm_cid;
 433        __u8 remote_flags;
 434        int ret;
 435
 436        /* If the packet is coming with the source and destination CIDs higher
 437         * than VMADDR_CID_HOST, then a vsock channel where all the packets are
 438         * forwarded to the host should be established. Then the host will
 439         * need to forward the packets to the guest.
 440         *
 441         * The flag is set on the (listen) receive path (psk is not NULL). On
 442         * the connect path the flag can be set by the user space application.
 443         */
 444        if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
 445            vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
 446                vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
 447
 448        remote_flags = vsk->remote_addr.svm_flags;
 449
 450        switch (sk->sk_type) {
 451        case SOCK_DGRAM:
 452                new_transport = transport_dgram;
 453                break;
 454        case SOCK_STREAM:
 455        case SOCK_SEQPACKET:
 456                if (vsock_use_local_transport(remote_cid))
 457                        new_transport = transport_local;
 458                else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
 459                         (remote_flags & VMADDR_FLAG_TO_HOST))
 460                        new_transport = transport_g2h;
 461                else
 462                        new_transport = transport_h2g;
 463                break;
 464        default:
 465                return -ESOCKTNOSUPPORT;
 466        }
 467
 468        if (vsk->transport) {
 469                if (vsk->transport == new_transport)
 470                        return 0;
 471
 472                /* transport->release() must be called with sock lock acquired.
 473                 * This path can only be taken during vsock_connect(), where we
 474                 * have already held the sock lock. In the other cases, this
 475                 * function is called on a new socket which is not assigned to
 476                 * any transport.
 477                 */
 478                vsk->transport->release(vsk);
 479                vsock_deassign_transport(vsk);
 480        }
 481
 482        /* We increase the module refcnt to prevent the transport unloading
 483         * while there are open sockets assigned to it.
 484         */
 485        if (!new_transport || !try_module_get(new_transport->module))
 486                return -ENODEV;
 487
 488        if (sk->sk_type == SOCK_SEQPACKET) {
 489                if (!new_transport->seqpacket_allow ||
 490                    !new_transport->seqpacket_allow(remote_cid)) {
 491                        module_put(new_transport->module);
 492                        return -ESOCKTNOSUPPORT;
 493                }
 494        }
 495
 496        ret = new_transport->init(vsk, psk);
 497        if (ret) {
 498                module_put(new_transport->module);
 499                return ret;
 500        }
 501
 502        vsk->transport = new_transport;
 503
 504        return 0;
 505}
 506EXPORT_SYMBOL_GPL(vsock_assign_transport);
 507
 508bool vsock_find_cid(unsigned int cid)
 509{
 510        if (transport_g2h && cid == transport_g2h->get_local_cid())
 511                return true;
 512
 513        if (transport_h2g && cid == VMADDR_CID_HOST)
 514                return true;
 515
 516        if (transport_local && cid == VMADDR_CID_LOCAL)
 517                return true;
 518
 519        return false;
 520}
 521EXPORT_SYMBOL_GPL(vsock_find_cid);
 522
 523static struct sock *vsock_dequeue_accept(struct sock *listener)
 524{
 525        struct vsock_sock *vlistener;
 526        struct vsock_sock *vconnected;
 527
 528        vlistener = vsock_sk(listener);
 529
 530        if (list_empty(&vlistener->accept_queue))
 531                return NULL;
 532
 533        vconnected = list_entry(vlistener->accept_queue.next,
 534                                struct vsock_sock, accept_queue);
 535
 536        list_del_init(&vconnected->accept_queue);
 537        sock_put(listener);
 538        /* The caller will need a reference on the connected socket so we let
 539         * it call sock_put().
 540         */
 541
 542        return sk_vsock(vconnected);
 543}
 544
 545static bool vsock_is_accept_queue_empty(struct sock *sk)
 546{
 547        struct vsock_sock *vsk = vsock_sk(sk);
 548        return list_empty(&vsk->accept_queue);
 549}
 550
 551static bool vsock_is_pending(struct sock *sk)
 552{
 553        struct vsock_sock *vsk = vsock_sk(sk);
 554        return !list_empty(&vsk->pending_links);
 555}
 556
 557static int vsock_send_shutdown(struct sock *sk, int mode)
 558{
 559        struct vsock_sock *vsk = vsock_sk(sk);
 560
 561        if (!vsk->transport)
 562                return -ENODEV;
 563
 564        return vsk->transport->shutdown(vsk, mode);
 565}
 566
 567static void vsock_pending_work(struct work_struct *work)
 568{
 569        struct sock *sk;
 570        struct sock *listener;
 571        struct vsock_sock *vsk;
 572        bool cleanup;
 573
 574        vsk = container_of(work, struct vsock_sock, pending_work.work);
 575        sk = sk_vsock(vsk);
 576        listener = vsk->listener;
 577        cleanup = true;
 578
 579        lock_sock(listener);
 580        lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
 581
 582        if (vsock_is_pending(sk)) {
 583                vsock_remove_pending(listener, sk);
 584
 585                sk_acceptq_removed(listener);
 586        } else if (!vsk->rejected) {
 587                /* We are not on the pending list and accept() did not reject
 588                 * us, so we must have been accepted by our user process.  We
 589                 * just need to drop our references to the sockets and be on
 590                 * our way.
 591                 */
 592                cleanup = false;
 593                goto out;
 594        }
 595
 596        /* We need to remove ourself from the global connected sockets list so
 597         * incoming packets can't find this socket, and to reduce the reference
 598         * count.
 599         */
 600        vsock_remove_connected(vsk);
 601
 602        sk->sk_state = TCP_CLOSE;
 603
 604out:
 605        release_sock(sk);
 606        release_sock(listener);
 607        if (cleanup)
 608                sock_put(sk);
 609
 610        sock_put(sk);
 611        sock_put(listener);
 612}
 613
 614/**** SOCKET OPERATIONS ****/
 615
 616static int __vsock_bind_connectible(struct vsock_sock *vsk,
 617                                    struct sockaddr_vm *addr)
 618{
 619        static u32 port;
 620        struct sockaddr_vm new_addr;
 621
 622        if (!port)
 623                port = LAST_RESERVED_PORT + 1 +
 624                        prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
 625
 626        vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
 627
 628        if (addr->svm_port == VMADDR_PORT_ANY) {
 629                bool found = false;
 630                unsigned int i;
 631
 632                for (i = 0; i < MAX_PORT_RETRIES; i++) {
 633                        if (port <= LAST_RESERVED_PORT)
 634                                port = LAST_RESERVED_PORT + 1;
 635
 636                        new_addr.svm_port = port++;
 637
 638                        if (!__vsock_find_bound_socket(&new_addr)) {
 639                                found = true;
 640                                break;
 641                        }
 642                }
 643
 644                if (!found)
 645                        return -EADDRNOTAVAIL;
 646        } else {
 647                /* If port is in reserved range, ensure caller
 648                 * has necessary privileges.
 649                 */
 650                if (addr->svm_port <= LAST_RESERVED_PORT &&
 651                    !capable(CAP_NET_BIND_SERVICE)) {
 652                        return -EACCES;
 653                }
 654
 655                if (__vsock_find_bound_socket(&new_addr))
 656                        return -EADDRINUSE;
 657        }
 658
 659        vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
 660
 661        /* Remove connection oriented sockets from the unbound list and add them
 662         * to the hash table for easy lookup by its address.  The unbound list
 663         * is simply an extra entry at the end of the hash table, a trick used
 664         * by AF_UNIX.
 665         */
 666        __vsock_remove_bound(vsk);
 667        __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
 668
 669        return 0;
 670}
 671
 672static int __vsock_bind_dgram(struct vsock_sock *vsk,
 673                              struct sockaddr_vm *addr)
 674{
 675        return vsk->transport->dgram_bind(vsk, addr);
 676}
 677
 678static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
 679{
 680        struct vsock_sock *vsk = vsock_sk(sk);
 681        int retval;
 682
 683        /* First ensure this socket isn't already bound. */
 684        if (vsock_addr_bound(&vsk->local_addr))
 685                return -EINVAL;
 686
 687        /* Now bind to the provided address or select appropriate values if
 688         * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
 689         * like AF_INET prevents binding to a non-local IP address (in most
 690         * cases), we only allow binding to a local CID.
 691         */
 692        if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
 693                return -EADDRNOTAVAIL;
 694
 695        switch (sk->sk_socket->type) {
 696        case SOCK_STREAM:
 697        case SOCK_SEQPACKET:
 698                spin_lock_bh(&vsock_table_lock);
 699                retval = __vsock_bind_connectible(vsk, addr);
 700                spin_unlock_bh(&vsock_table_lock);
 701                break;
 702
 703        case SOCK_DGRAM:
 704                retval = __vsock_bind_dgram(vsk, addr);
 705                break;
 706
 707        default:
 708                retval = -EINVAL;
 709                break;
 710        }
 711
 712        return retval;
 713}
 714
 715static void vsock_connect_timeout(struct work_struct *work);
 716
 717static struct sock *__vsock_create(struct net *net,
 718                                   struct socket *sock,
 719                                   struct sock *parent,
 720                                   gfp_t priority,
 721                                   unsigned short type,
 722                                   int kern)
 723{
 724        struct sock *sk;
 725        struct vsock_sock *psk;
 726        struct vsock_sock *vsk;
 727
 728        sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
 729        if (!sk)
 730                return NULL;
 731
 732        sock_init_data(sock, sk);
 733
 734        /* sk->sk_type is normally set in sock_init_data, but only if sock is
 735         * non-NULL. We make sure that our sockets always have a type by
 736         * setting it here if needed.
 737         */
 738        if (!sock)
 739                sk->sk_type = type;
 740
 741        vsk = vsock_sk(sk);
 742        vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 743        vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 744
 745        sk->sk_destruct = vsock_sk_destruct;
 746        sk->sk_backlog_rcv = vsock_queue_rcv_skb;
 747        sock_reset_flag(sk, SOCK_DONE);
 748
 749        INIT_LIST_HEAD(&vsk->bound_table);
 750        INIT_LIST_HEAD(&vsk->connected_table);
 751        vsk->listener = NULL;
 752        INIT_LIST_HEAD(&vsk->pending_links);
 753        INIT_LIST_HEAD(&vsk->accept_queue);
 754        vsk->rejected = false;
 755        vsk->sent_request = false;
 756        vsk->ignore_connecting_rst = false;
 757        vsk->peer_shutdown = 0;
 758        INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
 759        INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
 760
 761        psk = parent ? vsock_sk(parent) : NULL;
 762        if (parent) {
 763                vsk->trusted = psk->trusted;
 764                vsk->owner = get_cred(psk->owner);
 765                vsk->connect_timeout = psk->connect_timeout;
 766                vsk->buffer_size = psk->buffer_size;
 767                vsk->buffer_min_size = psk->buffer_min_size;
 768                vsk->buffer_max_size = psk->buffer_max_size;
 769                security_sk_clone(parent, sk);
 770        } else {
 771                vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
 772                vsk->owner = get_current_cred();
 773                vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
 774                vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
 775                vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
 776                vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
 777        }
 778
 779        return sk;
 780}
 781
 782static bool sock_type_connectible(u16 type)
 783{
 784        return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
 785}
 786
 787static void __vsock_release(struct sock *sk, int level)
 788{
 789        if (sk) {
 790                struct sock *pending;
 791                struct vsock_sock *vsk;
 792
 793                vsk = vsock_sk(sk);
 794                pending = NULL; /* Compiler warning. */
 795
 796                /* When "level" is SINGLE_DEPTH_NESTING, use the nested
 797                 * version to avoid the warning "possible recursive locking
 798                 * detected". When "level" is 0, lock_sock_nested(sk, level)
 799                 * is the same as lock_sock(sk).
 800                 */
 801                lock_sock_nested(sk, level);
 802
 803                if (vsk->transport)
 804                        vsk->transport->release(vsk);
 805                else if (sock_type_connectible(sk->sk_type))
 806                        vsock_remove_sock(vsk);
 807
 808                sock_orphan(sk);
 809                sk->sk_shutdown = SHUTDOWN_MASK;
 810
 811                skb_queue_purge(&sk->sk_receive_queue);
 812
 813                /* Clean up any sockets that never were accepted. */
 814                while ((pending = vsock_dequeue_accept(sk)) != NULL) {
 815                        __vsock_release(pending, SINGLE_DEPTH_NESTING);
 816                        sock_put(pending);
 817                }
 818
 819                release_sock(sk);
 820                sock_put(sk);
 821        }
 822}
 823
 824static void vsock_sk_destruct(struct sock *sk)
 825{
 826        struct vsock_sock *vsk = vsock_sk(sk);
 827
 828        vsock_deassign_transport(vsk);
 829
 830        /* When clearing these addresses, there's no need to set the family and
 831         * possibly register the address family with the kernel.
 832         */
 833        vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 834        vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 835
 836        put_cred(vsk->owner);
 837}
 838
 839static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 840{
 841        int err;
 842
 843        err = sock_queue_rcv_skb(sk, skb);
 844        if (err)
 845                kfree_skb(skb);
 846
 847        return err;
 848}
 849
 850struct sock *vsock_create_connected(struct sock *parent)
 851{
 852        return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
 853                              parent->sk_type, 0);
 854}
 855EXPORT_SYMBOL_GPL(vsock_create_connected);
 856
 857s64 vsock_stream_has_data(struct vsock_sock *vsk)
 858{
 859        return vsk->transport->stream_has_data(vsk);
 860}
 861EXPORT_SYMBOL_GPL(vsock_stream_has_data);
 862
 863static s64 vsock_connectible_has_data(struct vsock_sock *vsk)
 864{
 865        struct sock *sk = sk_vsock(vsk);
 866
 867        if (sk->sk_type == SOCK_SEQPACKET)
 868                return vsk->transport->seqpacket_has_data(vsk);
 869        else
 870                return vsock_stream_has_data(vsk);
 871}
 872
 873s64 vsock_stream_has_space(struct vsock_sock *vsk)
 874{
 875        return vsk->transport->stream_has_space(vsk);
 876}
 877EXPORT_SYMBOL_GPL(vsock_stream_has_space);
 878
 879static int vsock_release(struct socket *sock)
 880{
 881        __vsock_release(sock->sk, 0);
 882        sock->sk = NULL;
 883        sock->state = SS_FREE;
 884
 885        return 0;
 886}
 887
 888static int
 889vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
 890{
 891        int err;
 892        struct sock *sk;
 893        struct sockaddr_vm *vm_addr;
 894
 895        sk = sock->sk;
 896
 897        if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
 898                return -EINVAL;
 899
 900        lock_sock(sk);
 901        err = __vsock_bind(sk, vm_addr);
 902        release_sock(sk);
 903
 904        return err;
 905}
 906
 907static int vsock_getname(struct socket *sock,
 908                         struct sockaddr *addr, int peer)
 909{
 910        int err;
 911        struct sock *sk;
 912        struct vsock_sock *vsk;
 913        struct sockaddr_vm *vm_addr;
 914
 915        sk = sock->sk;
 916        vsk = vsock_sk(sk);
 917        err = 0;
 918
 919        lock_sock(sk);
 920
 921        if (peer) {
 922                if (sock->state != SS_CONNECTED) {
 923                        err = -ENOTCONN;
 924                        goto out;
 925                }
 926                vm_addr = &vsk->remote_addr;
 927        } else {
 928                vm_addr = &vsk->local_addr;
 929        }
 930
 931        if (!vm_addr) {
 932                err = -EINVAL;
 933                goto out;
 934        }
 935
 936        /* sys_getsockname() and sys_getpeername() pass us a
 937         * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
 938         * that macro is defined in socket.c instead of .h, so we hardcode its
 939         * value here.
 940         */
 941        BUILD_BUG_ON(sizeof(*vm_addr) > 128);
 942        memcpy(addr, vm_addr, sizeof(*vm_addr));
 943        err = sizeof(*vm_addr);
 944
 945out:
 946        release_sock(sk);
 947        return err;
 948}
 949
 950static int vsock_shutdown(struct socket *sock, int mode)
 951{
 952        int err;
 953        struct sock *sk;
 954
 955        /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
 956         * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
 957         * here like the other address families do.  Note also that the
 958         * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
 959         * which is what we want.
 960         */
 961        mode++;
 962
 963        if ((mode & ~SHUTDOWN_MASK) || !mode)
 964                return -EINVAL;
 965
 966        /* If this is a connection oriented socket and it is not connected then
 967         * bail out immediately.  If it is a DGRAM socket then we must first
 968         * kick the socket so that it wakes up from any sleeping calls, for
 969         * example recv(), and then afterwards return the error.
 970         */
 971
 972        sk = sock->sk;
 973
 974        lock_sock(sk);
 975        if (sock->state == SS_UNCONNECTED) {
 976                err = -ENOTCONN;
 977                if (sock_type_connectible(sk->sk_type))
 978                        goto out;
 979        } else {
 980                sock->state = SS_DISCONNECTING;
 981                err = 0;
 982        }
 983
 984        /* Receive and send shutdowns are treated alike. */
 985        mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
 986        if (mode) {
 987                sk->sk_shutdown |= mode;
 988                sk->sk_state_change(sk);
 989
 990                if (sock_type_connectible(sk->sk_type)) {
 991                        sock_reset_flag(sk, SOCK_DONE);
 992                        vsock_send_shutdown(sk, mode);
 993                }
 994        }
 995
 996out:
 997        release_sock(sk);
 998        return err;
 999}
1000
1001static __poll_t vsock_poll(struct file *file, struct socket *sock,
1002                               poll_table *wait)
1003{
1004        struct sock *sk;
1005        __poll_t mask;
1006        struct vsock_sock *vsk;
1007
1008        sk = sock->sk;
1009        vsk = vsock_sk(sk);
1010
1011        poll_wait(file, sk_sleep(sk), wait);
1012        mask = 0;
1013
1014        if (sk->sk_err)
1015                /* Signify that there has been an error on this socket. */
1016                mask |= EPOLLERR;
1017
1018        /* INET sockets treat local write shutdown and peer write shutdown as a
1019         * case of EPOLLHUP set.
1020         */
1021        if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1022            ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1023             (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1024                mask |= EPOLLHUP;
1025        }
1026
1027        if (sk->sk_shutdown & RCV_SHUTDOWN ||
1028            vsk->peer_shutdown & SEND_SHUTDOWN) {
1029                mask |= EPOLLRDHUP;
1030        }
1031
1032        if (sock->type == SOCK_DGRAM) {
1033                /* For datagram sockets we can read if there is something in
1034                 * the queue and write as long as the socket isn't shutdown for
1035                 * sending.
1036                 */
1037                if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1038                    (sk->sk_shutdown & RCV_SHUTDOWN)) {
1039                        mask |= EPOLLIN | EPOLLRDNORM;
1040                }
1041
1042                if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1043                        mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1044
1045        } else if (sock_type_connectible(sk->sk_type)) {
1046                const struct vsock_transport *transport;
1047
1048                lock_sock(sk);
1049
1050                transport = vsk->transport;
1051
1052                /* Listening sockets that have connections in their accept
1053                 * queue can be read.
1054                 */
1055                if (sk->sk_state == TCP_LISTEN
1056                    && !vsock_is_accept_queue_empty(sk))
1057                        mask |= EPOLLIN | EPOLLRDNORM;
1058
1059                /* If there is something in the queue then we can read. */
1060                if (transport && transport->stream_is_active(vsk) &&
1061                    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1062                        bool data_ready_now = false;
1063                        int ret = transport->notify_poll_in(
1064                                        vsk, 1, &data_ready_now);
1065                        if (ret < 0) {
1066                                mask |= EPOLLERR;
1067                        } else {
1068                                if (data_ready_now)
1069                                        mask |= EPOLLIN | EPOLLRDNORM;
1070
1071                        }
1072                }
1073
1074                /* Sockets whose connections have been closed, reset, or
1075                 * terminated should also be considered read, and we check the
1076                 * shutdown flag for that.
1077                 */
1078                if (sk->sk_shutdown & RCV_SHUTDOWN ||
1079                    vsk->peer_shutdown & SEND_SHUTDOWN) {
1080                        mask |= EPOLLIN | EPOLLRDNORM;
1081                }
1082
1083                /* Connected sockets that can produce data can be written. */
1084                if (transport && sk->sk_state == TCP_ESTABLISHED) {
1085                        if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1086                                bool space_avail_now = false;
1087                                int ret = transport->notify_poll_out(
1088                                                vsk, 1, &space_avail_now);
1089                                if (ret < 0) {
1090                                        mask |= EPOLLERR;
1091                                } else {
1092                                        if (space_avail_now)
1093                                                /* Remove EPOLLWRBAND since INET
1094                                                 * sockets are not setting it.
1095                                                 */
1096                                                mask |= EPOLLOUT | EPOLLWRNORM;
1097
1098                                }
1099                        }
1100                }
1101
1102                /* Simulate INET socket poll behaviors, which sets
1103                 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1104                 * but local send is not shutdown.
1105                 */
1106                if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1107                        if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1108                                mask |= EPOLLOUT | EPOLLWRNORM;
1109
1110                }
1111
1112                release_sock(sk);
1113        }
1114
1115        return mask;
1116}
1117
1118static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1119                               size_t len)
1120{
1121        int err;
1122        struct sock *sk;
1123        struct vsock_sock *vsk;
1124        struct sockaddr_vm *remote_addr;
1125        const struct vsock_transport *transport;
1126
1127        if (msg->msg_flags & MSG_OOB)
1128                return -EOPNOTSUPP;
1129
1130        /* For now, MSG_DONTWAIT is always assumed... */
1131        err = 0;
1132        sk = sock->sk;
1133        vsk = vsock_sk(sk);
1134
1135        lock_sock(sk);
1136
1137        transport = vsk->transport;
1138
1139        err = vsock_auto_bind(vsk);
1140        if (err)
1141                goto out;
1142
1143
1144        /* If the provided message contains an address, use that.  Otherwise
1145         * fall back on the socket's remote handle (if it has been connected).
1146         */
1147        if (msg->msg_name &&
1148            vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1149                            &remote_addr) == 0) {
1150                /* Ensure this address is of the right type and is a valid
1151                 * destination.
1152                 */
1153
1154                if (remote_addr->svm_cid == VMADDR_CID_ANY)
1155                        remote_addr->svm_cid = transport->get_local_cid();
1156
1157                if (!vsock_addr_bound(remote_addr)) {
1158                        err = -EINVAL;
1159                        goto out;
1160                }
1161        } else if (sock->state == SS_CONNECTED) {
1162                remote_addr = &vsk->remote_addr;
1163
1164                if (remote_addr->svm_cid == VMADDR_CID_ANY)
1165                        remote_addr->svm_cid = transport->get_local_cid();
1166
1167                /* XXX Should connect() or this function ensure remote_addr is
1168                 * bound?
1169                 */
1170                if (!vsock_addr_bound(&vsk->remote_addr)) {
1171                        err = -EINVAL;
1172                        goto out;
1173                }
1174        } else {
1175                err = -EINVAL;
1176                goto out;
1177        }
1178
1179        if (!transport->dgram_allow(remote_addr->svm_cid,
1180                                    remote_addr->svm_port)) {
1181                err = -EINVAL;
1182                goto out;
1183        }
1184
1185        err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1186
1187out:
1188        release_sock(sk);
1189        return err;
1190}
1191
1192static int vsock_dgram_connect(struct socket *sock,
1193                               struct sockaddr *addr, int addr_len, int flags)
1194{
1195        int err;
1196        struct sock *sk;
1197        struct vsock_sock *vsk;
1198        struct sockaddr_vm *remote_addr;
1199
1200        sk = sock->sk;
1201        vsk = vsock_sk(sk);
1202
1203        err = vsock_addr_cast(addr, addr_len, &remote_addr);
1204        if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1205                lock_sock(sk);
1206                vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1207                                VMADDR_PORT_ANY);
1208                sock->state = SS_UNCONNECTED;
1209                release_sock(sk);
1210                return 0;
1211        } else if (err != 0)
1212                return -EINVAL;
1213
1214        lock_sock(sk);
1215
1216        err = vsock_auto_bind(vsk);
1217        if (err)
1218                goto out;
1219
1220        if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1221                                         remote_addr->svm_port)) {
1222                err = -EINVAL;
1223                goto out;
1224        }
1225
1226        memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1227        sock->state = SS_CONNECTED;
1228
1229out:
1230        release_sock(sk);
1231        return err;
1232}
1233
1234static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1235                               size_t len, int flags)
1236{
1237        struct vsock_sock *vsk = vsock_sk(sock->sk);
1238
1239        return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1240}
1241
1242static const struct proto_ops vsock_dgram_ops = {
1243        .family = PF_VSOCK,
1244        .owner = THIS_MODULE,
1245        .release = vsock_release,
1246        .bind = vsock_bind,
1247        .connect = vsock_dgram_connect,
1248        .socketpair = sock_no_socketpair,
1249        .accept = sock_no_accept,
1250        .getname = vsock_getname,
1251        .poll = vsock_poll,
1252        .ioctl = sock_no_ioctl,
1253        .listen = sock_no_listen,
1254        .shutdown = vsock_shutdown,
1255        .sendmsg = vsock_dgram_sendmsg,
1256        .recvmsg = vsock_dgram_recvmsg,
1257        .mmap = sock_no_mmap,
1258        .sendpage = sock_no_sendpage,
1259};
1260
1261static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1262{
1263        const struct vsock_transport *transport = vsk->transport;
1264
1265        if (!transport || !transport->cancel_pkt)
1266                return -EOPNOTSUPP;
1267
1268        return transport->cancel_pkt(vsk);
1269}
1270
1271static void vsock_connect_timeout(struct work_struct *work)
1272{
1273        struct sock *sk;
1274        struct vsock_sock *vsk;
1275
1276        vsk = container_of(work, struct vsock_sock, connect_work.work);
1277        sk = sk_vsock(vsk);
1278
1279        lock_sock(sk);
1280        if (sk->sk_state == TCP_SYN_SENT &&
1281            (sk->sk_shutdown != SHUTDOWN_MASK)) {
1282                sk->sk_state = TCP_CLOSE;
1283                sk->sk_err = ETIMEDOUT;
1284                sk_error_report(sk);
1285                vsock_transport_cancel_pkt(vsk);
1286        }
1287        release_sock(sk);
1288
1289        sock_put(sk);
1290}
1291
1292static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1293                         int addr_len, int flags)
1294{
1295        int err;
1296        struct sock *sk;
1297        struct vsock_sock *vsk;
1298        const struct vsock_transport *transport;
1299        struct sockaddr_vm *remote_addr;
1300        long timeout;
1301        DEFINE_WAIT(wait);
1302
1303        err = 0;
1304        sk = sock->sk;
1305        vsk = vsock_sk(sk);
1306
1307        lock_sock(sk);
1308
1309        /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1310        switch (sock->state) {
1311        case SS_CONNECTED:
1312                err = -EISCONN;
1313                goto out;
1314        case SS_DISCONNECTING:
1315                err = -EINVAL;
1316                goto out;
1317        case SS_CONNECTING:
1318                /* This continues on so we can move sock into the SS_CONNECTED
1319                 * state once the connection has completed (at which point err
1320                 * will be set to zero also).  Otherwise, we will either wait
1321                 * for the connection or return -EALREADY should this be a
1322                 * non-blocking call.
1323                 */
1324                err = -EALREADY;
1325                break;
1326        default:
1327                if ((sk->sk_state == TCP_LISTEN) ||
1328                    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1329                        err = -EINVAL;
1330                        goto out;
1331                }
1332
1333                /* Set the remote address that we are connecting to. */
1334                memcpy(&vsk->remote_addr, remote_addr,
1335                       sizeof(vsk->remote_addr));
1336
1337                err = vsock_assign_transport(vsk, NULL);
1338                if (err)
1339                        goto out;
1340
1341                transport = vsk->transport;
1342
1343                /* The hypervisor and well-known contexts do not have socket
1344                 * endpoints.
1345                 */
1346                if (!transport ||
1347                    !transport->stream_allow(remote_addr->svm_cid,
1348                                             remote_addr->svm_port)) {
1349                        err = -ENETUNREACH;
1350                        goto out;
1351                }
1352
1353                err = vsock_auto_bind(vsk);
1354                if (err)
1355                        goto out;
1356
1357                sk->sk_state = TCP_SYN_SENT;
1358
1359                err = transport->connect(vsk);
1360                if (err < 0)
1361                        goto out;
1362
1363                /* Mark sock as connecting and set the error code to in
1364                 * progress in case this is a non-blocking connect.
1365                 */
1366                sock->state = SS_CONNECTING;
1367                err = -EINPROGRESS;
1368        }
1369
1370        /* The receive path will handle all communication until we are able to
1371         * enter the connected state.  Here we wait for the connection to be
1372         * completed or a notification of an error.
1373         */
1374        timeout = vsk->connect_timeout;
1375        prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1376
1377        while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1378                if (flags & O_NONBLOCK) {
1379                        /* If we're not going to block, we schedule a timeout
1380                         * function to generate a timeout on the connection
1381                         * attempt, in case the peer doesn't respond in a
1382                         * timely manner. We hold on to the socket until the
1383                         * timeout fires.
1384                         */
1385                        sock_hold(sk);
1386                        schedule_delayed_work(&vsk->connect_work, timeout);
1387
1388                        /* Skip ahead to preserve error code set above. */
1389                        goto out_wait;
1390                }
1391
1392                release_sock(sk);
1393                timeout = schedule_timeout(timeout);
1394                lock_sock(sk);
1395
1396                if (signal_pending(current)) {
1397                        err = sock_intr_errno(timeout);
1398                        sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1399                        sock->state = SS_UNCONNECTED;
1400                        vsock_transport_cancel_pkt(vsk);
1401                        goto out_wait;
1402                } else if (timeout == 0) {
1403                        err = -ETIMEDOUT;
1404                        sk->sk_state = TCP_CLOSE;
1405                        sock->state = SS_UNCONNECTED;
1406                        vsock_transport_cancel_pkt(vsk);
1407                        goto out_wait;
1408                }
1409
1410                prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1411        }
1412
1413        if (sk->sk_err) {
1414                err = -sk->sk_err;
1415                sk->sk_state = TCP_CLOSE;
1416                sock->state = SS_UNCONNECTED;
1417        } else {
1418                err = 0;
1419        }
1420
1421out_wait:
1422        finish_wait(sk_sleep(sk), &wait);
1423out:
1424        release_sock(sk);
1425        return err;
1426}
1427
1428static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1429                        bool kern)
1430{
1431        struct sock *listener;
1432        int err;
1433        struct sock *connected;
1434        struct vsock_sock *vconnected;
1435        long timeout;
1436        DEFINE_WAIT(wait);
1437
1438        err = 0;
1439        listener = sock->sk;
1440
1441        lock_sock(listener);
1442
1443        if (!sock_type_connectible(sock->type)) {
1444                err = -EOPNOTSUPP;
1445                goto out;
1446        }
1447
1448        if (listener->sk_state != TCP_LISTEN) {
1449                err = -EINVAL;
1450                goto out;
1451        }
1452
1453        /* Wait for children sockets to appear; these are the new sockets
1454         * created upon connection establishment.
1455         */
1456        timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1457        prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1458
1459        while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1460               listener->sk_err == 0) {
1461                release_sock(listener);
1462                timeout = schedule_timeout(timeout);
1463                finish_wait(sk_sleep(listener), &wait);
1464                lock_sock(listener);
1465
1466                if (signal_pending(current)) {
1467                        err = sock_intr_errno(timeout);
1468                        goto out;
1469                } else if (timeout == 0) {
1470                        err = -EAGAIN;
1471                        goto out;
1472                }
1473
1474                prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1475        }
1476        finish_wait(sk_sleep(listener), &wait);
1477
1478        if (listener->sk_err)
1479                err = -listener->sk_err;
1480
1481        if (connected) {
1482                sk_acceptq_removed(listener);
1483
1484                lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1485                vconnected = vsock_sk(connected);
1486
1487                /* If the listener socket has received an error, then we should
1488                 * reject this socket and return.  Note that we simply mark the
1489                 * socket rejected, drop our reference, and let the cleanup
1490                 * function handle the cleanup; the fact that we found it in
1491                 * the listener's accept queue guarantees that the cleanup
1492                 * function hasn't run yet.
1493                 */
1494                if (err) {
1495                        vconnected->rejected = true;
1496                } else {
1497                        newsock->state = SS_CONNECTED;
1498                        sock_graft(connected, newsock);
1499                }
1500
1501                release_sock(connected);
1502                sock_put(connected);
1503        }
1504
1505out:
1506        release_sock(listener);
1507        return err;
1508}
1509
1510static int vsock_listen(struct socket *sock, int backlog)
1511{
1512        int err;
1513        struct sock *sk;
1514        struct vsock_sock *vsk;
1515
1516        sk = sock->sk;
1517
1518        lock_sock(sk);
1519
1520        if (!sock_type_connectible(sk->sk_type)) {
1521                err = -EOPNOTSUPP;
1522                goto out;
1523        }
1524
1525        if (sock->state != SS_UNCONNECTED) {
1526                err = -EINVAL;
1527                goto out;
1528        }
1529
1530        vsk = vsock_sk(sk);
1531
1532        if (!vsock_addr_bound(&vsk->local_addr)) {
1533                err = -EINVAL;
1534                goto out;
1535        }
1536
1537        sk->sk_max_ack_backlog = backlog;
1538        sk->sk_state = TCP_LISTEN;
1539
1540        err = 0;
1541
1542out:
1543        release_sock(sk);
1544        return err;
1545}
1546
1547static void vsock_update_buffer_size(struct vsock_sock *vsk,
1548                                     const struct vsock_transport *transport,
1549                                     u64 val)
1550{
1551        if (val > vsk->buffer_max_size)
1552                val = vsk->buffer_max_size;
1553
1554        if (val < vsk->buffer_min_size)
1555                val = vsk->buffer_min_size;
1556
1557        if (val != vsk->buffer_size &&
1558            transport && transport->notify_buffer_size)
1559                transport->notify_buffer_size(vsk, &val);
1560
1561        vsk->buffer_size = val;
1562}
1563
1564static int vsock_connectible_setsockopt(struct socket *sock,
1565                                        int level,
1566                                        int optname,
1567                                        sockptr_t optval,
1568                                        unsigned int optlen)
1569{
1570        int err;
1571        struct sock *sk;
1572        struct vsock_sock *vsk;
1573        const struct vsock_transport *transport;
1574        u64 val;
1575
1576        if (level != AF_VSOCK)
1577                return -ENOPROTOOPT;
1578
1579#define COPY_IN(_v)                                       \
1580        do {                                              \
1581                if (optlen < sizeof(_v)) {                \
1582                        err = -EINVAL;                    \
1583                        goto exit;                        \
1584                }                                         \
1585                if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) {  \
1586                        err = -EFAULT;                                  \
1587                        goto exit;                                      \
1588                }                                                       \
1589        } while (0)
1590
1591        err = 0;
1592        sk = sock->sk;
1593        vsk = vsock_sk(sk);
1594
1595        lock_sock(sk);
1596
1597        transport = vsk->transport;
1598
1599        switch (optname) {
1600        case SO_VM_SOCKETS_BUFFER_SIZE:
1601                COPY_IN(val);
1602                vsock_update_buffer_size(vsk, transport, val);
1603                break;
1604
1605        case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1606                COPY_IN(val);
1607                vsk->buffer_max_size = val;
1608                vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1609                break;
1610
1611        case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1612                COPY_IN(val);
1613                vsk->buffer_min_size = val;
1614                vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1615                break;
1616
1617        case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1618                struct __kernel_old_timeval tv;
1619                COPY_IN(tv);
1620                if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1621                    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1622                        vsk->connect_timeout = tv.tv_sec * HZ +
1623                            DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1624                        if (vsk->connect_timeout == 0)
1625                                vsk->connect_timeout =
1626                                    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1627
1628                } else {
1629                        err = -ERANGE;
1630                }
1631                break;
1632        }
1633
1634        default:
1635                err = -ENOPROTOOPT;
1636                break;
1637        }
1638
1639#undef COPY_IN
1640
1641exit:
1642        release_sock(sk);
1643        return err;
1644}
1645
1646static int vsock_connectible_getsockopt(struct socket *sock,
1647                                        int level, int optname,
1648                                        char __user *optval,
1649                                        int __user *optlen)
1650{
1651        int err;
1652        int len;
1653        struct sock *sk;
1654        struct vsock_sock *vsk;
1655        u64 val;
1656
1657        if (level != AF_VSOCK)
1658                return -ENOPROTOOPT;
1659
1660        err = get_user(len, optlen);
1661        if (err != 0)
1662                return err;
1663
1664#define COPY_OUT(_v)                            \
1665        do {                                    \
1666                if (len < sizeof(_v))           \
1667                        return -EINVAL;         \
1668                                                \
1669                len = sizeof(_v);               \
1670                if (copy_to_user(optval, &_v, len) != 0)        \
1671                        return -EFAULT;                         \
1672                                                                \
1673        } while (0)
1674
1675        err = 0;
1676        sk = sock->sk;
1677        vsk = vsock_sk(sk);
1678
1679        switch (optname) {
1680        case SO_VM_SOCKETS_BUFFER_SIZE:
1681                val = vsk->buffer_size;
1682                COPY_OUT(val);
1683                break;
1684
1685        case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1686                val = vsk->buffer_max_size;
1687                COPY_OUT(val);
1688                break;
1689
1690        case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1691                val = vsk->buffer_min_size;
1692                COPY_OUT(val);
1693                break;
1694
1695        case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1696                struct __kernel_old_timeval tv;
1697                tv.tv_sec = vsk->connect_timeout / HZ;
1698                tv.tv_usec =
1699                    (vsk->connect_timeout -
1700                     tv.tv_sec * HZ) * (1000000 / HZ);
1701                COPY_OUT(tv);
1702                break;
1703        }
1704        default:
1705                return -ENOPROTOOPT;
1706        }
1707
1708        err = put_user(len, optlen);
1709        if (err != 0)
1710                return -EFAULT;
1711
1712#undef COPY_OUT
1713
1714        return 0;
1715}
1716
1717static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
1718                                     size_t len)
1719{
1720        struct sock *sk;
1721        struct vsock_sock *vsk;
1722        const struct vsock_transport *transport;
1723        ssize_t total_written;
1724        long timeout;
1725        int err;
1726        struct vsock_transport_send_notify_data send_data;
1727        DEFINE_WAIT_FUNC(wait, woken_wake_function);
1728
1729        sk = sock->sk;
1730        vsk = vsock_sk(sk);
1731        total_written = 0;
1732        err = 0;
1733
1734        if (msg->msg_flags & MSG_OOB)
1735                return -EOPNOTSUPP;
1736
1737        lock_sock(sk);
1738
1739        transport = vsk->transport;
1740
1741        /* Callers should not provide a destination with connection oriented
1742         * sockets.
1743         */
1744        if (msg->msg_namelen) {
1745                err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1746                goto out;
1747        }
1748
1749        /* Send data only if both sides are not shutdown in the direction. */
1750        if (sk->sk_shutdown & SEND_SHUTDOWN ||
1751            vsk->peer_shutdown & RCV_SHUTDOWN) {
1752                err = -EPIPE;
1753                goto out;
1754        }
1755
1756        if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1757            !vsock_addr_bound(&vsk->local_addr)) {
1758                err = -ENOTCONN;
1759                goto out;
1760        }
1761
1762        if (!vsock_addr_bound(&vsk->remote_addr)) {
1763                err = -EDESTADDRREQ;
1764                goto out;
1765        }
1766
1767        /* Wait for room in the produce queue to enqueue our user's data. */
1768        timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1769
1770        err = transport->notify_send_init(vsk, &send_data);
1771        if (err < 0)
1772                goto out;
1773
1774        while (total_written < len) {
1775                ssize_t written;
1776
1777                add_wait_queue(sk_sleep(sk), &wait);
1778                while (vsock_stream_has_space(vsk) == 0 &&
1779                       sk->sk_err == 0 &&
1780                       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1781                       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1782
1783                        /* Don't wait for non-blocking sockets. */
1784                        if (timeout == 0) {
1785                                err = -EAGAIN;
1786                                remove_wait_queue(sk_sleep(sk), &wait);
1787                                goto out_err;
1788                        }
1789
1790                        err = transport->notify_send_pre_block(vsk, &send_data);
1791                        if (err < 0) {
1792                                remove_wait_queue(sk_sleep(sk), &wait);
1793                                goto out_err;
1794                        }
1795
1796                        release_sock(sk);
1797                        timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1798                        lock_sock(sk);
1799                        if (signal_pending(current)) {
1800                                err = sock_intr_errno(timeout);
1801                                remove_wait_queue(sk_sleep(sk), &wait);
1802                                goto out_err;
1803                        } else if (timeout == 0) {
1804                                err = -EAGAIN;
1805                                remove_wait_queue(sk_sleep(sk), &wait);
1806                                goto out_err;
1807                        }
1808                }
1809                remove_wait_queue(sk_sleep(sk), &wait);
1810
1811                /* These checks occur both as part of and after the loop
1812                 * conditional since we need to check before and after
1813                 * sleeping.
1814                 */
1815                if (sk->sk_err) {
1816                        err = -sk->sk_err;
1817                        goto out_err;
1818                } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1819                           (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1820                        err = -EPIPE;
1821                        goto out_err;
1822                }
1823
1824                err = transport->notify_send_pre_enqueue(vsk, &send_data);
1825                if (err < 0)
1826                        goto out_err;
1827
1828                /* Note that enqueue will only write as many bytes as are free
1829                 * in the produce queue, so we don't need to ensure len is
1830                 * smaller than the queue size.  It is the caller's
1831                 * responsibility to check how many bytes we were able to send.
1832                 */
1833
1834                if (sk->sk_type == SOCK_SEQPACKET) {
1835                        written = transport->seqpacket_enqueue(vsk,
1836                                                msg, len - total_written);
1837                } else {
1838                        written = transport->stream_enqueue(vsk,
1839                                        msg, len - total_written);
1840                }
1841                if (written < 0) {
1842                        err = -ENOMEM;
1843                        goto out_err;
1844                }
1845
1846                total_written += written;
1847
1848                err = transport->notify_send_post_enqueue(
1849                                vsk, written, &send_data);
1850                if (err < 0)
1851                        goto out_err;
1852
1853        }
1854
1855out_err:
1856        if (total_written > 0) {
1857                /* Return number of written bytes only if:
1858                 * 1) SOCK_STREAM socket.
1859                 * 2) SOCK_SEQPACKET socket when whole buffer is sent.
1860                 */
1861                if (sk->sk_type == SOCK_STREAM || total_written == len)
1862                        err = total_written;
1863        }
1864out:
1865        release_sock(sk);
1866        return err;
1867}
1868
1869static int vsock_connectible_wait_data(struct sock *sk,
1870                                       struct wait_queue_entry *wait,
1871                                       long timeout,
1872                                       struct vsock_transport_recv_notify_data *recv_data,
1873                                       size_t target)
1874{
1875        const struct vsock_transport *transport;
1876        struct vsock_sock *vsk;
1877        s64 data;
1878        int err;
1879
1880        vsk = vsock_sk(sk);
1881        err = 0;
1882        transport = vsk->transport;
1883
1884        while ((data = vsock_connectible_has_data(vsk)) == 0) {
1885                prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
1886
1887                if (sk->sk_err != 0 ||
1888                    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1889                    (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1890                        break;
1891                }
1892
1893                /* Don't wait for non-blocking sockets. */
1894                if (timeout == 0) {
1895                        err = -EAGAIN;
1896                        break;
1897                }
1898
1899                if (recv_data) {
1900                        err = transport->notify_recv_pre_block(vsk, target, recv_data);
1901                        if (err < 0)
1902                                break;
1903                }
1904
1905                release_sock(sk);
1906                timeout = schedule_timeout(timeout);
1907                lock_sock(sk);
1908
1909                if (signal_pending(current)) {
1910                        err = sock_intr_errno(timeout);
1911                        break;
1912                } else if (timeout == 0) {
1913                        err = -EAGAIN;
1914                        break;
1915                }
1916        }
1917
1918        finish_wait(sk_sleep(sk), wait);
1919
1920        if (err)
1921                return err;
1922
1923        /* Internal transport error when checking for available
1924         * data. XXX This should be changed to a connection
1925         * reset in a later change.
1926         */
1927        if (data < 0)
1928                return -ENOMEM;
1929
1930        return data;
1931}
1932
1933static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
1934                                  size_t len, int flags)
1935{
1936        struct vsock_transport_recv_notify_data recv_data;
1937        const struct vsock_transport *transport;
1938        struct vsock_sock *vsk;
1939        ssize_t copied;
1940        size_t target;
1941        long timeout;
1942        int err;
1943
1944        DEFINE_WAIT(wait);
1945
1946        vsk = vsock_sk(sk);
1947        transport = vsk->transport;
1948
1949        /* We must not copy less than target bytes into the user's buffer
1950         * before returning successfully, so we wait for the consume queue to
1951         * have that much data to consume before dequeueing.  Note that this
1952         * makes it impossible to handle cases where target is greater than the
1953         * queue size.
1954         */
1955        target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1956        if (target >= transport->stream_rcvhiwat(vsk)) {
1957                err = -ENOMEM;
1958                goto out;
1959        }
1960        timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1961        copied = 0;
1962
1963        err = transport->notify_recv_init(vsk, target, &recv_data);
1964        if (err < 0)
1965                goto out;
1966
1967
1968        while (1) {
1969                ssize_t read;
1970
1971                err = vsock_connectible_wait_data(sk, &wait, timeout,
1972                                                  &recv_data, target);
1973                if (err <= 0)
1974                        break;
1975
1976                err = transport->notify_recv_pre_dequeue(vsk, target,
1977                                                         &recv_data);
1978                if (err < 0)
1979                        break;
1980
1981                read = transport->stream_dequeue(vsk, msg, len - copied, flags);
1982                if (read < 0) {
1983                        err = -ENOMEM;
1984                        break;
1985                }
1986
1987                copied += read;
1988
1989                err = transport->notify_recv_post_dequeue(vsk, target, read,
1990                                                !(flags & MSG_PEEK), &recv_data);
1991                if (err < 0)
1992                        goto out;
1993
1994                if (read >= target || flags & MSG_PEEK)
1995                        break;
1996
1997                target -= read;
1998        }
1999
2000        if (sk->sk_err)
2001                err = -sk->sk_err;
2002        else if (sk->sk_shutdown & RCV_SHUTDOWN)
2003                err = 0;
2004
2005        if (copied > 0)
2006                err = copied;
2007
2008out:
2009        return err;
2010}
2011
2012static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2013                                     size_t len, int flags)
2014{
2015        const struct vsock_transport *transport;
2016        struct vsock_sock *vsk;
2017        ssize_t msg_len;
2018        long timeout;
2019        int err = 0;
2020        DEFINE_WAIT(wait);
2021
2022        vsk = vsock_sk(sk);
2023        transport = vsk->transport;
2024
2025        timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2026
2027        err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2028        if (err <= 0)
2029                goto out;
2030
2031        msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2032
2033        if (msg_len < 0) {
2034                err = -ENOMEM;
2035                goto out;
2036        }
2037
2038        if (sk->sk_err) {
2039                err = -sk->sk_err;
2040        } else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2041                err = 0;
2042        } else {
2043                /* User sets MSG_TRUNC, so return real length of
2044                 * packet.
2045                 */
2046                if (flags & MSG_TRUNC)
2047                        err = msg_len;
2048                else
2049                        err = len - msg_data_left(msg);
2050
2051                /* Always set MSG_TRUNC if real length of packet is
2052                 * bigger than user's buffer.
2053                 */
2054                if (msg_len > len)
2055                        msg->msg_flags |= MSG_TRUNC;
2056        }
2057
2058out:
2059        return err;
2060}
2061
2062static int
2063vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2064                          int flags)
2065{
2066        struct sock *sk;
2067        struct vsock_sock *vsk;
2068        const struct vsock_transport *transport;
2069        int err;
2070
2071        DEFINE_WAIT(wait);
2072
2073        sk = sock->sk;
2074        vsk = vsock_sk(sk);
2075        err = 0;
2076
2077        lock_sock(sk);
2078
2079        transport = vsk->transport;
2080
2081        if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2082                /* Recvmsg is supposed to return 0 if a peer performs an
2083                 * orderly shutdown. Differentiate between that case and when a
2084                 * peer has not connected or a local shutdown occurred with the
2085                 * SOCK_DONE flag.
2086                 */
2087                if (sock_flag(sk, SOCK_DONE))
2088                        err = 0;
2089                else
2090                        err = -ENOTCONN;
2091
2092                goto out;
2093        }
2094
2095        if (flags & MSG_OOB) {
2096                err = -EOPNOTSUPP;
2097                goto out;
2098        }
2099
2100        /* We don't check peer_shutdown flag here since peer may actually shut
2101         * down, but there can be data in the queue that a local socket can
2102         * receive.
2103         */
2104        if (sk->sk_shutdown & RCV_SHUTDOWN) {
2105                err = 0;
2106                goto out;
2107        }
2108
2109        /* It is valid on Linux to pass in a zero-length receive buffer.  This
2110         * is not an error.  We may as well bail out now.
2111         */
2112        if (!len) {
2113                err = 0;
2114                goto out;
2115        }
2116
2117        if (sk->sk_type == SOCK_STREAM)
2118                err = __vsock_stream_recvmsg(sk, msg, len, flags);
2119        else
2120                err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2121
2122out:
2123        release_sock(sk);
2124        return err;
2125}
2126
2127static const struct proto_ops vsock_stream_ops = {
2128        .family = PF_VSOCK,
2129        .owner = THIS_MODULE,
2130        .release = vsock_release,
2131        .bind = vsock_bind,
2132        .connect = vsock_connect,
2133        .socketpair = sock_no_socketpair,
2134        .accept = vsock_accept,
2135        .getname = vsock_getname,
2136        .poll = vsock_poll,
2137        .ioctl = sock_no_ioctl,
2138        .listen = vsock_listen,
2139        .shutdown = vsock_shutdown,
2140        .setsockopt = vsock_connectible_setsockopt,
2141        .getsockopt = vsock_connectible_getsockopt,
2142        .sendmsg = vsock_connectible_sendmsg,
2143        .recvmsg = vsock_connectible_recvmsg,
2144        .mmap = sock_no_mmap,
2145        .sendpage = sock_no_sendpage,
2146};
2147
2148static const struct proto_ops vsock_seqpacket_ops = {
2149        .family = PF_VSOCK,
2150        .owner = THIS_MODULE,
2151        .release = vsock_release,
2152        .bind = vsock_bind,
2153        .connect = vsock_connect,
2154        .socketpair = sock_no_socketpair,
2155        .accept = vsock_accept,
2156        .getname = vsock_getname,
2157        .poll = vsock_poll,
2158        .ioctl = sock_no_ioctl,
2159        .listen = vsock_listen,
2160        .shutdown = vsock_shutdown,
2161        .setsockopt = vsock_connectible_setsockopt,
2162        .getsockopt = vsock_connectible_getsockopt,
2163        .sendmsg = vsock_connectible_sendmsg,
2164        .recvmsg = vsock_connectible_recvmsg,
2165        .mmap = sock_no_mmap,
2166        .sendpage = sock_no_sendpage,
2167};
2168
2169static int vsock_create(struct net *net, struct socket *sock,
2170                        int protocol, int kern)
2171{
2172        struct vsock_sock *vsk;
2173        struct sock *sk;
2174        int ret;
2175
2176        if (!sock)
2177                return -EINVAL;
2178
2179        if (protocol && protocol != PF_VSOCK)
2180                return -EPROTONOSUPPORT;
2181
2182        switch (sock->type) {
2183        case SOCK_DGRAM:
2184                sock->ops = &vsock_dgram_ops;
2185                break;
2186        case SOCK_STREAM:
2187                sock->ops = &vsock_stream_ops;
2188                break;
2189        case SOCK_SEQPACKET:
2190                sock->ops = &vsock_seqpacket_ops;
2191                break;
2192        default:
2193                return -ESOCKTNOSUPPORT;
2194        }
2195
2196        sock->state = SS_UNCONNECTED;
2197
2198        sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2199        if (!sk)
2200                return -ENOMEM;
2201
2202        vsk = vsock_sk(sk);
2203
2204        if (sock->type == SOCK_DGRAM) {
2205                ret = vsock_assign_transport(vsk, NULL);
2206                if (ret < 0) {
2207                        sock_put(sk);
2208                        return ret;
2209                }
2210        }
2211
2212        vsock_insert_unbound(vsk);
2213
2214        return 0;
2215}
2216
2217static const struct net_proto_family vsock_family_ops = {
2218        .family = AF_VSOCK,
2219        .create = vsock_create,
2220        .owner = THIS_MODULE,
2221};
2222
2223static long vsock_dev_do_ioctl(struct file *filp,
2224                               unsigned int cmd, void __user *ptr)
2225{
2226        u32 __user *p = ptr;
2227        u32 cid = VMADDR_CID_ANY;
2228        int retval = 0;
2229
2230        switch (cmd) {
2231        case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2232                /* To be compatible with the VMCI behavior, we prioritize the
2233                 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2234                 */
2235                if (transport_g2h)
2236                        cid = transport_g2h->get_local_cid();
2237                else if (transport_h2g)
2238                        cid = transport_h2g->get_local_cid();
2239
2240                if (put_user(cid, p) != 0)
2241                        retval = -EFAULT;
2242                break;
2243
2244        default:
2245                retval = -ENOIOCTLCMD;
2246        }
2247
2248        return retval;
2249}
2250
2251static long vsock_dev_ioctl(struct file *filp,
2252                            unsigned int cmd, unsigned long arg)
2253{
2254        return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2255}
2256
2257#ifdef CONFIG_COMPAT
2258static long vsock_dev_compat_ioctl(struct file *filp,
2259                                   unsigned int cmd, unsigned long arg)
2260{
2261        return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2262}
2263#endif
2264
2265static const struct file_operations vsock_device_ops = {
2266        .owner          = THIS_MODULE,
2267        .unlocked_ioctl = vsock_dev_ioctl,
2268#ifdef CONFIG_COMPAT
2269        .compat_ioctl   = vsock_dev_compat_ioctl,
2270#endif
2271        .open           = nonseekable_open,
2272};
2273
2274static struct miscdevice vsock_device = {
2275        .name           = "vsock",
2276        .fops           = &vsock_device_ops,
2277};
2278
2279static int __init vsock_init(void)
2280{
2281        int err = 0;
2282
2283        vsock_init_tables();
2284
2285        vsock_proto.owner = THIS_MODULE;
2286        vsock_device.minor = MISC_DYNAMIC_MINOR;
2287        err = misc_register(&vsock_device);
2288        if (err) {
2289                pr_err("Failed to register misc device\n");
2290                goto err_reset_transport;
2291        }
2292
2293        err = proto_register(&vsock_proto, 1);  /* we want our slab */
2294        if (err) {
2295                pr_err("Cannot register vsock protocol\n");
2296                goto err_deregister_misc;
2297        }
2298
2299        err = sock_register(&vsock_family_ops);
2300        if (err) {
2301                pr_err("could not register af_vsock (%d) address family: %d\n",
2302                       AF_VSOCK, err);
2303                goto err_unregister_proto;
2304        }
2305
2306        return 0;
2307
2308err_unregister_proto:
2309        proto_unregister(&vsock_proto);
2310err_deregister_misc:
2311        misc_deregister(&vsock_device);
2312err_reset_transport:
2313        return err;
2314}
2315
2316static void __exit vsock_exit(void)
2317{
2318        misc_deregister(&vsock_device);
2319        sock_unregister(AF_VSOCK);
2320        proto_unregister(&vsock_proto);
2321}
2322
2323const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2324{
2325        return vsk->transport;
2326}
2327EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2328
2329int vsock_core_register(const struct vsock_transport *t, int features)
2330{
2331        const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2332        int err = mutex_lock_interruptible(&vsock_register_mutex);
2333
2334        if (err)
2335                return err;
2336
2337        t_h2g = transport_h2g;
2338        t_g2h = transport_g2h;
2339        t_dgram = transport_dgram;
2340        t_local = transport_local;
2341
2342        if (features & VSOCK_TRANSPORT_F_H2G) {
2343                if (t_h2g) {
2344                        err = -EBUSY;
2345                        goto err_busy;
2346                }
2347                t_h2g = t;
2348        }
2349
2350        if (features & VSOCK_TRANSPORT_F_G2H) {
2351                if (t_g2h) {
2352                        err = -EBUSY;
2353                        goto err_busy;
2354                }
2355                t_g2h = t;
2356        }
2357
2358        if (features & VSOCK_TRANSPORT_F_DGRAM) {
2359                if (t_dgram) {
2360                        err = -EBUSY;
2361                        goto err_busy;
2362                }
2363                t_dgram = t;
2364        }
2365
2366        if (features & VSOCK_TRANSPORT_F_LOCAL) {
2367                if (t_local) {
2368                        err = -EBUSY;
2369                        goto err_busy;
2370                }
2371                t_local = t;
2372        }
2373
2374        transport_h2g = t_h2g;
2375        transport_g2h = t_g2h;
2376        transport_dgram = t_dgram;
2377        transport_local = t_local;
2378
2379err_busy:
2380        mutex_unlock(&vsock_register_mutex);
2381        return err;
2382}
2383EXPORT_SYMBOL_GPL(vsock_core_register);
2384
2385void vsock_core_unregister(const struct vsock_transport *t)
2386{
2387        mutex_lock(&vsock_register_mutex);
2388
2389        if (transport_h2g == t)
2390                transport_h2g = NULL;
2391
2392        if (transport_g2h == t)
2393                transport_g2h = NULL;
2394
2395        if (transport_dgram == t)
2396                transport_dgram = NULL;
2397
2398        if (transport_local == t)
2399                transport_local = NULL;
2400
2401        mutex_unlock(&vsock_register_mutex);
2402}
2403EXPORT_SYMBOL_GPL(vsock_core_unregister);
2404
2405module_init(vsock_init);
2406module_exit(vsock_exit);
2407
2408MODULE_AUTHOR("VMware, Inc.");
2409MODULE_DESCRIPTION("VMware Virtual Socket Family");
2410MODULE_VERSION("1.0.2.0-k");
2411MODULE_LICENSE("GPL v2");
2412