linux/net/wireless/reg.c
<<
>>
Prefs
   1/*
   2 * Copyright 2002-2005, Instant802 Networks, Inc.
   3 * Copyright 2005-2006, Devicescape Software, Inc.
   4 * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
   5 * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
   6 * Copyright 2013-2014  Intel Mobile Communications GmbH
   7 * Copyright      2017  Intel Deutschland GmbH
   8 * Copyright (C) 2018 - 2021 Intel Corporation
   9 *
  10 * Permission to use, copy, modify, and/or distribute this software for any
  11 * purpose with or without fee is hereby granted, provided that the above
  12 * copyright notice and this permission notice appear in all copies.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  21 */
  22
  23
  24/**
  25 * DOC: Wireless regulatory infrastructure
  26 *
  27 * The usual implementation is for a driver to read a device EEPROM to
  28 * determine which regulatory domain it should be operating under, then
  29 * looking up the allowable channels in a driver-local table and finally
  30 * registering those channels in the wiphy structure.
  31 *
  32 * Another set of compliance enforcement is for drivers to use their
  33 * own compliance limits which can be stored on the EEPROM. The host
  34 * driver or firmware may ensure these are used.
  35 *
  36 * In addition to all this we provide an extra layer of regulatory
  37 * conformance. For drivers which do not have any regulatory
  38 * information CRDA provides the complete regulatory solution.
  39 * For others it provides a community effort on further restrictions
  40 * to enhance compliance.
  41 *
  42 * Note: When number of rules --> infinity we will not be able to
  43 * index on alpha2 any more, instead we'll probably have to
  44 * rely on some SHA1 checksum of the regdomain for example.
  45 *
  46 */
  47
  48#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  49
  50#include <linux/kernel.h>
  51#include <linux/export.h>
  52#include <linux/slab.h>
  53#include <linux/list.h>
  54#include <linux/ctype.h>
  55#include <linux/nl80211.h>
  56#include <linux/platform_device.h>
  57#include <linux/verification.h>
  58#include <linux/moduleparam.h>
  59#include <linux/firmware.h>
  60#include <net/cfg80211.h>
  61#include "core.h"
  62#include "reg.h"
  63#include "rdev-ops.h"
  64#include "nl80211.h"
  65
  66/*
  67 * Grace period we give before making sure all current interfaces reside on
  68 * channels allowed by the current regulatory domain.
  69 */
  70#define REG_ENFORCE_GRACE_MS 60000
  71
  72/**
  73 * enum reg_request_treatment - regulatory request treatment
  74 *
  75 * @REG_REQ_OK: continue processing the regulatory request
  76 * @REG_REQ_IGNORE: ignore the regulatory request
  77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
  78 *      be intersected with the current one.
  79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
  80 *      regulatory settings, and no further processing is required.
  81 */
  82enum reg_request_treatment {
  83        REG_REQ_OK,
  84        REG_REQ_IGNORE,
  85        REG_REQ_INTERSECT,
  86        REG_REQ_ALREADY_SET,
  87};
  88
  89static struct regulatory_request core_request_world = {
  90        .initiator = NL80211_REGDOM_SET_BY_CORE,
  91        .alpha2[0] = '0',
  92        .alpha2[1] = '0',
  93        .intersect = false,
  94        .processed = true,
  95        .country_ie_env = ENVIRON_ANY,
  96};
  97
  98/*
  99 * Receipt of information from last regulatory request,
 100 * protected by RTNL (and can be accessed with RCU protection)
 101 */
 102static struct regulatory_request __rcu *last_request =
 103        (void __force __rcu *)&core_request_world;
 104
 105/* To trigger userspace events and load firmware */
 106static struct platform_device *reg_pdev;
 107
 108/*
 109 * Central wireless core regulatory domains, we only need two,
 110 * the current one and a world regulatory domain in case we have no
 111 * information to give us an alpha2.
 112 * (protected by RTNL, can be read under RCU)
 113 */
 114const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
 115
 116/*
 117 * Number of devices that registered to the core
 118 * that support cellular base station regulatory hints
 119 * (protected by RTNL)
 120 */
 121static int reg_num_devs_support_basehint;
 122
 123/*
 124 * State variable indicating if the platform on which the devices
 125 * are attached is operating in an indoor environment. The state variable
 126 * is relevant for all registered devices.
 127 */
 128static bool reg_is_indoor;
 129static DEFINE_SPINLOCK(reg_indoor_lock);
 130
 131/* Used to track the userspace process controlling the indoor setting */
 132static u32 reg_is_indoor_portid;
 133
 134static void restore_regulatory_settings(bool reset_user, bool cached);
 135static void print_regdomain(const struct ieee80211_regdomain *rd);
 136
 137static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
 138{
 139        return rcu_dereference_rtnl(cfg80211_regdomain);
 140}
 141
 142/*
 143 * Returns the regulatory domain associated with the wiphy.
 144 *
 145 * Requires any of RTNL, wiphy mutex or RCU protection.
 146 */
 147const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
 148{
 149        return rcu_dereference_check(wiphy->regd,
 150                                     lockdep_is_held(&wiphy->mtx) ||
 151                                     lockdep_rtnl_is_held());
 152}
 153EXPORT_SYMBOL(get_wiphy_regdom);
 154
 155static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
 156{
 157        switch (dfs_region) {
 158        case NL80211_DFS_UNSET:
 159                return "unset";
 160        case NL80211_DFS_FCC:
 161                return "FCC";
 162        case NL80211_DFS_ETSI:
 163                return "ETSI";
 164        case NL80211_DFS_JP:
 165                return "JP";
 166        }
 167        return "Unknown";
 168}
 169
 170enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
 171{
 172        const struct ieee80211_regdomain *regd = NULL;
 173        const struct ieee80211_regdomain *wiphy_regd = NULL;
 174        enum nl80211_dfs_regions dfs_region;
 175
 176        rcu_read_lock();
 177        regd = get_cfg80211_regdom();
 178        dfs_region = regd->dfs_region;
 179
 180        if (!wiphy)
 181                goto out;
 182
 183        wiphy_regd = get_wiphy_regdom(wiphy);
 184        if (!wiphy_regd)
 185                goto out;
 186
 187        if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
 188                dfs_region = wiphy_regd->dfs_region;
 189                goto out;
 190        }
 191
 192        if (wiphy_regd->dfs_region == regd->dfs_region)
 193                goto out;
 194
 195        pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
 196                 dev_name(&wiphy->dev),
 197                 reg_dfs_region_str(wiphy_regd->dfs_region),
 198                 reg_dfs_region_str(regd->dfs_region));
 199
 200out:
 201        rcu_read_unlock();
 202
 203        return dfs_region;
 204}
 205
 206static void rcu_free_regdom(const struct ieee80211_regdomain *r)
 207{
 208        if (!r)
 209                return;
 210        kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
 211}
 212
 213static struct regulatory_request *get_last_request(void)
 214{
 215        return rcu_dereference_rtnl(last_request);
 216}
 217
 218/* Used to queue up regulatory hints */
 219static LIST_HEAD(reg_requests_list);
 220static DEFINE_SPINLOCK(reg_requests_lock);
 221
 222/* Used to queue up beacon hints for review */
 223static LIST_HEAD(reg_pending_beacons);
 224static DEFINE_SPINLOCK(reg_pending_beacons_lock);
 225
 226/* Used to keep track of processed beacon hints */
 227static LIST_HEAD(reg_beacon_list);
 228
 229struct reg_beacon {
 230        struct list_head list;
 231        struct ieee80211_channel chan;
 232};
 233
 234static void reg_check_chans_work(struct work_struct *work);
 235static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
 236
 237static void reg_todo(struct work_struct *work);
 238static DECLARE_WORK(reg_work, reg_todo);
 239
 240/* We keep a static world regulatory domain in case of the absence of CRDA */
 241static const struct ieee80211_regdomain world_regdom = {
 242        .n_reg_rules = 8,
 243        .alpha2 =  "00",
 244        .reg_rules = {
 245                /* IEEE 802.11b/g, channels 1..11 */
 246                REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
 247                /* IEEE 802.11b/g, channels 12..13. */
 248                REG_RULE(2467-10, 2472+10, 20, 6, 20,
 249                        NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
 250                /* IEEE 802.11 channel 14 - Only JP enables
 251                 * this and for 802.11b only */
 252                REG_RULE(2484-10, 2484+10, 20, 6, 20,
 253                        NL80211_RRF_NO_IR |
 254                        NL80211_RRF_NO_OFDM),
 255                /* IEEE 802.11a, channel 36..48 */
 256                REG_RULE(5180-10, 5240+10, 80, 6, 20,
 257                        NL80211_RRF_NO_IR |
 258                        NL80211_RRF_AUTO_BW),
 259
 260                /* IEEE 802.11a, channel 52..64 - DFS required */
 261                REG_RULE(5260-10, 5320+10, 80, 6, 20,
 262                        NL80211_RRF_NO_IR |
 263                        NL80211_RRF_AUTO_BW |
 264                        NL80211_RRF_DFS),
 265
 266                /* IEEE 802.11a, channel 100..144 - DFS required */
 267                REG_RULE(5500-10, 5720+10, 160, 6, 20,
 268                        NL80211_RRF_NO_IR |
 269                        NL80211_RRF_DFS),
 270
 271                /* IEEE 802.11a, channel 149..165 */
 272                REG_RULE(5745-10, 5825+10, 80, 6, 20,
 273                        NL80211_RRF_NO_IR),
 274
 275                /* IEEE 802.11ad (60GHz), channels 1..3 */
 276                REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
 277        }
 278};
 279
 280/* protected by RTNL */
 281static const struct ieee80211_regdomain *cfg80211_world_regdom =
 282        &world_regdom;
 283
 284static char *ieee80211_regdom = "00";
 285static char user_alpha2[2];
 286static const struct ieee80211_regdomain *cfg80211_user_regdom;
 287
 288module_param(ieee80211_regdom, charp, 0444);
 289MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
 290
 291static void reg_free_request(struct regulatory_request *request)
 292{
 293        if (request == &core_request_world)
 294                return;
 295
 296        if (request != get_last_request())
 297                kfree(request);
 298}
 299
 300static void reg_free_last_request(void)
 301{
 302        struct regulatory_request *lr = get_last_request();
 303
 304        if (lr != &core_request_world && lr)
 305                kfree_rcu(lr, rcu_head);
 306}
 307
 308static void reg_update_last_request(struct regulatory_request *request)
 309{
 310        struct regulatory_request *lr;
 311
 312        lr = get_last_request();
 313        if (lr == request)
 314                return;
 315
 316        reg_free_last_request();
 317        rcu_assign_pointer(last_request, request);
 318}
 319
 320static void reset_regdomains(bool full_reset,
 321                             const struct ieee80211_regdomain *new_regdom)
 322{
 323        const struct ieee80211_regdomain *r;
 324
 325        ASSERT_RTNL();
 326
 327        r = get_cfg80211_regdom();
 328
 329        /* avoid freeing static information or freeing something twice */
 330        if (r == cfg80211_world_regdom)
 331                r = NULL;
 332        if (cfg80211_world_regdom == &world_regdom)
 333                cfg80211_world_regdom = NULL;
 334        if (r == &world_regdom)
 335                r = NULL;
 336
 337        rcu_free_regdom(r);
 338        rcu_free_regdom(cfg80211_world_regdom);
 339
 340        cfg80211_world_regdom = &world_regdom;
 341        rcu_assign_pointer(cfg80211_regdomain, new_regdom);
 342
 343        if (!full_reset)
 344                return;
 345
 346        reg_update_last_request(&core_request_world);
 347}
 348
 349/*
 350 * Dynamic world regulatory domain requested by the wireless
 351 * core upon initialization
 352 */
 353static void update_world_regdomain(const struct ieee80211_regdomain *rd)
 354{
 355        struct regulatory_request *lr;
 356
 357        lr = get_last_request();
 358
 359        WARN_ON(!lr);
 360
 361        reset_regdomains(false, rd);
 362
 363        cfg80211_world_regdom = rd;
 364}
 365
 366bool is_world_regdom(const char *alpha2)
 367{
 368        if (!alpha2)
 369                return false;
 370        return alpha2[0] == '0' && alpha2[1] == '0';
 371}
 372
 373static bool is_alpha2_set(const char *alpha2)
 374{
 375        if (!alpha2)
 376                return false;
 377        return alpha2[0] && alpha2[1];
 378}
 379
 380static bool is_unknown_alpha2(const char *alpha2)
 381{
 382        if (!alpha2)
 383                return false;
 384        /*
 385         * Special case where regulatory domain was built by driver
 386         * but a specific alpha2 cannot be determined
 387         */
 388        return alpha2[0] == '9' && alpha2[1] == '9';
 389}
 390
 391static bool is_intersected_alpha2(const char *alpha2)
 392{
 393        if (!alpha2)
 394                return false;
 395        /*
 396         * Special case where regulatory domain is the
 397         * result of an intersection between two regulatory domain
 398         * structures
 399         */
 400        return alpha2[0] == '9' && alpha2[1] == '8';
 401}
 402
 403static bool is_an_alpha2(const char *alpha2)
 404{
 405        if (!alpha2)
 406                return false;
 407        return isalpha(alpha2[0]) && isalpha(alpha2[1]);
 408}
 409
 410static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
 411{
 412        if (!alpha2_x || !alpha2_y)
 413                return false;
 414        return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
 415}
 416
 417static bool regdom_changes(const char *alpha2)
 418{
 419        const struct ieee80211_regdomain *r = get_cfg80211_regdom();
 420
 421        if (!r)
 422                return true;
 423        return !alpha2_equal(r->alpha2, alpha2);
 424}
 425
 426/*
 427 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
 428 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
 429 * has ever been issued.
 430 */
 431static bool is_user_regdom_saved(void)
 432{
 433        if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
 434                return false;
 435
 436        /* This would indicate a mistake on the design */
 437        if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
 438                 "Unexpected user alpha2: %c%c\n",
 439                 user_alpha2[0], user_alpha2[1]))
 440                return false;
 441
 442        return true;
 443}
 444
 445static const struct ieee80211_regdomain *
 446reg_copy_regd(const struct ieee80211_regdomain *src_regd)
 447{
 448        struct ieee80211_regdomain *regd;
 449        unsigned int i;
 450
 451        regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
 452                       GFP_KERNEL);
 453        if (!regd)
 454                return ERR_PTR(-ENOMEM);
 455
 456        memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
 457
 458        for (i = 0; i < src_regd->n_reg_rules; i++)
 459                memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
 460                       sizeof(struct ieee80211_reg_rule));
 461
 462        return regd;
 463}
 464
 465static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
 466{
 467        ASSERT_RTNL();
 468
 469        if (!IS_ERR(cfg80211_user_regdom))
 470                kfree(cfg80211_user_regdom);
 471        cfg80211_user_regdom = reg_copy_regd(rd);
 472}
 473
 474struct reg_regdb_apply_request {
 475        struct list_head list;
 476        const struct ieee80211_regdomain *regdom;
 477};
 478
 479static LIST_HEAD(reg_regdb_apply_list);
 480static DEFINE_MUTEX(reg_regdb_apply_mutex);
 481
 482static void reg_regdb_apply(struct work_struct *work)
 483{
 484        struct reg_regdb_apply_request *request;
 485
 486        rtnl_lock();
 487
 488        mutex_lock(&reg_regdb_apply_mutex);
 489        while (!list_empty(&reg_regdb_apply_list)) {
 490                request = list_first_entry(&reg_regdb_apply_list,
 491                                           struct reg_regdb_apply_request,
 492                                           list);
 493                list_del(&request->list);
 494
 495                set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
 496                kfree(request);
 497        }
 498        mutex_unlock(&reg_regdb_apply_mutex);
 499
 500        rtnl_unlock();
 501}
 502
 503static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
 504
 505static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
 506{
 507        struct reg_regdb_apply_request *request;
 508
 509        request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
 510        if (!request) {
 511                kfree(regdom);
 512                return -ENOMEM;
 513        }
 514
 515        request->regdom = regdom;
 516
 517        mutex_lock(&reg_regdb_apply_mutex);
 518        list_add_tail(&request->list, &reg_regdb_apply_list);
 519        mutex_unlock(&reg_regdb_apply_mutex);
 520
 521        schedule_work(&reg_regdb_work);
 522        return 0;
 523}
 524
 525#ifdef CONFIG_CFG80211_CRDA_SUPPORT
 526/* Max number of consecutive attempts to communicate with CRDA  */
 527#define REG_MAX_CRDA_TIMEOUTS 10
 528
 529static u32 reg_crda_timeouts;
 530
 531static void crda_timeout_work(struct work_struct *work);
 532static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
 533
 534static void crda_timeout_work(struct work_struct *work)
 535{
 536        pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
 537        rtnl_lock();
 538        reg_crda_timeouts++;
 539        restore_regulatory_settings(true, false);
 540        rtnl_unlock();
 541}
 542
 543static void cancel_crda_timeout(void)
 544{
 545        cancel_delayed_work(&crda_timeout);
 546}
 547
 548static void cancel_crda_timeout_sync(void)
 549{
 550        cancel_delayed_work_sync(&crda_timeout);
 551}
 552
 553static void reset_crda_timeouts(void)
 554{
 555        reg_crda_timeouts = 0;
 556}
 557
 558/*
 559 * This lets us keep regulatory code which is updated on a regulatory
 560 * basis in userspace.
 561 */
 562static int call_crda(const char *alpha2)
 563{
 564        char country[12];
 565        char *env[] = { country, NULL };
 566        int ret;
 567
 568        snprintf(country, sizeof(country), "COUNTRY=%c%c",
 569                 alpha2[0], alpha2[1]);
 570
 571        if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
 572                pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
 573                return -EINVAL;
 574        }
 575
 576        if (!is_world_regdom((char *) alpha2))
 577                pr_debug("Calling CRDA for country: %c%c\n",
 578                         alpha2[0], alpha2[1]);
 579        else
 580                pr_debug("Calling CRDA to update world regulatory domain\n");
 581
 582        ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
 583        if (ret)
 584                return ret;
 585
 586        queue_delayed_work(system_power_efficient_wq,
 587                           &crda_timeout, msecs_to_jiffies(3142));
 588        return 0;
 589}
 590#else
 591static inline void cancel_crda_timeout(void) {}
 592static inline void cancel_crda_timeout_sync(void) {}
 593static inline void reset_crda_timeouts(void) {}
 594static inline int call_crda(const char *alpha2)
 595{
 596        return -ENODATA;
 597}
 598#endif /* CONFIG_CFG80211_CRDA_SUPPORT */
 599
 600/* code to directly load a firmware database through request_firmware */
 601static const struct fwdb_header *regdb;
 602
 603struct fwdb_country {
 604        u8 alpha2[2];
 605        __be16 coll_ptr;
 606        /* this struct cannot be extended */
 607} __packed __aligned(4);
 608
 609struct fwdb_collection {
 610        u8 len;
 611        u8 n_rules;
 612        u8 dfs_region;
 613        /* no optional data yet */
 614        /* aligned to 2, then followed by __be16 array of rule pointers */
 615} __packed __aligned(4);
 616
 617enum fwdb_flags {
 618        FWDB_FLAG_NO_OFDM       = BIT(0),
 619        FWDB_FLAG_NO_OUTDOOR    = BIT(1),
 620        FWDB_FLAG_DFS           = BIT(2),
 621        FWDB_FLAG_NO_IR         = BIT(3),
 622        FWDB_FLAG_AUTO_BW       = BIT(4),
 623};
 624
 625struct fwdb_wmm_ac {
 626        u8 ecw;
 627        u8 aifsn;
 628        __be16 cot;
 629} __packed;
 630
 631struct fwdb_wmm_rule {
 632        struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
 633        struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
 634} __packed;
 635
 636struct fwdb_rule {
 637        u8 len;
 638        u8 flags;
 639        __be16 max_eirp;
 640        __be32 start, end, max_bw;
 641        /* start of optional data */
 642        __be16 cac_timeout;
 643        __be16 wmm_ptr;
 644} __packed __aligned(4);
 645
 646#define FWDB_MAGIC 0x52474442
 647#define FWDB_VERSION 20
 648
 649struct fwdb_header {
 650        __be32 magic;
 651        __be32 version;
 652        struct fwdb_country country[];
 653} __packed __aligned(4);
 654
 655static int ecw2cw(int ecw)
 656{
 657        return (1 << ecw) - 1;
 658}
 659
 660static bool valid_wmm(struct fwdb_wmm_rule *rule)
 661{
 662        struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
 663        int i;
 664
 665        for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
 666                u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
 667                u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
 668                u8 aifsn = ac[i].aifsn;
 669
 670                if (cw_min >= cw_max)
 671                        return false;
 672
 673                if (aifsn < 1)
 674                        return false;
 675        }
 676
 677        return true;
 678}
 679
 680static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
 681{
 682        struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
 683
 684        if ((u8 *)rule + sizeof(rule->len) > data + size)
 685                return false;
 686
 687        /* mandatory fields */
 688        if (rule->len < offsetofend(struct fwdb_rule, max_bw))
 689                return false;
 690        if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
 691                u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
 692                struct fwdb_wmm_rule *wmm;
 693
 694                if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
 695                        return false;
 696
 697                wmm = (void *)(data + wmm_ptr);
 698
 699                if (!valid_wmm(wmm))
 700                        return false;
 701        }
 702        return true;
 703}
 704
 705static bool valid_country(const u8 *data, unsigned int size,
 706                          const struct fwdb_country *country)
 707{
 708        unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
 709        struct fwdb_collection *coll = (void *)(data + ptr);
 710        __be16 *rules_ptr;
 711        unsigned int i;
 712
 713        /* make sure we can read len/n_rules */
 714        if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
 715                return false;
 716
 717        /* make sure base struct and all rules fit */
 718        if ((u8 *)coll + ALIGN(coll->len, 2) +
 719            (coll->n_rules * 2) > data + size)
 720                return false;
 721
 722        /* mandatory fields must exist */
 723        if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
 724                return false;
 725
 726        rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
 727
 728        for (i = 0; i < coll->n_rules; i++) {
 729                u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
 730
 731                if (!valid_rule(data, size, rule_ptr))
 732                        return false;
 733        }
 734
 735        return true;
 736}
 737
 738#ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
 739static struct key *builtin_regdb_keys;
 740
 741static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
 742{
 743        const u8 *end = p + buflen;
 744        size_t plen;
 745        key_ref_t key;
 746
 747        while (p < end) {
 748                /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
 749                 * than 256 bytes in size.
 750                 */
 751                if (end - p < 4)
 752                        goto dodgy_cert;
 753                if (p[0] != 0x30 &&
 754                    p[1] != 0x82)
 755                        goto dodgy_cert;
 756                plen = (p[2] << 8) | p[3];
 757                plen += 4;
 758                if (plen > end - p)
 759                        goto dodgy_cert;
 760
 761                key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
 762                                           "asymmetric", NULL, p, plen,
 763                                           ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
 764                                            KEY_USR_VIEW | KEY_USR_READ),
 765                                           KEY_ALLOC_NOT_IN_QUOTA |
 766                                           KEY_ALLOC_BUILT_IN |
 767                                           KEY_ALLOC_BYPASS_RESTRICTION);
 768                if (IS_ERR(key)) {
 769                        pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
 770                               PTR_ERR(key));
 771                } else {
 772                        pr_notice("Loaded X.509 cert '%s'\n",
 773                                  key_ref_to_ptr(key)->description);
 774                        key_ref_put(key);
 775                }
 776                p += plen;
 777        }
 778
 779        return;
 780
 781dodgy_cert:
 782        pr_err("Problem parsing in-kernel X.509 certificate list\n");
 783}
 784
 785static int __init load_builtin_regdb_keys(void)
 786{
 787        builtin_regdb_keys =
 788                keyring_alloc(".builtin_regdb_keys",
 789                              KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
 790                              ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
 791                              KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
 792                              KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
 793        if (IS_ERR(builtin_regdb_keys))
 794                return PTR_ERR(builtin_regdb_keys);
 795
 796        pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
 797
 798#ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
 799        load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
 800#endif
 801#ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
 802        if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
 803                load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
 804#endif
 805
 806        return 0;
 807}
 808
 809static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
 810{
 811        const struct firmware *sig;
 812        bool result;
 813
 814        if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
 815                return false;
 816
 817        result = verify_pkcs7_signature(data, size, sig->data, sig->size,
 818                                        builtin_regdb_keys,
 819                                        VERIFYING_UNSPECIFIED_SIGNATURE,
 820                                        NULL, NULL) == 0;
 821
 822        release_firmware(sig);
 823
 824        return result;
 825}
 826
 827static void free_regdb_keyring(void)
 828{
 829        key_put(builtin_regdb_keys);
 830}
 831#else
 832static int load_builtin_regdb_keys(void)
 833{
 834        return 0;
 835}
 836
 837static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
 838{
 839        return true;
 840}
 841
 842static void free_regdb_keyring(void)
 843{
 844}
 845#endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
 846
 847static bool valid_regdb(const u8 *data, unsigned int size)
 848{
 849        const struct fwdb_header *hdr = (void *)data;
 850        const struct fwdb_country *country;
 851
 852        if (size < sizeof(*hdr))
 853                return false;
 854
 855        if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
 856                return false;
 857
 858        if (hdr->version != cpu_to_be32(FWDB_VERSION))
 859                return false;
 860
 861        if (!regdb_has_valid_signature(data, size))
 862                return false;
 863
 864        country = &hdr->country[0];
 865        while ((u8 *)(country + 1) <= data + size) {
 866                if (!country->coll_ptr)
 867                        break;
 868                if (!valid_country(data, size, country))
 869                        return false;
 870                country++;
 871        }
 872
 873        return true;
 874}
 875
 876static void set_wmm_rule(const struct fwdb_header *db,
 877                         const struct fwdb_country *country,
 878                         const struct fwdb_rule *rule,
 879                         struct ieee80211_reg_rule *rrule)
 880{
 881        struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
 882        struct fwdb_wmm_rule *wmm;
 883        unsigned int i, wmm_ptr;
 884
 885        wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
 886        wmm = (void *)((u8 *)db + wmm_ptr);
 887
 888        if (!valid_wmm(wmm)) {
 889                pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
 890                       be32_to_cpu(rule->start), be32_to_cpu(rule->end),
 891                       country->alpha2[0], country->alpha2[1]);
 892                return;
 893        }
 894
 895        for (i = 0; i < IEEE80211_NUM_ACS; i++) {
 896                wmm_rule->client[i].cw_min =
 897                        ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
 898                wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
 899                wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
 900                wmm_rule->client[i].cot =
 901                        1000 * be16_to_cpu(wmm->client[i].cot);
 902                wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
 903                wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
 904                wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
 905                wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
 906        }
 907
 908        rrule->has_wmm = true;
 909}
 910
 911static int __regdb_query_wmm(const struct fwdb_header *db,
 912                             const struct fwdb_country *country, int freq,
 913                             struct ieee80211_reg_rule *rrule)
 914{
 915        unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
 916        struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
 917        int i;
 918
 919        for (i = 0; i < coll->n_rules; i++) {
 920                __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
 921                unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
 922                struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
 923
 924                if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
 925                        continue;
 926
 927                if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
 928                    freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
 929                        set_wmm_rule(db, country, rule, rrule);
 930                        return 0;
 931                }
 932        }
 933
 934        return -ENODATA;
 935}
 936
 937int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
 938{
 939        const struct fwdb_header *hdr = regdb;
 940        const struct fwdb_country *country;
 941
 942        if (!regdb)
 943                return -ENODATA;
 944
 945        if (IS_ERR(regdb))
 946                return PTR_ERR(regdb);
 947
 948        country = &hdr->country[0];
 949        while (country->coll_ptr) {
 950                if (alpha2_equal(alpha2, country->alpha2))
 951                        return __regdb_query_wmm(regdb, country, freq, rule);
 952
 953                country++;
 954        }
 955
 956        return -ENODATA;
 957}
 958EXPORT_SYMBOL(reg_query_regdb_wmm);
 959
 960static int regdb_query_country(const struct fwdb_header *db,
 961                               const struct fwdb_country *country)
 962{
 963        unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
 964        struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
 965        struct ieee80211_regdomain *regdom;
 966        unsigned int i;
 967
 968        regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
 969                         GFP_KERNEL);
 970        if (!regdom)
 971                return -ENOMEM;
 972
 973        regdom->n_reg_rules = coll->n_rules;
 974        regdom->alpha2[0] = country->alpha2[0];
 975        regdom->alpha2[1] = country->alpha2[1];
 976        regdom->dfs_region = coll->dfs_region;
 977
 978        for (i = 0; i < regdom->n_reg_rules; i++) {
 979                __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
 980                unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
 981                struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
 982                struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
 983
 984                rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
 985                rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
 986                rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
 987
 988                rrule->power_rule.max_antenna_gain = 0;
 989                rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
 990
 991                rrule->flags = 0;
 992                if (rule->flags & FWDB_FLAG_NO_OFDM)
 993                        rrule->flags |= NL80211_RRF_NO_OFDM;
 994                if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
 995                        rrule->flags |= NL80211_RRF_NO_OUTDOOR;
 996                if (rule->flags & FWDB_FLAG_DFS)
 997                        rrule->flags |= NL80211_RRF_DFS;
 998                if (rule->flags & FWDB_FLAG_NO_IR)
 999                        rrule->flags |= NL80211_RRF_NO_IR;
1000                if (rule->flags & FWDB_FLAG_AUTO_BW)
1001                        rrule->flags |= NL80211_RRF_AUTO_BW;
1002
1003                rrule->dfs_cac_ms = 0;
1004
1005                /* handle optional data */
1006                if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
1007                        rrule->dfs_cac_ms =
1008                                1000 * be16_to_cpu(rule->cac_timeout);
1009                if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
1010                        set_wmm_rule(db, country, rule, rrule);
1011        }
1012
1013        return reg_schedule_apply(regdom);
1014}
1015
1016static int query_regdb(const char *alpha2)
1017{
1018        const struct fwdb_header *hdr = regdb;
1019        const struct fwdb_country *country;
1020
1021        ASSERT_RTNL();
1022
1023        if (IS_ERR(regdb))
1024                return PTR_ERR(regdb);
1025
1026        country = &hdr->country[0];
1027        while (country->coll_ptr) {
1028                if (alpha2_equal(alpha2, country->alpha2))
1029                        return regdb_query_country(regdb, country);
1030                country++;
1031        }
1032
1033        return -ENODATA;
1034}
1035
1036static void regdb_fw_cb(const struct firmware *fw, void *context)
1037{
1038        int set_error = 0;
1039        bool restore = true;
1040        void *db;
1041
1042        if (!fw) {
1043                pr_info("failed to load regulatory.db\n");
1044                set_error = -ENODATA;
1045        } else if (!valid_regdb(fw->data, fw->size)) {
1046                pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1047                set_error = -EINVAL;
1048        }
1049
1050        rtnl_lock();
1051        if (regdb && !IS_ERR(regdb)) {
1052                /* negative case - a bug
1053                 * positive case - can happen due to race in case of multiple cb's in
1054                 * queue, due to usage of asynchronous callback
1055                 *
1056                 * Either case, just restore and free new db.
1057                 */
1058        } else if (set_error) {
1059                regdb = ERR_PTR(set_error);
1060        } else if (fw) {
1061                db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1062                if (db) {
1063                        regdb = db;
1064                        restore = context && query_regdb(context);
1065                } else {
1066                        restore = true;
1067                }
1068        }
1069
1070        if (restore)
1071                restore_regulatory_settings(true, false);
1072
1073        rtnl_unlock();
1074
1075        kfree(context);
1076
1077        release_firmware(fw);
1078}
1079
1080static int query_regdb_file(const char *alpha2)
1081{
1082        ASSERT_RTNL();
1083
1084        if (regdb)
1085                return query_regdb(alpha2);
1086
1087        alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1088        if (!alpha2)
1089                return -ENOMEM;
1090
1091        return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1092                                       &reg_pdev->dev, GFP_KERNEL,
1093                                       (void *)alpha2, regdb_fw_cb);
1094}
1095
1096int reg_reload_regdb(void)
1097{
1098        const struct firmware *fw;
1099        void *db;
1100        int err;
1101
1102        err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1103        if (err)
1104                return err;
1105
1106        if (!valid_regdb(fw->data, fw->size)) {
1107                err = -ENODATA;
1108                goto out;
1109        }
1110
1111        db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1112        if (!db) {
1113                err = -ENOMEM;
1114                goto out;
1115        }
1116
1117        rtnl_lock();
1118        if (!IS_ERR_OR_NULL(regdb))
1119                kfree(regdb);
1120        regdb = db;
1121        rtnl_unlock();
1122
1123 out:
1124        release_firmware(fw);
1125        return err;
1126}
1127
1128static bool reg_query_database(struct regulatory_request *request)
1129{
1130        if (query_regdb_file(request->alpha2) == 0)
1131                return true;
1132
1133        if (call_crda(request->alpha2) == 0)
1134                return true;
1135
1136        return false;
1137}
1138
1139bool reg_is_valid_request(const char *alpha2)
1140{
1141        struct regulatory_request *lr = get_last_request();
1142
1143        if (!lr || lr->processed)
1144                return false;
1145
1146        return alpha2_equal(lr->alpha2, alpha2);
1147}
1148
1149static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1150{
1151        struct regulatory_request *lr = get_last_request();
1152
1153        /*
1154         * Follow the driver's regulatory domain, if present, unless a country
1155         * IE has been processed or a user wants to help complaince further
1156         */
1157        if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1158            lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1159            wiphy->regd)
1160                return get_wiphy_regdom(wiphy);
1161
1162        return get_cfg80211_regdom();
1163}
1164
1165static unsigned int
1166reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1167                                 const struct ieee80211_reg_rule *rule)
1168{
1169        const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1170        const struct ieee80211_freq_range *freq_range_tmp;
1171        const struct ieee80211_reg_rule *tmp;
1172        u32 start_freq, end_freq, idx, no;
1173
1174        for (idx = 0; idx < rd->n_reg_rules; idx++)
1175                if (rule == &rd->reg_rules[idx])
1176                        break;
1177
1178        if (idx == rd->n_reg_rules)
1179                return 0;
1180
1181        /* get start_freq */
1182        no = idx;
1183
1184        while (no) {
1185                tmp = &rd->reg_rules[--no];
1186                freq_range_tmp = &tmp->freq_range;
1187
1188                if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1189                        break;
1190
1191                freq_range = freq_range_tmp;
1192        }
1193
1194        start_freq = freq_range->start_freq_khz;
1195
1196        /* get end_freq */
1197        freq_range = &rule->freq_range;
1198        no = idx;
1199
1200        while (no < rd->n_reg_rules - 1) {
1201                tmp = &rd->reg_rules[++no];
1202                freq_range_tmp = &tmp->freq_range;
1203
1204                if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1205                        break;
1206
1207                freq_range = freq_range_tmp;
1208        }
1209
1210        end_freq = freq_range->end_freq_khz;
1211
1212        return end_freq - start_freq;
1213}
1214
1215unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1216                                   const struct ieee80211_reg_rule *rule)
1217{
1218        unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1219
1220        if (rule->flags & NL80211_RRF_NO_160MHZ)
1221                bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1222        if (rule->flags & NL80211_RRF_NO_80MHZ)
1223                bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1224
1225        /*
1226         * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1227         * are not allowed.
1228         */
1229        if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1230            rule->flags & NL80211_RRF_NO_HT40PLUS)
1231                bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1232
1233        return bw;
1234}
1235
1236/* Sanity check on a regulatory rule */
1237static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1238{
1239        const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1240        u32 freq_diff;
1241
1242        if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1243                return false;
1244
1245        if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1246                return false;
1247
1248        freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1249
1250        if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1251            freq_range->max_bandwidth_khz > freq_diff)
1252                return false;
1253
1254        return true;
1255}
1256
1257static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1258{
1259        const struct ieee80211_reg_rule *reg_rule = NULL;
1260        unsigned int i;
1261
1262        if (!rd->n_reg_rules)
1263                return false;
1264
1265        if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1266                return false;
1267
1268        for (i = 0; i < rd->n_reg_rules; i++) {
1269                reg_rule = &rd->reg_rules[i];
1270                if (!is_valid_reg_rule(reg_rule))
1271                        return false;
1272        }
1273
1274        return true;
1275}
1276
1277/**
1278 * freq_in_rule_band - tells us if a frequency is in a frequency band
1279 * @freq_range: frequency rule we want to query
1280 * @freq_khz: frequency we are inquiring about
1281 *
1282 * This lets us know if a specific frequency rule is or is not relevant to
1283 * a specific frequency's band. Bands are device specific and artificial
1284 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1285 * however it is safe for now to assume that a frequency rule should not be
1286 * part of a frequency's band if the start freq or end freq are off by more
1287 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1288 * 60 GHz band.
1289 * This resolution can be lowered and should be considered as we add
1290 * regulatory rule support for other "bands".
1291 **/
1292static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1293                              u32 freq_khz)
1294{
1295#define ONE_GHZ_IN_KHZ  1000000
1296        /*
1297         * From 802.11ad: directional multi-gigabit (DMG):
1298         * Pertaining to operation in a frequency band containing a channel
1299         * with the Channel starting frequency above 45 GHz.
1300         */
1301        u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1302                        20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1303        if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1304                return true;
1305        if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1306                return true;
1307        return false;
1308#undef ONE_GHZ_IN_KHZ
1309}
1310
1311/*
1312 * Later on we can perhaps use the more restrictive DFS
1313 * region but we don't have information for that yet so
1314 * for now simply disallow conflicts.
1315 */
1316static enum nl80211_dfs_regions
1317reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1318                         const enum nl80211_dfs_regions dfs_region2)
1319{
1320        if (dfs_region1 != dfs_region2)
1321                return NL80211_DFS_UNSET;
1322        return dfs_region1;
1323}
1324
1325static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1326                                    const struct ieee80211_wmm_ac *wmm_ac2,
1327                                    struct ieee80211_wmm_ac *intersect)
1328{
1329        intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1330        intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1331        intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1332        intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1333}
1334
1335/*
1336 * Helper for regdom_intersect(), this does the real
1337 * mathematical intersection fun
1338 */
1339static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1340                               const struct ieee80211_regdomain *rd2,
1341                               const struct ieee80211_reg_rule *rule1,
1342                               const struct ieee80211_reg_rule *rule2,
1343                               struct ieee80211_reg_rule *intersected_rule)
1344{
1345        const struct ieee80211_freq_range *freq_range1, *freq_range2;
1346        struct ieee80211_freq_range *freq_range;
1347        const struct ieee80211_power_rule *power_rule1, *power_rule2;
1348        struct ieee80211_power_rule *power_rule;
1349        const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1350        struct ieee80211_wmm_rule *wmm_rule;
1351        u32 freq_diff, max_bandwidth1, max_bandwidth2;
1352
1353        freq_range1 = &rule1->freq_range;
1354        freq_range2 = &rule2->freq_range;
1355        freq_range = &intersected_rule->freq_range;
1356
1357        power_rule1 = &rule1->power_rule;
1358        power_rule2 = &rule2->power_rule;
1359        power_rule = &intersected_rule->power_rule;
1360
1361        wmm_rule1 = &rule1->wmm_rule;
1362        wmm_rule2 = &rule2->wmm_rule;
1363        wmm_rule = &intersected_rule->wmm_rule;
1364
1365        freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1366                                         freq_range2->start_freq_khz);
1367        freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1368                                       freq_range2->end_freq_khz);
1369
1370        max_bandwidth1 = freq_range1->max_bandwidth_khz;
1371        max_bandwidth2 = freq_range2->max_bandwidth_khz;
1372
1373        if (rule1->flags & NL80211_RRF_AUTO_BW)
1374                max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1375        if (rule2->flags & NL80211_RRF_AUTO_BW)
1376                max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1377
1378        freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1379
1380        intersected_rule->flags = rule1->flags | rule2->flags;
1381
1382        /*
1383         * In case NL80211_RRF_AUTO_BW requested for both rules
1384         * set AUTO_BW in intersected rule also. Next we will
1385         * calculate BW correctly in handle_channel function.
1386         * In other case remove AUTO_BW flag while we calculate
1387         * maximum bandwidth correctly and auto calculation is
1388         * not required.
1389         */
1390        if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1391            (rule2->flags & NL80211_RRF_AUTO_BW))
1392                intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1393        else
1394                intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1395
1396        freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1397        if (freq_range->max_bandwidth_khz > freq_diff)
1398                freq_range->max_bandwidth_khz = freq_diff;
1399
1400        power_rule->max_eirp = min(power_rule1->max_eirp,
1401                power_rule2->max_eirp);
1402        power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1403                power_rule2->max_antenna_gain);
1404
1405        intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1406                                           rule2->dfs_cac_ms);
1407
1408        if (rule1->has_wmm && rule2->has_wmm) {
1409                u8 ac;
1410
1411                for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1412                        reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1413                                                &wmm_rule2->client[ac],
1414                                                &wmm_rule->client[ac]);
1415                        reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1416                                                &wmm_rule2->ap[ac],
1417                                                &wmm_rule->ap[ac]);
1418                }
1419
1420                intersected_rule->has_wmm = true;
1421        } else if (rule1->has_wmm) {
1422                *wmm_rule = *wmm_rule1;
1423                intersected_rule->has_wmm = true;
1424        } else if (rule2->has_wmm) {
1425                *wmm_rule = *wmm_rule2;
1426                intersected_rule->has_wmm = true;
1427        } else {
1428                intersected_rule->has_wmm = false;
1429        }
1430
1431        if (!is_valid_reg_rule(intersected_rule))
1432                return -EINVAL;
1433
1434        return 0;
1435}
1436
1437/* check whether old rule contains new rule */
1438static bool rule_contains(struct ieee80211_reg_rule *r1,
1439                          struct ieee80211_reg_rule *r2)
1440{
1441        /* for simplicity, currently consider only same flags */
1442        if (r1->flags != r2->flags)
1443                return false;
1444
1445        /* verify r1 is more restrictive */
1446        if ((r1->power_rule.max_antenna_gain >
1447             r2->power_rule.max_antenna_gain) ||
1448            r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1449                return false;
1450
1451        /* make sure r2's range is contained within r1 */
1452        if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1453            r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1454                return false;
1455
1456        /* and finally verify that r1.max_bw >= r2.max_bw */
1457        if (r1->freq_range.max_bandwidth_khz <
1458            r2->freq_range.max_bandwidth_khz)
1459                return false;
1460
1461        return true;
1462}
1463
1464/* add or extend current rules. do nothing if rule is already contained */
1465static void add_rule(struct ieee80211_reg_rule *rule,
1466                     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1467{
1468        struct ieee80211_reg_rule *tmp_rule;
1469        int i;
1470
1471        for (i = 0; i < *n_rules; i++) {
1472                tmp_rule = &reg_rules[i];
1473                /* rule is already contained - do nothing */
1474                if (rule_contains(tmp_rule, rule))
1475                        return;
1476
1477                /* extend rule if possible */
1478                if (rule_contains(rule, tmp_rule)) {
1479                        memcpy(tmp_rule, rule, sizeof(*rule));
1480                        return;
1481                }
1482        }
1483
1484        memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1485        (*n_rules)++;
1486}
1487
1488/**
1489 * regdom_intersect - do the intersection between two regulatory domains
1490 * @rd1: first regulatory domain
1491 * @rd2: second regulatory domain
1492 *
1493 * Use this function to get the intersection between two regulatory domains.
1494 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1495 * as no one single alpha2 can represent this regulatory domain.
1496 *
1497 * Returns a pointer to the regulatory domain structure which will hold the
1498 * resulting intersection of rules between rd1 and rd2. We will
1499 * kzalloc() this structure for you.
1500 */
1501static struct ieee80211_regdomain *
1502regdom_intersect(const struct ieee80211_regdomain *rd1,
1503                 const struct ieee80211_regdomain *rd2)
1504{
1505        int r;
1506        unsigned int x, y;
1507        unsigned int num_rules = 0;
1508        const struct ieee80211_reg_rule *rule1, *rule2;
1509        struct ieee80211_reg_rule intersected_rule;
1510        struct ieee80211_regdomain *rd;
1511
1512        if (!rd1 || !rd2)
1513                return NULL;
1514
1515        /*
1516         * First we get a count of the rules we'll need, then we actually
1517         * build them. This is to so we can malloc() and free() a
1518         * regdomain once. The reason we use reg_rules_intersect() here
1519         * is it will return -EINVAL if the rule computed makes no sense.
1520         * All rules that do check out OK are valid.
1521         */
1522
1523        for (x = 0; x < rd1->n_reg_rules; x++) {
1524                rule1 = &rd1->reg_rules[x];
1525                for (y = 0; y < rd2->n_reg_rules; y++) {
1526                        rule2 = &rd2->reg_rules[y];
1527                        if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1528                                                 &intersected_rule))
1529                                num_rules++;
1530                }
1531        }
1532
1533        if (!num_rules)
1534                return NULL;
1535
1536        rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1537        if (!rd)
1538                return NULL;
1539
1540        for (x = 0; x < rd1->n_reg_rules; x++) {
1541                rule1 = &rd1->reg_rules[x];
1542                for (y = 0; y < rd2->n_reg_rules; y++) {
1543                        rule2 = &rd2->reg_rules[y];
1544                        r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1545                                                &intersected_rule);
1546                        /*
1547                         * No need to memset here the intersected rule here as
1548                         * we're not using the stack anymore
1549                         */
1550                        if (r)
1551                                continue;
1552
1553                        add_rule(&intersected_rule, rd->reg_rules,
1554                                 &rd->n_reg_rules);
1555                }
1556        }
1557
1558        rd->alpha2[0] = '9';
1559        rd->alpha2[1] = '8';
1560        rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1561                                                  rd2->dfs_region);
1562
1563        return rd;
1564}
1565
1566/*
1567 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1568 * want to just have the channel structure use these
1569 */
1570static u32 map_regdom_flags(u32 rd_flags)
1571{
1572        u32 channel_flags = 0;
1573        if (rd_flags & NL80211_RRF_NO_IR_ALL)
1574                channel_flags |= IEEE80211_CHAN_NO_IR;
1575        if (rd_flags & NL80211_RRF_DFS)
1576                channel_flags |= IEEE80211_CHAN_RADAR;
1577        if (rd_flags & NL80211_RRF_NO_OFDM)
1578                channel_flags |= IEEE80211_CHAN_NO_OFDM;
1579        if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1580                channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1581        if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1582                channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1583        if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1584                channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1585        if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1586                channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1587        if (rd_flags & NL80211_RRF_NO_80MHZ)
1588                channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1589        if (rd_flags & NL80211_RRF_NO_160MHZ)
1590                channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1591        if (rd_flags & NL80211_RRF_NO_HE)
1592                channel_flags |= IEEE80211_CHAN_NO_HE;
1593        return channel_flags;
1594}
1595
1596static const struct ieee80211_reg_rule *
1597freq_reg_info_regd(u32 center_freq,
1598                   const struct ieee80211_regdomain *regd, u32 bw)
1599{
1600        int i;
1601        bool band_rule_found = false;
1602        bool bw_fits = false;
1603
1604        if (!regd)
1605                return ERR_PTR(-EINVAL);
1606
1607        for (i = 0; i < regd->n_reg_rules; i++) {
1608                const struct ieee80211_reg_rule *rr;
1609                const struct ieee80211_freq_range *fr = NULL;
1610
1611                rr = &regd->reg_rules[i];
1612                fr = &rr->freq_range;
1613
1614                /*
1615                 * We only need to know if one frequency rule was
1616                 * in center_freq's band, that's enough, so let's
1617                 * not overwrite it once found
1618                 */
1619                if (!band_rule_found)
1620                        band_rule_found = freq_in_rule_band(fr, center_freq);
1621
1622                bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1623
1624                if (band_rule_found && bw_fits)
1625                        return rr;
1626        }
1627
1628        if (!band_rule_found)
1629                return ERR_PTR(-ERANGE);
1630
1631        return ERR_PTR(-EINVAL);
1632}
1633
1634static const struct ieee80211_reg_rule *
1635__freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1636{
1637        const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1638        static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1639        const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1640        int i = ARRAY_SIZE(bws) - 1;
1641        u32 bw;
1642
1643        for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1644                reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1645                if (!IS_ERR(reg_rule))
1646                        return reg_rule;
1647        }
1648
1649        return reg_rule;
1650}
1651
1652const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1653                                               u32 center_freq)
1654{
1655        u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1656
1657        return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1658}
1659EXPORT_SYMBOL(freq_reg_info);
1660
1661const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1662{
1663        switch (initiator) {
1664        case NL80211_REGDOM_SET_BY_CORE:
1665                return "core";
1666        case NL80211_REGDOM_SET_BY_USER:
1667                return "user";
1668        case NL80211_REGDOM_SET_BY_DRIVER:
1669                return "driver";
1670        case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1671                return "country element";
1672        default:
1673                WARN_ON(1);
1674                return "bug";
1675        }
1676}
1677EXPORT_SYMBOL(reg_initiator_name);
1678
1679static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1680                                          const struct ieee80211_reg_rule *reg_rule,
1681                                          const struct ieee80211_channel *chan)
1682{
1683        const struct ieee80211_freq_range *freq_range = NULL;
1684        u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1685        bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1686
1687        freq_range = &reg_rule->freq_range;
1688
1689        max_bandwidth_khz = freq_range->max_bandwidth_khz;
1690        center_freq_khz = ieee80211_channel_to_khz(chan);
1691        /* Check if auto calculation requested */
1692        if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1693                max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1694
1695        /* If we get a reg_rule we can assume that at least 5Mhz fit */
1696        if (!cfg80211_does_bw_fit_range(freq_range,
1697                                        center_freq_khz,
1698                                        MHZ_TO_KHZ(10)))
1699                bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1700        if (!cfg80211_does_bw_fit_range(freq_range,
1701                                        center_freq_khz,
1702                                        MHZ_TO_KHZ(20)))
1703                bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1704
1705        if (is_s1g) {
1706                /* S1G is strict about non overlapping channels. We can
1707                 * calculate which bandwidth is allowed per channel by finding
1708                 * the largest bandwidth which cleanly divides the freq_range.
1709                 */
1710                int edge_offset;
1711                int ch_bw = max_bandwidth_khz;
1712
1713                while (ch_bw) {
1714                        edge_offset = (center_freq_khz - ch_bw / 2) -
1715                                      freq_range->start_freq_khz;
1716                        if (edge_offset % ch_bw == 0) {
1717                                switch (KHZ_TO_MHZ(ch_bw)) {
1718                                case 1:
1719                                        bw_flags |= IEEE80211_CHAN_1MHZ;
1720                                        break;
1721                                case 2:
1722                                        bw_flags |= IEEE80211_CHAN_2MHZ;
1723                                        break;
1724                                case 4:
1725                                        bw_flags |= IEEE80211_CHAN_4MHZ;
1726                                        break;
1727                                case 8:
1728                                        bw_flags |= IEEE80211_CHAN_8MHZ;
1729                                        break;
1730                                case 16:
1731                                        bw_flags |= IEEE80211_CHAN_16MHZ;
1732                                        break;
1733                                default:
1734                                        /* If we got here, no bandwidths fit on
1735                                         * this frequency, ie. band edge.
1736                                         */
1737                                        bw_flags |= IEEE80211_CHAN_DISABLED;
1738                                        break;
1739                                }
1740                                break;
1741                        }
1742                        ch_bw /= 2;
1743                }
1744        } else {
1745                if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1746                        bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1747                if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1748                        bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1749                if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1750                        bw_flags |= IEEE80211_CHAN_NO_HT40;
1751                if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1752                        bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1753                if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1754                        bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1755        }
1756        return bw_flags;
1757}
1758
1759static void handle_channel_single_rule(struct wiphy *wiphy,
1760                                       enum nl80211_reg_initiator initiator,
1761                                       struct ieee80211_channel *chan,
1762                                       u32 flags,
1763                                       struct regulatory_request *lr,
1764                                       struct wiphy *request_wiphy,
1765                                       const struct ieee80211_reg_rule *reg_rule)
1766{
1767        u32 bw_flags = 0;
1768        const struct ieee80211_power_rule *power_rule = NULL;
1769        const struct ieee80211_regdomain *regd;
1770
1771        regd = reg_get_regdomain(wiphy);
1772
1773        power_rule = &reg_rule->power_rule;
1774        bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1775
1776        if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1777            request_wiphy && request_wiphy == wiphy &&
1778            request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1779                /*
1780                 * This guarantees the driver's requested regulatory domain
1781                 * will always be used as a base for further regulatory
1782                 * settings
1783                 */
1784                chan->flags = chan->orig_flags =
1785                        map_regdom_flags(reg_rule->flags) | bw_flags;
1786                chan->max_antenna_gain = chan->orig_mag =
1787                        (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1788                chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1789                        (int) MBM_TO_DBM(power_rule->max_eirp);
1790
1791                if (chan->flags & IEEE80211_CHAN_RADAR) {
1792                        chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1793                        if (reg_rule->dfs_cac_ms)
1794                                chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1795                }
1796
1797                return;
1798        }
1799
1800        chan->dfs_state = NL80211_DFS_USABLE;
1801        chan->dfs_state_entered = jiffies;
1802
1803        chan->beacon_found = false;
1804        chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1805        chan->max_antenna_gain =
1806                min_t(int, chan->orig_mag,
1807                      MBI_TO_DBI(power_rule->max_antenna_gain));
1808        chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1809
1810        if (chan->flags & IEEE80211_CHAN_RADAR) {
1811                if (reg_rule->dfs_cac_ms)
1812                        chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1813                else
1814                        chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1815        }
1816
1817        if (chan->orig_mpwr) {
1818                /*
1819                 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1820                 * will always follow the passed country IE power settings.
1821                 */
1822                if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1823                    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1824                        chan->max_power = chan->max_reg_power;
1825                else
1826                        chan->max_power = min(chan->orig_mpwr,
1827                                              chan->max_reg_power);
1828        } else
1829                chan->max_power = chan->max_reg_power;
1830}
1831
1832static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1833                                          enum nl80211_reg_initiator initiator,
1834                                          struct ieee80211_channel *chan,
1835                                          u32 flags,
1836                                          struct regulatory_request *lr,
1837                                          struct wiphy *request_wiphy,
1838                                          const struct ieee80211_reg_rule *rrule1,
1839                                          const struct ieee80211_reg_rule *rrule2,
1840                                          struct ieee80211_freq_range *comb_range)
1841{
1842        u32 bw_flags1 = 0;
1843        u32 bw_flags2 = 0;
1844        const struct ieee80211_power_rule *power_rule1 = NULL;
1845        const struct ieee80211_power_rule *power_rule2 = NULL;
1846        const struct ieee80211_regdomain *regd;
1847
1848        regd = reg_get_regdomain(wiphy);
1849
1850        power_rule1 = &rrule1->power_rule;
1851        power_rule2 = &rrule2->power_rule;
1852        bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1853        bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1854
1855        if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1856            request_wiphy && request_wiphy == wiphy &&
1857            request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1858                /* This guarantees the driver's requested regulatory domain
1859                 * will always be used as a base for further regulatory
1860                 * settings
1861                 */
1862                chan->flags =
1863                        map_regdom_flags(rrule1->flags) |
1864                        map_regdom_flags(rrule2->flags) |
1865                        bw_flags1 |
1866                        bw_flags2;
1867                chan->orig_flags = chan->flags;
1868                chan->max_antenna_gain =
1869                        min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1870                              MBI_TO_DBI(power_rule2->max_antenna_gain));
1871                chan->orig_mag = chan->max_antenna_gain;
1872                chan->max_reg_power =
1873                        min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1874                              MBM_TO_DBM(power_rule2->max_eirp));
1875                chan->max_power = chan->max_reg_power;
1876                chan->orig_mpwr = chan->max_reg_power;
1877
1878                if (chan->flags & IEEE80211_CHAN_RADAR) {
1879                        chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1880                        if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1881                                chan->dfs_cac_ms = max_t(unsigned int,
1882                                                         rrule1->dfs_cac_ms,
1883                                                         rrule2->dfs_cac_ms);
1884                }
1885
1886                return;
1887        }
1888
1889        chan->dfs_state = NL80211_DFS_USABLE;
1890        chan->dfs_state_entered = jiffies;
1891
1892        chan->beacon_found = false;
1893        chan->flags = flags | bw_flags1 | bw_flags2 |
1894                      map_regdom_flags(rrule1->flags) |
1895                      map_regdom_flags(rrule2->flags);
1896
1897        /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1898         * (otherwise no adj. rule case), recheck therefore
1899         */
1900        if (cfg80211_does_bw_fit_range(comb_range,
1901                                       ieee80211_channel_to_khz(chan),
1902                                       MHZ_TO_KHZ(10)))
1903                chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1904        if (cfg80211_does_bw_fit_range(comb_range,
1905                                       ieee80211_channel_to_khz(chan),
1906                                       MHZ_TO_KHZ(20)))
1907                chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1908
1909        chan->max_antenna_gain =
1910                min_t(int, chan->orig_mag,
1911                      min_t(int,
1912                            MBI_TO_DBI(power_rule1->max_antenna_gain),
1913                            MBI_TO_DBI(power_rule2->max_antenna_gain)));
1914        chan->max_reg_power = min_t(int,
1915                                    MBM_TO_DBM(power_rule1->max_eirp),
1916                                    MBM_TO_DBM(power_rule2->max_eirp));
1917
1918        if (chan->flags & IEEE80211_CHAN_RADAR) {
1919                if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1920                        chan->dfs_cac_ms = max_t(unsigned int,
1921                                                 rrule1->dfs_cac_ms,
1922                                                 rrule2->dfs_cac_ms);
1923                else
1924                        chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1925        }
1926
1927        if (chan->orig_mpwr) {
1928                /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1929                 * will always follow the passed country IE power settings.
1930                 */
1931                if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1932                    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1933                        chan->max_power = chan->max_reg_power;
1934                else
1935                        chan->max_power = min(chan->orig_mpwr,
1936                                              chan->max_reg_power);
1937        } else {
1938                chan->max_power = chan->max_reg_power;
1939        }
1940}
1941
1942/* Note that right now we assume the desired channel bandwidth
1943 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1944 * per channel, the primary and the extension channel).
1945 */
1946static void handle_channel(struct wiphy *wiphy,
1947                           enum nl80211_reg_initiator initiator,
1948                           struct ieee80211_channel *chan)
1949{
1950        const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1951        struct regulatory_request *lr = get_last_request();
1952        struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1953        const struct ieee80211_reg_rule *rrule = NULL;
1954        const struct ieee80211_reg_rule *rrule1 = NULL;
1955        const struct ieee80211_reg_rule *rrule2 = NULL;
1956
1957        u32 flags = chan->orig_flags;
1958
1959        rrule = freq_reg_info(wiphy, orig_chan_freq);
1960        if (IS_ERR(rrule)) {
1961                /* check for adjacent match, therefore get rules for
1962                 * chan - 20 MHz and chan + 20 MHz and test
1963                 * if reg rules are adjacent
1964                 */
1965                rrule1 = freq_reg_info(wiphy,
1966                                       orig_chan_freq - MHZ_TO_KHZ(20));
1967                rrule2 = freq_reg_info(wiphy,
1968                                       orig_chan_freq + MHZ_TO_KHZ(20));
1969                if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1970                        struct ieee80211_freq_range comb_range;
1971
1972                        if (rrule1->freq_range.end_freq_khz !=
1973                            rrule2->freq_range.start_freq_khz)
1974                                goto disable_chan;
1975
1976                        comb_range.start_freq_khz =
1977                                rrule1->freq_range.start_freq_khz;
1978                        comb_range.end_freq_khz =
1979                                rrule2->freq_range.end_freq_khz;
1980                        comb_range.max_bandwidth_khz =
1981                                min_t(u32,
1982                                      rrule1->freq_range.max_bandwidth_khz,
1983                                      rrule2->freq_range.max_bandwidth_khz);
1984
1985                        if (!cfg80211_does_bw_fit_range(&comb_range,
1986                                                        orig_chan_freq,
1987                                                        MHZ_TO_KHZ(20)))
1988                                goto disable_chan;
1989
1990                        handle_channel_adjacent_rules(wiphy, initiator, chan,
1991                                                      flags, lr, request_wiphy,
1992                                                      rrule1, rrule2,
1993                                                      &comb_range);
1994                        return;
1995                }
1996
1997disable_chan:
1998                /* We will disable all channels that do not match our
1999                 * received regulatory rule unless the hint is coming
2000                 * from a Country IE and the Country IE had no information
2001                 * about a band. The IEEE 802.11 spec allows for an AP
2002                 * to send only a subset of the regulatory rules allowed,
2003                 * so an AP in the US that only supports 2.4 GHz may only send
2004                 * a country IE with information for the 2.4 GHz band
2005                 * while 5 GHz is still supported.
2006                 */
2007                if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2008                    PTR_ERR(rrule) == -ERANGE)
2009                        return;
2010
2011                if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2012                    request_wiphy && request_wiphy == wiphy &&
2013                    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2014                        pr_debug("Disabling freq %d.%03d MHz for good\n",
2015                                 chan->center_freq, chan->freq_offset);
2016                        chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2017                        chan->flags = chan->orig_flags;
2018                } else {
2019                        pr_debug("Disabling freq %d.%03d MHz\n",
2020                                 chan->center_freq, chan->freq_offset);
2021                        chan->flags |= IEEE80211_CHAN_DISABLED;
2022                }
2023                return;
2024        }
2025
2026        handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2027                                   request_wiphy, rrule);
2028}
2029
2030static void handle_band(struct wiphy *wiphy,
2031                        enum nl80211_reg_initiator initiator,
2032                        struct ieee80211_supported_band *sband)
2033{
2034        unsigned int i;
2035
2036        if (!sband)
2037                return;
2038
2039        for (i = 0; i < sband->n_channels; i++)
2040                handle_channel(wiphy, initiator, &sband->channels[i]);
2041}
2042
2043static bool reg_request_cell_base(struct regulatory_request *request)
2044{
2045        if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2046                return false;
2047        return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2048}
2049
2050bool reg_last_request_cell_base(void)
2051{
2052        return reg_request_cell_base(get_last_request());
2053}
2054
2055#ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2056/* Core specific check */
2057static enum reg_request_treatment
2058reg_ignore_cell_hint(struct regulatory_request *pending_request)
2059{
2060        struct regulatory_request *lr = get_last_request();
2061
2062        if (!reg_num_devs_support_basehint)
2063                return REG_REQ_IGNORE;
2064
2065        if (reg_request_cell_base(lr) &&
2066            !regdom_changes(pending_request->alpha2))
2067                return REG_REQ_ALREADY_SET;
2068
2069        return REG_REQ_OK;
2070}
2071
2072/* Device specific check */
2073static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2074{
2075        return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2076}
2077#else
2078static enum reg_request_treatment
2079reg_ignore_cell_hint(struct regulatory_request *pending_request)
2080{
2081        return REG_REQ_IGNORE;
2082}
2083
2084static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2085{
2086        return true;
2087}
2088#endif
2089
2090static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2091{
2092        if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2093            !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2094                return true;
2095        return false;
2096}
2097
2098static bool ignore_reg_update(struct wiphy *wiphy,
2099                              enum nl80211_reg_initiator initiator)
2100{
2101        struct regulatory_request *lr = get_last_request();
2102
2103        if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2104                return true;
2105
2106        if (!lr) {
2107                pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2108                         reg_initiator_name(initiator));
2109                return true;
2110        }
2111
2112        if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2113            wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2114                pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2115                         reg_initiator_name(initiator));
2116                return true;
2117        }
2118
2119        /*
2120         * wiphy->regd will be set once the device has its own
2121         * desired regulatory domain set
2122         */
2123        if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2124            initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2125            !is_world_regdom(lr->alpha2)) {
2126                pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2127                         reg_initiator_name(initiator));
2128                return true;
2129        }
2130
2131        if (reg_request_cell_base(lr))
2132                return reg_dev_ignore_cell_hint(wiphy);
2133
2134        return false;
2135}
2136
2137static bool reg_is_world_roaming(struct wiphy *wiphy)
2138{
2139        const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2140        const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2141        struct regulatory_request *lr = get_last_request();
2142
2143        if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2144                return true;
2145
2146        if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2147            wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2148                return true;
2149
2150        return false;
2151}
2152
2153static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2154                              struct reg_beacon *reg_beacon)
2155{
2156        struct ieee80211_supported_band *sband;
2157        struct ieee80211_channel *chan;
2158        bool channel_changed = false;
2159        struct ieee80211_channel chan_before;
2160
2161        sband = wiphy->bands[reg_beacon->chan.band];
2162        chan = &sband->channels[chan_idx];
2163
2164        if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2165                return;
2166
2167        if (chan->beacon_found)
2168                return;
2169
2170        chan->beacon_found = true;
2171
2172        if (!reg_is_world_roaming(wiphy))
2173                return;
2174
2175        if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2176                return;
2177
2178        chan_before = *chan;
2179
2180        if (chan->flags & IEEE80211_CHAN_NO_IR) {
2181                chan->flags &= ~IEEE80211_CHAN_NO_IR;
2182                channel_changed = true;
2183        }
2184
2185        if (channel_changed)
2186                nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2187}
2188
2189/*
2190 * Called when a scan on a wiphy finds a beacon on
2191 * new channel
2192 */
2193static void wiphy_update_new_beacon(struct wiphy *wiphy,
2194                                    struct reg_beacon *reg_beacon)
2195{
2196        unsigned int i;
2197        struct ieee80211_supported_band *sband;
2198
2199        if (!wiphy->bands[reg_beacon->chan.band])
2200                return;
2201
2202        sband = wiphy->bands[reg_beacon->chan.band];
2203
2204        for (i = 0; i < sband->n_channels; i++)
2205                handle_reg_beacon(wiphy, i, reg_beacon);
2206}
2207
2208/*
2209 * Called upon reg changes or a new wiphy is added
2210 */
2211static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2212{
2213        unsigned int i;
2214        struct ieee80211_supported_band *sband;
2215        struct reg_beacon *reg_beacon;
2216
2217        list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2218                if (!wiphy->bands[reg_beacon->chan.band])
2219                        continue;
2220                sband = wiphy->bands[reg_beacon->chan.band];
2221                for (i = 0; i < sband->n_channels; i++)
2222                        handle_reg_beacon(wiphy, i, reg_beacon);
2223        }
2224}
2225
2226/* Reap the advantages of previously found beacons */
2227static void reg_process_beacons(struct wiphy *wiphy)
2228{
2229        /*
2230         * Means we are just firing up cfg80211, so no beacons would
2231         * have been processed yet.
2232         */
2233        if (!last_request)
2234                return;
2235        wiphy_update_beacon_reg(wiphy);
2236}
2237
2238static bool is_ht40_allowed(struct ieee80211_channel *chan)
2239{
2240        if (!chan)
2241                return false;
2242        if (chan->flags & IEEE80211_CHAN_DISABLED)
2243                return false;
2244        /* This would happen when regulatory rules disallow HT40 completely */
2245        if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2246                return false;
2247        return true;
2248}
2249
2250static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2251                                         struct ieee80211_channel *channel)
2252{
2253        struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2254        struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2255        const struct ieee80211_regdomain *regd;
2256        unsigned int i;
2257        u32 flags;
2258
2259        if (!is_ht40_allowed(channel)) {
2260                channel->flags |= IEEE80211_CHAN_NO_HT40;
2261                return;
2262        }
2263
2264        /*
2265         * We need to ensure the extension channels exist to
2266         * be able to use HT40- or HT40+, this finds them (or not)
2267         */
2268        for (i = 0; i < sband->n_channels; i++) {
2269                struct ieee80211_channel *c = &sband->channels[i];
2270
2271                if (c->center_freq == (channel->center_freq - 20))
2272                        channel_before = c;
2273                if (c->center_freq == (channel->center_freq + 20))
2274                        channel_after = c;
2275        }
2276
2277        flags = 0;
2278        regd = get_wiphy_regdom(wiphy);
2279        if (regd) {
2280                const struct ieee80211_reg_rule *reg_rule =
2281                        freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2282                                           regd, MHZ_TO_KHZ(20));
2283
2284                if (!IS_ERR(reg_rule))
2285                        flags = reg_rule->flags;
2286        }
2287
2288        /*
2289         * Please note that this assumes target bandwidth is 20 MHz,
2290         * if that ever changes we also need to change the below logic
2291         * to include that as well.
2292         */
2293        if (!is_ht40_allowed(channel_before) ||
2294            flags & NL80211_RRF_NO_HT40MINUS)
2295                channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2296        else
2297                channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2298
2299        if (!is_ht40_allowed(channel_after) ||
2300            flags & NL80211_RRF_NO_HT40PLUS)
2301                channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2302        else
2303                channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2304}
2305
2306static void reg_process_ht_flags_band(struct wiphy *wiphy,
2307                                      struct ieee80211_supported_band *sband)
2308{
2309        unsigned int i;
2310
2311        if (!sband)
2312                return;
2313
2314        for (i = 0; i < sband->n_channels; i++)
2315                reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2316}
2317
2318static void reg_process_ht_flags(struct wiphy *wiphy)
2319{
2320        enum nl80211_band band;
2321
2322        if (!wiphy)
2323                return;
2324
2325        for (band = 0; band < NUM_NL80211_BANDS; band++)
2326                reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2327}
2328
2329static void reg_call_notifier(struct wiphy *wiphy,
2330                              struct regulatory_request *request)
2331{
2332        if (wiphy->reg_notifier)
2333                wiphy->reg_notifier(wiphy, request);
2334}
2335
2336static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2337{
2338        struct cfg80211_chan_def chandef = {};
2339        struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2340        enum nl80211_iftype iftype;
2341
2342        wdev_lock(wdev);
2343        iftype = wdev->iftype;
2344
2345        /* make sure the interface is active */
2346        if (!wdev->netdev || !netif_running(wdev->netdev))
2347                goto wdev_inactive_unlock;
2348
2349        switch (iftype) {
2350        case NL80211_IFTYPE_AP:
2351        case NL80211_IFTYPE_P2P_GO:
2352                if (!wdev->beacon_interval)
2353                        goto wdev_inactive_unlock;
2354                chandef = wdev->chandef;
2355                break;
2356        case NL80211_IFTYPE_ADHOC:
2357                if (!wdev->ssid_len)
2358                        goto wdev_inactive_unlock;
2359                chandef = wdev->chandef;
2360                break;
2361        case NL80211_IFTYPE_STATION:
2362        case NL80211_IFTYPE_P2P_CLIENT:
2363                if (!wdev->current_bss ||
2364                    !wdev->current_bss->pub.channel)
2365                        goto wdev_inactive_unlock;
2366
2367                if (!rdev->ops->get_channel ||
2368                    rdev_get_channel(rdev, wdev, &chandef))
2369                        cfg80211_chandef_create(&chandef,
2370                                                wdev->current_bss->pub.channel,
2371                                                NL80211_CHAN_NO_HT);
2372                break;
2373        case NL80211_IFTYPE_MONITOR:
2374        case NL80211_IFTYPE_AP_VLAN:
2375        case NL80211_IFTYPE_P2P_DEVICE:
2376                /* no enforcement required */
2377                break;
2378        default:
2379                /* others not implemented for now */
2380                WARN_ON(1);
2381                break;
2382        }
2383
2384        wdev_unlock(wdev);
2385
2386        switch (iftype) {
2387        case NL80211_IFTYPE_AP:
2388        case NL80211_IFTYPE_P2P_GO:
2389        case NL80211_IFTYPE_ADHOC:
2390                return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2391        case NL80211_IFTYPE_STATION:
2392        case NL80211_IFTYPE_P2P_CLIENT:
2393                return cfg80211_chandef_usable(wiphy, &chandef,
2394                                               IEEE80211_CHAN_DISABLED);
2395        default:
2396                break;
2397        }
2398
2399        return true;
2400
2401wdev_inactive_unlock:
2402        wdev_unlock(wdev);
2403        return true;
2404}
2405
2406static void reg_leave_invalid_chans(struct wiphy *wiphy)
2407{
2408        struct wireless_dev *wdev;
2409        struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2410
2411        ASSERT_RTNL();
2412
2413        list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2414                if (!reg_wdev_chan_valid(wiphy, wdev))
2415                        cfg80211_leave(rdev, wdev);
2416}
2417
2418static void reg_check_chans_work(struct work_struct *work)
2419{
2420        struct cfg80211_registered_device *rdev;
2421
2422        pr_debug("Verifying active interfaces after reg change\n");
2423        rtnl_lock();
2424
2425        list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2426                if (!(rdev->wiphy.regulatory_flags &
2427                      REGULATORY_IGNORE_STALE_KICKOFF))
2428                        reg_leave_invalid_chans(&rdev->wiphy);
2429
2430        rtnl_unlock();
2431}
2432
2433static void reg_check_channels(void)
2434{
2435        /*
2436         * Give usermode a chance to do something nicer (move to another
2437         * channel, orderly disconnection), before forcing a disconnection.
2438         */
2439        mod_delayed_work(system_power_efficient_wq,
2440                         &reg_check_chans,
2441                         msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2442}
2443
2444static void wiphy_update_regulatory(struct wiphy *wiphy,
2445                                    enum nl80211_reg_initiator initiator)
2446{
2447        enum nl80211_band band;
2448        struct regulatory_request *lr = get_last_request();
2449
2450        if (ignore_reg_update(wiphy, initiator)) {
2451                /*
2452                 * Regulatory updates set by CORE are ignored for custom
2453                 * regulatory cards. Let us notify the changes to the driver,
2454                 * as some drivers used this to restore its orig_* reg domain.
2455                 */
2456                if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2457                    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2458                    !(wiphy->regulatory_flags &
2459                      REGULATORY_WIPHY_SELF_MANAGED))
2460                        reg_call_notifier(wiphy, lr);
2461                return;
2462        }
2463
2464        lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2465
2466        for (band = 0; band < NUM_NL80211_BANDS; band++)
2467                handle_band(wiphy, initiator, wiphy->bands[band]);
2468
2469        reg_process_beacons(wiphy);
2470        reg_process_ht_flags(wiphy);
2471        reg_call_notifier(wiphy, lr);
2472}
2473
2474static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2475{
2476        struct cfg80211_registered_device *rdev;
2477        struct wiphy *wiphy;
2478
2479        ASSERT_RTNL();
2480
2481        list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2482                wiphy = &rdev->wiphy;
2483                wiphy_update_regulatory(wiphy, initiator);
2484        }
2485
2486        reg_check_channels();
2487}
2488
2489static void handle_channel_custom(struct wiphy *wiphy,
2490                                  struct ieee80211_channel *chan,
2491                                  const struct ieee80211_regdomain *regd,
2492                                  u32 min_bw)
2493{
2494        u32 bw_flags = 0;
2495        const struct ieee80211_reg_rule *reg_rule = NULL;
2496        const struct ieee80211_power_rule *power_rule = NULL;
2497        u32 bw, center_freq_khz;
2498
2499        center_freq_khz = ieee80211_channel_to_khz(chan);
2500        for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2501                reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2502                if (!IS_ERR(reg_rule))
2503                        break;
2504        }
2505
2506        if (IS_ERR_OR_NULL(reg_rule)) {
2507                pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2508                         chan->center_freq, chan->freq_offset);
2509                if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2510                        chan->flags |= IEEE80211_CHAN_DISABLED;
2511                } else {
2512                        chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2513                        chan->flags = chan->orig_flags;
2514                }
2515                return;
2516        }
2517
2518        power_rule = &reg_rule->power_rule;
2519        bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2520
2521        chan->dfs_state_entered = jiffies;
2522        chan->dfs_state = NL80211_DFS_USABLE;
2523
2524        chan->beacon_found = false;
2525
2526        if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2527                chan->flags = chan->orig_flags | bw_flags |
2528                              map_regdom_flags(reg_rule->flags);
2529        else
2530                chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2531
2532        chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2533        chan->max_reg_power = chan->max_power =
2534                (int) MBM_TO_DBM(power_rule->max_eirp);
2535
2536        if (chan->flags & IEEE80211_CHAN_RADAR) {
2537                if (reg_rule->dfs_cac_ms)
2538                        chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2539                else
2540                        chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2541        }
2542
2543        chan->max_power = chan->max_reg_power;
2544}
2545
2546static void handle_band_custom(struct wiphy *wiphy,
2547                               struct ieee80211_supported_band *sband,
2548                               const struct ieee80211_regdomain *regd)
2549{
2550        unsigned int i;
2551
2552        if (!sband)
2553                return;
2554
2555        /*
2556         * We currently assume that you always want at least 20 MHz,
2557         * otherwise channel 12 might get enabled if this rule is
2558         * compatible to US, which permits 2402 - 2472 MHz.
2559         */
2560        for (i = 0; i < sband->n_channels; i++)
2561                handle_channel_custom(wiphy, &sband->channels[i], regd,
2562                                      MHZ_TO_KHZ(20));
2563}
2564
2565/* Used by drivers prior to wiphy registration */
2566void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2567                                   const struct ieee80211_regdomain *regd)
2568{
2569        const struct ieee80211_regdomain *new_regd, *tmp;
2570        enum nl80211_band band;
2571        unsigned int bands_set = 0;
2572
2573        WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2574             "wiphy should have REGULATORY_CUSTOM_REG\n");
2575        wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2576
2577        for (band = 0; band < NUM_NL80211_BANDS; band++) {
2578                if (!wiphy->bands[band])
2579                        continue;
2580                handle_band_custom(wiphy, wiphy->bands[band], regd);
2581                bands_set++;
2582        }
2583
2584        /*
2585         * no point in calling this if it won't have any effect
2586         * on your device's supported bands.
2587         */
2588        WARN_ON(!bands_set);
2589        new_regd = reg_copy_regd(regd);
2590        if (IS_ERR(new_regd))
2591                return;
2592
2593        rtnl_lock();
2594        wiphy_lock(wiphy);
2595
2596        tmp = get_wiphy_regdom(wiphy);
2597        rcu_assign_pointer(wiphy->regd, new_regd);
2598        rcu_free_regdom(tmp);
2599
2600        wiphy_unlock(wiphy);
2601        rtnl_unlock();
2602}
2603EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2604
2605static void reg_set_request_processed(void)
2606{
2607        bool need_more_processing = false;
2608        struct regulatory_request *lr = get_last_request();
2609
2610        lr->processed = true;
2611
2612        spin_lock(&reg_requests_lock);
2613        if (!list_empty(&reg_requests_list))
2614                need_more_processing = true;
2615        spin_unlock(&reg_requests_lock);
2616
2617        cancel_crda_timeout();
2618
2619        if (need_more_processing)
2620                schedule_work(&reg_work);
2621}
2622
2623/**
2624 * reg_process_hint_core - process core regulatory requests
2625 * @core_request: a pending core regulatory request
2626 *
2627 * The wireless subsystem can use this function to process
2628 * a regulatory request issued by the regulatory core.
2629 */
2630static enum reg_request_treatment
2631reg_process_hint_core(struct regulatory_request *core_request)
2632{
2633        if (reg_query_database(core_request)) {
2634                core_request->intersect = false;
2635                core_request->processed = false;
2636                reg_update_last_request(core_request);
2637                return REG_REQ_OK;
2638        }
2639
2640        return REG_REQ_IGNORE;
2641}
2642
2643static enum reg_request_treatment
2644__reg_process_hint_user(struct regulatory_request *user_request)
2645{
2646        struct regulatory_request *lr = get_last_request();
2647
2648        if (reg_request_cell_base(user_request))
2649                return reg_ignore_cell_hint(user_request);
2650
2651        if (reg_request_cell_base(lr))
2652                return REG_REQ_IGNORE;
2653
2654        if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2655                return REG_REQ_INTERSECT;
2656        /*
2657         * If the user knows better the user should set the regdom
2658         * to their country before the IE is picked up
2659         */
2660        if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2661            lr->intersect)
2662                return REG_REQ_IGNORE;
2663        /*
2664         * Process user requests only after previous user/driver/core
2665         * requests have been processed
2666         */
2667        if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2668             lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2669             lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2670            regdom_changes(lr->alpha2))
2671                return REG_REQ_IGNORE;
2672
2673        if (!regdom_changes(user_request->alpha2))
2674                return REG_REQ_ALREADY_SET;
2675
2676        return REG_REQ_OK;
2677}
2678
2679/**
2680 * reg_process_hint_user - process user regulatory requests
2681 * @user_request: a pending user regulatory request
2682 *
2683 * The wireless subsystem can use this function to process
2684 * a regulatory request initiated by userspace.
2685 */
2686static enum reg_request_treatment
2687reg_process_hint_user(struct regulatory_request *user_request)
2688{
2689        enum reg_request_treatment treatment;
2690
2691        treatment = __reg_process_hint_user(user_request);
2692        if (treatment == REG_REQ_IGNORE ||
2693            treatment == REG_REQ_ALREADY_SET)
2694                return REG_REQ_IGNORE;
2695
2696        user_request->intersect = treatment == REG_REQ_INTERSECT;
2697        user_request->processed = false;
2698
2699        if (reg_query_database(user_request)) {
2700                reg_update_last_request(user_request);
2701                user_alpha2[0] = user_request->alpha2[0];
2702                user_alpha2[1] = user_request->alpha2[1];
2703                return REG_REQ_OK;
2704        }
2705
2706        return REG_REQ_IGNORE;
2707}
2708
2709static enum reg_request_treatment
2710__reg_process_hint_driver(struct regulatory_request *driver_request)
2711{
2712        struct regulatory_request *lr = get_last_request();
2713
2714        if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2715                if (regdom_changes(driver_request->alpha2))
2716                        return REG_REQ_OK;
2717                return REG_REQ_ALREADY_SET;
2718        }
2719
2720        /*
2721         * This would happen if you unplug and plug your card
2722         * back in or if you add a new device for which the previously
2723         * loaded card also agrees on the regulatory domain.
2724         */
2725        if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2726            !regdom_changes(driver_request->alpha2))
2727                return REG_REQ_ALREADY_SET;
2728
2729        return REG_REQ_INTERSECT;
2730}
2731
2732/**
2733 * reg_process_hint_driver - process driver regulatory requests
2734 * @wiphy: the wireless device for the regulatory request
2735 * @driver_request: a pending driver regulatory request
2736 *
2737 * The wireless subsystem can use this function to process
2738 * a regulatory request issued by an 802.11 driver.
2739 *
2740 * Returns one of the different reg request treatment values.
2741 */
2742static enum reg_request_treatment
2743reg_process_hint_driver(struct wiphy *wiphy,
2744                        struct regulatory_request *driver_request)
2745{
2746        const struct ieee80211_regdomain *regd, *tmp;
2747        enum reg_request_treatment treatment;
2748
2749        treatment = __reg_process_hint_driver(driver_request);
2750
2751        switch (treatment) {
2752        case REG_REQ_OK:
2753                break;
2754        case REG_REQ_IGNORE:
2755                return REG_REQ_IGNORE;
2756        case REG_REQ_INTERSECT:
2757        case REG_REQ_ALREADY_SET:
2758                regd = reg_copy_regd(get_cfg80211_regdom());
2759                if (IS_ERR(regd))
2760                        return REG_REQ_IGNORE;
2761
2762                tmp = get_wiphy_regdom(wiphy);
2763                ASSERT_RTNL();
2764                wiphy_lock(wiphy);
2765                rcu_assign_pointer(wiphy->regd, regd);
2766                wiphy_unlock(wiphy);
2767                rcu_free_regdom(tmp);
2768        }
2769
2770
2771        driver_request->intersect = treatment == REG_REQ_INTERSECT;
2772        driver_request->processed = false;
2773
2774        /*
2775         * Since CRDA will not be called in this case as we already
2776         * have applied the requested regulatory domain before we just
2777         * inform userspace we have processed the request
2778         */
2779        if (treatment == REG_REQ_ALREADY_SET) {
2780                nl80211_send_reg_change_event(driver_request);
2781                reg_update_last_request(driver_request);
2782                reg_set_request_processed();
2783                return REG_REQ_ALREADY_SET;
2784        }
2785
2786        if (reg_query_database(driver_request)) {
2787                reg_update_last_request(driver_request);
2788                return REG_REQ_OK;
2789        }
2790
2791        return REG_REQ_IGNORE;
2792}
2793
2794static enum reg_request_treatment
2795__reg_process_hint_country_ie(struct wiphy *wiphy,
2796                              struct regulatory_request *country_ie_request)
2797{
2798        struct wiphy *last_wiphy = NULL;
2799        struct regulatory_request *lr = get_last_request();
2800
2801        if (reg_request_cell_base(lr)) {
2802                /* Trust a Cell base station over the AP's country IE */
2803                if (regdom_changes(country_ie_request->alpha2))
2804                        return REG_REQ_IGNORE;
2805                return REG_REQ_ALREADY_SET;
2806        } else {
2807                if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2808                        return REG_REQ_IGNORE;
2809        }
2810
2811        if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2812                return -EINVAL;
2813
2814        if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2815                return REG_REQ_OK;
2816
2817        last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2818
2819        if (last_wiphy != wiphy) {
2820                /*
2821                 * Two cards with two APs claiming different
2822                 * Country IE alpha2s. We could
2823                 * intersect them, but that seems unlikely
2824                 * to be correct. Reject second one for now.
2825                 */
2826                if (regdom_changes(country_ie_request->alpha2))
2827                        return REG_REQ_IGNORE;
2828                return REG_REQ_ALREADY_SET;
2829        }
2830
2831        if (regdom_changes(country_ie_request->alpha2))
2832                return REG_REQ_OK;
2833        return REG_REQ_ALREADY_SET;
2834}
2835
2836/**
2837 * reg_process_hint_country_ie - process regulatory requests from country IEs
2838 * @wiphy: the wireless device for the regulatory request
2839 * @country_ie_request: a regulatory request from a country IE
2840 *
2841 * The wireless subsystem can use this function to process
2842 * a regulatory request issued by a country Information Element.
2843 *
2844 * Returns one of the different reg request treatment values.
2845 */
2846static enum reg_request_treatment
2847reg_process_hint_country_ie(struct wiphy *wiphy,
2848                            struct regulatory_request *country_ie_request)
2849{
2850        enum reg_request_treatment treatment;
2851
2852        treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2853
2854        switch (treatment) {
2855        case REG_REQ_OK:
2856                break;
2857        case REG_REQ_IGNORE:
2858                return REG_REQ_IGNORE;
2859        case REG_REQ_ALREADY_SET:
2860                reg_free_request(country_ie_request);
2861                return REG_REQ_ALREADY_SET;
2862        case REG_REQ_INTERSECT:
2863                /*
2864                 * This doesn't happen yet, not sure we
2865                 * ever want to support it for this case.
2866                 */
2867                WARN_ONCE(1, "Unexpected intersection for country elements");
2868                return REG_REQ_IGNORE;
2869        }
2870
2871        country_ie_request->intersect = false;
2872        country_ie_request->processed = false;
2873
2874        if (reg_query_database(country_ie_request)) {
2875                reg_update_last_request(country_ie_request);
2876                return REG_REQ_OK;
2877        }
2878
2879        return REG_REQ_IGNORE;
2880}
2881
2882bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2883{
2884        const struct ieee80211_regdomain *wiphy1_regd = NULL;
2885        const struct ieee80211_regdomain *wiphy2_regd = NULL;
2886        const struct ieee80211_regdomain *cfg80211_regd = NULL;
2887        bool dfs_domain_same;
2888
2889        rcu_read_lock();
2890
2891        cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2892        wiphy1_regd = rcu_dereference(wiphy1->regd);
2893        if (!wiphy1_regd)
2894                wiphy1_regd = cfg80211_regd;
2895
2896        wiphy2_regd = rcu_dereference(wiphy2->regd);
2897        if (!wiphy2_regd)
2898                wiphy2_regd = cfg80211_regd;
2899
2900        dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2901
2902        rcu_read_unlock();
2903
2904        return dfs_domain_same;
2905}
2906
2907static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2908                                    struct ieee80211_channel *src_chan)
2909{
2910        if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2911            !(src_chan->flags & IEEE80211_CHAN_RADAR))
2912                return;
2913
2914        if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2915            src_chan->flags & IEEE80211_CHAN_DISABLED)
2916                return;
2917
2918        if (src_chan->center_freq == dst_chan->center_freq &&
2919            dst_chan->dfs_state == NL80211_DFS_USABLE) {
2920                dst_chan->dfs_state = src_chan->dfs_state;
2921                dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2922        }
2923}
2924
2925static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2926                                       struct wiphy *src_wiphy)
2927{
2928        struct ieee80211_supported_band *src_sband, *dst_sband;
2929        struct ieee80211_channel *src_chan, *dst_chan;
2930        int i, j, band;
2931
2932        if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2933                return;
2934
2935        for (band = 0; band < NUM_NL80211_BANDS; band++) {
2936                dst_sband = dst_wiphy->bands[band];
2937                src_sband = src_wiphy->bands[band];
2938                if (!dst_sband || !src_sband)
2939                        continue;
2940
2941                for (i = 0; i < dst_sband->n_channels; i++) {
2942                        dst_chan = &dst_sband->channels[i];
2943                        for (j = 0; j < src_sband->n_channels; j++) {
2944                                src_chan = &src_sband->channels[j];
2945                                reg_copy_dfs_chan_state(dst_chan, src_chan);
2946                        }
2947                }
2948        }
2949}
2950
2951static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2952{
2953        struct cfg80211_registered_device *rdev;
2954
2955        ASSERT_RTNL();
2956
2957        list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2958                if (wiphy == &rdev->wiphy)
2959                        continue;
2960                wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2961        }
2962}
2963
2964/* This processes *all* regulatory hints */
2965static void reg_process_hint(struct regulatory_request *reg_request)
2966{
2967        struct wiphy *wiphy = NULL;
2968        enum reg_request_treatment treatment;
2969        enum nl80211_reg_initiator initiator = reg_request->initiator;
2970
2971        if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2972                wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2973
2974        switch (initiator) {
2975        case NL80211_REGDOM_SET_BY_CORE:
2976                treatment = reg_process_hint_core(reg_request);
2977                break;
2978        case NL80211_REGDOM_SET_BY_USER:
2979                treatment = reg_process_hint_user(reg_request);
2980                break;
2981        case NL80211_REGDOM_SET_BY_DRIVER:
2982                if (!wiphy)
2983                        goto out_free;
2984                treatment = reg_process_hint_driver(wiphy, reg_request);
2985                break;
2986        case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2987                if (!wiphy)
2988                        goto out_free;
2989                treatment = reg_process_hint_country_ie(wiphy, reg_request);
2990                break;
2991        default:
2992                WARN(1, "invalid initiator %d\n", initiator);
2993                goto out_free;
2994        }
2995
2996        if (treatment == REG_REQ_IGNORE)
2997                goto out_free;
2998
2999        WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3000             "unexpected treatment value %d\n", treatment);
3001
3002        /* This is required so that the orig_* parameters are saved.
3003         * NOTE: treatment must be set for any case that reaches here!
3004         */
3005        if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3006            wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3007                wiphy_update_regulatory(wiphy, initiator);
3008                wiphy_all_share_dfs_chan_state(wiphy);
3009                reg_check_channels();
3010        }
3011
3012        return;
3013
3014out_free:
3015        reg_free_request(reg_request);
3016}
3017
3018static void notify_self_managed_wiphys(struct regulatory_request *request)
3019{
3020        struct cfg80211_registered_device *rdev;
3021        struct wiphy *wiphy;
3022
3023        list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3024                wiphy = &rdev->wiphy;
3025                if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3026                    request->initiator == NL80211_REGDOM_SET_BY_USER)
3027                        reg_call_notifier(wiphy, request);
3028        }
3029}
3030
3031/*
3032 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3033 * Regulatory hints come on a first come first serve basis and we
3034 * must process each one atomically.
3035 */
3036static void reg_process_pending_hints(void)
3037{
3038        struct regulatory_request *reg_request, *lr;
3039
3040        lr = get_last_request();
3041
3042        /* When last_request->processed becomes true this will be rescheduled */
3043        if (lr && !lr->processed) {
3044                pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3045                return;
3046        }
3047
3048        spin_lock(&reg_requests_lock);
3049
3050        if (list_empty(&reg_requests_list)) {
3051                spin_unlock(&reg_requests_lock);
3052                return;
3053        }
3054
3055        reg_request = list_first_entry(&reg_requests_list,
3056                                       struct regulatory_request,
3057                                       list);
3058        list_del_init(&reg_request->list);
3059
3060        spin_unlock(&reg_requests_lock);
3061
3062        notify_self_managed_wiphys(reg_request);
3063
3064        reg_process_hint(reg_request);
3065
3066        lr = get_last_request();
3067
3068        spin_lock(&reg_requests_lock);
3069        if (!list_empty(&reg_requests_list) && lr && lr->processed)
3070                schedule_work(&reg_work);
3071        spin_unlock(&reg_requests_lock);
3072}
3073
3074/* Processes beacon hints -- this has nothing to do with country IEs */
3075static void reg_process_pending_beacon_hints(void)
3076{
3077        struct cfg80211_registered_device *rdev;
3078        struct reg_beacon *pending_beacon, *tmp;
3079
3080        /* This goes through the _pending_ beacon list */
3081        spin_lock_bh(&reg_pending_beacons_lock);
3082
3083        list_for_each_entry_safe(pending_beacon, tmp,
3084                                 &reg_pending_beacons, list) {
3085                list_del_init(&pending_beacon->list);
3086
3087                /* Applies the beacon hint to current wiphys */
3088                list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3089                        wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3090
3091                /* Remembers the beacon hint for new wiphys or reg changes */
3092                list_add_tail(&pending_beacon->list, &reg_beacon_list);
3093        }
3094
3095        spin_unlock_bh(&reg_pending_beacons_lock);
3096}
3097
3098static void reg_process_self_managed_hint(struct wiphy *wiphy)
3099{
3100        struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3101        const struct ieee80211_regdomain *tmp;
3102        const struct ieee80211_regdomain *regd;
3103        enum nl80211_band band;
3104        struct regulatory_request request = {};
3105
3106        ASSERT_RTNL();
3107        lockdep_assert_wiphy(wiphy);
3108
3109        spin_lock(&reg_requests_lock);
3110        regd = rdev->requested_regd;
3111        rdev->requested_regd = NULL;
3112        spin_unlock(&reg_requests_lock);
3113
3114        if (!regd)
3115                return;
3116
3117        tmp = get_wiphy_regdom(wiphy);
3118        rcu_assign_pointer(wiphy->regd, regd);
3119        rcu_free_regdom(tmp);
3120
3121        for (band = 0; band < NUM_NL80211_BANDS; band++)
3122                handle_band_custom(wiphy, wiphy->bands[band], regd);
3123
3124        reg_process_ht_flags(wiphy);
3125
3126        request.wiphy_idx = get_wiphy_idx(wiphy);
3127        request.alpha2[0] = regd->alpha2[0];
3128        request.alpha2[1] = regd->alpha2[1];
3129        request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3130
3131        nl80211_send_wiphy_reg_change_event(&request);
3132}
3133
3134static void reg_process_self_managed_hints(void)
3135{
3136        struct cfg80211_registered_device *rdev;
3137
3138        ASSERT_RTNL();
3139
3140        list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3141                wiphy_lock(&rdev->wiphy);
3142                reg_process_self_managed_hint(&rdev->wiphy);
3143                wiphy_unlock(&rdev->wiphy);
3144        }
3145
3146        reg_check_channels();
3147}
3148
3149static void reg_todo(struct work_struct *work)
3150{
3151        rtnl_lock();
3152        reg_process_pending_hints();
3153        reg_process_pending_beacon_hints();
3154        reg_process_self_managed_hints();
3155        rtnl_unlock();
3156}
3157
3158static void queue_regulatory_request(struct regulatory_request *request)
3159{
3160        request->alpha2[0] = toupper(request->alpha2[0]);
3161        request->alpha2[1] = toupper(request->alpha2[1]);
3162
3163        spin_lock(&reg_requests_lock);
3164        list_add_tail(&request->list, &reg_requests_list);
3165        spin_unlock(&reg_requests_lock);
3166
3167        schedule_work(&reg_work);
3168}
3169
3170/*
3171 * Core regulatory hint -- happens during cfg80211_init()
3172 * and when we restore regulatory settings.
3173 */
3174static int regulatory_hint_core(const char *alpha2)
3175{
3176        struct regulatory_request *request;
3177
3178        request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3179        if (!request)
3180                return -ENOMEM;
3181
3182        request->alpha2[0] = alpha2[0];
3183        request->alpha2[1] = alpha2[1];
3184        request->initiator = NL80211_REGDOM_SET_BY_CORE;
3185        request->wiphy_idx = WIPHY_IDX_INVALID;
3186
3187        queue_regulatory_request(request);
3188
3189        return 0;
3190}
3191
3192/* User hints */
3193int regulatory_hint_user(const char *alpha2,
3194                         enum nl80211_user_reg_hint_type user_reg_hint_type)
3195{
3196        struct regulatory_request *request;
3197
3198        if (WARN_ON(!alpha2))
3199                return -EINVAL;
3200
3201        if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3202                return -EINVAL;
3203
3204        request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3205        if (!request)
3206                return -ENOMEM;
3207
3208        request->wiphy_idx = WIPHY_IDX_INVALID;
3209        request->alpha2[0] = alpha2[0];
3210        request->alpha2[1] = alpha2[1];
3211        request->initiator = NL80211_REGDOM_SET_BY_USER;
3212        request->user_reg_hint_type = user_reg_hint_type;
3213
3214        /* Allow calling CRDA again */
3215        reset_crda_timeouts();
3216
3217        queue_regulatory_request(request);
3218
3219        return 0;
3220}
3221
3222int regulatory_hint_indoor(bool is_indoor, u32 portid)
3223{
3224        spin_lock(&reg_indoor_lock);
3225
3226        /* It is possible that more than one user space process is trying to
3227         * configure the indoor setting. To handle such cases, clear the indoor
3228         * setting in case that some process does not think that the device
3229         * is operating in an indoor environment. In addition, if a user space
3230         * process indicates that it is controlling the indoor setting, save its
3231         * portid, i.e., make it the owner.
3232         */
3233        reg_is_indoor = is_indoor;
3234        if (reg_is_indoor) {
3235                if (!reg_is_indoor_portid)
3236                        reg_is_indoor_portid = portid;
3237        } else {
3238                reg_is_indoor_portid = 0;
3239        }
3240
3241        spin_unlock(&reg_indoor_lock);
3242
3243        if (!is_indoor)
3244                reg_check_channels();
3245
3246        return 0;
3247}
3248
3249void regulatory_netlink_notify(u32 portid)
3250{
3251        spin_lock(&reg_indoor_lock);
3252
3253        if (reg_is_indoor_portid != portid) {
3254                spin_unlock(&reg_indoor_lock);
3255                return;
3256        }
3257
3258        reg_is_indoor = false;
3259        reg_is_indoor_portid = 0;
3260
3261        spin_unlock(&reg_indoor_lock);
3262
3263        reg_check_channels();
3264}
3265
3266/* Driver hints */
3267int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3268{
3269        struct regulatory_request *request;
3270
3271        if (WARN_ON(!alpha2 || !wiphy))
3272                return -EINVAL;
3273
3274        wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3275
3276        request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3277        if (!request)
3278                return -ENOMEM;
3279
3280        request->wiphy_idx = get_wiphy_idx(wiphy);
3281
3282        request->alpha2[0] = alpha2[0];
3283        request->alpha2[1] = alpha2[1];
3284        request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3285
3286        /* Allow calling CRDA again */
3287        reset_crda_timeouts();
3288
3289        queue_regulatory_request(request);
3290
3291        return 0;
3292}
3293EXPORT_SYMBOL(regulatory_hint);
3294
3295void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3296                                const u8 *country_ie, u8 country_ie_len)
3297{
3298        char alpha2[2];
3299        enum environment_cap env = ENVIRON_ANY;
3300        struct regulatory_request *request = NULL, *lr;
3301
3302        /* IE len must be evenly divisible by 2 */
3303        if (country_ie_len & 0x01)
3304                return;
3305
3306        if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3307                return;
3308
3309        request = kzalloc(sizeof(*request), GFP_KERNEL);
3310        if (!request)
3311                return;
3312
3313        alpha2[0] = country_ie[0];
3314        alpha2[1] = country_ie[1];
3315
3316        if (country_ie[2] == 'I')
3317                env = ENVIRON_INDOOR;
3318        else if (country_ie[2] == 'O')
3319                env = ENVIRON_OUTDOOR;
3320
3321        rcu_read_lock();
3322        lr = get_last_request();
3323
3324        if (unlikely(!lr))
3325                goto out;
3326
3327        /*
3328         * We will run this only upon a successful connection on cfg80211.
3329         * We leave conflict resolution to the workqueue, where can hold
3330         * the RTNL.
3331         */
3332        if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3333            lr->wiphy_idx != WIPHY_IDX_INVALID)
3334                goto out;
3335
3336        request->wiphy_idx = get_wiphy_idx(wiphy);
3337        request->alpha2[0] = alpha2[0];
3338        request->alpha2[1] = alpha2[1];
3339        request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3340        request->country_ie_env = env;
3341
3342        /* Allow calling CRDA again */
3343        reset_crda_timeouts();
3344
3345        queue_regulatory_request(request);
3346        request = NULL;
3347out:
3348        kfree(request);
3349        rcu_read_unlock();
3350}
3351
3352static void restore_alpha2(char *alpha2, bool reset_user)
3353{
3354        /* indicates there is no alpha2 to consider for restoration */
3355        alpha2[0] = '9';
3356        alpha2[1] = '7';
3357
3358        /* The user setting has precedence over the module parameter */
3359        if (is_user_regdom_saved()) {
3360                /* Unless we're asked to ignore it and reset it */
3361                if (reset_user) {
3362                        pr_debug("Restoring regulatory settings including user preference\n");
3363                        user_alpha2[0] = '9';
3364                        user_alpha2[1] = '7';
3365
3366                        /*
3367                         * If we're ignoring user settings, we still need to
3368                         * check the module parameter to ensure we put things
3369                         * back as they were for a full restore.
3370                         */
3371                        if (!is_world_regdom(ieee80211_regdom)) {
3372                                pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3373                                         ieee80211_regdom[0], ieee80211_regdom[1]);
3374                                alpha2[0] = ieee80211_regdom[0];
3375                                alpha2[1] = ieee80211_regdom[1];
3376                        }
3377                } else {
3378                        pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3379                                 user_alpha2[0], user_alpha2[1]);
3380                        alpha2[0] = user_alpha2[0];
3381                        alpha2[1] = user_alpha2[1];
3382                }
3383        } else if (!is_world_regdom(ieee80211_regdom)) {
3384                pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3385                         ieee80211_regdom[0], ieee80211_regdom[1]);
3386                alpha2[0] = ieee80211_regdom[0];
3387                alpha2[1] = ieee80211_regdom[1];
3388        } else
3389                pr_debug("Restoring regulatory settings\n");
3390}
3391
3392static void restore_custom_reg_settings(struct wiphy *wiphy)
3393{
3394        struct ieee80211_supported_band *sband;
3395        enum nl80211_band band;
3396        struct ieee80211_channel *chan;
3397        int i;
3398
3399        for (band = 0; band < NUM_NL80211_BANDS; band++) {
3400                sband = wiphy->bands[band];
3401                if (!sband)
3402                        continue;
3403                for (i = 0; i < sband->n_channels; i++) {
3404                        chan = &sband->channels[i];
3405                        chan->flags = chan->orig_flags;
3406                        chan->max_antenna_gain = chan->orig_mag;
3407                        chan->max_power = chan->orig_mpwr;
3408                        chan->beacon_found = false;
3409                }
3410        }
3411}
3412
3413/*
3414 * Restoring regulatory settings involves ignoring any
3415 * possibly stale country IE information and user regulatory
3416 * settings if so desired, this includes any beacon hints
3417 * learned as we could have traveled outside to another country
3418 * after disconnection. To restore regulatory settings we do
3419 * exactly what we did at bootup:
3420 *
3421 *   - send a core regulatory hint
3422 *   - send a user regulatory hint if applicable
3423 *
3424 * Device drivers that send a regulatory hint for a specific country
3425 * keep their own regulatory domain on wiphy->regd so that does
3426 * not need to be remembered.
3427 */
3428static void restore_regulatory_settings(bool reset_user, bool cached)
3429{
3430        char alpha2[2];
3431        char world_alpha2[2];
3432        struct reg_beacon *reg_beacon, *btmp;
3433        LIST_HEAD(tmp_reg_req_list);
3434        struct cfg80211_registered_device *rdev;
3435
3436        ASSERT_RTNL();
3437
3438        /*
3439         * Clear the indoor setting in case that it is not controlled by user
3440         * space, as otherwise there is no guarantee that the device is still
3441         * operating in an indoor environment.
3442         */
3443        spin_lock(&reg_indoor_lock);
3444        if (reg_is_indoor && !reg_is_indoor_portid) {
3445                reg_is_indoor = false;
3446                reg_check_channels();
3447        }
3448        spin_unlock(&reg_indoor_lock);
3449
3450        reset_regdomains(true, &world_regdom);
3451        restore_alpha2(alpha2, reset_user);
3452
3453        /*
3454         * If there's any pending requests we simply
3455         * stash them to a temporary pending queue and
3456         * add then after we've restored regulatory
3457         * settings.
3458         */
3459        spin_lock(&reg_requests_lock);
3460        list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3461        spin_unlock(&reg_requests_lock);
3462
3463        /* Clear beacon hints */
3464        spin_lock_bh(&reg_pending_beacons_lock);
3465        list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3466                list_del(&reg_beacon->list);
3467                kfree(reg_beacon);
3468        }
3469        spin_unlock_bh(&reg_pending_beacons_lock);
3470
3471        list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3472                list_del(&reg_beacon->list);
3473                kfree(reg_beacon);
3474        }
3475
3476        /* First restore to the basic regulatory settings */
3477        world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3478        world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3479
3480        list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3481                if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3482                        continue;
3483                if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3484                        restore_custom_reg_settings(&rdev->wiphy);
3485        }
3486
3487        if (cached && (!is_an_alpha2(alpha2) ||
3488                       !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3489                reset_regdomains(false, cfg80211_world_regdom);
3490                update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3491                print_regdomain(get_cfg80211_regdom());
3492                nl80211_send_reg_change_event(&core_request_world);
3493                reg_set_request_processed();
3494
3495                if (is_an_alpha2(alpha2) &&
3496                    !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3497                        struct regulatory_request *ureq;
3498
3499                        spin_lock(&reg_requests_lock);
3500                        ureq = list_last_entry(&reg_requests_list,
3501                                               struct regulatory_request,
3502                                               list);
3503                        list_del(&ureq->list);
3504                        spin_unlock(&reg_requests_lock);
3505
3506                        notify_self_managed_wiphys(ureq);
3507                        reg_update_last_request(ureq);
3508                        set_regdom(reg_copy_regd(cfg80211_user_regdom),
3509                                   REGD_SOURCE_CACHED);
3510                }
3511        } else {
3512                regulatory_hint_core(world_alpha2);
3513
3514                /*
3515                 * This restores the ieee80211_regdom module parameter
3516                 * preference or the last user requested regulatory
3517                 * settings, user regulatory settings takes precedence.
3518                 */
3519                if (is_an_alpha2(alpha2))
3520                        regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3521        }
3522
3523        spin_lock(&reg_requests_lock);
3524        list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3525        spin_unlock(&reg_requests_lock);
3526
3527        pr_debug("Kicking the queue\n");
3528
3529        schedule_work(&reg_work);
3530}
3531
3532static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3533{
3534        struct cfg80211_registered_device *rdev;
3535        struct wireless_dev *wdev;
3536
3537        list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3538                list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3539                        wdev_lock(wdev);
3540                        if (!(wdev->wiphy->regulatory_flags & flag)) {
3541                                wdev_unlock(wdev);
3542                                return false;
3543                        }
3544                        wdev_unlock(wdev);
3545                }
3546        }
3547
3548        return true;
3549}
3550
3551void regulatory_hint_disconnect(void)
3552{
3553        /* Restore of regulatory settings is not required when wiphy(s)
3554         * ignore IE from connected access point but clearance of beacon hints
3555         * is required when wiphy(s) supports beacon hints.
3556         */
3557        if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3558                struct reg_beacon *reg_beacon, *btmp;
3559
3560                if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3561                        return;
3562
3563                spin_lock_bh(&reg_pending_beacons_lock);
3564                list_for_each_entry_safe(reg_beacon, btmp,
3565                                         &reg_pending_beacons, list) {
3566                        list_del(&reg_beacon->list);
3567                        kfree(reg_beacon);
3568                }
3569                spin_unlock_bh(&reg_pending_beacons_lock);
3570
3571                list_for_each_entry_safe(reg_beacon, btmp,
3572                                         &reg_beacon_list, list) {
3573                        list_del(&reg_beacon->list);
3574                        kfree(reg_beacon);
3575                }
3576
3577                return;
3578        }
3579
3580        pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3581        restore_regulatory_settings(false, true);
3582}
3583
3584static bool freq_is_chan_12_13_14(u32 freq)
3585{
3586        if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3587            freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3588            freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3589                return true;
3590        return false;
3591}
3592
3593static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3594{
3595        struct reg_beacon *pending_beacon;
3596
3597        list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3598                if (ieee80211_channel_equal(beacon_chan,
3599                                            &pending_beacon->chan))
3600                        return true;
3601        return false;
3602}
3603
3604int regulatory_hint_found_beacon(struct wiphy *wiphy,
3605                                 struct ieee80211_channel *beacon_chan,
3606                                 gfp_t gfp)
3607{
3608        struct reg_beacon *reg_beacon;
3609        bool processing;
3610
3611        if (beacon_chan->beacon_found ||
3612            beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3613            (beacon_chan->band == NL80211_BAND_2GHZ &&
3614             !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3615                return 0;
3616
3617        spin_lock_bh(&reg_pending_beacons_lock);
3618        processing = pending_reg_beacon(beacon_chan);
3619        spin_unlock_bh(&reg_pending_beacons_lock);
3620
3621        if (processing)
3622                return 0;
3623
3624        reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3625        if (!reg_beacon)
3626                return -ENOMEM;
3627
3628        pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3629                 beacon_chan->center_freq, beacon_chan->freq_offset,
3630                 ieee80211_freq_khz_to_channel(
3631                         ieee80211_channel_to_khz(beacon_chan)),
3632                 wiphy_name(wiphy));
3633
3634        memcpy(&reg_beacon->chan, beacon_chan,
3635               sizeof(struct ieee80211_channel));
3636
3637        /*
3638         * Since we can be called from BH or and non-BH context
3639         * we must use spin_lock_bh()
3640         */
3641        spin_lock_bh(&reg_pending_beacons_lock);
3642        list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3643        spin_unlock_bh(&reg_pending_beacons_lock);
3644
3645        schedule_work(&reg_work);
3646
3647        return 0;
3648}
3649
3650static void print_rd_rules(const struct ieee80211_regdomain *rd)
3651{
3652        unsigned int i;
3653        const struct ieee80211_reg_rule *reg_rule = NULL;
3654        const struct ieee80211_freq_range *freq_range = NULL;
3655        const struct ieee80211_power_rule *power_rule = NULL;
3656        char bw[32], cac_time[32];
3657
3658        pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3659
3660        for (i = 0; i < rd->n_reg_rules; i++) {
3661                reg_rule = &rd->reg_rules[i];
3662                freq_range = &reg_rule->freq_range;
3663                power_rule = &reg_rule->power_rule;
3664
3665                if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3666                        snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3667                                 freq_range->max_bandwidth_khz,
3668                                 reg_get_max_bandwidth(rd, reg_rule));
3669                else
3670                        snprintf(bw, sizeof(bw), "%d KHz",
3671                                 freq_range->max_bandwidth_khz);
3672
3673                if (reg_rule->flags & NL80211_RRF_DFS)
3674                        scnprintf(cac_time, sizeof(cac_time), "%u s",
3675                                  reg_rule->dfs_cac_ms/1000);
3676                else
3677                        scnprintf(cac_time, sizeof(cac_time), "N/A");
3678
3679
3680                /*
3681                 * There may not be documentation for max antenna gain
3682                 * in certain regions
3683                 */
3684                if (power_rule->max_antenna_gain)
3685                        pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3686                                freq_range->start_freq_khz,
3687                                freq_range->end_freq_khz,
3688                                bw,
3689                                power_rule->max_antenna_gain,
3690                                power_rule->max_eirp,
3691                                cac_time);
3692                else
3693                        pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3694                                freq_range->start_freq_khz,
3695                                freq_range->end_freq_khz,
3696                                bw,
3697                                power_rule->max_eirp,
3698                                cac_time);
3699        }
3700}
3701
3702bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3703{
3704        switch (dfs_region) {
3705        case NL80211_DFS_UNSET:
3706        case NL80211_DFS_FCC:
3707        case NL80211_DFS_ETSI:
3708        case NL80211_DFS_JP:
3709                return true;
3710        default:
3711                pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3712                return false;
3713        }
3714}
3715
3716static void print_regdomain(const struct ieee80211_regdomain *rd)
3717{
3718        struct regulatory_request *lr = get_last_request();
3719
3720        if (is_intersected_alpha2(rd->alpha2)) {
3721                if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3722                        struct cfg80211_registered_device *rdev;
3723                        rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3724                        if (rdev) {
3725                                pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3726                                        rdev->country_ie_alpha2[0],
3727                                        rdev->country_ie_alpha2[1]);
3728                        } else
3729                                pr_debug("Current regulatory domain intersected:\n");
3730                } else
3731                        pr_debug("Current regulatory domain intersected:\n");
3732        } else if (is_world_regdom(rd->alpha2)) {
3733                pr_debug("World regulatory domain updated:\n");
3734        } else {
3735                if (is_unknown_alpha2(rd->alpha2))
3736                        pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3737                else {
3738                        if (reg_request_cell_base(lr))
3739                                pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3740                                        rd->alpha2[0], rd->alpha2[1]);
3741                        else
3742                                pr_debug("Regulatory domain changed to country: %c%c\n",
3743                                        rd->alpha2[0], rd->alpha2[1]);
3744                }
3745        }
3746
3747        pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3748        print_rd_rules(rd);
3749}
3750
3751static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3752{
3753        pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3754        print_rd_rules(rd);
3755}
3756
3757static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3758{
3759        if (!is_world_regdom(rd->alpha2))
3760                return -EINVAL;
3761        update_world_regdomain(rd);
3762        return 0;
3763}
3764
3765static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3766                           struct regulatory_request *user_request)
3767{
3768        const struct ieee80211_regdomain *intersected_rd = NULL;
3769
3770        if (!regdom_changes(rd->alpha2))
3771                return -EALREADY;
3772
3773        if (!is_valid_rd(rd)) {
3774                pr_err("Invalid regulatory domain detected: %c%c\n",
3775                       rd->alpha2[0], rd->alpha2[1]);
3776                print_regdomain_info(rd);
3777                return -EINVAL;
3778        }
3779
3780        if (!user_request->intersect) {
3781                reset_regdomains(false, rd);
3782                return 0;
3783        }
3784
3785        intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3786        if (!intersected_rd)
3787                return -EINVAL;
3788
3789        kfree(rd);
3790        rd = NULL;
3791        reset_regdomains(false, intersected_rd);
3792
3793        return 0;
3794}
3795
3796static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3797                             struct regulatory_request *driver_request)
3798{
3799        const struct ieee80211_regdomain *regd;
3800        const struct ieee80211_regdomain *intersected_rd = NULL;
3801        const struct ieee80211_regdomain *tmp;
3802        struct wiphy *request_wiphy;
3803
3804        if (is_world_regdom(rd->alpha2))
3805                return -EINVAL;
3806
3807        if (!regdom_changes(rd->alpha2))
3808                return -EALREADY;
3809
3810        if (!is_valid_rd(rd)) {
3811                pr_err("Invalid regulatory domain detected: %c%c\n",
3812                       rd->alpha2[0], rd->alpha2[1]);
3813                print_regdomain_info(rd);
3814                return -EINVAL;
3815        }
3816
3817        request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3818        if (!request_wiphy)
3819                return -ENODEV;
3820
3821        if (!driver_request->intersect) {
3822                ASSERT_RTNL();
3823                wiphy_lock(request_wiphy);
3824                if (request_wiphy->regd) {
3825                        wiphy_unlock(request_wiphy);
3826                        return -EALREADY;
3827                }
3828
3829                regd = reg_copy_regd(rd);
3830                if (IS_ERR(regd)) {
3831                        wiphy_unlock(request_wiphy);
3832                        return PTR_ERR(regd);
3833                }
3834
3835                rcu_assign_pointer(request_wiphy->regd, regd);
3836                wiphy_unlock(request_wiphy);
3837                reset_regdomains(false, rd);
3838                return 0;
3839        }
3840
3841        intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3842        if (!intersected_rd)
3843                return -EINVAL;
3844
3845        /*
3846         * We can trash what CRDA provided now.
3847         * However if a driver requested this specific regulatory
3848         * domain we keep it for its private use
3849         */
3850        tmp = get_wiphy_regdom(request_wiphy);
3851        rcu_assign_pointer(request_wiphy->regd, rd);
3852        rcu_free_regdom(tmp);
3853
3854        rd = NULL;
3855
3856        reset_regdomains(false, intersected_rd);
3857
3858        return 0;
3859}
3860
3861static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3862                                 struct regulatory_request *country_ie_request)
3863{
3864        struct wiphy *request_wiphy;
3865
3866        if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3867            !is_unknown_alpha2(rd->alpha2))
3868                return -EINVAL;
3869
3870        /*
3871         * Lets only bother proceeding on the same alpha2 if the current
3872         * rd is non static (it means CRDA was present and was used last)
3873         * and the pending request came in from a country IE
3874         */
3875
3876        if (!is_valid_rd(rd)) {
3877                pr_err("Invalid regulatory domain detected: %c%c\n",
3878                       rd->alpha2[0], rd->alpha2[1]);
3879                print_regdomain_info(rd);
3880                return -EINVAL;
3881        }
3882
3883        request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3884        if (!request_wiphy)
3885                return -ENODEV;
3886
3887        if (country_ie_request->intersect)
3888                return -EINVAL;
3889
3890        reset_regdomains(false, rd);
3891        return 0;
3892}
3893
3894/*
3895 * Use this call to set the current regulatory domain. Conflicts with
3896 * multiple drivers can be ironed out later. Caller must've already
3897 * kmalloc'd the rd structure.
3898 */
3899int set_regdom(const struct ieee80211_regdomain *rd,
3900               enum ieee80211_regd_source regd_src)
3901{
3902        struct regulatory_request *lr;
3903        bool user_reset = false;
3904        int r;
3905
3906        if (IS_ERR_OR_NULL(rd))
3907                return -ENODATA;
3908
3909        if (!reg_is_valid_request(rd->alpha2)) {
3910                kfree(rd);
3911                return -EINVAL;
3912        }
3913
3914        if (regd_src == REGD_SOURCE_CRDA)
3915                reset_crda_timeouts();
3916
3917        lr = get_last_request();
3918
3919        /* Note that this doesn't update the wiphys, this is done below */
3920        switch (lr->initiator) {
3921        case NL80211_REGDOM_SET_BY_CORE:
3922                r = reg_set_rd_core(rd);
3923                break;
3924        case NL80211_REGDOM_SET_BY_USER:
3925                cfg80211_save_user_regdom(rd);
3926                r = reg_set_rd_user(rd, lr);
3927                user_reset = true;
3928                break;
3929        case NL80211_REGDOM_SET_BY_DRIVER:
3930                r = reg_set_rd_driver(rd, lr);
3931                break;
3932        case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3933                r = reg_set_rd_country_ie(rd, lr);
3934                break;
3935        default:
3936                WARN(1, "invalid initiator %d\n", lr->initiator);
3937                kfree(rd);
3938                return -EINVAL;
3939        }
3940
3941        if (r) {
3942                switch (r) {
3943                case -EALREADY:
3944                        reg_set_request_processed();
3945                        break;
3946                default:
3947                        /* Back to world regulatory in case of errors */
3948                        restore_regulatory_settings(user_reset, false);
3949                }
3950
3951                kfree(rd);
3952                return r;
3953        }
3954
3955        /* This would make this whole thing pointless */
3956        if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3957                return -EINVAL;
3958
3959        /* update all wiphys now with the new established regulatory domain */
3960        update_all_wiphy_regulatory(lr->initiator);
3961
3962        print_regdomain(get_cfg80211_regdom());
3963
3964        nl80211_send_reg_change_event(lr);
3965
3966        reg_set_request_processed();
3967
3968        return 0;
3969}
3970
3971static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3972                                       struct ieee80211_regdomain *rd)
3973{
3974        const struct ieee80211_regdomain *regd;
3975        const struct ieee80211_regdomain *prev_regd;
3976        struct cfg80211_registered_device *rdev;
3977
3978        if (WARN_ON(!wiphy || !rd))
3979                return -EINVAL;
3980
3981        if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3982                 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3983                return -EPERM;
3984
3985        if (WARN(!is_valid_rd(rd),
3986                 "Invalid regulatory domain detected: %c%c\n",
3987                 rd->alpha2[0], rd->alpha2[1])) {
3988                print_regdomain_info(rd);
3989                return -EINVAL;
3990        }
3991
3992        regd = reg_copy_regd(rd);
3993        if (IS_ERR(regd))
3994                return PTR_ERR(regd);
3995
3996        rdev = wiphy_to_rdev(wiphy);
3997
3998        spin_lock(&reg_requests_lock);
3999        prev_regd = rdev->requested_regd;
4000        rdev->requested_regd = regd;
4001        spin_unlock(&reg_requests_lock);
4002
4003        kfree(prev_regd);
4004        return 0;
4005}
4006
4007int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4008                              struct ieee80211_regdomain *rd)
4009{
4010        int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4011
4012        if (ret)
4013                return ret;
4014
4015        schedule_work(&reg_work);
4016        return 0;
4017}
4018EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4019
4020int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4021                                   struct ieee80211_regdomain *rd)
4022{
4023        int ret;
4024
4025        ASSERT_RTNL();
4026
4027        ret = __regulatory_set_wiphy_regd(wiphy, rd);
4028        if (ret)
4029                return ret;
4030
4031        /* process the request immediately */
4032        reg_process_self_managed_hint(wiphy);
4033        reg_check_channels();
4034        return 0;
4035}
4036EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4037
4038void wiphy_regulatory_register(struct wiphy *wiphy)
4039{
4040        struct regulatory_request *lr = get_last_request();
4041
4042        /* self-managed devices ignore beacon hints and country IE */
4043        if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4044                wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4045                                           REGULATORY_COUNTRY_IE_IGNORE;
4046
4047                /*
4048                 * The last request may have been received before this
4049                 * registration call. Call the driver notifier if
4050                 * initiator is USER.
4051                 */
4052                if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4053                        reg_call_notifier(wiphy, lr);
4054        }
4055
4056        if (!reg_dev_ignore_cell_hint(wiphy))
4057                reg_num_devs_support_basehint++;
4058
4059        wiphy_update_regulatory(wiphy, lr->initiator);
4060        wiphy_all_share_dfs_chan_state(wiphy);
4061        reg_process_self_managed_hints();
4062}
4063
4064void wiphy_regulatory_deregister(struct wiphy *wiphy)
4065{
4066        struct wiphy *request_wiphy = NULL;
4067        struct regulatory_request *lr;
4068
4069        lr = get_last_request();
4070
4071        if (!reg_dev_ignore_cell_hint(wiphy))
4072                reg_num_devs_support_basehint--;
4073
4074        rcu_free_regdom(get_wiphy_regdom(wiphy));
4075        RCU_INIT_POINTER(wiphy->regd, NULL);
4076
4077        if (lr)
4078                request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4079
4080        if (!request_wiphy || request_wiphy != wiphy)
4081                return;
4082
4083        lr->wiphy_idx = WIPHY_IDX_INVALID;
4084        lr->country_ie_env = ENVIRON_ANY;
4085}
4086
4087/*
4088 * See FCC notices for UNII band definitions
4089 *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4090 *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4091 */
4092int cfg80211_get_unii(int freq)
4093{
4094        /* UNII-1 */
4095        if (freq >= 5150 && freq <= 5250)
4096                return 0;
4097
4098        /* UNII-2A */
4099        if (freq > 5250 && freq <= 5350)
4100                return 1;
4101
4102        /* UNII-2B */
4103        if (freq > 5350 && freq <= 5470)
4104                return 2;
4105
4106        /* UNII-2C */
4107        if (freq > 5470 && freq <= 5725)
4108                return 3;
4109
4110        /* UNII-3 */
4111        if (freq > 5725 && freq <= 5825)
4112                return 4;
4113
4114        /* UNII-5 */
4115        if (freq > 5925 && freq <= 6425)
4116                return 5;
4117
4118        /* UNII-6 */
4119        if (freq > 6425 && freq <= 6525)
4120                return 6;
4121
4122        /* UNII-7 */
4123        if (freq > 6525 && freq <= 6875)
4124                return 7;
4125
4126        /* UNII-8 */
4127        if (freq > 6875 && freq <= 7125)
4128                return 8;
4129
4130        return -EINVAL;
4131}
4132
4133bool regulatory_indoor_allowed(void)
4134{
4135        return reg_is_indoor;
4136}
4137
4138bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4139{
4140        const struct ieee80211_regdomain *regd = NULL;
4141        const struct ieee80211_regdomain *wiphy_regd = NULL;
4142        bool pre_cac_allowed = false;
4143
4144        rcu_read_lock();
4145
4146        regd = rcu_dereference(cfg80211_regdomain);
4147        wiphy_regd = rcu_dereference(wiphy->regd);
4148        if (!wiphy_regd) {
4149                if (regd->dfs_region == NL80211_DFS_ETSI)
4150                        pre_cac_allowed = true;
4151
4152                rcu_read_unlock();
4153
4154                return pre_cac_allowed;
4155        }
4156
4157        if (regd->dfs_region == wiphy_regd->dfs_region &&
4158            wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4159                pre_cac_allowed = true;
4160
4161        rcu_read_unlock();
4162
4163        return pre_cac_allowed;
4164}
4165EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4166
4167static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4168{
4169        struct wireless_dev *wdev;
4170        /* If we finished CAC or received radar, we should end any
4171         * CAC running on the same channels.
4172         * the check !cfg80211_chandef_dfs_usable contain 2 options:
4173         * either all channels are available - those the CAC_FINISHED
4174         * event has effected another wdev state, or there is a channel
4175         * in unavailable state in wdev chandef - those the RADAR_DETECTED
4176         * event has effected another wdev state.
4177         * In both cases we should end the CAC on the wdev.
4178         */
4179        list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4180                if (wdev->cac_started &&
4181                    !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef))
4182                        rdev_end_cac(rdev, wdev->netdev);
4183        }
4184}
4185
4186void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4187                                    struct cfg80211_chan_def *chandef,
4188                                    enum nl80211_dfs_state dfs_state,
4189                                    enum nl80211_radar_event event)
4190{
4191        struct cfg80211_registered_device *rdev;
4192
4193        ASSERT_RTNL();
4194
4195        if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4196                return;
4197
4198        list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4199                if (wiphy == &rdev->wiphy)
4200                        continue;
4201
4202                if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4203                        continue;
4204
4205                if (!ieee80211_get_channel(&rdev->wiphy,
4206                                           chandef->chan->center_freq))
4207                        continue;
4208
4209                cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4210
4211                if (event == NL80211_RADAR_DETECTED ||
4212                    event == NL80211_RADAR_CAC_FINISHED) {
4213                        cfg80211_sched_dfs_chan_update(rdev);
4214                        cfg80211_check_and_end_cac(rdev);
4215                }
4216
4217                nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4218        }
4219}
4220
4221static int __init regulatory_init_db(void)
4222{
4223        int err;
4224
4225        /*
4226         * It's possible that - due to other bugs/issues - cfg80211
4227         * never called regulatory_init() below, or that it failed;
4228         * in that case, don't try to do any further work here as
4229         * it's doomed to lead to crashes.
4230         */
4231        if (IS_ERR_OR_NULL(reg_pdev))
4232                return -EINVAL;
4233
4234        err = load_builtin_regdb_keys();
4235        if (err)
4236                return err;
4237
4238        /* We always try to get an update for the static regdomain */
4239        err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4240        if (err) {
4241                if (err == -ENOMEM) {
4242                        platform_device_unregister(reg_pdev);
4243                        return err;
4244                }
4245                /*
4246                 * N.B. kobject_uevent_env() can fail mainly for when we're out
4247                 * memory which is handled and propagated appropriately above
4248                 * but it can also fail during a netlink_broadcast() or during
4249                 * early boot for call_usermodehelper(). For now treat these
4250                 * errors as non-fatal.
4251                 */
4252                pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4253        }
4254
4255        /*
4256         * Finally, if the user set the module parameter treat it
4257         * as a user hint.
4258         */
4259        if (!is_world_regdom(ieee80211_regdom))
4260                regulatory_hint_user(ieee80211_regdom,
4261                                     NL80211_USER_REG_HINT_USER);
4262
4263        return 0;
4264}
4265#ifndef MODULE
4266late_initcall(regulatory_init_db);
4267#endif
4268
4269int __init regulatory_init(void)
4270{
4271        reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4272        if (IS_ERR(reg_pdev))
4273                return PTR_ERR(reg_pdev);
4274
4275        rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4276
4277        user_alpha2[0] = '9';
4278        user_alpha2[1] = '7';
4279
4280#ifdef MODULE
4281        return regulatory_init_db();
4282#else
4283        return 0;
4284#endif
4285}
4286
4287void regulatory_exit(void)
4288{
4289        struct regulatory_request *reg_request, *tmp;
4290        struct reg_beacon *reg_beacon, *btmp;
4291
4292        cancel_work_sync(&reg_work);
4293        cancel_crda_timeout_sync();
4294        cancel_delayed_work_sync(&reg_check_chans);
4295
4296        /* Lock to suppress warnings */
4297        rtnl_lock();
4298        reset_regdomains(true, NULL);
4299        rtnl_unlock();
4300
4301        dev_set_uevent_suppress(&reg_pdev->dev, true);
4302
4303        platform_device_unregister(reg_pdev);
4304
4305        list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4306                list_del(&reg_beacon->list);
4307                kfree(reg_beacon);
4308        }
4309
4310        list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4311                list_del(&reg_beacon->list);
4312                kfree(reg_beacon);
4313        }
4314
4315        list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4316                list_del(&reg_request->list);
4317                kfree(reg_request);
4318        }
4319
4320        if (!IS_ERR_OR_NULL(regdb))
4321                kfree(regdb);
4322        if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4323                kfree(cfg80211_user_regdom);
4324
4325        free_regdb_keyring();
4326}
4327