linux/net/xdp/xsk_queue.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/* XDP user-space ring structure
   3 * Copyright(c) 2018 Intel Corporation.
   4 */
   5
   6#ifndef _LINUX_XSK_QUEUE_H
   7#define _LINUX_XSK_QUEUE_H
   8
   9#include <linux/types.h>
  10#include <linux/if_xdp.h>
  11#include <net/xdp_sock.h>
  12#include <net/xsk_buff_pool.h>
  13
  14#include "xsk.h"
  15
  16struct xdp_ring {
  17        u32 producer ____cacheline_aligned_in_smp;
  18        /* Hinder the adjacent cache prefetcher to prefetch the consumer
  19         * pointer if the producer pointer is touched and vice versa.
  20         */
  21        u32 pad1 ____cacheline_aligned_in_smp;
  22        u32 consumer ____cacheline_aligned_in_smp;
  23        u32 pad2 ____cacheline_aligned_in_smp;
  24        u32 flags;
  25        u32 pad3 ____cacheline_aligned_in_smp;
  26};
  27
  28/* Used for the RX and TX queues for packets */
  29struct xdp_rxtx_ring {
  30        struct xdp_ring ptrs;
  31        struct xdp_desc desc[] ____cacheline_aligned_in_smp;
  32};
  33
  34/* Used for the fill and completion queues for buffers */
  35struct xdp_umem_ring {
  36        struct xdp_ring ptrs;
  37        u64 desc[] ____cacheline_aligned_in_smp;
  38};
  39
  40struct xsk_queue {
  41        u32 ring_mask;
  42        u32 nentries;
  43        u32 cached_prod;
  44        u32 cached_cons;
  45        struct xdp_ring *ring;
  46        u64 invalid_descs;
  47        u64 queue_empty_descs;
  48};
  49
  50/* The structure of the shared state of the rings are a simple
  51 * circular buffer, as outlined in
  52 * Documentation/core-api/circular-buffers.rst. For the Rx and
  53 * completion ring, the kernel is the producer and user space is the
  54 * consumer. For the Tx and fill rings, the kernel is the consumer and
  55 * user space is the producer.
  56 *
  57 * producer                         consumer
  58 *
  59 * if (LOAD ->consumer) {  (A)      LOAD.acq ->producer  (C)
  60 *    STORE $data                   LOAD $data
  61 *    STORE.rel ->producer (B)      STORE.rel ->consumer (D)
  62 * }
  63 *
  64 * (A) pairs with (D), and (B) pairs with (C).
  65 *
  66 * Starting with (B), it protects the data from being written after
  67 * the producer pointer. If this barrier was missing, the consumer
  68 * could observe the producer pointer being set and thus load the data
  69 * before the producer has written the new data. The consumer would in
  70 * this case load the old data.
  71 *
  72 * (C) protects the consumer from speculatively loading the data before
  73 * the producer pointer actually has been read. If we do not have this
  74 * barrier, some architectures could load old data as speculative loads
  75 * are not discarded as the CPU does not know there is a dependency
  76 * between ->producer and data.
  77 *
  78 * (A) is a control dependency that separates the load of ->consumer
  79 * from the stores of $data. In case ->consumer indicates there is no
  80 * room in the buffer to store $data we do not. The dependency will
  81 * order both of the stores after the loads. So no barrier is needed.
  82 *
  83 * (D) protects the load of the data to be observed to happen after the
  84 * store of the consumer pointer. If we did not have this memory
  85 * barrier, the producer could observe the consumer pointer being set
  86 * and overwrite the data with a new value before the consumer got the
  87 * chance to read the old value. The consumer would thus miss reading
  88 * the old entry and very likely read the new entry twice, once right
  89 * now and again after circling through the ring.
  90 */
  91
  92/* The operations on the rings are the following:
  93 *
  94 * producer                           consumer
  95 *
  96 * RESERVE entries                    PEEK in the ring for entries
  97 * WRITE data into the ring           READ data from the ring
  98 * SUBMIT entries                     RELEASE entries
  99 *
 100 * The producer reserves one or more entries in the ring. It can then
 101 * fill in these entries and finally submit them so that they can be
 102 * seen and read by the consumer.
 103 *
 104 * The consumer peeks into the ring to see if the producer has written
 105 * any new entries. If so, the consumer can then read these entries
 106 * and when it is done reading them release them back to the producer
 107 * so that the producer can use these slots to fill in new entries.
 108 *
 109 * The function names below reflect these operations.
 110 */
 111
 112/* Functions that read and validate content from consumer rings. */
 113
 114static inline bool xskq_cons_read_addr_unchecked(struct xsk_queue *q, u64 *addr)
 115{
 116        struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
 117
 118        if (q->cached_cons != q->cached_prod) {
 119                u32 idx = q->cached_cons & q->ring_mask;
 120
 121                *addr = ring->desc[idx];
 122                return true;
 123        }
 124
 125        return false;
 126}
 127
 128static inline bool xp_aligned_validate_desc(struct xsk_buff_pool *pool,
 129                                            struct xdp_desc *desc)
 130{
 131        u64 chunk, chunk_end;
 132
 133        chunk = xp_aligned_extract_addr(pool, desc->addr);
 134        if (likely(desc->len)) {
 135                chunk_end = xp_aligned_extract_addr(pool, desc->addr + desc->len - 1);
 136                if (chunk != chunk_end)
 137                        return false;
 138        }
 139
 140        if (chunk >= pool->addrs_cnt)
 141                return false;
 142
 143        if (desc->options)
 144                return false;
 145        return true;
 146}
 147
 148static inline bool xp_unaligned_validate_desc(struct xsk_buff_pool *pool,
 149                                              struct xdp_desc *desc)
 150{
 151        u64 addr, base_addr;
 152
 153        base_addr = xp_unaligned_extract_addr(desc->addr);
 154        addr = xp_unaligned_add_offset_to_addr(desc->addr);
 155
 156        if (desc->len > pool->chunk_size)
 157                return false;
 158
 159        if (base_addr >= pool->addrs_cnt || addr >= pool->addrs_cnt ||
 160            xp_desc_crosses_non_contig_pg(pool, addr, desc->len))
 161                return false;
 162
 163        if (desc->options)
 164                return false;
 165        return true;
 166}
 167
 168static inline bool xp_validate_desc(struct xsk_buff_pool *pool,
 169                                    struct xdp_desc *desc)
 170{
 171        return pool->unaligned ? xp_unaligned_validate_desc(pool, desc) :
 172                xp_aligned_validate_desc(pool, desc);
 173}
 174
 175static inline bool xskq_cons_is_valid_desc(struct xsk_queue *q,
 176                                           struct xdp_desc *d,
 177                                           struct xsk_buff_pool *pool)
 178{
 179        if (!xp_validate_desc(pool, d)) {
 180                q->invalid_descs++;
 181                return false;
 182        }
 183        return true;
 184}
 185
 186static inline bool xskq_cons_read_desc(struct xsk_queue *q,
 187                                       struct xdp_desc *desc,
 188                                       struct xsk_buff_pool *pool)
 189{
 190        while (q->cached_cons != q->cached_prod) {
 191                struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
 192                u32 idx = q->cached_cons & q->ring_mask;
 193
 194                *desc = ring->desc[idx];
 195                if (xskq_cons_is_valid_desc(q, desc, pool))
 196                        return true;
 197
 198                q->cached_cons++;
 199        }
 200
 201        return false;
 202}
 203
 204static inline u32 xskq_cons_read_desc_batch(struct xsk_queue *q,
 205                                            struct xdp_desc *descs,
 206                                            struct xsk_buff_pool *pool, u32 max)
 207{
 208        u32 cached_cons = q->cached_cons, nb_entries = 0;
 209
 210        while (cached_cons != q->cached_prod && nb_entries < max) {
 211                struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
 212                u32 idx = cached_cons & q->ring_mask;
 213
 214                descs[nb_entries] = ring->desc[idx];
 215                if (unlikely(!xskq_cons_is_valid_desc(q, &descs[nb_entries], pool))) {
 216                        /* Skip the entry */
 217                        cached_cons++;
 218                        continue;
 219                }
 220
 221                nb_entries++;
 222                cached_cons++;
 223        }
 224
 225        return nb_entries;
 226}
 227
 228/* Functions for consumers */
 229
 230static inline void __xskq_cons_release(struct xsk_queue *q)
 231{
 232        smp_store_release(&q->ring->consumer, q->cached_cons); /* D, matchees A */
 233}
 234
 235static inline void __xskq_cons_peek(struct xsk_queue *q)
 236{
 237        /* Refresh the local pointer */
 238        q->cached_prod = smp_load_acquire(&q->ring->producer);  /* C, matches B */
 239}
 240
 241static inline void xskq_cons_get_entries(struct xsk_queue *q)
 242{
 243        __xskq_cons_release(q);
 244        __xskq_cons_peek(q);
 245}
 246
 247static inline u32 xskq_cons_nb_entries(struct xsk_queue *q, u32 max)
 248{
 249        u32 entries = q->cached_prod - q->cached_cons;
 250
 251        if (entries >= max)
 252                return max;
 253
 254        __xskq_cons_peek(q);
 255        entries = q->cached_prod - q->cached_cons;
 256
 257        return entries >= max ? max : entries;
 258}
 259
 260static inline bool xskq_cons_has_entries(struct xsk_queue *q, u32 cnt)
 261{
 262        return xskq_cons_nb_entries(q, cnt) >= cnt ? true : false;
 263}
 264
 265static inline bool xskq_cons_peek_addr_unchecked(struct xsk_queue *q, u64 *addr)
 266{
 267        if (q->cached_prod == q->cached_cons)
 268                xskq_cons_get_entries(q);
 269        return xskq_cons_read_addr_unchecked(q, addr);
 270}
 271
 272static inline bool xskq_cons_peek_desc(struct xsk_queue *q,
 273                                       struct xdp_desc *desc,
 274                                       struct xsk_buff_pool *pool)
 275{
 276        if (q->cached_prod == q->cached_cons)
 277                xskq_cons_get_entries(q);
 278        return xskq_cons_read_desc(q, desc, pool);
 279}
 280
 281static inline u32 xskq_cons_peek_desc_batch(struct xsk_queue *q, struct xdp_desc *descs,
 282                                            struct xsk_buff_pool *pool, u32 max)
 283{
 284        u32 entries = xskq_cons_nb_entries(q, max);
 285
 286        return xskq_cons_read_desc_batch(q, descs, pool, entries);
 287}
 288
 289/* To improve performance in the xskq_cons_release functions, only update local state here.
 290 * Reflect this to global state when we get new entries from the ring in
 291 * xskq_cons_get_entries() and whenever Rx or Tx processing are completed in the NAPI loop.
 292 */
 293static inline void xskq_cons_release(struct xsk_queue *q)
 294{
 295        q->cached_cons++;
 296}
 297
 298static inline void xskq_cons_release_n(struct xsk_queue *q, u32 cnt)
 299{
 300        q->cached_cons += cnt;
 301}
 302
 303static inline bool xskq_cons_is_full(struct xsk_queue *q)
 304{
 305        /* No barriers needed since data is not accessed */
 306        return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer) ==
 307                q->nentries;
 308}
 309
 310static inline u32 xskq_cons_present_entries(struct xsk_queue *q)
 311{
 312        /* No barriers needed since data is not accessed */
 313        return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer);
 314}
 315
 316/* Functions for producers */
 317
 318static inline u32 xskq_prod_nb_free(struct xsk_queue *q, u32 max)
 319{
 320        u32 free_entries = q->nentries - (q->cached_prod - q->cached_cons);
 321
 322        if (free_entries >= max)
 323                return max;
 324
 325        /* Refresh the local tail pointer */
 326        q->cached_cons = READ_ONCE(q->ring->consumer);
 327        free_entries = q->nentries - (q->cached_prod - q->cached_cons);
 328
 329        return free_entries >= max ? max : free_entries;
 330}
 331
 332static inline bool xskq_prod_is_full(struct xsk_queue *q)
 333{
 334        return xskq_prod_nb_free(q, 1) ? false : true;
 335}
 336
 337static inline void xskq_prod_cancel(struct xsk_queue *q)
 338{
 339        q->cached_prod--;
 340}
 341
 342static inline int xskq_prod_reserve(struct xsk_queue *q)
 343{
 344        if (xskq_prod_is_full(q))
 345                return -ENOSPC;
 346
 347        /* A, matches D */
 348        q->cached_prod++;
 349        return 0;
 350}
 351
 352static inline int xskq_prod_reserve_addr(struct xsk_queue *q, u64 addr)
 353{
 354        struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
 355
 356        if (xskq_prod_is_full(q))
 357                return -ENOSPC;
 358
 359        /* A, matches D */
 360        ring->desc[q->cached_prod++ & q->ring_mask] = addr;
 361        return 0;
 362}
 363
 364static inline u32 xskq_prod_reserve_addr_batch(struct xsk_queue *q, struct xdp_desc *descs,
 365                                               u32 max)
 366{
 367        struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
 368        u32 nb_entries, i, cached_prod;
 369
 370        nb_entries = xskq_prod_nb_free(q, max);
 371
 372        /* A, matches D */
 373        cached_prod = q->cached_prod;
 374        for (i = 0; i < nb_entries; i++)
 375                ring->desc[cached_prod++ & q->ring_mask] = descs[i].addr;
 376        q->cached_prod = cached_prod;
 377
 378        return nb_entries;
 379}
 380
 381static inline int xskq_prod_reserve_desc(struct xsk_queue *q,
 382                                         u64 addr, u32 len)
 383{
 384        struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
 385        u32 idx;
 386
 387        if (xskq_prod_is_full(q))
 388                return -ENOSPC;
 389
 390        /* A, matches D */
 391        idx = q->cached_prod++ & q->ring_mask;
 392        ring->desc[idx].addr = addr;
 393        ring->desc[idx].len = len;
 394
 395        return 0;
 396}
 397
 398static inline void __xskq_prod_submit(struct xsk_queue *q, u32 idx)
 399{
 400        smp_store_release(&q->ring->producer, idx); /* B, matches C */
 401}
 402
 403static inline void xskq_prod_submit(struct xsk_queue *q)
 404{
 405        __xskq_prod_submit(q, q->cached_prod);
 406}
 407
 408static inline void xskq_prod_submit_addr(struct xsk_queue *q, u64 addr)
 409{
 410        struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
 411        u32 idx = q->ring->producer;
 412
 413        ring->desc[idx++ & q->ring_mask] = addr;
 414
 415        __xskq_prod_submit(q, idx);
 416}
 417
 418static inline void xskq_prod_submit_n(struct xsk_queue *q, u32 nb_entries)
 419{
 420        __xskq_prod_submit(q, q->ring->producer + nb_entries);
 421}
 422
 423static inline bool xskq_prod_is_empty(struct xsk_queue *q)
 424{
 425        /* No barriers needed since data is not accessed */
 426        return READ_ONCE(q->ring->consumer) == READ_ONCE(q->ring->producer);
 427}
 428
 429/* For both producers and consumers */
 430
 431static inline u64 xskq_nb_invalid_descs(struct xsk_queue *q)
 432{
 433        return q ? q->invalid_descs : 0;
 434}
 435
 436static inline u64 xskq_nb_queue_empty_descs(struct xsk_queue *q)
 437{
 438        return q ? q->queue_empty_descs : 0;
 439}
 440
 441struct xsk_queue *xskq_create(u32 nentries, bool umem_queue);
 442void xskq_destroy(struct xsk_queue *q_ops);
 443
 444#endif /* _LINUX_XSK_QUEUE_H */
 445