linux/security/security.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Security plug functions
   4 *
   5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
   6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
   7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
   8 * Copyright (C) 2016 Mellanox Technologies
   9 */
  10
  11#define pr_fmt(fmt) "LSM: " fmt
  12
  13#include <linux/bpf.h>
  14#include <linux/capability.h>
  15#include <linux/dcache.h>
  16#include <linux/export.h>
  17#include <linux/init.h>
  18#include <linux/kernel.h>
  19#include <linux/lsm_hooks.h>
  20#include <linux/integrity.h>
  21#include <linux/ima.h>
  22#include <linux/evm.h>
  23#include <linux/fsnotify.h>
  24#include <linux/mman.h>
  25#include <linux/mount.h>
  26#include <linux/personality.h>
  27#include <linux/backing-dev.h>
  28#include <linux/string.h>
  29#include <linux/msg.h>
  30#include <net/flow.h>
  31
  32#define MAX_LSM_EVM_XATTR       2
  33
  34/* How many LSMs were built into the kernel? */
  35#define LSM_COUNT (__end_lsm_info - __start_lsm_info)
  36#define EARLY_LSM_COUNT (__end_early_lsm_info - __start_early_lsm_info)
  37
  38struct security_hook_heads security_hook_heads __lsm_ro_after_init;
  39static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
  40
  41static struct kmem_cache *lsm_file_cache;
  42static struct kmem_cache *lsm_inode_cache;
  43
  44char *lsm_names;
  45static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
  46
  47/* Boot-time LSM user choice */
  48static __initdata const char *chosen_lsm_order;
  49static __initdata const char *chosen_major_lsm;
  50
  51static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
  52
  53/* Ordered list of LSMs to initialize. */
  54static __initdata struct lsm_info **ordered_lsms;
  55static __initdata struct lsm_info *exclusive;
  56
  57static __initdata bool debug;
  58#define init_debug(...)                                         \
  59        do {                                                    \
  60                if (debug)                                      \
  61                        pr_info(__VA_ARGS__);                   \
  62        } while (0)
  63
  64static bool __init is_enabled(struct lsm_info *lsm)
  65{
  66        if (!lsm->enabled)
  67                return false;
  68
  69        return *lsm->enabled;
  70}
  71
  72/* Mark an LSM's enabled flag. */
  73static int lsm_enabled_true __initdata = 1;
  74static int lsm_enabled_false __initdata = 0;
  75static void __init set_enabled(struct lsm_info *lsm, bool enabled)
  76{
  77        /*
  78         * When an LSM hasn't configured an enable variable, we can use
  79         * a hard-coded location for storing the default enabled state.
  80         */
  81        if (!lsm->enabled) {
  82                if (enabled)
  83                        lsm->enabled = &lsm_enabled_true;
  84                else
  85                        lsm->enabled = &lsm_enabled_false;
  86        } else if (lsm->enabled == &lsm_enabled_true) {
  87                if (!enabled)
  88                        lsm->enabled = &lsm_enabled_false;
  89        } else if (lsm->enabled == &lsm_enabled_false) {
  90                if (enabled)
  91                        lsm->enabled = &lsm_enabled_true;
  92        } else {
  93                *lsm->enabled = enabled;
  94        }
  95}
  96
  97/* Is an LSM already listed in the ordered LSMs list? */
  98static bool __init exists_ordered_lsm(struct lsm_info *lsm)
  99{
 100        struct lsm_info **check;
 101
 102        for (check = ordered_lsms; *check; check++)
 103                if (*check == lsm)
 104                        return true;
 105
 106        return false;
 107}
 108
 109/* Append an LSM to the list of ordered LSMs to initialize. */
 110static int last_lsm __initdata;
 111static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
 112{
 113        /* Ignore duplicate selections. */
 114        if (exists_ordered_lsm(lsm))
 115                return;
 116
 117        if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
 118                return;
 119
 120        /* Enable this LSM, if it is not already set. */
 121        if (!lsm->enabled)
 122                lsm->enabled = &lsm_enabled_true;
 123        ordered_lsms[last_lsm++] = lsm;
 124
 125        init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
 126                   is_enabled(lsm) ? "en" : "dis");
 127}
 128
 129/* Is an LSM allowed to be initialized? */
 130static bool __init lsm_allowed(struct lsm_info *lsm)
 131{
 132        /* Skip if the LSM is disabled. */
 133        if (!is_enabled(lsm))
 134                return false;
 135
 136        /* Not allowed if another exclusive LSM already initialized. */
 137        if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
 138                init_debug("exclusive disabled: %s\n", lsm->name);
 139                return false;
 140        }
 141
 142        return true;
 143}
 144
 145static void __init lsm_set_blob_size(int *need, int *lbs)
 146{
 147        int offset;
 148
 149        if (*need > 0) {
 150                offset = *lbs;
 151                *lbs += *need;
 152                *need = offset;
 153        }
 154}
 155
 156static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
 157{
 158        if (!needed)
 159                return;
 160
 161        lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
 162        lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
 163        /*
 164         * The inode blob gets an rcu_head in addition to
 165         * what the modules might need.
 166         */
 167        if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
 168                blob_sizes.lbs_inode = sizeof(struct rcu_head);
 169        lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
 170        lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
 171        lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
 172        lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
 173}
 174
 175/* Prepare LSM for initialization. */
 176static void __init prepare_lsm(struct lsm_info *lsm)
 177{
 178        int enabled = lsm_allowed(lsm);
 179
 180        /* Record enablement (to handle any following exclusive LSMs). */
 181        set_enabled(lsm, enabled);
 182
 183        /* If enabled, do pre-initialization work. */
 184        if (enabled) {
 185                if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
 186                        exclusive = lsm;
 187                        init_debug("exclusive chosen: %s\n", lsm->name);
 188                }
 189
 190                lsm_set_blob_sizes(lsm->blobs);
 191        }
 192}
 193
 194/* Initialize a given LSM, if it is enabled. */
 195static void __init initialize_lsm(struct lsm_info *lsm)
 196{
 197        if (is_enabled(lsm)) {
 198                int ret;
 199
 200                init_debug("initializing %s\n", lsm->name);
 201                ret = lsm->init();
 202                WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
 203        }
 204}
 205
 206/* Populate ordered LSMs list from comma-separated LSM name list. */
 207static void __init ordered_lsm_parse(const char *order, const char *origin)
 208{
 209        struct lsm_info *lsm;
 210        char *sep, *name, *next;
 211
 212        /* LSM_ORDER_FIRST is always first. */
 213        for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 214                if (lsm->order == LSM_ORDER_FIRST)
 215                        append_ordered_lsm(lsm, "first");
 216        }
 217
 218        /* Process "security=", if given. */
 219        if (chosen_major_lsm) {
 220                struct lsm_info *major;
 221
 222                /*
 223                 * To match the original "security=" behavior, this
 224                 * explicitly does NOT fallback to another Legacy Major
 225                 * if the selected one was separately disabled: disable
 226                 * all non-matching Legacy Major LSMs.
 227                 */
 228                for (major = __start_lsm_info; major < __end_lsm_info;
 229                     major++) {
 230                        if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
 231                            strcmp(major->name, chosen_major_lsm) != 0) {
 232                                set_enabled(major, false);
 233                                init_debug("security=%s disabled: %s\n",
 234                                           chosen_major_lsm, major->name);
 235                        }
 236                }
 237        }
 238
 239        sep = kstrdup(order, GFP_KERNEL);
 240        next = sep;
 241        /* Walk the list, looking for matching LSMs. */
 242        while ((name = strsep(&next, ",")) != NULL) {
 243                bool found = false;
 244
 245                for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 246                        if (lsm->order == LSM_ORDER_MUTABLE &&
 247                            strcmp(lsm->name, name) == 0) {
 248                                append_ordered_lsm(lsm, origin);
 249                                found = true;
 250                        }
 251                }
 252
 253                if (!found)
 254                        init_debug("%s ignored: %s\n", origin, name);
 255        }
 256
 257        /* Process "security=", if given. */
 258        if (chosen_major_lsm) {
 259                for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 260                        if (exists_ordered_lsm(lsm))
 261                                continue;
 262                        if (strcmp(lsm->name, chosen_major_lsm) == 0)
 263                                append_ordered_lsm(lsm, "security=");
 264                }
 265        }
 266
 267        /* Disable all LSMs not in the ordered list. */
 268        for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 269                if (exists_ordered_lsm(lsm))
 270                        continue;
 271                set_enabled(lsm, false);
 272                init_debug("%s disabled: %s\n", origin, lsm->name);
 273        }
 274
 275        kfree(sep);
 276}
 277
 278static void __init lsm_early_cred(struct cred *cred);
 279static void __init lsm_early_task(struct task_struct *task);
 280
 281static int lsm_append(const char *new, char **result);
 282
 283static void __init ordered_lsm_init(void)
 284{
 285        struct lsm_info **lsm;
 286
 287        ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
 288                                GFP_KERNEL);
 289
 290        if (chosen_lsm_order) {
 291                if (chosen_major_lsm) {
 292                        pr_info("security= is ignored because it is superseded by lsm=\n");
 293                        chosen_major_lsm = NULL;
 294                }
 295                ordered_lsm_parse(chosen_lsm_order, "cmdline");
 296        } else
 297                ordered_lsm_parse(builtin_lsm_order, "builtin");
 298
 299        for (lsm = ordered_lsms; *lsm; lsm++)
 300                prepare_lsm(*lsm);
 301
 302        init_debug("cred blob size     = %d\n", blob_sizes.lbs_cred);
 303        init_debug("file blob size     = %d\n", blob_sizes.lbs_file);
 304        init_debug("inode blob size    = %d\n", blob_sizes.lbs_inode);
 305        init_debug("ipc blob size      = %d\n", blob_sizes.lbs_ipc);
 306        init_debug("msg_msg blob size  = %d\n", blob_sizes.lbs_msg_msg);
 307        init_debug("task blob size     = %d\n", blob_sizes.lbs_task);
 308
 309        /*
 310         * Create any kmem_caches needed for blobs
 311         */
 312        if (blob_sizes.lbs_file)
 313                lsm_file_cache = kmem_cache_create("lsm_file_cache",
 314                                                   blob_sizes.lbs_file, 0,
 315                                                   SLAB_PANIC, NULL);
 316        if (blob_sizes.lbs_inode)
 317                lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
 318                                                    blob_sizes.lbs_inode, 0,
 319                                                    SLAB_PANIC, NULL);
 320
 321        lsm_early_cred((struct cred *) current->cred);
 322        lsm_early_task(current);
 323        for (lsm = ordered_lsms; *lsm; lsm++)
 324                initialize_lsm(*lsm);
 325
 326        kfree(ordered_lsms);
 327}
 328
 329int __init early_security_init(void)
 330{
 331        int i;
 332        struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
 333        struct lsm_info *lsm;
 334
 335        for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
 336             i++)
 337                INIT_HLIST_HEAD(&list[i]);
 338
 339        for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
 340                if (!lsm->enabled)
 341                        lsm->enabled = &lsm_enabled_true;
 342                prepare_lsm(lsm);
 343                initialize_lsm(lsm);
 344        }
 345
 346        return 0;
 347}
 348
 349/**
 350 * security_init - initializes the security framework
 351 *
 352 * This should be called early in the kernel initialization sequence.
 353 */
 354int __init security_init(void)
 355{
 356        struct lsm_info *lsm;
 357
 358        pr_info("Security Framework initializing\n");
 359
 360        /*
 361         * Append the names of the early LSM modules now that kmalloc() is
 362         * available
 363         */
 364        for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
 365                if (lsm->enabled)
 366                        lsm_append(lsm->name, &lsm_names);
 367        }
 368
 369        /* Load LSMs in specified order. */
 370        ordered_lsm_init();
 371
 372        return 0;
 373}
 374
 375/* Save user chosen LSM */
 376static int __init choose_major_lsm(char *str)
 377{
 378        chosen_major_lsm = str;
 379        return 1;
 380}
 381__setup("security=", choose_major_lsm);
 382
 383/* Explicitly choose LSM initialization order. */
 384static int __init choose_lsm_order(char *str)
 385{
 386        chosen_lsm_order = str;
 387        return 1;
 388}
 389__setup("lsm=", choose_lsm_order);
 390
 391/* Enable LSM order debugging. */
 392static int __init enable_debug(char *str)
 393{
 394        debug = true;
 395        return 1;
 396}
 397__setup("lsm.debug", enable_debug);
 398
 399static bool match_last_lsm(const char *list, const char *lsm)
 400{
 401        const char *last;
 402
 403        if (WARN_ON(!list || !lsm))
 404                return false;
 405        last = strrchr(list, ',');
 406        if (last)
 407                /* Pass the comma, strcmp() will check for '\0' */
 408                last++;
 409        else
 410                last = list;
 411        return !strcmp(last, lsm);
 412}
 413
 414static int lsm_append(const char *new, char **result)
 415{
 416        char *cp;
 417
 418        if (*result == NULL) {
 419                *result = kstrdup(new, GFP_KERNEL);
 420                if (*result == NULL)
 421                        return -ENOMEM;
 422        } else {
 423                /* Check if it is the last registered name */
 424                if (match_last_lsm(*result, new))
 425                        return 0;
 426                cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
 427                if (cp == NULL)
 428                        return -ENOMEM;
 429                kfree(*result);
 430                *result = cp;
 431        }
 432        return 0;
 433}
 434
 435/**
 436 * security_add_hooks - Add a modules hooks to the hook lists.
 437 * @hooks: the hooks to add
 438 * @count: the number of hooks to add
 439 * @lsm: the name of the security module
 440 *
 441 * Each LSM has to register its hooks with the infrastructure.
 442 */
 443void __init security_add_hooks(struct security_hook_list *hooks, int count,
 444                                char *lsm)
 445{
 446        int i;
 447
 448        for (i = 0; i < count; i++) {
 449                hooks[i].lsm = lsm;
 450                hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
 451        }
 452
 453        /*
 454         * Don't try to append during early_security_init(), we'll come back
 455         * and fix this up afterwards.
 456         */
 457        if (slab_is_available()) {
 458                if (lsm_append(lsm, &lsm_names) < 0)
 459                        panic("%s - Cannot get early memory.\n", __func__);
 460        }
 461}
 462
 463int call_blocking_lsm_notifier(enum lsm_event event, void *data)
 464{
 465        return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
 466                                            event, data);
 467}
 468EXPORT_SYMBOL(call_blocking_lsm_notifier);
 469
 470int register_blocking_lsm_notifier(struct notifier_block *nb)
 471{
 472        return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
 473                                                nb);
 474}
 475EXPORT_SYMBOL(register_blocking_lsm_notifier);
 476
 477int unregister_blocking_lsm_notifier(struct notifier_block *nb)
 478{
 479        return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
 480                                                  nb);
 481}
 482EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
 483
 484/**
 485 * lsm_cred_alloc - allocate a composite cred blob
 486 * @cred: the cred that needs a blob
 487 * @gfp: allocation type
 488 *
 489 * Allocate the cred blob for all the modules
 490 *
 491 * Returns 0, or -ENOMEM if memory can't be allocated.
 492 */
 493static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
 494{
 495        if (blob_sizes.lbs_cred == 0) {
 496                cred->security = NULL;
 497                return 0;
 498        }
 499
 500        cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
 501        if (cred->security == NULL)
 502                return -ENOMEM;
 503        return 0;
 504}
 505
 506/**
 507 * lsm_early_cred - during initialization allocate a composite cred blob
 508 * @cred: the cred that needs a blob
 509 *
 510 * Allocate the cred blob for all the modules
 511 */
 512static void __init lsm_early_cred(struct cred *cred)
 513{
 514        int rc = lsm_cred_alloc(cred, GFP_KERNEL);
 515
 516        if (rc)
 517                panic("%s: Early cred alloc failed.\n", __func__);
 518}
 519
 520/**
 521 * lsm_file_alloc - allocate a composite file blob
 522 * @file: the file that needs a blob
 523 *
 524 * Allocate the file blob for all the modules
 525 *
 526 * Returns 0, or -ENOMEM if memory can't be allocated.
 527 */
 528static int lsm_file_alloc(struct file *file)
 529{
 530        if (!lsm_file_cache) {
 531                file->f_security = NULL;
 532                return 0;
 533        }
 534
 535        file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
 536        if (file->f_security == NULL)
 537                return -ENOMEM;
 538        return 0;
 539}
 540
 541/**
 542 * lsm_inode_alloc - allocate a composite inode blob
 543 * @inode: the inode that needs a blob
 544 *
 545 * Allocate the inode blob for all the modules
 546 *
 547 * Returns 0, or -ENOMEM if memory can't be allocated.
 548 */
 549int lsm_inode_alloc(struct inode *inode)
 550{
 551        if (!lsm_inode_cache) {
 552                inode->i_security = NULL;
 553                return 0;
 554        }
 555
 556        inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
 557        if (inode->i_security == NULL)
 558                return -ENOMEM;
 559        return 0;
 560}
 561
 562/**
 563 * lsm_task_alloc - allocate a composite task blob
 564 * @task: the task that needs a blob
 565 *
 566 * Allocate the task blob for all the modules
 567 *
 568 * Returns 0, or -ENOMEM if memory can't be allocated.
 569 */
 570static int lsm_task_alloc(struct task_struct *task)
 571{
 572        if (blob_sizes.lbs_task == 0) {
 573                task->security = NULL;
 574                return 0;
 575        }
 576
 577        task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
 578        if (task->security == NULL)
 579                return -ENOMEM;
 580        return 0;
 581}
 582
 583/**
 584 * lsm_ipc_alloc - allocate a composite ipc blob
 585 * @kip: the ipc that needs a blob
 586 *
 587 * Allocate the ipc blob for all the modules
 588 *
 589 * Returns 0, or -ENOMEM if memory can't be allocated.
 590 */
 591static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
 592{
 593        if (blob_sizes.lbs_ipc == 0) {
 594                kip->security = NULL;
 595                return 0;
 596        }
 597
 598        kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
 599        if (kip->security == NULL)
 600                return -ENOMEM;
 601        return 0;
 602}
 603
 604/**
 605 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
 606 * @mp: the msg_msg that needs a blob
 607 *
 608 * Allocate the ipc blob for all the modules
 609 *
 610 * Returns 0, or -ENOMEM if memory can't be allocated.
 611 */
 612static int lsm_msg_msg_alloc(struct msg_msg *mp)
 613{
 614        if (blob_sizes.lbs_msg_msg == 0) {
 615                mp->security = NULL;
 616                return 0;
 617        }
 618
 619        mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
 620        if (mp->security == NULL)
 621                return -ENOMEM;
 622        return 0;
 623}
 624
 625/**
 626 * lsm_early_task - during initialization allocate a composite task blob
 627 * @task: the task that needs a blob
 628 *
 629 * Allocate the task blob for all the modules
 630 */
 631static void __init lsm_early_task(struct task_struct *task)
 632{
 633        int rc = lsm_task_alloc(task);
 634
 635        if (rc)
 636                panic("%s: Early task alloc failed.\n", __func__);
 637}
 638
 639/*
 640 * Hook list operation macros.
 641 *
 642 * call_void_hook:
 643 *      This is a hook that does not return a value.
 644 *
 645 * call_int_hook:
 646 *      This is a hook that returns a value.
 647 */
 648
 649#define call_void_hook(FUNC, ...)                               \
 650        do {                                                    \
 651                struct security_hook_list *P;                   \
 652                                                                \
 653                hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
 654                        P->hook.FUNC(__VA_ARGS__);              \
 655        } while (0)
 656
 657#define call_int_hook(FUNC, IRC, ...) ({                        \
 658        int RC = IRC;                                           \
 659        do {                                                    \
 660                struct security_hook_list *P;                   \
 661                                                                \
 662                hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
 663                        RC = P->hook.FUNC(__VA_ARGS__);         \
 664                        if (RC != 0)                            \
 665                                break;                          \
 666                }                                               \
 667        } while (0);                                            \
 668        RC;                                                     \
 669})
 670
 671/* Security operations */
 672
 673int security_binder_set_context_mgr(struct task_struct *mgr)
 674{
 675        return call_int_hook(binder_set_context_mgr, 0, mgr);
 676}
 677
 678int security_binder_transaction(struct task_struct *from,
 679                                struct task_struct *to)
 680{
 681        return call_int_hook(binder_transaction, 0, from, to);
 682}
 683
 684int security_binder_transfer_binder(struct task_struct *from,
 685                                    struct task_struct *to)
 686{
 687        return call_int_hook(binder_transfer_binder, 0, from, to);
 688}
 689
 690int security_binder_transfer_file(struct task_struct *from,
 691                                  struct task_struct *to, struct file *file)
 692{
 693        return call_int_hook(binder_transfer_file, 0, from, to, file);
 694}
 695
 696int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
 697{
 698        return call_int_hook(ptrace_access_check, 0, child, mode);
 699}
 700
 701int security_ptrace_traceme(struct task_struct *parent)
 702{
 703        return call_int_hook(ptrace_traceme, 0, parent);
 704}
 705
 706int security_capget(struct task_struct *target,
 707                     kernel_cap_t *effective,
 708                     kernel_cap_t *inheritable,
 709                     kernel_cap_t *permitted)
 710{
 711        return call_int_hook(capget, 0, target,
 712                                effective, inheritable, permitted);
 713}
 714
 715int security_capset(struct cred *new, const struct cred *old,
 716                    const kernel_cap_t *effective,
 717                    const kernel_cap_t *inheritable,
 718                    const kernel_cap_t *permitted)
 719{
 720        return call_int_hook(capset, 0, new, old,
 721                                effective, inheritable, permitted);
 722}
 723
 724int security_capable(const struct cred *cred,
 725                     struct user_namespace *ns,
 726                     int cap,
 727                     unsigned int opts)
 728{
 729        return call_int_hook(capable, 0, cred, ns, cap, opts);
 730}
 731
 732int security_quotactl(int cmds, int type, int id, struct super_block *sb)
 733{
 734        return call_int_hook(quotactl, 0, cmds, type, id, sb);
 735}
 736
 737int security_quota_on(struct dentry *dentry)
 738{
 739        return call_int_hook(quota_on, 0, dentry);
 740}
 741
 742int security_syslog(int type)
 743{
 744        return call_int_hook(syslog, 0, type);
 745}
 746
 747int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
 748{
 749        return call_int_hook(settime, 0, ts, tz);
 750}
 751
 752int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
 753{
 754        struct security_hook_list *hp;
 755        int cap_sys_admin = 1;
 756        int rc;
 757
 758        /*
 759         * The module will respond with a positive value if
 760         * it thinks the __vm_enough_memory() call should be
 761         * made with the cap_sys_admin set. If all of the modules
 762         * agree that it should be set it will. If any module
 763         * thinks it should not be set it won't.
 764         */
 765        hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
 766                rc = hp->hook.vm_enough_memory(mm, pages);
 767                if (rc <= 0) {
 768                        cap_sys_admin = 0;
 769                        break;
 770                }
 771        }
 772        return __vm_enough_memory(mm, pages, cap_sys_admin);
 773}
 774
 775int security_bprm_set_creds(struct linux_binprm *bprm)
 776{
 777        return call_int_hook(bprm_set_creds, 0, bprm);
 778}
 779
 780int security_bprm_check(struct linux_binprm *bprm)
 781{
 782        int ret;
 783
 784        ret = call_int_hook(bprm_check_security, 0, bprm);
 785        if (ret)
 786                return ret;
 787        return ima_bprm_check(bprm);
 788}
 789
 790void security_bprm_committing_creds(struct linux_binprm *bprm)
 791{
 792        call_void_hook(bprm_committing_creds, bprm);
 793}
 794
 795void security_bprm_committed_creds(struct linux_binprm *bprm)
 796{
 797        call_void_hook(bprm_committed_creds, bprm);
 798}
 799
 800int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
 801{
 802        return call_int_hook(fs_context_dup, 0, fc, src_fc);
 803}
 804
 805int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
 806{
 807        return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
 808}
 809
 810int security_sb_alloc(struct super_block *sb)
 811{
 812        return call_int_hook(sb_alloc_security, 0, sb);
 813}
 814
 815void security_sb_free(struct super_block *sb)
 816{
 817        call_void_hook(sb_free_security, sb);
 818}
 819
 820void security_free_mnt_opts(void **mnt_opts)
 821{
 822        if (!*mnt_opts)
 823                return;
 824        call_void_hook(sb_free_mnt_opts, *mnt_opts);
 825        *mnt_opts = NULL;
 826}
 827EXPORT_SYMBOL(security_free_mnt_opts);
 828
 829int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
 830{
 831        return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
 832}
 833EXPORT_SYMBOL(security_sb_eat_lsm_opts);
 834
 835int security_sb_remount(struct super_block *sb,
 836                        void *mnt_opts)
 837{
 838        return call_int_hook(sb_remount, 0, sb, mnt_opts);
 839}
 840EXPORT_SYMBOL(security_sb_remount);
 841
 842int security_sb_kern_mount(struct super_block *sb)
 843{
 844        return call_int_hook(sb_kern_mount, 0, sb);
 845}
 846
 847int security_sb_show_options(struct seq_file *m, struct super_block *sb)
 848{
 849        return call_int_hook(sb_show_options, 0, m, sb);
 850}
 851
 852int security_sb_statfs(struct dentry *dentry)
 853{
 854        return call_int_hook(sb_statfs, 0, dentry);
 855}
 856
 857int security_sb_mount(const char *dev_name, const struct path *path,
 858                       const char *type, unsigned long flags, void *data)
 859{
 860        return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
 861}
 862
 863int security_sb_umount(struct vfsmount *mnt, int flags)
 864{
 865        return call_int_hook(sb_umount, 0, mnt, flags);
 866}
 867
 868int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
 869{
 870        return call_int_hook(sb_pivotroot, 0, old_path, new_path);
 871}
 872
 873int security_sb_set_mnt_opts(struct super_block *sb,
 874                                void *mnt_opts,
 875                                unsigned long kern_flags,
 876                                unsigned long *set_kern_flags)
 877{
 878        return call_int_hook(sb_set_mnt_opts,
 879                                mnt_opts ? -EOPNOTSUPP : 0, sb,
 880                                mnt_opts, kern_flags, set_kern_flags);
 881}
 882EXPORT_SYMBOL(security_sb_set_mnt_opts);
 883
 884int security_sb_clone_mnt_opts(const struct super_block *oldsb,
 885                                struct super_block *newsb,
 886                                unsigned long kern_flags,
 887                                unsigned long *set_kern_flags)
 888{
 889        return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
 890                                kern_flags, set_kern_flags);
 891}
 892EXPORT_SYMBOL(security_sb_clone_mnt_opts);
 893
 894int security_add_mnt_opt(const char *option, const char *val, int len,
 895                         void **mnt_opts)
 896{
 897        return call_int_hook(sb_add_mnt_opt, -EINVAL,
 898                                        option, val, len, mnt_opts);
 899}
 900EXPORT_SYMBOL(security_add_mnt_opt);
 901
 902int security_move_mount(const struct path *from_path, const struct path *to_path)
 903{
 904        return call_int_hook(move_mount, 0, from_path, to_path);
 905}
 906
 907int security_path_notify(const struct path *path, u64 mask,
 908                                unsigned int obj_type)
 909{
 910        return call_int_hook(path_notify, 0, path, mask, obj_type);
 911}
 912
 913int security_inode_alloc(struct inode *inode)
 914{
 915        int rc = lsm_inode_alloc(inode);
 916
 917        if (unlikely(rc))
 918                return rc;
 919        rc = call_int_hook(inode_alloc_security, 0, inode);
 920        if (unlikely(rc))
 921                security_inode_free(inode);
 922        return rc;
 923}
 924
 925static void inode_free_by_rcu(struct rcu_head *head)
 926{
 927        /*
 928         * The rcu head is at the start of the inode blob
 929         */
 930        kmem_cache_free(lsm_inode_cache, head);
 931}
 932
 933void security_inode_free(struct inode *inode)
 934{
 935        integrity_inode_free(inode);
 936        call_void_hook(inode_free_security, inode);
 937        /*
 938         * The inode may still be referenced in a path walk and
 939         * a call to security_inode_permission() can be made
 940         * after inode_free_security() is called. Ideally, the VFS
 941         * wouldn't do this, but fixing that is a much harder
 942         * job. For now, simply free the i_security via RCU, and
 943         * leave the current inode->i_security pointer intact.
 944         * The inode will be freed after the RCU grace period too.
 945         */
 946        if (inode->i_security)
 947                call_rcu((struct rcu_head *)inode->i_security,
 948                                inode_free_by_rcu);
 949}
 950
 951int security_dentry_init_security(struct dentry *dentry, int mode,
 952                                        const struct qstr *name, void **ctx,
 953                                        u32 *ctxlen)
 954{
 955        return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
 956                                name, ctx, ctxlen);
 957}
 958EXPORT_SYMBOL(security_dentry_init_security);
 959
 960int security_dentry_create_files_as(struct dentry *dentry, int mode,
 961                                    struct qstr *name,
 962                                    const struct cred *old, struct cred *new)
 963{
 964        return call_int_hook(dentry_create_files_as, 0, dentry, mode,
 965                                name, old, new);
 966}
 967EXPORT_SYMBOL(security_dentry_create_files_as);
 968
 969int security_inode_init_security(struct inode *inode, struct inode *dir,
 970                                 const struct qstr *qstr,
 971                                 const initxattrs initxattrs, void *fs_data)
 972{
 973        struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
 974        struct xattr *lsm_xattr, *evm_xattr, *xattr;
 975        int ret;
 976
 977        if (unlikely(IS_PRIVATE(inode)))
 978                return 0;
 979
 980        if (!initxattrs)
 981                return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
 982                                     dir, qstr, NULL, NULL, NULL);
 983        memset(new_xattrs, 0, sizeof(new_xattrs));
 984        lsm_xattr = new_xattrs;
 985        ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
 986                                                &lsm_xattr->name,
 987                                                &lsm_xattr->value,
 988                                                &lsm_xattr->value_len);
 989        if (ret)
 990                goto out;
 991
 992        evm_xattr = lsm_xattr + 1;
 993        ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
 994        if (ret)
 995                goto out;
 996        ret = initxattrs(inode, new_xattrs, fs_data);
 997out:
 998        for (xattr = new_xattrs; xattr->value != NULL; xattr++)
 999                kfree(xattr->value);
1000        return (ret == -EOPNOTSUPP) ? 0 : ret;
1001}
1002EXPORT_SYMBOL(security_inode_init_security);
1003
1004int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1005                                     const struct qstr *qstr, const char **name,
1006                                     void **value, size_t *len)
1007{
1008        if (unlikely(IS_PRIVATE(inode)))
1009                return -EOPNOTSUPP;
1010        return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1011                             qstr, name, value, len);
1012}
1013EXPORT_SYMBOL(security_old_inode_init_security);
1014
1015#ifdef CONFIG_SECURITY_PATH
1016int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1017                        unsigned int dev)
1018{
1019        if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1020                return 0;
1021        return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1022}
1023EXPORT_SYMBOL(security_path_mknod);
1024
1025int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1026{
1027        if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1028                return 0;
1029        return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1030}
1031EXPORT_SYMBOL(security_path_mkdir);
1032
1033int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1034{
1035        if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1036                return 0;
1037        return call_int_hook(path_rmdir, 0, dir, dentry);
1038}
1039
1040int security_path_unlink(const struct path *dir, struct dentry *dentry)
1041{
1042        if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1043                return 0;
1044        return call_int_hook(path_unlink, 0, dir, dentry);
1045}
1046EXPORT_SYMBOL(security_path_unlink);
1047
1048int security_path_symlink(const struct path *dir, struct dentry *dentry,
1049                          const char *old_name)
1050{
1051        if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1052                return 0;
1053        return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1054}
1055
1056int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1057                       struct dentry *new_dentry)
1058{
1059        if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1060                return 0;
1061        return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1062}
1063
1064int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1065                         const struct path *new_dir, struct dentry *new_dentry,
1066                         unsigned int flags)
1067{
1068        if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1069                     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1070                return 0;
1071
1072        if (flags & RENAME_EXCHANGE) {
1073                int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1074                                        old_dir, old_dentry);
1075                if (err)
1076                        return err;
1077        }
1078
1079        return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1080                                new_dentry);
1081}
1082EXPORT_SYMBOL(security_path_rename);
1083
1084int security_path_truncate(const struct path *path)
1085{
1086        if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1087                return 0;
1088        return call_int_hook(path_truncate, 0, path);
1089}
1090
1091int security_path_chmod(const struct path *path, umode_t mode)
1092{
1093        if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1094                return 0;
1095        return call_int_hook(path_chmod, 0, path, mode);
1096}
1097
1098int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1099{
1100        if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1101                return 0;
1102        return call_int_hook(path_chown, 0, path, uid, gid);
1103}
1104
1105int security_path_chroot(const struct path *path)
1106{
1107        return call_int_hook(path_chroot, 0, path);
1108}
1109#endif
1110
1111int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1112{
1113        if (unlikely(IS_PRIVATE(dir)))
1114                return 0;
1115        return call_int_hook(inode_create, 0, dir, dentry, mode);
1116}
1117EXPORT_SYMBOL_GPL(security_inode_create);
1118
1119int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1120                         struct dentry *new_dentry)
1121{
1122        if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1123                return 0;
1124        return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1125}
1126
1127int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1128{
1129        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1130                return 0;
1131        return call_int_hook(inode_unlink, 0, dir, dentry);
1132}
1133
1134int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1135                            const char *old_name)
1136{
1137        if (unlikely(IS_PRIVATE(dir)))
1138                return 0;
1139        return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1140}
1141
1142int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1143{
1144        if (unlikely(IS_PRIVATE(dir)))
1145                return 0;
1146        return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1147}
1148EXPORT_SYMBOL_GPL(security_inode_mkdir);
1149
1150int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1151{
1152        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1153                return 0;
1154        return call_int_hook(inode_rmdir, 0, dir, dentry);
1155}
1156
1157int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1158{
1159        if (unlikely(IS_PRIVATE(dir)))
1160                return 0;
1161        return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1162}
1163
1164int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1165                           struct inode *new_dir, struct dentry *new_dentry,
1166                           unsigned int flags)
1167{
1168        if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1169            (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1170                return 0;
1171
1172        if (flags & RENAME_EXCHANGE) {
1173                int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1174                                                     old_dir, old_dentry);
1175                if (err)
1176                        return err;
1177        }
1178
1179        return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1180                                           new_dir, new_dentry);
1181}
1182
1183int security_inode_readlink(struct dentry *dentry)
1184{
1185        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1186                return 0;
1187        return call_int_hook(inode_readlink, 0, dentry);
1188}
1189
1190int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1191                               bool rcu)
1192{
1193        if (unlikely(IS_PRIVATE(inode)))
1194                return 0;
1195        return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1196}
1197
1198int security_inode_permission(struct inode *inode, int mask)
1199{
1200        if (unlikely(IS_PRIVATE(inode)))
1201                return 0;
1202        return call_int_hook(inode_permission, 0, inode, mask);
1203}
1204
1205int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1206{
1207        int ret;
1208
1209        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1210                return 0;
1211        ret = call_int_hook(inode_setattr, 0, dentry, attr);
1212        if (ret)
1213                return ret;
1214        return evm_inode_setattr(dentry, attr);
1215}
1216EXPORT_SYMBOL_GPL(security_inode_setattr);
1217
1218int security_inode_getattr(const struct path *path)
1219{
1220        if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1221                return 0;
1222        return call_int_hook(inode_getattr, 0, path);
1223}
1224
1225int security_inode_setxattr(struct dentry *dentry, const char *name,
1226                            const void *value, size_t size, int flags)
1227{
1228        int ret;
1229
1230        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1231                return 0;
1232        /*
1233         * SELinux and Smack integrate the cap call,
1234         * so assume that all LSMs supplying this call do so.
1235         */
1236        ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1237                                flags);
1238
1239        if (ret == 1)
1240                ret = cap_inode_setxattr(dentry, name, value, size, flags);
1241        if (ret)
1242                return ret;
1243        ret = ima_inode_setxattr(dentry, name, value, size);
1244        if (ret)
1245                return ret;
1246        return evm_inode_setxattr(dentry, name, value, size);
1247}
1248
1249void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1250                                  const void *value, size_t size, int flags)
1251{
1252        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1253                return;
1254        call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1255        evm_inode_post_setxattr(dentry, name, value, size);
1256}
1257
1258int security_inode_getxattr(struct dentry *dentry, const char *name)
1259{
1260        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1261                return 0;
1262        return call_int_hook(inode_getxattr, 0, dentry, name);
1263}
1264
1265int security_inode_listxattr(struct dentry *dentry)
1266{
1267        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1268                return 0;
1269        return call_int_hook(inode_listxattr, 0, dentry);
1270}
1271
1272int security_inode_removexattr(struct dentry *dentry, const char *name)
1273{
1274        int ret;
1275
1276        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1277                return 0;
1278        /*
1279         * SELinux and Smack integrate the cap call,
1280         * so assume that all LSMs supplying this call do so.
1281         */
1282        ret = call_int_hook(inode_removexattr, 1, dentry, name);
1283        if (ret == 1)
1284                ret = cap_inode_removexattr(dentry, name);
1285        if (ret)
1286                return ret;
1287        ret = ima_inode_removexattr(dentry, name);
1288        if (ret)
1289                return ret;
1290        return evm_inode_removexattr(dentry, name);
1291}
1292
1293int security_inode_need_killpriv(struct dentry *dentry)
1294{
1295        return call_int_hook(inode_need_killpriv, 0, dentry);
1296}
1297
1298int security_inode_killpriv(struct dentry *dentry)
1299{
1300        return call_int_hook(inode_killpriv, 0, dentry);
1301}
1302
1303int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1304{
1305        struct security_hook_list *hp;
1306        int rc;
1307
1308        if (unlikely(IS_PRIVATE(inode)))
1309                return -EOPNOTSUPP;
1310        /*
1311         * Only one module will provide an attribute with a given name.
1312         */
1313        hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1314                rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1315                if (rc != -EOPNOTSUPP)
1316                        return rc;
1317        }
1318        return -EOPNOTSUPP;
1319}
1320
1321int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1322{
1323        struct security_hook_list *hp;
1324        int rc;
1325
1326        if (unlikely(IS_PRIVATE(inode)))
1327                return -EOPNOTSUPP;
1328        /*
1329         * Only one module will provide an attribute with a given name.
1330         */
1331        hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1332                rc = hp->hook.inode_setsecurity(inode, name, value, size,
1333                                                                flags);
1334                if (rc != -EOPNOTSUPP)
1335                        return rc;
1336        }
1337        return -EOPNOTSUPP;
1338}
1339
1340int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1341{
1342        if (unlikely(IS_PRIVATE(inode)))
1343                return 0;
1344        return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1345}
1346EXPORT_SYMBOL(security_inode_listsecurity);
1347
1348void security_inode_getsecid(struct inode *inode, u32 *secid)
1349{
1350        call_void_hook(inode_getsecid, inode, secid);
1351}
1352
1353int security_inode_copy_up(struct dentry *src, struct cred **new)
1354{
1355        return call_int_hook(inode_copy_up, 0, src, new);
1356}
1357EXPORT_SYMBOL(security_inode_copy_up);
1358
1359int security_inode_copy_up_xattr(const char *name)
1360{
1361        return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
1362}
1363EXPORT_SYMBOL(security_inode_copy_up_xattr);
1364
1365int security_kernfs_init_security(struct kernfs_node *kn_dir,
1366                                  struct kernfs_node *kn)
1367{
1368        return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1369}
1370
1371int security_file_permission(struct file *file, int mask)
1372{
1373        int ret;
1374
1375        ret = call_int_hook(file_permission, 0, file, mask);
1376        if (ret)
1377                return ret;
1378
1379        return fsnotify_perm(file, mask);
1380}
1381
1382int security_file_alloc(struct file *file)
1383{
1384        int rc = lsm_file_alloc(file);
1385
1386        if (rc)
1387                return rc;
1388        rc = call_int_hook(file_alloc_security, 0, file);
1389        if (unlikely(rc))
1390                security_file_free(file);
1391        return rc;
1392}
1393
1394void security_file_free(struct file *file)
1395{
1396        void *blob;
1397
1398        call_void_hook(file_free_security, file);
1399
1400        blob = file->f_security;
1401        if (blob) {
1402                file->f_security = NULL;
1403                kmem_cache_free(lsm_file_cache, blob);
1404        }
1405}
1406
1407int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1408{
1409        return call_int_hook(file_ioctl, 0, file, cmd, arg);
1410}
1411
1412static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1413{
1414        /*
1415         * Does we have PROT_READ and does the application expect
1416         * it to imply PROT_EXEC?  If not, nothing to talk about...
1417         */
1418        if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1419                return prot;
1420        if (!(current->personality & READ_IMPLIES_EXEC))
1421                return prot;
1422        /*
1423         * if that's an anonymous mapping, let it.
1424         */
1425        if (!file)
1426                return prot | PROT_EXEC;
1427        /*
1428         * ditto if it's not on noexec mount, except that on !MMU we need
1429         * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1430         */
1431        if (!path_noexec(&file->f_path)) {
1432#ifndef CONFIG_MMU
1433                if (file->f_op->mmap_capabilities) {
1434                        unsigned caps = file->f_op->mmap_capabilities(file);
1435                        if (!(caps & NOMMU_MAP_EXEC))
1436                                return prot;
1437                }
1438#endif
1439                return prot | PROT_EXEC;
1440        }
1441        /* anything on noexec mount won't get PROT_EXEC */
1442        return prot;
1443}
1444
1445int security_mmap_file(struct file *file, unsigned long prot,
1446                        unsigned long flags)
1447{
1448        int ret;
1449        ret = call_int_hook(mmap_file, 0, file, prot,
1450                                        mmap_prot(file, prot), flags);
1451        if (ret)
1452                return ret;
1453        return ima_file_mmap(file, prot);
1454}
1455
1456int security_mmap_addr(unsigned long addr)
1457{
1458        return call_int_hook(mmap_addr, 0, addr);
1459}
1460
1461int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1462                            unsigned long prot)
1463{
1464        return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1465}
1466
1467int security_file_lock(struct file *file, unsigned int cmd)
1468{
1469        return call_int_hook(file_lock, 0, file, cmd);
1470}
1471
1472int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1473{
1474        return call_int_hook(file_fcntl, 0, file, cmd, arg);
1475}
1476
1477void security_file_set_fowner(struct file *file)
1478{
1479        call_void_hook(file_set_fowner, file);
1480}
1481
1482int security_file_send_sigiotask(struct task_struct *tsk,
1483                                  struct fown_struct *fown, int sig)
1484{
1485        return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1486}
1487
1488int security_file_receive(struct file *file)
1489{
1490        return call_int_hook(file_receive, 0, file);
1491}
1492
1493int security_file_open(struct file *file)
1494{
1495        int ret;
1496
1497        ret = call_int_hook(file_open, 0, file);
1498        if (ret)
1499                return ret;
1500
1501        return fsnotify_perm(file, MAY_OPEN);
1502}
1503
1504int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1505{
1506        int rc = lsm_task_alloc(task);
1507
1508        if (rc)
1509                return rc;
1510        rc = call_int_hook(task_alloc, 0, task, clone_flags);
1511        if (unlikely(rc))
1512                security_task_free(task);
1513        return rc;
1514}
1515
1516void security_task_free(struct task_struct *task)
1517{
1518        call_void_hook(task_free, task);
1519
1520        kfree(task->security);
1521        task->security = NULL;
1522}
1523
1524int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1525{
1526        int rc = lsm_cred_alloc(cred, gfp);
1527
1528        if (rc)
1529                return rc;
1530
1531        rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1532        if (unlikely(rc))
1533                security_cred_free(cred);
1534        return rc;
1535}
1536
1537void security_cred_free(struct cred *cred)
1538{
1539        /*
1540         * There is a failure case in prepare_creds() that
1541         * may result in a call here with ->security being NULL.
1542         */
1543        if (unlikely(cred->security == NULL))
1544                return;
1545
1546        call_void_hook(cred_free, cred);
1547
1548        kfree(cred->security);
1549        cred->security = NULL;
1550}
1551
1552int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1553{
1554        int rc = lsm_cred_alloc(new, gfp);
1555
1556        if (rc)
1557                return rc;
1558
1559        rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1560        if (unlikely(rc))
1561                security_cred_free(new);
1562        return rc;
1563}
1564
1565void security_transfer_creds(struct cred *new, const struct cred *old)
1566{
1567        call_void_hook(cred_transfer, new, old);
1568}
1569
1570void security_cred_getsecid(const struct cred *c, u32 *secid)
1571{
1572        *secid = 0;
1573        call_void_hook(cred_getsecid, c, secid);
1574}
1575EXPORT_SYMBOL(security_cred_getsecid);
1576
1577int security_kernel_act_as(struct cred *new, u32 secid)
1578{
1579        return call_int_hook(kernel_act_as, 0, new, secid);
1580}
1581
1582int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1583{
1584        return call_int_hook(kernel_create_files_as, 0, new, inode);
1585}
1586
1587int security_kernel_module_request(char *kmod_name)
1588{
1589        int ret;
1590
1591        ret = call_int_hook(kernel_module_request, 0, kmod_name);
1592        if (ret)
1593                return ret;
1594        return integrity_kernel_module_request(kmod_name);
1595}
1596
1597int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1598{
1599        int ret;
1600
1601        ret = call_int_hook(kernel_read_file, 0, file, id);
1602        if (ret)
1603                return ret;
1604        return ima_read_file(file, id);
1605}
1606EXPORT_SYMBOL_GPL(security_kernel_read_file);
1607
1608int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1609                                   enum kernel_read_file_id id)
1610{
1611        int ret;
1612
1613        ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1614        if (ret)
1615                return ret;
1616        return ima_post_read_file(file, buf, size, id);
1617}
1618EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1619
1620int security_kernel_load_data(enum kernel_load_data_id id)
1621{
1622        int ret;
1623
1624        ret = call_int_hook(kernel_load_data, 0, id);
1625        if (ret)
1626                return ret;
1627        return ima_load_data(id);
1628}
1629EXPORT_SYMBOL_GPL(security_kernel_load_data);
1630
1631int security_task_fix_setuid(struct cred *new, const struct cred *old,
1632                             int flags)
1633{
1634        return call_int_hook(task_fix_setuid, 0, new, old, flags);
1635}
1636
1637int security_task_setpgid(struct task_struct *p, pid_t pgid)
1638{
1639        return call_int_hook(task_setpgid, 0, p, pgid);
1640}
1641
1642int security_task_getpgid(struct task_struct *p)
1643{
1644        return call_int_hook(task_getpgid, 0, p);
1645}
1646
1647int security_task_getsid(struct task_struct *p)
1648{
1649        return call_int_hook(task_getsid, 0, p);
1650}
1651
1652void security_task_getsecid(struct task_struct *p, u32 *secid)
1653{
1654        *secid = 0;
1655        call_void_hook(task_getsecid, p, secid);
1656}
1657EXPORT_SYMBOL(security_task_getsecid);
1658
1659int security_task_setnice(struct task_struct *p, int nice)
1660{
1661        return call_int_hook(task_setnice, 0, p, nice);
1662}
1663
1664int security_task_setioprio(struct task_struct *p, int ioprio)
1665{
1666        return call_int_hook(task_setioprio, 0, p, ioprio);
1667}
1668
1669int security_task_getioprio(struct task_struct *p)
1670{
1671        return call_int_hook(task_getioprio, 0, p);
1672}
1673
1674int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1675                          unsigned int flags)
1676{
1677        return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1678}
1679
1680int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1681                struct rlimit *new_rlim)
1682{
1683        return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1684}
1685
1686int security_task_setscheduler(struct task_struct *p)
1687{
1688        return call_int_hook(task_setscheduler, 0, p);
1689}
1690
1691int security_task_getscheduler(struct task_struct *p)
1692{
1693        return call_int_hook(task_getscheduler, 0, p);
1694}
1695
1696int security_task_movememory(struct task_struct *p)
1697{
1698        return call_int_hook(task_movememory, 0, p);
1699}
1700
1701int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1702                        int sig, const struct cred *cred)
1703{
1704        return call_int_hook(task_kill, 0, p, info, sig, cred);
1705}
1706
1707int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1708                         unsigned long arg4, unsigned long arg5)
1709{
1710        int thisrc;
1711        int rc = -ENOSYS;
1712        struct security_hook_list *hp;
1713
1714        hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1715                thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1716                if (thisrc != -ENOSYS) {
1717                        rc = thisrc;
1718                        if (thisrc != 0)
1719                                break;
1720                }
1721        }
1722        return rc;
1723}
1724
1725void security_task_to_inode(struct task_struct *p, struct inode *inode)
1726{
1727        call_void_hook(task_to_inode, p, inode);
1728}
1729
1730int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1731{
1732        return call_int_hook(ipc_permission, 0, ipcp, flag);
1733}
1734
1735void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1736{
1737        *secid = 0;
1738        call_void_hook(ipc_getsecid, ipcp, secid);
1739}
1740
1741int security_msg_msg_alloc(struct msg_msg *msg)
1742{
1743        int rc = lsm_msg_msg_alloc(msg);
1744
1745        if (unlikely(rc))
1746                return rc;
1747        rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1748        if (unlikely(rc))
1749                security_msg_msg_free(msg);
1750        return rc;
1751}
1752
1753void security_msg_msg_free(struct msg_msg *msg)
1754{
1755        call_void_hook(msg_msg_free_security, msg);
1756        kfree(msg->security);
1757        msg->security = NULL;
1758}
1759
1760int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1761{
1762        int rc = lsm_ipc_alloc(msq);
1763
1764        if (unlikely(rc))
1765                return rc;
1766        rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1767        if (unlikely(rc))
1768                security_msg_queue_free(msq);
1769        return rc;
1770}
1771
1772void security_msg_queue_free(struct kern_ipc_perm *msq)
1773{
1774        call_void_hook(msg_queue_free_security, msq);
1775        kfree(msq->security);
1776        msq->security = NULL;
1777}
1778
1779int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1780{
1781        return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1782}
1783
1784int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1785{
1786        return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1787}
1788
1789int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1790                               struct msg_msg *msg, int msqflg)
1791{
1792        return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1793}
1794
1795int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1796                               struct task_struct *target, long type, int mode)
1797{
1798        return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1799}
1800
1801int security_shm_alloc(struct kern_ipc_perm *shp)
1802{
1803        int rc = lsm_ipc_alloc(shp);
1804
1805        if (unlikely(rc))
1806                return rc;
1807        rc = call_int_hook(shm_alloc_security, 0, shp);
1808        if (unlikely(rc))
1809                security_shm_free(shp);
1810        return rc;
1811}
1812
1813void security_shm_free(struct kern_ipc_perm *shp)
1814{
1815        call_void_hook(shm_free_security, shp);
1816        kfree(shp->security);
1817        shp->security = NULL;
1818}
1819
1820int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1821{
1822        return call_int_hook(shm_associate, 0, shp, shmflg);
1823}
1824
1825int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1826{
1827        return call_int_hook(shm_shmctl, 0, shp, cmd);
1828}
1829
1830int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1831{
1832        return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1833}
1834
1835int security_sem_alloc(struct kern_ipc_perm *sma)
1836{
1837        int rc = lsm_ipc_alloc(sma);
1838
1839        if (unlikely(rc))
1840                return rc;
1841        rc = call_int_hook(sem_alloc_security, 0, sma);
1842        if (unlikely(rc))
1843                security_sem_free(sma);
1844        return rc;
1845}
1846
1847void security_sem_free(struct kern_ipc_perm *sma)
1848{
1849        call_void_hook(sem_free_security, sma);
1850        kfree(sma->security);
1851        sma->security = NULL;
1852}
1853
1854int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1855{
1856        return call_int_hook(sem_associate, 0, sma, semflg);
1857}
1858
1859int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1860{
1861        return call_int_hook(sem_semctl, 0, sma, cmd);
1862}
1863
1864int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1865                        unsigned nsops, int alter)
1866{
1867        return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1868}
1869
1870void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1871{
1872        if (unlikely(inode && IS_PRIVATE(inode)))
1873                return;
1874        call_void_hook(d_instantiate, dentry, inode);
1875}
1876EXPORT_SYMBOL(security_d_instantiate);
1877
1878int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1879                                char **value)
1880{
1881        struct security_hook_list *hp;
1882
1883        hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1884                if (lsm != NULL && strcmp(lsm, hp->lsm))
1885                        continue;
1886                return hp->hook.getprocattr(p, name, value);
1887        }
1888        return -EINVAL;
1889}
1890
1891int security_setprocattr(const char *lsm, const char *name, void *value,
1892                         size_t size)
1893{
1894        struct security_hook_list *hp;
1895
1896        hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1897                if (lsm != NULL && strcmp(lsm, hp->lsm))
1898                        continue;
1899                return hp->hook.setprocattr(name, value, size);
1900        }
1901        return -EINVAL;
1902}
1903
1904int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1905{
1906        return call_int_hook(netlink_send, 0, sk, skb);
1907}
1908
1909int security_ismaclabel(const char *name)
1910{
1911        return call_int_hook(ismaclabel, 0, name);
1912}
1913EXPORT_SYMBOL(security_ismaclabel);
1914
1915int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1916{
1917        return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1918                                seclen);
1919}
1920EXPORT_SYMBOL(security_secid_to_secctx);
1921
1922int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1923{
1924        *secid = 0;
1925        return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1926}
1927EXPORT_SYMBOL(security_secctx_to_secid);
1928
1929void security_release_secctx(char *secdata, u32 seclen)
1930{
1931        call_void_hook(release_secctx, secdata, seclen);
1932}
1933EXPORT_SYMBOL(security_release_secctx);
1934
1935void security_inode_invalidate_secctx(struct inode *inode)
1936{
1937        call_void_hook(inode_invalidate_secctx, inode);
1938}
1939EXPORT_SYMBOL(security_inode_invalidate_secctx);
1940
1941int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1942{
1943        return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1944}
1945EXPORT_SYMBOL(security_inode_notifysecctx);
1946
1947int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1948{
1949        return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1950}
1951EXPORT_SYMBOL(security_inode_setsecctx);
1952
1953int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1954{
1955        return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1956}
1957EXPORT_SYMBOL(security_inode_getsecctx);
1958
1959#ifdef CONFIG_SECURITY_NETWORK
1960
1961int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1962{
1963        return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1964}
1965EXPORT_SYMBOL(security_unix_stream_connect);
1966
1967int security_unix_may_send(struct socket *sock,  struct socket *other)
1968{
1969        return call_int_hook(unix_may_send, 0, sock, other);
1970}
1971EXPORT_SYMBOL(security_unix_may_send);
1972
1973int security_socket_create(int family, int type, int protocol, int kern)
1974{
1975        return call_int_hook(socket_create, 0, family, type, protocol, kern);
1976}
1977
1978int security_socket_post_create(struct socket *sock, int family,
1979                                int type, int protocol, int kern)
1980{
1981        return call_int_hook(socket_post_create, 0, sock, family, type,
1982                                                protocol, kern);
1983}
1984
1985int security_socket_socketpair(struct socket *socka, struct socket *sockb)
1986{
1987        return call_int_hook(socket_socketpair, 0, socka, sockb);
1988}
1989EXPORT_SYMBOL(security_socket_socketpair);
1990
1991int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1992{
1993        return call_int_hook(socket_bind, 0, sock, address, addrlen);
1994}
1995
1996int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1997{
1998        return call_int_hook(socket_connect, 0, sock, address, addrlen);
1999}
2000
2001int security_socket_listen(struct socket *sock, int backlog)
2002{
2003        return call_int_hook(socket_listen, 0, sock, backlog);
2004}
2005
2006int security_socket_accept(struct socket *sock, struct socket *newsock)
2007{
2008        return call_int_hook(socket_accept, 0, sock, newsock);
2009}
2010
2011int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2012{
2013        return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2014}
2015
2016int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2017                            int size, int flags)
2018{
2019        return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2020}
2021
2022int security_socket_getsockname(struct socket *sock)
2023{
2024        return call_int_hook(socket_getsockname, 0, sock);
2025}
2026
2027int security_socket_getpeername(struct socket *sock)
2028{
2029        return call_int_hook(socket_getpeername, 0, sock);
2030}
2031
2032int security_socket_getsockopt(struct socket *sock, int level, int optname)
2033{
2034        return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2035}
2036
2037int security_socket_setsockopt(struct socket *sock, int level, int optname)
2038{
2039        return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2040}
2041
2042int security_socket_shutdown(struct socket *sock, int how)
2043{
2044        return call_int_hook(socket_shutdown, 0, sock, how);
2045}
2046
2047int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2048{
2049        return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2050}
2051EXPORT_SYMBOL(security_sock_rcv_skb);
2052
2053int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2054                                      int __user *optlen, unsigned len)
2055{
2056        return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2057                                optval, optlen, len);
2058}
2059
2060int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2061{
2062        return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2063                             skb, secid);
2064}
2065EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2066
2067int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2068{
2069        return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2070}
2071
2072void security_sk_free(struct sock *sk)
2073{
2074        call_void_hook(sk_free_security, sk);
2075}
2076
2077void security_sk_clone(const struct sock *sk, struct sock *newsk)
2078{
2079        call_void_hook(sk_clone_security, sk, newsk);
2080}
2081EXPORT_SYMBOL(security_sk_clone);
2082
2083void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2084{
2085        call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2086}
2087EXPORT_SYMBOL(security_sk_classify_flow);
2088
2089void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2090{
2091        call_void_hook(req_classify_flow, req, fl);
2092}
2093EXPORT_SYMBOL(security_req_classify_flow);
2094
2095void security_sock_graft(struct sock *sk, struct socket *parent)
2096{
2097        call_void_hook(sock_graft, sk, parent);
2098}
2099EXPORT_SYMBOL(security_sock_graft);
2100
2101int security_inet_conn_request(struct sock *sk,
2102                        struct sk_buff *skb, struct request_sock *req)
2103{
2104        return call_int_hook(inet_conn_request, 0, sk, skb, req);
2105}
2106EXPORT_SYMBOL(security_inet_conn_request);
2107
2108void security_inet_csk_clone(struct sock *newsk,
2109                        const struct request_sock *req)
2110{
2111        call_void_hook(inet_csk_clone, newsk, req);
2112}
2113
2114void security_inet_conn_established(struct sock *sk,
2115                        struct sk_buff *skb)
2116{
2117        call_void_hook(inet_conn_established, sk, skb);
2118}
2119EXPORT_SYMBOL(security_inet_conn_established);
2120
2121int security_secmark_relabel_packet(u32 secid)
2122{
2123        return call_int_hook(secmark_relabel_packet, 0, secid);
2124}
2125EXPORT_SYMBOL(security_secmark_relabel_packet);
2126
2127void security_secmark_refcount_inc(void)
2128{
2129        call_void_hook(secmark_refcount_inc);
2130}
2131EXPORT_SYMBOL(security_secmark_refcount_inc);
2132
2133void security_secmark_refcount_dec(void)
2134{
2135        call_void_hook(secmark_refcount_dec);
2136}
2137EXPORT_SYMBOL(security_secmark_refcount_dec);
2138
2139int security_tun_dev_alloc_security(void **security)
2140{
2141        return call_int_hook(tun_dev_alloc_security, 0, security);
2142}
2143EXPORT_SYMBOL(security_tun_dev_alloc_security);
2144
2145void security_tun_dev_free_security(void *security)
2146{
2147        call_void_hook(tun_dev_free_security, security);
2148}
2149EXPORT_SYMBOL(security_tun_dev_free_security);
2150
2151int security_tun_dev_create(void)
2152{
2153        return call_int_hook(tun_dev_create, 0);
2154}
2155EXPORT_SYMBOL(security_tun_dev_create);
2156
2157int security_tun_dev_attach_queue(void *security)
2158{
2159        return call_int_hook(tun_dev_attach_queue, 0, security);
2160}
2161EXPORT_SYMBOL(security_tun_dev_attach_queue);
2162
2163int security_tun_dev_attach(struct sock *sk, void *security)
2164{
2165        return call_int_hook(tun_dev_attach, 0, sk, security);
2166}
2167EXPORT_SYMBOL(security_tun_dev_attach);
2168
2169int security_tun_dev_open(void *security)
2170{
2171        return call_int_hook(tun_dev_open, 0, security);
2172}
2173EXPORT_SYMBOL(security_tun_dev_open);
2174
2175int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2176{
2177        return call_int_hook(sctp_assoc_request, 0, ep, skb);
2178}
2179EXPORT_SYMBOL(security_sctp_assoc_request);
2180
2181int security_sctp_bind_connect(struct sock *sk, int optname,
2182                               struct sockaddr *address, int addrlen)
2183{
2184        return call_int_hook(sctp_bind_connect, 0, sk, optname,
2185                             address, addrlen);
2186}
2187EXPORT_SYMBOL(security_sctp_bind_connect);
2188
2189void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2190                            struct sock *newsk)
2191{
2192        call_void_hook(sctp_sk_clone, ep, sk, newsk);
2193}
2194EXPORT_SYMBOL(security_sctp_sk_clone);
2195
2196#endif  /* CONFIG_SECURITY_NETWORK */
2197
2198#ifdef CONFIG_SECURITY_INFINIBAND
2199
2200int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2201{
2202        return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2203}
2204EXPORT_SYMBOL(security_ib_pkey_access);
2205
2206int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2207{
2208        return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2209}
2210EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2211
2212int security_ib_alloc_security(void **sec)
2213{
2214        return call_int_hook(ib_alloc_security, 0, sec);
2215}
2216EXPORT_SYMBOL(security_ib_alloc_security);
2217
2218void security_ib_free_security(void *sec)
2219{
2220        call_void_hook(ib_free_security, sec);
2221}
2222EXPORT_SYMBOL(security_ib_free_security);
2223#endif  /* CONFIG_SECURITY_INFINIBAND */
2224
2225#ifdef CONFIG_SECURITY_NETWORK_XFRM
2226
2227int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2228                               struct xfrm_user_sec_ctx *sec_ctx,
2229                               gfp_t gfp)
2230{
2231        return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2232}
2233EXPORT_SYMBOL(security_xfrm_policy_alloc);
2234
2235int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2236                              struct xfrm_sec_ctx **new_ctxp)
2237{
2238        return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2239}
2240
2241void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2242{
2243        call_void_hook(xfrm_policy_free_security, ctx);
2244}
2245EXPORT_SYMBOL(security_xfrm_policy_free);
2246
2247int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2248{
2249        return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2250}
2251
2252int security_xfrm_state_alloc(struct xfrm_state *x,
2253                              struct xfrm_user_sec_ctx *sec_ctx)
2254{
2255        return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2256}
2257EXPORT_SYMBOL(security_xfrm_state_alloc);
2258
2259int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2260                                      struct xfrm_sec_ctx *polsec, u32 secid)
2261{
2262        return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2263}
2264
2265int security_xfrm_state_delete(struct xfrm_state *x)
2266{
2267        return call_int_hook(xfrm_state_delete_security, 0, x);
2268}
2269EXPORT_SYMBOL(security_xfrm_state_delete);
2270
2271void security_xfrm_state_free(struct xfrm_state *x)
2272{
2273        call_void_hook(xfrm_state_free_security, x);
2274}
2275
2276int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2277{
2278        return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2279}
2280
2281int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2282                                       struct xfrm_policy *xp,
2283                                       const struct flowi *fl)
2284{
2285        struct security_hook_list *hp;
2286        int rc = 1;
2287
2288        /*
2289         * Since this function is expected to return 0 or 1, the judgment
2290         * becomes difficult if multiple LSMs supply this call. Fortunately,
2291         * we can use the first LSM's judgment because currently only SELinux
2292         * supplies this call.
2293         *
2294         * For speed optimization, we explicitly break the loop rather than
2295         * using the macro
2296         */
2297        hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2298                                list) {
2299                rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2300                break;
2301        }
2302        return rc;
2303}
2304
2305int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2306{
2307        return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2308}
2309
2310void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2311{
2312        int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2313                                0);
2314
2315        BUG_ON(rc);
2316}
2317EXPORT_SYMBOL(security_skb_classify_flow);
2318
2319#endif  /* CONFIG_SECURITY_NETWORK_XFRM */
2320
2321#ifdef CONFIG_KEYS
2322
2323int security_key_alloc(struct key *key, const struct cred *cred,
2324                       unsigned long flags)
2325{
2326        return call_int_hook(key_alloc, 0, key, cred, flags);
2327}
2328
2329void security_key_free(struct key *key)
2330{
2331        call_void_hook(key_free, key);
2332}
2333
2334int security_key_permission(key_ref_t key_ref,
2335                            const struct cred *cred, unsigned perm)
2336{
2337        return call_int_hook(key_permission, 0, key_ref, cred, perm);
2338}
2339
2340int security_key_getsecurity(struct key *key, char **_buffer)
2341{
2342        *_buffer = NULL;
2343        return call_int_hook(key_getsecurity, 0, key, _buffer);
2344}
2345
2346#endif  /* CONFIG_KEYS */
2347
2348#ifdef CONFIG_AUDIT
2349
2350int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2351{
2352        return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2353}
2354
2355int security_audit_rule_known(struct audit_krule *krule)
2356{
2357        return call_int_hook(audit_rule_known, 0, krule);
2358}
2359
2360void security_audit_rule_free(void *lsmrule)
2361{
2362        call_void_hook(audit_rule_free, lsmrule);
2363}
2364
2365int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2366{
2367        return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2368}
2369#endif /* CONFIG_AUDIT */
2370
2371#ifdef CONFIG_BPF_SYSCALL
2372int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2373{
2374        return call_int_hook(bpf, 0, cmd, attr, size);
2375}
2376int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2377{
2378        return call_int_hook(bpf_map, 0, map, fmode);
2379}
2380int security_bpf_prog(struct bpf_prog *prog)
2381{
2382        return call_int_hook(bpf_prog, 0, prog);
2383}
2384int security_bpf_map_alloc(struct bpf_map *map)
2385{
2386        return call_int_hook(bpf_map_alloc_security, 0, map);
2387}
2388int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2389{
2390        return call_int_hook(bpf_prog_alloc_security, 0, aux);
2391}
2392void security_bpf_map_free(struct bpf_map *map)
2393{
2394        call_void_hook(bpf_map_free_security, map);
2395}
2396void security_bpf_prog_free(struct bpf_prog_aux *aux)
2397{
2398        call_void_hook(bpf_prog_free_security, aux);
2399}
2400#endif /* CONFIG_BPF_SYSCALL */
2401
2402int security_locked_down(enum lockdown_reason what)
2403{
2404        return call_int_hook(locked_down, 0, what);
2405}
2406EXPORT_SYMBOL(security_locked_down);
2407