linux/sound/pci/sis7019.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Driver for SiS7019 Audio Accelerator
   4 *
   5 *  Copyright (C) 2004-2007, David Dillow
   6 *  Written by David Dillow <dave@thedillows.org>
   7 *  Inspired by the Trident 4D-WaveDX/NX driver.
   8 *
   9 *  All rights reserved.
  10 */
  11
  12#include <linux/init.h>
  13#include <linux/pci.h>
  14#include <linux/time.h>
  15#include <linux/slab.h>
  16#include <linux/module.h>
  17#include <linux/interrupt.h>
  18#include <linux/delay.h>
  19#include <sound/core.h>
  20#include <sound/ac97_codec.h>
  21#include <sound/initval.h>
  22#include "sis7019.h"
  23
  24MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
  25MODULE_DESCRIPTION("SiS7019");
  26MODULE_LICENSE("GPL");
  27MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}");
  28
  29static int index = SNDRV_DEFAULT_IDX1;  /* Index 0-MAX */
  30static char *id = SNDRV_DEFAULT_STR1;   /* ID for this card */
  31static bool enable = 1;
  32static int codecs = 1;
  33
  34module_param(index, int, 0444);
  35MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
  36module_param(id, charp, 0444);
  37MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
  38module_param(enable, bool, 0444);
  39MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
  40module_param(codecs, int, 0444);
  41MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)");
  42
  43static const struct pci_device_id snd_sis7019_ids[] = {
  44        { PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
  45        { 0, }
  46};
  47
  48MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
  49
  50/* There are three timing modes for the voices.
  51 *
  52 * For both playback and capture, when the buffer is one or two periods long,
  53 * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
  54 * to let us know when the periods have ended.
  55 *
  56 * When performing playback with more than two periods per buffer, we set
  57 * the "Stop Sample Offset" and tell the hardware to interrupt us when we
  58 * reach it. We then update the offset and continue on until we are
  59 * interrupted for the next period.
  60 *
  61 * Capture channels do not have a SSO, so we allocate a playback channel to
  62 * use as a timer for the capture periods. We use the SSO on the playback
  63 * channel to clock out virtual periods, and adjust the virtual period length
  64 * to maintain synchronization. This algorithm came from the Trident driver.
  65 *
  66 * FIXME: It'd be nice to make use of some of the synth features in the
  67 * hardware, but a woeful lack of documentation is a significant roadblock.
  68 */
  69struct voice {
  70        u16 flags;
  71#define         VOICE_IN_USE            1
  72#define         VOICE_CAPTURE           2
  73#define         VOICE_SSO_TIMING        4
  74#define         VOICE_SYNC_TIMING       8
  75        u16 sync_cso;
  76        u16 period_size;
  77        u16 buffer_size;
  78        u16 sync_period_size;
  79        u16 sync_buffer_size;
  80        u32 sso;
  81        u32 vperiod;
  82        struct snd_pcm_substream *substream;
  83        struct voice *timing;
  84        void __iomem *ctrl_base;
  85        void __iomem *wave_base;
  86        void __iomem *sync_base;
  87        int num;
  88};
  89
  90/* We need four pages to store our wave parameters during a suspend. If
  91 * we're not doing power management, we still need to allocate a page
  92 * for the silence buffer.
  93 */
  94#ifdef CONFIG_PM_SLEEP
  95#define SIS_SUSPEND_PAGES       4
  96#else
  97#define SIS_SUSPEND_PAGES       1
  98#endif
  99
 100struct sis7019 {
 101        unsigned long ioport;
 102        void __iomem *ioaddr;
 103        int irq;
 104        int codecs_present;
 105
 106        struct pci_dev *pci;
 107        struct snd_pcm *pcm;
 108        struct snd_card *card;
 109        struct snd_ac97 *ac97[3];
 110
 111        /* Protect against more than one thread hitting the AC97
 112         * registers (in a more polite manner than pounding the hardware
 113         * semaphore)
 114         */
 115        struct mutex ac97_mutex;
 116
 117        /* voice_lock protects allocation/freeing of the voice descriptions
 118         */
 119        spinlock_t voice_lock;
 120
 121        struct voice voices[64];
 122        struct voice capture_voice;
 123
 124        /* Allocate pages to store the internal wave state during
 125         * suspends. When we're operating, this can be used as a silence
 126         * buffer for a timing channel.
 127         */
 128        void *suspend_state[SIS_SUSPEND_PAGES];
 129
 130        int silence_users;
 131        dma_addr_t silence_dma_addr;
 132};
 133
 134/* These values are also used by the module param 'codecs' to indicate
 135 * which codecs should be present.
 136 */
 137#define SIS_PRIMARY_CODEC_PRESENT       0x0001
 138#define SIS_SECONDARY_CODEC_PRESENT     0x0002
 139#define SIS_TERTIARY_CODEC_PRESENT      0x0004
 140
 141/* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
 142 * documented range of 8-0xfff8 samples. Given that they are 0-based,
 143 * that places our period/buffer range at 9-0xfff9 samples. That makes the
 144 * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
 145 * max samples / min samples gives us the max periods in a buffer.
 146 *
 147 * We'll add a constraint upon open that limits the period and buffer sample
 148 * size to values that are legal for the hardware.
 149 */
 150static const struct snd_pcm_hardware sis_playback_hw_info = {
 151        .info = (SNDRV_PCM_INFO_MMAP |
 152                 SNDRV_PCM_INFO_MMAP_VALID |
 153                 SNDRV_PCM_INFO_INTERLEAVED |
 154                 SNDRV_PCM_INFO_BLOCK_TRANSFER |
 155                 SNDRV_PCM_INFO_SYNC_START |
 156                 SNDRV_PCM_INFO_RESUME),
 157        .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
 158                    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
 159        .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
 160        .rate_min = 4000,
 161        .rate_max = 48000,
 162        .channels_min = 1,
 163        .channels_max = 2,
 164        .buffer_bytes_max = (0xfff9 * 4),
 165        .period_bytes_min = 9,
 166        .period_bytes_max = (0xfff9 * 4),
 167        .periods_min = 1,
 168        .periods_max = (0xfff9 / 9),
 169};
 170
 171static const struct snd_pcm_hardware sis_capture_hw_info = {
 172        .info = (SNDRV_PCM_INFO_MMAP |
 173                 SNDRV_PCM_INFO_MMAP_VALID |
 174                 SNDRV_PCM_INFO_INTERLEAVED |
 175                 SNDRV_PCM_INFO_BLOCK_TRANSFER |
 176                 SNDRV_PCM_INFO_SYNC_START |
 177                 SNDRV_PCM_INFO_RESUME),
 178        .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
 179                    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
 180        .rates = SNDRV_PCM_RATE_48000,
 181        .rate_min = 4000,
 182        .rate_max = 48000,
 183        .channels_min = 1,
 184        .channels_max = 2,
 185        .buffer_bytes_max = (0xfff9 * 4),
 186        .period_bytes_min = 9,
 187        .period_bytes_max = (0xfff9 * 4),
 188        .periods_min = 1,
 189        .periods_max = (0xfff9 / 9),
 190};
 191
 192static void sis_update_sso(struct voice *voice, u16 period)
 193{
 194        void __iomem *base = voice->ctrl_base;
 195
 196        voice->sso += period;
 197        if (voice->sso >= voice->buffer_size)
 198                voice->sso -= voice->buffer_size;
 199
 200        /* Enforce the documented hardware minimum offset */
 201        if (voice->sso < 8)
 202                voice->sso = 8;
 203
 204        /* The SSO is in the upper 16 bits of the register. */
 205        writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
 206}
 207
 208static void sis_update_voice(struct voice *voice)
 209{
 210        if (voice->flags & VOICE_SSO_TIMING) {
 211                sis_update_sso(voice, voice->period_size);
 212        } else if (voice->flags & VOICE_SYNC_TIMING) {
 213                int sync;
 214
 215                /* If we've not hit the end of the virtual period, update
 216                 * our records and keep going.
 217                 */
 218                if (voice->vperiod > voice->period_size) {
 219                        voice->vperiod -= voice->period_size;
 220                        if (voice->vperiod < voice->period_size)
 221                                sis_update_sso(voice, voice->vperiod);
 222                        else
 223                                sis_update_sso(voice, voice->period_size);
 224                        return;
 225                }
 226
 227                /* Calculate our relative offset between the target and
 228                 * the actual CSO value. Since we're operating in a loop,
 229                 * if the value is more than half way around, we can
 230                 * consider ourselves wrapped.
 231                 */
 232                sync = voice->sync_cso;
 233                sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
 234                if (sync > (voice->sync_buffer_size / 2))
 235                        sync -= voice->sync_buffer_size;
 236
 237                /* If sync is positive, then we interrupted too early, and
 238                 * we'll need to come back in a few samples and try again.
 239                 * There's a minimum wait, as it takes some time for the DMA
 240                 * engine to startup, etc...
 241                 */
 242                if (sync > 0) {
 243                        if (sync < 16)
 244                                sync = 16;
 245                        sis_update_sso(voice, sync);
 246                        return;
 247                }
 248
 249                /* Ok, we interrupted right on time, or (hopefully) just
 250                 * a bit late. We'll adjst our next waiting period based
 251                 * on how close we got.
 252                 *
 253                 * We need to stay just behind the actual channel to ensure
 254                 * it really is past a period when we get our interrupt --
 255                 * otherwise we'll fall into the early code above and have
 256                 * a minimum wait time, which makes us quite late here,
 257                 * eating into the user's time to refresh the buffer, esp.
 258                 * if using small periods.
 259                 *
 260                 * If we're less than 9 samples behind, we're on target.
 261                 * Otherwise, shorten the next vperiod by the amount we've
 262                 * been delayed.
 263                 */
 264                if (sync > -9)
 265                        voice->vperiod = voice->sync_period_size + 1;
 266                else
 267                        voice->vperiod = voice->sync_period_size + sync + 10;
 268
 269                if (voice->vperiod < voice->buffer_size) {
 270                        sis_update_sso(voice, voice->vperiod);
 271                        voice->vperiod = 0;
 272                } else
 273                        sis_update_sso(voice, voice->period_size);
 274
 275                sync = voice->sync_cso + voice->sync_period_size;
 276                if (sync >= voice->sync_buffer_size)
 277                        sync -= voice->sync_buffer_size;
 278                voice->sync_cso = sync;
 279        }
 280
 281        snd_pcm_period_elapsed(voice->substream);
 282}
 283
 284static void sis_voice_irq(u32 status, struct voice *voice)
 285{
 286        int bit;
 287
 288        while (status) {
 289                bit = __ffs(status);
 290                status >>= bit + 1;
 291                voice += bit;
 292                sis_update_voice(voice);
 293                voice++;
 294        }
 295}
 296
 297static irqreturn_t sis_interrupt(int irq, void *dev)
 298{
 299        struct sis7019 *sis = dev;
 300        unsigned long io = sis->ioport;
 301        struct voice *voice;
 302        u32 intr, status;
 303
 304        /* We only use the DMA interrupts, and we don't enable any other
 305         * source of interrupts. But, it is possible to see an interrupt
 306         * status that didn't actually interrupt us, so eliminate anything
 307         * we're not expecting to avoid falsely claiming an IRQ, and an
 308         * ensuing endless loop.
 309         */
 310        intr = inl(io + SIS_GISR);
 311        intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
 312                SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
 313        if (!intr)
 314                return IRQ_NONE;
 315
 316        do {
 317                status = inl(io + SIS_PISR_A);
 318                if (status) {
 319                        sis_voice_irq(status, sis->voices);
 320                        outl(status, io + SIS_PISR_A);
 321                }
 322
 323                status = inl(io + SIS_PISR_B);
 324                if (status) {
 325                        sis_voice_irq(status, &sis->voices[32]);
 326                        outl(status, io + SIS_PISR_B);
 327                }
 328
 329                status = inl(io + SIS_RISR);
 330                if (status) {
 331                        voice = &sis->capture_voice;
 332                        if (!voice->timing)
 333                                snd_pcm_period_elapsed(voice->substream);
 334
 335                        outl(status, io + SIS_RISR);
 336                }
 337
 338                outl(intr, io + SIS_GISR);
 339                intr = inl(io + SIS_GISR);
 340                intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
 341                        SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
 342        } while (intr);
 343
 344        return IRQ_HANDLED;
 345}
 346
 347static u32 sis_rate_to_delta(unsigned int rate)
 348{
 349        u32 delta;
 350
 351        /* This was copied from the trident driver, but it seems its gotten
 352         * around a bit... nevertheless, it works well.
 353         *
 354         * We special case 44100 and 8000 since rounding with the equation
 355         * does not give us an accurate enough value. For 11025 and 22050
 356         * the equation gives us the best answer. All other frequencies will
 357         * also use the equation. JDW
 358         */
 359        if (rate == 44100)
 360                delta = 0xeb3;
 361        else if (rate == 8000)
 362                delta = 0x2ab;
 363        else if (rate == 48000)
 364                delta = 0x1000;
 365        else
 366                delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff;
 367        return delta;
 368}
 369
 370static void __sis_map_silence(struct sis7019 *sis)
 371{
 372        /* Helper function: must hold sis->voice_lock on entry */
 373        if (!sis->silence_users)
 374                sis->silence_dma_addr = dma_map_single(&sis->pci->dev,
 375                                                sis->suspend_state[0],
 376                                                4096, DMA_TO_DEVICE);
 377        sis->silence_users++;
 378}
 379
 380static void __sis_unmap_silence(struct sis7019 *sis)
 381{
 382        /* Helper function: must hold sis->voice_lock on entry */
 383        sis->silence_users--;
 384        if (!sis->silence_users)
 385                dma_unmap_single(&sis->pci->dev, sis->silence_dma_addr, 4096,
 386                                        DMA_TO_DEVICE);
 387}
 388
 389static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
 390{
 391        unsigned long flags;
 392
 393        spin_lock_irqsave(&sis->voice_lock, flags);
 394        if (voice->timing) {
 395                __sis_unmap_silence(sis);
 396                voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
 397                                                VOICE_SYNC_TIMING);
 398                voice->timing = NULL;
 399        }
 400        voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
 401        spin_unlock_irqrestore(&sis->voice_lock, flags);
 402}
 403
 404static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
 405{
 406        /* Must hold the voice_lock on entry */
 407        struct voice *voice;
 408        int i;
 409
 410        for (i = 0; i < 64; i++) {
 411                voice = &sis->voices[i];
 412                if (voice->flags & VOICE_IN_USE)
 413                        continue;
 414                voice->flags |= VOICE_IN_USE;
 415                goto found_one;
 416        }
 417        voice = NULL;
 418
 419found_one:
 420        return voice;
 421}
 422
 423static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
 424{
 425        struct voice *voice;
 426        unsigned long flags;
 427
 428        spin_lock_irqsave(&sis->voice_lock, flags);
 429        voice = __sis_alloc_playback_voice(sis);
 430        spin_unlock_irqrestore(&sis->voice_lock, flags);
 431
 432        return voice;
 433}
 434
 435static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
 436                                        struct snd_pcm_hw_params *hw_params)
 437{
 438        struct sis7019 *sis = snd_pcm_substream_chip(substream);
 439        struct snd_pcm_runtime *runtime = substream->runtime;
 440        struct voice *voice = runtime->private_data;
 441        unsigned int period_size, buffer_size;
 442        unsigned long flags;
 443        int needed;
 444
 445        /* If there are one or two periods per buffer, we don't need a
 446         * timing voice, as we can use the capture channel's interrupts
 447         * to clock out the periods.
 448         */
 449        period_size = params_period_size(hw_params);
 450        buffer_size = params_buffer_size(hw_params);
 451        needed = (period_size != buffer_size &&
 452                        period_size != (buffer_size / 2));
 453
 454        if (needed && !voice->timing) {
 455                spin_lock_irqsave(&sis->voice_lock, flags);
 456                voice->timing = __sis_alloc_playback_voice(sis);
 457                if (voice->timing)
 458                        __sis_map_silence(sis);
 459                spin_unlock_irqrestore(&sis->voice_lock, flags);
 460                if (!voice->timing)
 461                        return -ENOMEM;
 462                voice->timing->substream = substream;
 463        } else if (!needed && voice->timing) {
 464                sis_free_voice(sis, voice);
 465                voice->timing = NULL;
 466        }
 467
 468        return 0;
 469}
 470
 471static int sis_playback_open(struct snd_pcm_substream *substream)
 472{
 473        struct sis7019 *sis = snd_pcm_substream_chip(substream);
 474        struct snd_pcm_runtime *runtime = substream->runtime;
 475        struct voice *voice;
 476
 477        voice = sis_alloc_playback_voice(sis);
 478        if (!voice)
 479                return -EAGAIN;
 480
 481        voice->substream = substream;
 482        runtime->private_data = voice;
 483        runtime->hw = sis_playback_hw_info;
 484        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
 485                                                9, 0xfff9);
 486        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
 487                                                9, 0xfff9);
 488        snd_pcm_set_sync(substream);
 489        return 0;
 490}
 491
 492static int sis_substream_close(struct snd_pcm_substream *substream)
 493{
 494        struct sis7019 *sis = snd_pcm_substream_chip(substream);
 495        struct snd_pcm_runtime *runtime = substream->runtime;
 496        struct voice *voice = runtime->private_data;
 497
 498        sis_free_voice(sis, voice);
 499        return 0;
 500}
 501
 502static int sis_playback_hw_params(struct snd_pcm_substream *substream,
 503                                        struct snd_pcm_hw_params *hw_params)
 504{
 505        return snd_pcm_lib_malloc_pages(substream,
 506                                        params_buffer_bytes(hw_params));
 507}
 508
 509static int sis_hw_free(struct snd_pcm_substream *substream)
 510{
 511        return snd_pcm_lib_free_pages(substream);
 512}
 513
 514static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
 515{
 516        struct snd_pcm_runtime *runtime = substream->runtime;
 517        struct voice *voice = runtime->private_data;
 518        void __iomem *ctrl_base = voice->ctrl_base;
 519        void __iomem *wave_base = voice->wave_base;
 520        u32 format, dma_addr, control, sso_eso, delta, reg;
 521        u16 leo;
 522
 523        /* We rely on the PCM core to ensure that the parameters for this
 524         * substream do not change on us while we're programming the HW.
 525         */
 526        format = 0;
 527        if (snd_pcm_format_width(runtime->format) == 8)
 528                format |= SIS_PLAY_DMA_FORMAT_8BIT;
 529        if (!snd_pcm_format_signed(runtime->format))
 530                format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
 531        if (runtime->channels == 1)
 532                format |= SIS_PLAY_DMA_FORMAT_MONO;
 533
 534        /* The baseline setup is for a single period per buffer, and
 535         * we add bells and whistles as needed from there.
 536         */
 537        dma_addr = runtime->dma_addr;
 538        leo = runtime->buffer_size - 1;
 539        control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
 540        sso_eso = leo;
 541
 542        if (runtime->period_size == (runtime->buffer_size / 2)) {
 543                control |= SIS_PLAY_DMA_INTR_AT_MLP;
 544        } else if (runtime->period_size != runtime->buffer_size) {
 545                voice->flags |= VOICE_SSO_TIMING;
 546                voice->sso = runtime->period_size - 1;
 547                voice->period_size = runtime->period_size;
 548                voice->buffer_size = runtime->buffer_size;
 549
 550                control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
 551                control |= SIS_PLAY_DMA_INTR_AT_SSO;
 552                sso_eso |= (runtime->period_size - 1) << 16;
 553        }
 554
 555        delta = sis_rate_to_delta(runtime->rate);
 556
 557        /* Ok, we're ready to go, set up the channel.
 558         */
 559        writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
 560        writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
 561        writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
 562        writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
 563
 564        for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
 565                writel(0, wave_base + reg);
 566
 567        writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
 568        writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
 569        writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
 570                        SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
 571                        SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
 572                        wave_base + SIS_WAVE_CHANNEL_CONTROL);
 573
 574        /* Force PCI writes to post. */
 575        readl(ctrl_base);
 576
 577        return 0;
 578}
 579
 580static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
 581{
 582        struct sis7019 *sis = snd_pcm_substream_chip(substream);
 583        unsigned long io = sis->ioport;
 584        struct snd_pcm_substream *s;
 585        struct voice *voice;
 586        void *chip;
 587        int starting;
 588        u32 record = 0;
 589        u32 play[2] = { 0, 0 };
 590
 591        /* No locks needed, as the PCM core will hold the locks on the
 592         * substreams, and the HW will only start/stop the indicated voices
 593         * without changing the state of the others.
 594         */
 595        switch (cmd) {
 596        case SNDRV_PCM_TRIGGER_START:
 597        case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
 598        case SNDRV_PCM_TRIGGER_RESUME:
 599                starting = 1;
 600                break;
 601        case SNDRV_PCM_TRIGGER_STOP:
 602        case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
 603        case SNDRV_PCM_TRIGGER_SUSPEND:
 604                starting = 0;
 605                break;
 606        default:
 607                return -EINVAL;
 608        }
 609
 610        snd_pcm_group_for_each_entry(s, substream) {
 611                /* Make sure it is for us... */
 612                chip = snd_pcm_substream_chip(s);
 613                if (chip != sis)
 614                        continue;
 615
 616                voice = s->runtime->private_data;
 617                if (voice->flags & VOICE_CAPTURE) {
 618                        record |= 1 << voice->num;
 619                        voice = voice->timing;
 620                }
 621
 622                /* voice could be NULL if this a recording stream, and it
 623                 * doesn't have an external timing channel.
 624                 */
 625                if (voice)
 626                        play[voice->num / 32] |= 1 << (voice->num & 0x1f);
 627
 628                snd_pcm_trigger_done(s, substream);
 629        }
 630
 631        if (starting) {
 632                if (record)
 633                        outl(record, io + SIS_RECORD_START_REG);
 634                if (play[0])
 635                        outl(play[0], io + SIS_PLAY_START_A_REG);
 636                if (play[1])
 637                        outl(play[1], io + SIS_PLAY_START_B_REG);
 638        } else {
 639                if (record)
 640                        outl(record, io + SIS_RECORD_STOP_REG);
 641                if (play[0])
 642                        outl(play[0], io + SIS_PLAY_STOP_A_REG);
 643                if (play[1])
 644                        outl(play[1], io + SIS_PLAY_STOP_B_REG);
 645        }
 646        return 0;
 647}
 648
 649static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
 650{
 651        struct snd_pcm_runtime *runtime = substream->runtime;
 652        struct voice *voice = runtime->private_data;
 653        u32 cso;
 654
 655        cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
 656        cso &= 0xffff;
 657        return cso;
 658}
 659
 660static int sis_capture_open(struct snd_pcm_substream *substream)
 661{
 662        struct sis7019 *sis = snd_pcm_substream_chip(substream);
 663        struct snd_pcm_runtime *runtime = substream->runtime;
 664        struct voice *voice = &sis->capture_voice;
 665        unsigned long flags;
 666
 667        /* FIXME: The driver only supports recording from one channel
 668         * at the moment, but it could support more.
 669         */
 670        spin_lock_irqsave(&sis->voice_lock, flags);
 671        if (voice->flags & VOICE_IN_USE)
 672                voice = NULL;
 673        else
 674                voice->flags |= VOICE_IN_USE;
 675        spin_unlock_irqrestore(&sis->voice_lock, flags);
 676
 677        if (!voice)
 678                return -EAGAIN;
 679
 680        voice->substream = substream;
 681        runtime->private_data = voice;
 682        runtime->hw = sis_capture_hw_info;
 683        runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
 684        snd_pcm_limit_hw_rates(runtime);
 685        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
 686                                                9, 0xfff9);
 687        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
 688                                                9, 0xfff9);
 689        snd_pcm_set_sync(substream);
 690        return 0;
 691}
 692
 693static int sis_capture_hw_params(struct snd_pcm_substream *substream,
 694                                        struct snd_pcm_hw_params *hw_params)
 695{
 696        struct sis7019 *sis = snd_pcm_substream_chip(substream);
 697        int rc;
 698
 699        rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
 700                                                params_rate(hw_params));
 701        if (rc)
 702                goto out;
 703
 704        rc = snd_pcm_lib_malloc_pages(substream,
 705                                        params_buffer_bytes(hw_params));
 706        if (rc < 0)
 707                goto out;
 708
 709        rc = sis_alloc_timing_voice(substream, hw_params);
 710
 711out:
 712        return rc;
 713}
 714
 715static void sis_prepare_timing_voice(struct voice *voice,
 716                                        struct snd_pcm_substream *substream)
 717{
 718        struct sis7019 *sis = snd_pcm_substream_chip(substream);
 719        struct snd_pcm_runtime *runtime = substream->runtime;
 720        struct voice *timing = voice->timing;
 721        void __iomem *play_base = timing->ctrl_base;
 722        void __iomem *wave_base = timing->wave_base;
 723        u16 buffer_size, period_size;
 724        u32 format, control, sso_eso, delta;
 725        u32 vperiod, sso, reg;
 726
 727        /* Set our initial buffer and period as large as we can given a
 728         * single page of silence.
 729         */
 730        buffer_size = 4096 / runtime->channels;
 731        buffer_size /= snd_pcm_format_size(runtime->format, 1);
 732        period_size = buffer_size;
 733
 734        /* Initially, we want to interrupt just a bit behind the end of
 735         * the period we're clocking out. 12 samples seems to give a good
 736         * delay.
 737         *
 738         * We want to spread our interrupts throughout the virtual period,
 739         * so that we don't end up with two interrupts back to back at the
 740         * end -- this helps minimize the effects of any jitter. Adjust our
 741         * clocking period size so that the last period is at least a fourth
 742         * of a full period.
 743         *
 744         * This is all moot if we don't need to use virtual periods.
 745         */
 746        vperiod = runtime->period_size + 12;
 747        if (vperiod > period_size) {
 748                u16 tail = vperiod % period_size;
 749                u16 quarter_period = period_size / 4;
 750
 751                if (tail && tail < quarter_period) {
 752                        u16 loops = vperiod / period_size;
 753
 754                        tail = quarter_period - tail;
 755                        tail += loops - 1;
 756                        tail /= loops;
 757                        period_size -= tail;
 758                }
 759
 760                sso = period_size - 1;
 761        } else {
 762                /* The initial period will fit inside the buffer, so we
 763                 * don't need to use virtual periods -- disable them.
 764                 */
 765                period_size = runtime->period_size;
 766                sso = vperiod - 1;
 767                vperiod = 0;
 768        }
 769
 770        /* The interrupt handler implements the timing synchronization, so
 771         * setup its state.
 772         */
 773        timing->flags |= VOICE_SYNC_TIMING;
 774        timing->sync_base = voice->ctrl_base;
 775        timing->sync_cso = runtime->period_size;
 776        timing->sync_period_size = runtime->period_size;
 777        timing->sync_buffer_size = runtime->buffer_size;
 778        timing->period_size = period_size;
 779        timing->buffer_size = buffer_size;
 780        timing->sso = sso;
 781        timing->vperiod = vperiod;
 782
 783        /* Using unsigned samples with the all-zero silence buffer
 784         * forces the output to the lower rail, killing playback.
 785         * So ignore unsigned vs signed -- it doesn't change the timing.
 786         */
 787        format = 0;
 788        if (snd_pcm_format_width(runtime->format) == 8)
 789                format = SIS_CAPTURE_DMA_FORMAT_8BIT;
 790        if (runtime->channels == 1)
 791                format |= SIS_CAPTURE_DMA_FORMAT_MONO;
 792
 793        control = timing->buffer_size - 1;
 794        control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
 795        sso_eso = timing->buffer_size - 1;
 796        sso_eso |= timing->sso << 16;
 797
 798        delta = sis_rate_to_delta(runtime->rate);
 799
 800        /* We've done the math, now configure the channel.
 801         */
 802        writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
 803        writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
 804        writel(control, play_base + SIS_PLAY_DMA_CONTROL);
 805        writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
 806
 807        for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
 808                writel(0, wave_base + reg);
 809
 810        writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
 811        writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
 812        writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
 813                        SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
 814                        SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
 815                        wave_base + SIS_WAVE_CHANNEL_CONTROL);
 816}
 817
 818static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
 819{
 820        struct snd_pcm_runtime *runtime = substream->runtime;
 821        struct voice *voice = runtime->private_data;
 822        void __iomem *rec_base = voice->ctrl_base;
 823        u32 format, dma_addr, control;
 824        u16 leo;
 825
 826        /* We rely on the PCM core to ensure that the parameters for this
 827         * substream do not change on us while we're programming the HW.
 828         */
 829        format = 0;
 830        if (snd_pcm_format_width(runtime->format) == 8)
 831                format = SIS_CAPTURE_DMA_FORMAT_8BIT;
 832        if (!snd_pcm_format_signed(runtime->format))
 833                format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
 834        if (runtime->channels == 1)
 835                format |= SIS_CAPTURE_DMA_FORMAT_MONO;
 836
 837        dma_addr = runtime->dma_addr;
 838        leo = runtime->buffer_size - 1;
 839        control = leo | SIS_CAPTURE_DMA_LOOP;
 840
 841        /* If we've got more than two periods per buffer, then we have
 842         * use a timing voice to clock out the periods. Otherwise, we can
 843         * use the capture channel's interrupts.
 844         */
 845        if (voice->timing) {
 846                sis_prepare_timing_voice(voice, substream);
 847        } else {
 848                control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
 849                if (runtime->period_size != runtime->buffer_size)
 850                        control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
 851        }
 852
 853        writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
 854        writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
 855        writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
 856
 857        /* Force the writes to post. */
 858        readl(rec_base);
 859
 860        return 0;
 861}
 862
 863static const struct snd_pcm_ops sis_playback_ops = {
 864        .open = sis_playback_open,
 865        .close = sis_substream_close,
 866        .ioctl = snd_pcm_lib_ioctl,
 867        .hw_params = sis_playback_hw_params,
 868        .hw_free = sis_hw_free,
 869        .prepare = sis_pcm_playback_prepare,
 870        .trigger = sis_pcm_trigger,
 871        .pointer = sis_pcm_pointer,
 872};
 873
 874static const struct snd_pcm_ops sis_capture_ops = {
 875        .open = sis_capture_open,
 876        .close = sis_substream_close,
 877        .ioctl = snd_pcm_lib_ioctl,
 878        .hw_params = sis_capture_hw_params,
 879        .hw_free = sis_hw_free,
 880        .prepare = sis_pcm_capture_prepare,
 881        .trigger = sis_pcm_trigger,
 882        .pointer = sis_pcm_pointer,
 883};
 884
 885static int sis_pcm_create(struct sis7019 *sis)
 886{
 887        struct snd_pcm *pcm;
 888        int rc;
 889
 890        /* We have 64 voices, and the driver currently records from
 891         * only one channel, though that could change in the future.
 892         */
 893        rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
 894        if (rc)
 895                return rc;
 896
 897        pcm->private_data = sis;
 898        strcpy(pcm->name, "SiS7019");
 899        sis->pcm = pcm;
 900
 901        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
 902        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
 903
 904        /* Try to preallocate some memory, but it's not the end of the
 905         * world if this fails.
 906         */
 907        snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
 908                                snd_dma_pci_data(sis->pci), 64*1024, 128*1024);
 909
 910        return 0;
 911}
 912
 913static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
 914{
 915        unsigned long io = sis->ioport;
 916        unsigned short val = 0xffff;
 917        u16 status;
 918        u16 rdy;
 919        int count;
 920        static const u16 codec_ready[3] = {
 921                SIS_AC97_STATUS_CODEC_READY,
 922                SIS_AC97_STATUS_CODEC2_READY,
 923                SIS_AC97_STATUS_CODEC3_READY,
 924        };
 925
 926        rdy = codec_ready[codec];
 927
 928
 929        /* Get the AC97 semaphore -- software first, so we don't spin
 930         * pounding out IO reads on the hardware semaphore...
 931         */
 932        mutex_lock(&sis->ac97_mutex);
 933
 934        count = 0xffff;
 935        while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
 936                udelay(1);
 937
 938        if (!count)
 939                goto timeout;
 940
 941        /* ... and wait for any outstanding commands to complete ...
 942         */
 943        count = 0xffff;
 944        do {
 945                status = inw(io + SIS_AC97_STATUS);
 946                if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
 947                        break;
 948
 949                udelay(1);
 950        } while (--count);
 951
 952        if (!count)
 953                goto timeout_sema;
 954
 955        /* ... before sending our command and waiting for it to finish ...
 956         */
 957        outl(cmd, io + SIS_AC97_CMD);
 958        udelay(10);
 959
 960        count = 0xffff;
 961        while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
 962                udelay(1);
 963
 964        /* ... and reading the results (if any).
 965         */
 966        val = inl(io + SIS_AC97_CMD) >> 16;
 967
 968timeout_sema:
 969        outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
 970timeout:
 971        mutex_unlock(&sis->ac97_mutex);
 972
 973        if (!count) {
 974                dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n",
 975                                        codec, cmd);
 976        }
 977
 978        return val;
 979}
 980
 981static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
 982                                unsigned short val)
 983{
 984        static const u32 cmd[3] = {
 985                SIS_AC97_CMD_CODEC_WRITE,
 986                SIS_AC97_CMD_CODEC2_WRITE,
 987                SIS_AC97_CMD_CODEC3_WRITE,
 988        };
 989        sis_ac97_rw(ac97->private_data, ac97->num,
 990                        (val << 16) | (reg << 8) | cmd[ac97->num]);
 991}
 992
 993static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
 994{
 995        static const u32 cmd[3] = {
 996                SIS_AC97_CMD_CODEC_READ,
 997                SIS_AC97_CMD_CODEC2_READ,
 998                SIS_AC97_CMD_CODEC3_READ,
 999        };
1000        return sis_ac97_rw(ac97->private_data, ac97->num,
1001                                        (reg << 8) | cmd[ac97->num]);
1002}
1003
1004static int sis_mixer_create(struct sis7019 *sis)
1005{
1006        struct snd_ac97_bus *bus;
1007        struct snd_ac97_template ac97;
1008        static struct snd_ac97_bus_ops ops = {
1009                .write = sis_ac97_write,
1010                .read = sis_ac97_read,
1011        };
1012        int rc;
1013
1014        memset(&ac97, 0, sizeof(ac97));
1015        ac97.private_data = sis;
1016
1017        rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
1018        if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1019                rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
1020        ac97.num = 1;
1021        if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
1022                rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
1023        ac97.num = 2;
1024        if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
1025                rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
1026
1027        /* If we return an error here, then snd_card_free() should
1028         * free up any ac97 codecs that got created, as well as the bus.
1029         */
1030        return rc;
1031}
1032
1033static void sis_free_suspend(struct sis7019 *sis)
1034{
1035        int i;
1036
1037        for (i = 0; i < SIS_SUSPEND_PAGES; i++)
1038                kfree(sis->suspend_state[i]);
1039}
1040
1041static int sis_chip_free(struct sis7019 *sis)
1042{
1043        /* Reset the chip, and disable all interrputs.
1044         */
1045        outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
1046        udelay(25);
1047        outl(0, sis->ioport + SIS_GCR);
1048        outl(0, sis->ioport + SIS_GIER);
1049
1050        /* Now, free everything we allocated.
1051         */
1052        if (sis->irq >= 0)
1053                free_irq(sis->irq, sis);
1054
1055        iounmap(sis->ioaddr);
1056        pci_release_regions(sis->pci);
1057        pci_disable_device(sis->pci);
1058        sis_free_suspend(sis);
1059        return 0;
1060}
1061
1062static int sis_dev_free(struct snd_device *dev)
1063{
1064        struct sis7019 *sis = dev->device_data;
1065        return sis_chip_free(sis);
1066}
1067
1068static int sis_chip_init(struct sis7019 *sis)
1069{
1070        unsigned long io = sis->ioport;
1071        void __iomem *ioaddr = sis->ioaddr;
1072        unsigned long timeout;
1073        u16 status;
1074        int count;
1075        int i;
1076
1077        /* Reset the audio controller
1078         */
1079        outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
1080        udelay(25);
1081        outl(0, io + SIS_GCR);
1082
1083        /* Get the AC-link semaphore, and reset the codecs
1084         */
1085        count = 0xffff;
1086        while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
1087                udelay(1);
1088
1089        if (!count)
1090                return -EIO;
1091
1092        outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
1093        udelay(250);
1094
1095        count = 0xffff;
1096        while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
1097                udelay(1);
1098
1099        /* Command complete, we can let go of the semaphore now.
1100         */
1101        outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
1102        if (!count)
1103                return -EIO;
1104
1105        /* Now that we've finished the reset, find out what's attached.
1106         * There are some codec/board combinations that take an extremely
1107         * long time to come up. 350+ ms has been observed in the field,
1108         * so we'll give them up to 500ms.
1109         */
1110        sis->codecs_present = 0;
1111        timeout = msecs_to_jiffies(500) + jiffies;
1112        while (time_before_eq(jiffies, timeout)) {
1113                status = inl(io + SIS_AC97_STATUS);
1114                if (status & SIS_AC97_STATUS_CODEC_READY)
1115                        sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
1116                if (status & SIS_AC97_STATUS_CODEC2_READY)
1117                        sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
1118                if (status & SIS_AC97_STATUS_CODEC3_READY)
1119                        sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;
1120
1121                if (sis->codecs_present == codecs)
1122                        break;
1123
1124                msleep(1);
1125        }
1126
1127        /* All done, check for errors.
1128         */
1129        if (!sis->codecs_present) {
1130                dev_err(&sis->pci->dev, "could not find any codecs\n");
1131                return -EIO;
1132        }
1133
1134        if (sis->codecs_present != codecs) {
1135                dev_warn(&sis->pci->dev, "missing codecs, found %0x, expected %0x\n",
1136                                         sis->codecs_present, codecs);
1137        }
1138
1139        /* Let the hardware know that the audio driver is alive,
1140         * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1141         * record channels. We're going to want to use Variable Rate Audio
1142         * for recording, to avoid needlessly resampling from 48kHZ.
1143         */
1144        outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
1145        outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
1146                SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
1147                SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
1148                SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);
1149
1150        /* All AC97 PCM slots should be sourced from sub-mixer 0.
1151         */
1152        outl(0, io + SIS_AC97_PSR);
1153
1154        /* There is only one valid DMA setup for a PCI environment.
1155         */
1156        outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);
1157
1158        /* Reset the synchronization groups for all of the channels
1159         * to be asynchronous. If we start doing SPDIF or 5.1 sound, etc.
1160         * we'll need to change how we handle these. Until then, we just
1161         * assign sub-mixer 0 to all playback channels, and avoid any
1162         * attenuation on the audio.
1163         */
1164        outl(0, io + SIS_PLAY_SYNC_GROUP_A);
1165        outl(0, io + SIS_PLAY_SYNC_GROUP_B);
1166        outl(0, io + SIS_PLAY_SYNC_GROUP_C);
1167        outl(0, io + SIS_PLAY_SYNC_GROUP_D);
1168        outl(0, io + SIS_MIXER_SYNC_GROUP);
1169
1170        for (i = 0; i < 64; i++) {
1171                writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
1172                writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
1173                                SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
1174        }
1175
1176        /* Don't attenuate any audio set for the wave amplifier.
1177         *
1178         * FIXME: Maximum attenuation is set for the music amp, which will
1179         * need to change if we start using the synth engine.
1180         */
1181        outl(0xffff0000, io + SIS_WEVCR);
1182
1183        /* Ensure that the wave engine is in normal operating mode.
1184         */
1185        outl(0, io + SIS_WECCR);
1186
1187        /* Go ahead and enable the DMA interrupts. They won't go live
1188         * until we start a channel.
1189         */
1190        outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
1191                SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);
1192
1193        return 0;
1194}
1195
1196#ifdef CONFIG_PM_SLEEP
1197static int sis_suspend(struct device *dev)
1198{
1199        struct snd_card *card = dev_get_drvdata(dev);
1200        struct sis7019 *sis = card->private_data;
1201        void __iomem *ioaddr = sis->ioaddr;
1202        int i;
1203
1204        snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1205        if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1206                snd_ac97_suspend(sis->ac97[0]);
1207        if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1208                snd_ac97_suspend(sis->ac97[1]);
1209        if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1210                snd_ac97_suspend(sis->ac97[2]);
1211
1212        /* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1213         */
1214        if (sis->irq >= 0) {
1215                free_irq(sis->irq, sis);
1216                sis->irq = -1;
1217        }
1218
1219        /* Save the internal state away
1220         */
1221        for (i = 0; i < 4; i++) {
1222                memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
1223                ioaddr += 4096;
1224        }
1225
1226        return 0;
1227}
1228
1229static int sis_resume(struct device *dev)
1230{
1231        struct pci_dev *pci = to_pci_dev(dev);
1232        struct snd_card *card = dev_get_drvdata(dev);
1233        struct sis7019 *sis = card->private_data;
1234        void __iomem *ioaddr = sis->ioaddr;
1235        int i;
1236
1237        if (sis_chip_init(sis)) {
1238                dev_err(&pci->dev, "unable to re-init controller\n");
1239                goto error;
1240        }
1241
1242        if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED,
1243                        KBUILD_MODNAME, sis)) {
1244                dev_err(&pci->dev, "unable to regain IRQ %d\n", pci->irq);
1245                goto error;
1246        }
1247
1248        /* Restore saved state, then clear out the page we use for the
1249         * silence buffer.
1250         */
1251        for (i = 0; i < 4; i++) {
1252                memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
1253                ioaddr += 4096;
1254        }
1255
1256        memset(sis->suspend_state[0], 0, 4096);
1257
1258        sis->irq = pci->irq;
1259
1260        if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1261                snd_ac97_resume(sis->ac97[0]);
1262        if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1263                snd_ac97_resume(sis->ac97[1]);
1264        if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1265                snd_ac97_resume(sis->ac97[2]);
1266
1267        snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1268        return 0;
1269
1270error:
1271        snd_card_disconnect(card);
1272        return -EIO;
1273}
1274
1275static SIMPLE_DEV_PM_OPS(sis_pm, sis_suspend, sis_resume);
1276#define SIS_PM_OPS      &sis_pm
1277#else
1278#define SIS_PM_OPS      NULL
1279#endif /* CONFIG_PM_SLEEP */
1280
1281static int sis_alloc_suspend(struct sis7019 *sis)
1282{
1283        int i;
1284
1285        /* We need 16K to store the internal wave engine state during a
1286         * suspend, but we don't need it to be contiguous, so play nice
1287         * with the memory system. We'll also use this area for a silence
1288         * buffer.
1289         */
1290        for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
1291                sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL);
1292                if (!sis->suspend_state[i])
1293                        return -ENOMEM;
1294        }
1295        memset(sis->suspend_state[0], 0, 4096);
1296
1297        return 0;
1298}
1299
1300static int sis_chip_create(struct snd_card *card,
1301                           struct pci_dev *pci)
1302{
1303        struct sis7019 *sis = card->private_data;
1304        struct voice *voice;
1305        static struct snd_device_ops ops = {
1306                .dev_free = sis_dev_free,
1307        };
1308        int rc;
1309        int i;
1310
1311        rc = pci_enable_device(pci);
1312        if (rc)
1313                goto error_out;
1314
1315        rc = dma_set_mask(&pci->dev, DMA_BIT_MASK(30));
1316        if (rc < 0) {
1317                dev_err(&pci->dev, "architecture does not support 30-bit PCI busmaster DMA");
1318                goto error_out_enabled;
1319        }
1320
1321        memset(sis, 0, sizeof(*sis));
1322        mutex_init(&sis->ac97_mutex);
1323        spin_lock_init(&sis->voice_lock);
1324        sis->card = card;
1325        sis->pci = pci;
1326        sis->irq = -1;
1327        sis->ioport = pci_resource_start(pci, 0);
1328
1329        rc = pci_request_regions(pci, "SiS7019");
1330        if (rc) {
1331                dev_err(&pci->dev, "unable request regions\n");
1332                goto error_out_enabled;
1333        }
1334
1335        rc = -EIO;
1336        sis->ioaddr = ioremap_nocache(pci_resource_start(pci, 1), 0x4000);
1337        if (!sis->ioaddr) {
1338                dev_err(&pci->dev, "unable to remap MMIO, aborting\n");
1339                goto error_out_cleanup;
1340        }
1341
1342        rc = sis_alloc_suspend(sis);
1343        if (rc < 0) {
1344                dev_err(&pci->dev, "unable to allocate state storage\n");
1345                goto error_out_cleanup;
1346        }
1347
1348        rc = sis_chip_init(sis);
1349        if (rc)
1350                goto error_out_cleanup;
1351
1352        rc = request_irq(pci->irq, sis_interrupt, IRQF_SHARED, KBUILD_MODNAME,
1353                         sis);
1354        if (rc) {
1355                dev_err(&pci->dev, "unable to allocate irq %d\n", sis->irq);
1356                goto error_out_cleanup;
1357        }
1358
1359        sis->irq = pci->irq;
1360        pci_set_master(pci);
1361
1362        for (i = 0; i < 64; i++) {
1363                voice = &sis->voices[i];
1364                voice->num = i;
1365                voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
1366                voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
1367        }
1368
1369        voice = &sis->capture_voice;
1370        voice->flags = VOICE_CAPTURE;
1371        voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
1372        voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
1373
1374        rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops);
1375        if (rc)
1376                goto error_out_cleanup;
1377
1378        return 0;
1379
1380error_out_cleanup:
1381        sis_chip_free(sis);
1382
1383error_out_enabled:
1384        pci_disable_device(pci);
1385
1386error_out:
1387        return rc;
1388}
1389
1390static int snd_sis7019_probe(struct pci_dev *pci,
1391                             const struct pci_device_id *pci_id)
1392{
1393        struct snd_card *card;
1394        struct sis7019 *sis;
1395        int rc;
1396
1397        rc = -ENOENT;
1398        if (!enable)
1399                goto error_out;
1400
1401        /* The user can specify which codecs should be present so that we
1402         * can wait for them to show up if they are slow to recover from
1403         * the AC97 cold reset. We default to a single codec, the primary.
1404         *
1405         * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2.
1406         */
1407        codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT |
1408                  SIS_TERTIARY_CODEC_PRESENT;
1409        if (!codecs)
1410                codecs = SIS_PRIMARY_CODEC_PRESENT;
1411
1412        rc = snd_card_new(&pci->dev, index, id, THIS_MODULE,
1413                          sizeof(*sis), &card);
1414        if (rc < 0)
1415                goto error_out;
1416
1417        strcpy(card->driver, "SiS7019");
1418        strcpy(card->shortname, "SiS7019");
1419        rc = sis_chip_create(card, pci);
1420        if (rc)
1421                goto card_error_out;
1422
1423        sis = card->private_data;
1424
1425        rc = sis_mixer_create(sis);
1426        if (rc)
1427                goto card_error_out;
1428
1429        rc = sis_pcm_create(sis);
1430        if (rc)
1431                goto card_error_out;
1432
1433        snprintf(card->longname, sizeof(card->longname),
1434                        "%s Audio Accelerator with %s at 0x%lx, irq %d",
1435                        card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
1436                        sis->ioport, sis->irq);
1437
1438        rc = snd_card_register(card);
1439        if (rc)
1440                goto card_error_out;
1441
1442        pci_set_drvdata(pci, card);
1443        return 0;
1444
1445card_error_out:
1446        snd_card_free(card);
1447
1448error_out:
1449        return rc;
1450}
1451
1452static void snd_sis7019_remove(struct pci_dev *pci)
1453{
1454        snd_card_free(pci_get_drvdata(pci));
1455}
1456
1457static struct pci_driver sis7019_driver = {
1458        .name = KBUILD_MODNAME,
1459        .id_table = snd_sis7019_ids,
1460        .probe = snd_sis7019_probe,
1461        .remove = snd_sis7019_remove,
1462        .driver = {
1463                .pm = SIS_PM_OPS,
1464        },
1465};
1466
1467module_pci_driver(sis7019_driver);
1468