linux/sound/soc/fsl/fsl_dma.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// Freescale DMA ALSA SoC PCM driver
   4//
   5// Author: Timur Tabi <timur@freescale.com>
   6//
   7// Copyright 2007-2010 Freescale Semiconductor, Inc.
   8//
   9// This driver implements ASoC support for the Elo DMA controller, which is
  10// the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
  11// the PCM driver is what handles the DMA buffer.
  12
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/platform_device.h>
  16#include <linux/dma-mapping.h>
  17#include <linux/interrupt.h>
  18#include <linux/delay.h>
  19#include <linux/gfp.h>
  20#include <linux/of_address.h>
  21#include <linux/of_irq.h>
  22#include <linux/of_platform.h>
  23#include <linux/list.h>
  24#include <linux/slab.h>
  25
  26#include <sound/core.h>
  27#include <sound/pcm.h>
  28#include <sound/pcm_params.h>
  29#include <sound/soc.h>
  30
  31#include <asm/io.h>
  32
  33#include "fsl_dma.h"
  34#include "fsl_ssi.h"    /* For the offset of stx0 and srx0 */
  35
  36#define DRV_NAME "fsl_dma"
  37
  38/*
  39 * The formats that the DMA controller supports, which is anything
  40 * that is 8, 16, or 32 bits.
  41 */
  42#define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8         | \
  43                            SNDRV_PCM_FMTBIT_U8         | \
  44                            SNDRV_PCM_FMTBIT_S16_LE     | \
  45                            SNDRV_PCM_FMTBIT_S16_BE     | \
  46                            SNDRV_PCM_FMTBIT_U16_LE     | \
  47                            SNDRV_PCM_FMTBIT_U16_BE     | \
  48                            SNDRV_PCM_FMTBIT_S24_LE     | \
  49                            SNDRV_PCM_FMTBIT_S24_BE     | \
  50                            SNDRV_PCM_FMTBIT_U24_LE     | \
  51                            SNDRV_PCM_FMTBIT_U24_BE     | \
  52                            SNDRV_PCM_FMTBIT_S32_LE     | \
  53                            SNDRV_PCM_FMTBIT_S32_BE     | \
  54                            SNDRV_PCM_FMTBIT_U32_LE     | \
  55                            SNDRV_PCM_FMTBIT_U32_BE)
  56struct dma_object {
  57        struct snd_soc_component_driver dai;
  58        dma_addr_t ssi_stx_phys;
  59        dma_addr_t ssi_srx_phys;
  60        unsigned int ssi_fifo_depth;
  61        struct ccsr_dma_channel __iomem *channel;
  62        unsigned int irq;
  63        bool assigned;
  64};
  65
  66/*
  67 * The number of DMA links to use.  Two is the bare minimum, but if you
  68 * have really small links you might need more.
  69 */
  70#define NUM_DMA_LINKS   2
  71
  72/** fsl_dma_private: p-substream DMA data
  73 *
  74 * Each substream has a 1-to-1 association with a DMA channel.
  75 *
  76 * The link[] array is first because it needs to be aligned on a 32-byte
  77 * boundary, so putting it first will ensure alignment without padding the
  78 * structure.
  79 *
  80 * @link[]: array of link descriptors
  81 * @dma_channel: pointer to the DMA channel's registers
  82 * @irq: IRQ for this DMA channel
  83 * @substream: pointer to the substream object, needed by the ISR
  84 * @ssi_sxx_phys: bus address of the STX or SRX register to use
  85 * @ld_buf_phys: physical address of the LD buffer
  86 * @current_link: index into link[] of the link currently being processed
  87 * @dma_buf_phys: physical address of the DMA buffer
  88 * @dma_buf_next: physical address of the next period to process
  89 * @dma_buf_end: physical address of the byte after the end of the DMA
  90 * @buffer period_size: the size of a single period
  91 * @num_periods: the number of periods in the DMA buffer
  92 */
  93struct fsl_dma_private {
  94        struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
  95        struct ccsr_dma_channel __iomem *dma_channel;
  96        unsigned int irq;
  97        struct snd_pcm_substream *substream;
  98        dma_addr_t ssi_sxx_phys;
  99        unsigned int ssi_fifo_depth;
 100        dma_addr_t ld_buf_phys;
 101        unsigned int current_link;
 102        dma_addr_t dma_buf_phys;
 103        dma_addr_t dma_buf_next;
 104        dma_addr_t dma_buf_end;
 105        size_t period_size;
 106        unsigned int num_periods;
 107};
 108
 109/**
 110 * fsl_dma_hardare: define characteristics of the PCM hardware.
 111 *
 112 * The PCM hardware is the Freescale DMA controller.  This structure defines
 113 * the capabilities of that hardware.
 114 *
 115 * Since the sampling rate and data format are not controlled by the DMA
 116 * controller, we specify no limits for those values.  The only exception is
 117 * period_bytes_min, which is set to a reasonably low value to prevent the
 118 * DMA controller from generating too many interrupts per second.
 119 *
 120 * Since each link descriptor has a 32-bit byte count field, we set
 121 * period_bytes_max to the largest 32-bit number.  We also have no maximum
 122 * number of periods.
 123 *
 124 * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
 125 * limitation in the SSI driver requires the sample rates for playback and
 126 * capture to be the same.
 127 */
 128static const struct snd_pcm_hardware fsl_dma_hardware = {
 129
 130        .info                   = SNDRV_PCM_INFO_INTERLEAVED |
 131                                  SNDRV_PCM_INFO_MMAP |
 132                                  SNDRV_PCM_INFO_MMAP_VALID |
 133                                  SNDRV_PCM_INFO_JOINT_DUPLEX |
 134                                  SNDRV_PCM_INFO_PAUSE,
 135        .formats                = FSLDMA_PCM_FORMATS,
 136        .period_bytes_min       = 512,          /* A reasonable limit */
 137        .period_bytes_max       = (u32) -1,
 138        .periods_min            = NUM_DMA_LINKS,
 139        .periods_max            = (unsigned int) -1,
 140        .buffer_bytes_max       = 128 * 1024,   /* A reasonable limit */
 141};
 142
 143/**
 144 * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
 145 *
 146 * This function should be called by the ISR whenever the DMA controller
 147 * halts data transfer.
 148 */
 149static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
 150{
 151        snd_pcm_stop_xrun(substream);
 152}
 153
 154/**
 155 * fsl_dma_update_pointers - update LD pointers to point to the next period
 156 *
 157 * As each period is completed, this function changes the link
 158 * descriptor pointers for that period to point to the next period.
 159 */
 160static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
 161{
 162        struct fsl_dma_link_descriptor *link =
 163                &dma_private->link[dma_private->current_link];
 164
 165        /* Update our link descriptors to point to the next period. On a 36-bit
 166         * system, we also need to update the ESAD bits.  We also set (keep) the
 167         * snoop bits.  See the comments in fsl_dma_hw_params() about snooping.
 168         */
 169        if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
 170                link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
 171#ifdef CONFIG_PHYS_64BIT
 172                link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
 173                        upper_32_bits(dma_private->dma_buf_next));
 174#endif
 175        } else {
 176                link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
 177#ifdef CONFIG_PHYS_64BIT
 178                link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
 179                        upper_32_bits(dma_private->dma_buf_next));
 180#endif
 181        }
 182
 183        /* Update our variables for next time */
 184        dma_private->dma_buf_next += dma_private->period_size;
 185
 186        if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
 187                dma_private->dma_buf_next = dma_private->dma_buf_phys;
 188
 189        if (++dma_private->current_link >= NUM_DMA_LINKS)
 190                dma_private->current_link = 0;
 191}
 192
 193/**
 194 * fsl_dma_isr: interrupt handler for the DMA controller
 195 *
 196 * @irq: IRQ of the DMA channel
 197 * @dev_id: pointer to the dma_private structure for this DMA channel
 198 */
 199static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
 200{
 201        struct fsl_dma_private *dma_private = dev_id;
 202        struct snd_pcm_substream *substream = dma_private->substream;
 203        struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
 204        struct device *dev = rtd->dev;
 205        struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
 206        irqreturn_t ret = IRQ_NONE;
 207        u32 sr, sr2 = 0;
 208
 209        /* We got an interrupt, so read the status register to see what we
 210           were interrupted for.
 211         */
 212        sr = in_be32(&dma_channel->sr);
 213
 214        if (sr & CCSR_DMA_SR_TE) {
 215                dev_err(dev, "dma transmit error\n");
 216                fsl_dma_abort_stream(substream);
 217                sr2 |= CCSR_DMA_SR_TE;
 218                ret = IRQ_HANDLED;
 219        }
 220
 221        if (sr & CCSR_DMA_SR_CH)
 222                ret = IRQ_HANDLED;
 223
 224        if (sr & CCSR_DMA_SR_PE) {
 225                dev_err(dev, "dma programming error\n");
 226                fsl_dma_abort_stream(substream);
 227                sr2 |= CCSR_DMA_SR_PE;
 228                ret = IRQ_HANDLED;
 229        }
 230
 231        if (sr & CCSR_DMA_SR_EOLNI) {
 232                sr2 |= CCSR_DMA_SR_EOLNI;
 233                ret = IRQ_HANDLED;
 234        }
 235
 236        if (sr & CCSR_DMA_SR_CB)
 237                ret = IRQ_HANDLED;
 238
 239        if (sr & CCSR_DMA_SR_EOSI) {
 240                /* Tell ALSA we completed a period. */
 241                snd_pcm_period_elapsed(substream);
 242
 243                /*
 244                 * Update our link descriptors to point to the next period. We
 245                 * only need to do this if the number of periods is not equal to
 246                 * the number of links.
 247                 */
 248                if (dma_private->num_periods != NUM_DMA_LINKS)
 249                        fsl_dma_update_pointers(dma_private);
 250
 251                sr2 |= CCSR_DMA_SR_EOSI;
 252                ret = IRQ_HANDLED;
 253        }
 254
 255        if (sr & CCSR_DMA_SR_EOLSI) {
 256                sr2 |= CCSR_DMA_SR_EOLSI;
 257                ret = IRQ_HANDLED;
 258        }
 259
 260        /* Clear the bits that we set */
 261        if (sr2)
 262                out_be32(&dma_channel->sr, sr2);
 263
 264        return ret;
 265}
 266
 267/**
 268 * fsl_dma_new: initialize this PCM driver.
 269 *
 270 * This function is called when the codec driver calls snd_soc_new_pcms(),
 271 * once for each .dai_link in the machine driver's snd_soc_card
 272 * structure.
 273 *
 274 * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
 275 * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
 276 * is specified. Therefore, any DMA buffers we allocate will always be in low
 277 * memory, but we support for 36-bit physical addresses anyway.
 278 *
 279 * Regardless of where the memory is actually allocated, since the device can
 280 * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
 281 */
 282static int fsl_dma_new(struct snd_soc_component *component,
 283                       struct snd_soc_pcm_runtime *rtd)
 284{
 285        struct snd_card *card = rtd->card->snd_card;
 286        struct snd_pcm *pcm = rtd->pcm;
 287        int ret;
 288
 289        ret = dma_coerce_mask_and_coherent(card->dev, DMA_BIT_MASK(36));
 290        if (ret)
 291                return ret;
 292
 293        return snd_pcm_set_fixed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
 294                                            card->dev,
 295                                            fsl_dma_hardware.buffer_bytes_max);
 296}
 297
 298/**
 299 * fsl_dma_open: open a new substream.
 300 *
 301 * Each substream has its own DMA buffer.
 302 *
 303 * ALSA divides the DMA buffer into N periods.  We create NUM_DMA_LINKS link
 304 * descriptors that ping-pong from one period to the next.  For example, if
 305 * there are six periods and two link descriptors, this is how they look
 306 * before playback starts:
 307 *
 308 *                 The last link descriptor
 309 *   ____________  points back to the first
 310 *  |            |
 311 *  V            |
 312 *  ___    ___   |
 313 * |   |->|   |->|
 314 * |___|  |___|
 315 *   |      |
 316 *   |      |
 317 *   V      V
 318 *  _________________________________________
 319 * |      |      |      |      |      |      |  The DMA buffer is
 320 * |      |      |      |      |      |      |    divided into 6 parts
 321 * |______|______|______|______|______|______|
 322 *
 323 * and here's how they look after the first period is finished playing:
 324 *
 325 *   ____________
 326 *  |            |
 327 *  V            |
 328 *  ___    ___   |
 329 * |   |->|   |->|
 330 * |___|  |___|
 331 *   |      |
 332 *   |______________
 333 *          |       |
 334 *          V       V
 335 *  _________________________________________
 336 * |      |      |      |      |      |      |
 337 * |      |      |      |      |      |      |
 338 * |______|______|______|______|______|______|
 339 *
 340 * The first link descriptor now points to the third period.  The DMA
 341 * controller is currently playing the second period.  When it finishes, it
 342 * will jump back to the first descriptor and play the third period.
 343 *
 344 * There are four reasons we do this:
 345 *
 346 * 1. The only way to get the DMA controller to automatically restart the
 347 *    transfer when it gets to the end of the buffer is to use chaining
 348 *    mode.  Basic direct mode doesn't offer that feature.
 349 * 2. We need to receive an interrupt at the end of every period.  The DMA
 350 *    controller can generate an interrupt at the end of every link transfer
 351 *    (aka segment).  Making each period into a DMA segment will give us the
 352 *    interrupts we need.
 353 * 3. By creating only two link descriptors, regardless of the number of
 354 *    periods, we do not need to reallocate the link descriptors if the
 355 *    number of periods changes.
 356 * 4. All of the audio data is still stored in a single, contiguous DMA
 357 *    buffer, which is what ALSA expects.  We're just dividing it into
 358 *    contiguous parts, and creating a link descriptor for each one.
 359 */
 360static int fsl_dma_open(struct snd_soc_component *component,
 361                        struct snd_pcm_substream *substream)
 362{
 363        struct snd_pcm_runtime *runtime = substream->runtime;
 364        struct device *dev = component->dev;
 365        struct dma_object *dma =
 366                container_of(component->driver, struct dma_object, dai);
 367        struct fsl_dma_private *dma_private;
 368        struct ccsr_dma_channel __iomem *dma_channel;
 369        dma_addr_t ld_buf_phys;
 370        u64 temp_link;          /* Pointer to next link descriptor */
 371        u32 mr;
 372        int ret = 0;
 373        unsigned int i;
 374
 375        /*
 376         * Reject any DMA buffer whose size is not a multiple of the period
 377         * size.  We need to make sure that the DMA buffer can be evenly divided
 378         * into periods.
 379         */
 380        ret = snd_pcm_hw_constraint_integer(runtime,
 381                SNDRV_PCM_HW_PARAM_PERIODS);
 382        if (ret < 0) {
 383                dev_err(dev, "invalid buffer size\n");
 384                return ret;
 385        }
 386
 387        if (dma->assigned) {
 388                dev_err(dev, "dma channel already assigned\n");
 389                return -EBUSY;
 390        }
 391
 392        dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
 393                                         &ld_buf_phys, GFP_KERNEL);
 394        if (!dma_private) {
 395                dev_err(dev, "can't allocate dma private data\n");
 396                return -ENOMEM;
 397        }
 398        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 399                dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
 400        else
 401                dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
 402
 403        dma_private->ssi_fifo_depth = dma->ssi_fifo_depth;
 404        dma_private->dma_channel = dma->channel;
 405        dma_private->irq = dma->irq;
 406        dma_private->substream = substream;
 407        dma_private->ld_buf_phys = ld_buf_phys;
 408        dma_private->dma_buf_phys = substream->dma_buffer.addr;
 409
 410        ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio",
 411                          dma_private);
 412        if (ret) {
 413                dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
 414                        dma_private->irq, ret);
 415                dma_free_coherent(dev, sizeof(struct fsl_dma_private),
 416                        dma_private, dma_private->ld_buf_phys);
 417                return ret;
 418        }
 419
 420        dma->assigned = true;
 421
 422        snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
 423        runtime->private_data = dma_private;
 424
 425        /* Program the fixed DMA controller parameters */
 426
 427        dma_channel = dma_private->dma_channel;
 428
 429        temp_link = dma_private->ld_buf_phys +
 430                sizeof(struct fsl_dma_link_descriptor);
 431
 432        for (i = 0; i < NUM_DMA_LINKS; i++) {
 433                dma_private->link[i].next = cpu_to_be64(temp_link);
 434
 435                temp_link += sizeof(struct fsl_dma_link_descriptor);
 436        }
 437        /* The last link descriptor points to the first */
 438        dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
 439
 440        /* Tell the DMA controller where the first link descriptor is */
 441        out_be32(&dma_channel->clndar,
 442                CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
 443        out_be32(&dma_channel->eclndar,
 444                CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
 445
 446        /* The manual says the BCR must be clear before enabling EMP */
 447        out_be32(&dma_channel->bcr, 0);
 448
 449        /*
 450         * Program the mode register for interrupts, external master control,
 451         * and source/destination hold.  Also clear the Channel Abort bit.
 452         */
 453        mr = in_be32(&dma_channel->mr) &
 454                ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
 455
 456        /*
 457         * We want External Master Start and External Master Pause enabled,
 458         * because the SSI is controlling the DMA controller.  We want the DMA
 459         * controller to be set up in advance, and then we signal only the SSI
 460         * to start transferring.
 461         *
 462         * We want End-Of-Segment Interrupts enabled, because this will generate
 463         * an interrupt at the end of each segment (each link descriptor
 464         * represents one segment).  Each DMA segment is the same thing as an
 465         * ALSA period, so this is how we get an interrupt at the end of every
 466         * period.
 467         *
 468         * We want Error Interrupt enabled, so that we can get an error if
 469         * the DMA controller is mis-programmed somehow.
 470         */
 471        mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
 472                CCSR_DMA_MR_EMS_EN;
 473
 474        /* For playback, we want the destination address to be held.  For
 475           capture, set the source address to be held. */
 476        mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
 477                CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
 478
 479        out_be32(&dma_channel->mr, mr);
 480
 481        return 0;
 482}
 483
 484/**
 485 * fsl_dma_hw_params: continue initializing the DMA links
 486 *
 487 * This function obtains hardware parameters about the opened stream and
 488 * programs the DMA controller accordingly.
 489 *
 490 * One drawback of big-endian is that when copying integers of different
 491 * sizes to a fixed-sized register, the address to which the integer must be
 492 * copied is dependent on the size of the integer.
 493 *
 494 * For example, if P is the address of a 32-bit register, and X is a 32-bit
 495 * integer, then X should be copied to address P.  However, if X is a 16-bit
 496 * integer, then it should be copied to P+2.  If X is an 8-bit register,
 497 * then it should be copied to P+3.
 498 *
 499 * So for playback of 8-bit samples, the DMA controller must transfer single
 500 * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
 501 * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
 502 *
 503 * For 24-bit samples, the offset is 1 byte.  However, the DMA controller
 504 * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
 505 * and 8 bytes at a time).  So we do not support packed 24-bit samples.
 506 * 24-bit data must be padded to 32 bits.
 507 */
 508static int fsl_dma_hw_params(struct snd_soc_component *component,
 509                             struct snd_pcm_substream *substream,
 510                             struct snd_pcm_hw_params *hw_params)
 511{
 512        struct snd_pcm_runtime *runtime = substream->runtime;
 513        struct fsl_dma_private *dma_private = runtime->private_data;
 514        struct device *dev = component->dev;
 515
 516        /* Number of bits per sample */
 517        unsigned int sample_bits =
 518                snd_pcm_format_physical_width(params_format(hw_params));
 519
 520        /* Number of bytes per frame */
 521        unsigned int sample_bytes = sample_bits / 8;
 522
 523        /* Bus address of SSI STX register */
 524        dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
 525
 526        /* Size of the DMA buffer, in bytes */
 527        size_t buffer_size = params_buffer_bytes(hw_params);
 528
 529        /* Number of bytes per period */
 530        size_t period_size = params_period_bytes(hw_params);
 531
 532        /* Pointer to next period */
 533        dma_addr_t temp_addr = substream->dma_buffer.addr;
 534
 535        /* Pointer to DMA controller */
 536        struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
 537
 538        u32 mr; /* DMA Mode Register */
 539
 540        unsigned int i;
 541
 542        /* Initialize our DMA tracking variables */
 543        dma_private->period_size = period_size;
 544        dma_private->num_periods = params_periods(hw_params);
 545        dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
 546        dma_private->dma_buf_next = dma_private->dma_buf_phys +
 547                (NUM_DMA_LINKS * period_size);
 548
 549        if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
 550                /* This happens if the number of periods == NUM_DMA_LINKS */
 551                dma_private->dma_buf_next = dma_private->dma_buf_phys;
 552
 553        mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
 554                  CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
 555
 556        /* Due to a quirk of the SSI's STX register, the target address
 557         * for the DMA operations depends on the sample size.  So we calculate
 558         * that offset here.  While we're at it, also tell the DMA controller
 559         * how much data to transfer per sample.
 560         */
 561        switch (sample_bits) {
 562        case 8:
 563                mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
 564                ssi_sxx_phys += 3;
 565                break;
 566        case 16:
 567                mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
 568                ssi_sxx_phys += 2;
 569                break;
 570        case 32:
 571                mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
 572                break;
 573        default:
 574                /* We should never get here */
 575                dev_err(dev, "unsupported sample size %u\n", sample_bits);
 576                return -EINVAL;
 577        }
 578
 579        /*
 580         * BWC determines how many bytes are sent/received before the DMA
 581         * controller checks the SSI to see if it needs to stop. BWC should
 582         * always be a multiple of the frame size, so that we always transmit
 583         * whole frames.  Each frame occupies two slots in the FIFO.  The
 584         * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
 585         * (MR[BWC] can only represent even powers of two).
 586         *
 587         * To simplify the process, we set BWC to the largest value that is
 588         * less than or equal to the FIFO watermark.  For playback, this ensures
 589         * that we transfer the maximum amount without overrunning the FIFO.
 590         * For capture, this ensures that we transfer the maximum amount without
 591         * underrunning the FIFO.
 592         *
 593         * f = SSI FIFO depth
 594         * w = SSI watermark value (which equals f - 2)
 595         * b = DMA bandwidth count (in bytes)
 596         * s = sample size (in bytes, which equals frame_size * 2)
 597         *
 598         * For playback, we never transmit more than the transmit FIFO
 599         * watermark, otherwise we might write more data than the FIFO can hold.
 600         * The watermark is equal to the FIFO depth minus two.
 601         *
 602         * For capture, two equations must hold:
 603         *      w > f - (b / s)
 604         *      w >= b / s
 605         *
 606         * So, b > 2 * s, but b must also be <= s * w.  To simplify, we set
 607         * b = s * w, which is equal to
 608         *      (dma_private->ssi_fifo_depth - 2) * sample_bytes.
 609         */
 610        mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes);
 611
 612        out_be32(&dma_channel->mr, mr);
 613
 614        for (i = 0; i < NUM_DMA_LINKS; i++) {
 615                struct fsl_dma_link_descriptor *link = &dma_private->link[i];
 616
 617                link->count = cpu_to_be32(period_size);
 618
 619                /* The snoop bit tells the DMA controller whether it should tell
 620                 * the ECM to snoop during a read or write to an address. For
 621                 * audio, we use DMA to transfer data between memory and an I/O
 622                 * device (the SSI's STX0 or SRX0 register). Snooping is only
 623                 * needed if there is a cache, so we need to snoop memory
 624                 * addresses only.  For playback, that means we snoop the source
 625                 * but not the destination.  For capture, we snoop the
 626                 * destination but not the source.
 627                 *
 628                 * Note that failing to snoop properly is unlikely to cause
 629                 * cache incoherency if the period size is larger than the
 630                 * size of L1 cache.  This is because filling in one period will
 631                 * flush out the data for the previous period.  So if you
 632                 * increased period_bytes_min to a large enough size, you might
 633                 * get more performance by not snooping, and you'll still be
 634                 * okay.  You'll need to update fsl_dma_update_pointers() also.
 635                 */
 636                if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
 637                        link->source_addr = cpu_to_be32(temp_addr);
 638                        link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
 639                                upper_32_bits(temp_addr));
 640
 641                        link->dest_addr = cpu_to_be32(ssi_sxx_phys);
 642                        link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
 643                                upper_32_bits(ssi_sxx_phys));
 644                } else {
 645                        link->source_addr = cpu_to_be32(ssi_sxx_phys);
 646                        link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
 647                                upper_32_bits(ssi_sxx_phys));
 648
 649                        link->dest_addr = cpu_to_be32(temp_addr);
 650                        link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
 651                                upper_32_bits(temp_addr));
 652                }
 653
 654                temp_addr += period_size;
 655        }
 656
 657        return 0;
 658}
 659
 660/**
 661 * fsl_dma_pointer: determine the current position of the DMA transfer
 662 *
 663 * This function is called by ALSA when ALSA wants to know where in the
 664 * stream buffer the hardware currently is.
 665 *
 666 * For playback, the SAR register contains the physical address of the most
 667 * recent DMA transfer.  For capture, the value is in the DAR register.
 668 *
 669 * The base address of the buffer is stored in the source_addr field of the
 670 * first link descriptor.
 671 */
 672static snd_pcm_uframes_t fsl_dma_pointer(struct snd_soc_component *component,
 673                                         struct snd_pcm_substream *substream)
 674{
 675        struct snd_pcm_runtime *runtime = substream->runtime;
 676        struct fsl_dma_private *dma_private = runtime->private_data;
 677        struct device *dev = component->dev;
 678        struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
 679        dma_addr_t position;
 680        snd_pcm_uframes_t frames;
 681
 682        /* Obtain the current DMA pointer, but don't read the ESAD bits if we
 683         * only have 32-bit DMA addresses.  This function is typically called
 684         * in interrupt context, so we need to optimize it.
 685         */
 686        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
 687                position = in_be32(&dma_channel->sar);
 688#ifdef CONFIG_PHYS_64BIT
 689                position |= (u64)(in_be32(&dma_channel->satr) &
 690                                  CCSR_DMA_ATR_ESAD_MASK) << 32;
 691#endif
 692        } else {
 693                position = in_be32(&dma_channel->dar);
 694#ifdef CONFIG_PHYS_64BIT
 695                position |= (u64)(in_be32(&dma_channel->datr) &
 696                                  CCSR_DMA_ATR_ESAD_MASK) << 32;
 697#endif
 698        }
 699
 700        /*
 701         * When capture is started, the SSI immediately starts to fill its FIFO.
 702         * This means that the DMA controller is not started until the FIFO is
 703         * full.  However, ALSA calls this function before that happens, when
 704         * MR.DAR is still zero.  In this case, just return zero to indicate
 705         * that nothing has been received yet.
 706         */
 707        if (!position)
 708                return 0;
 709
 710        if ((position < dma_private->dma_buf_phys) ||
 711            (position > dma_private->dma_buf_end)) {
 712                dev_err(dev, "dma pointer is out of range, halting stream\n");
 713                return SNDRV_PCM_POS_XRUN;
 714        }
 715
 716        frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
 717
 718        /*
 719         * If the current address is just past the end of the buffer, wrap it
 720         * around.
 721         */
 722        if (frames == runtime->buffer_size)
 723                frames = 0;
 724
 725        return frames;
 726}
 727
 728/**
 729 * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
 730 *
 731 * Release the resources allocated in fsl_dma_hw_params() and de-program the
 732 * registers.
 733 *
 734 * This function can be called multiple times.
 735 */
 736static int fsl_dma_hw_free(struct snd_soc_component *component,
 737                           struct snd_pcm_substream *substream)
 738{
 739        struct snd_pcm_runtime *runtime = substream->runtime;
 740        struct fsl_dma_private *dma_private = runtime->private_data;
 741
 742        if (dma_private) {
 743                struct ccsr_dma_channel __iomem *dma_channel;
 744
 745                dma_channel = dma_private->dma_channel;
 746
 747                /* Stop the DMA */
 748                out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
 749                out_be32(&dma_channel->mr, 0);
 750
 751                /* Reset all the other registers */
 752                out_be32(&dma_channel->sr, -1);
 753                out_be32(&dma_channel->clndar, 0);
 754                out_be32(&dma_channel->eclndar, 0);
 755                out_be32(&dma_channel->satr, 0);
 756                out_be32(&dma_channel->sar, 0);
 757                out_be32(&dma_channel->datr, 0);
 758                out_be32(&dma_channel->dar, 0);
 759                out_be32(&dma_channel->bcr, 0);
 760                out_be32(&dma_channel->nlndar, 0);
 761                out_be32(&dma_channel->enlndar, 0);
 762        }
 763
 764        return 0;
 765}
 766
 767/**
 768 * fsl_dma_close: close the stream.
 769 */
 770static int fsl_dma_close(struct snd_soc_component *component,
 771                         struct snd_pcm_substream *substream)
 772{
 773        struct snd_pcm_runtime *runtime = substream->runtime;
 774        struct fsl_dma_private *dma_private = runtime->private_data;
 775        struct device *dev = component->dev;
 776        struct dma_object *dma =
 777                container_of(component->driver, struct dma_object, dai);
 778
 779        if (dma_private) {
 780                if (dma_private->irq)
 781                        free_irq(dma_private->irq, dma_private);
 782
 783                /* Deallocate the fsl_dma_private structure */
 784                dma_free_coherent(dev, sizeof(struct fsl_dma_private),
 785                                  dma_private, dma_private->ld_buf_phys);
 786                substream->runtime->private_data = NULL;
 787        }
 788
 789        dma->assigned = false;
 790
 791        return 0;
 792}
 793
 794/**
 795 * find_ssi_node -- returns the SSI node that points to its DMA channel node
 796 *
 797 * Although this DMA driver attempts to operate independently of the other
 798 * devices, it still needs to determine some information about the SSI device
 799 * that it's working with.  Unfortunately, the device tree does not contain
 800 * a pointer from the DMA channel node to the SSI node -- the pointer goes the
 801 * other way.  So we need to scan the device tree for SSI nodes until we find
 802 * the one that points to the given DMA channel node.  It's ugly, but at least
 803 * it's contained in this one function.
 804 */
 805static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
 806{
 807        struct device_node *ssi_np, *np;
 808
 809        for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
 810                /* Check each DMA phandle to see if it points to us.  We
 811                 * assume that device_node pointers are a valid comparison.
 812                 */
 813                np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
 814                of_node_put(np);
 815                if (np == dma_channel_np)
 816                        return ssi_np;
 817
 818                np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
 819                of_node_put(np);
 820                if (np == dma_channel_np)
 821                        return ssi_np;
 822        }
 823
 824        return NULL;
 825}
 826
 827static int fsl_soc_dma_probe(struct platform_device *pdev)
 828{
 829        struct dma_object *dma;
 830        struct device_node *np = pdev->dev.of_node;
 831        struct device_node *ssi_np;
 832        struct resource res;
 833        const uint32_t *iprop;
 834        int ret;
 835
 836        /* Find the SSI node that points to us. */
 837        ssi_np = find_ssi_node(np);
 838        if (!ssi_np) {
 839                dev_err(&pdev->dev, "cannot find parent SSI node\n");
 840                return -ENODEV;
 841        }
 842
 843        ret = of_address_to_resource(ssi_np, 0, &res);
 844        if (ret) {
 845                dev_err(&pdev->dev, "could not determine resources for %pOF\n",
 846                        ssi_np);
 847                of_node_put(ssi_np);
 848                return ret;
 849        }
 850
 851        dma = kzalloc(sizeof(*dma), GFP_KERNEL);
 852        if (!dma) {
 853                of_node_put(ssi_np);
 854                return -ENOMEM;
 855        }
 856
 857        dma->dai.name = DRV_NAME;
 858        dma->dai.open = fsl_dma_open;
 859        dma->dai.close = fsl_dma_close;
 860        dma->dai.hw_params = fsl_dma_hw_params;
 861        dma->dai.hw_free = fsl_dma_hw_free;
 862        dma->dai.pointer = fsl_dma_pointer;
 863        dma->dai.pcm_construct = fsl_dma_new;
 864
 865        /* Store the SSI-specific information that we need */
 866        dma->ssi_stx_phys = res.start + REG_SSI_STX0;
 867        dma->ssi_srx_phys = res.start + REG_SSI_SRX0;
 868
 869        iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL);
 870        if (iprop)
 871                dma->ssi_fifo_depth = be32_to_cpup(iprop);
 872        else
 873                /* Older 8610 DTs didn't have the fifo-depth property */
 874                dma->ssi_fifo_depth = 8;
 875
 876        of_node_put(ssi_np);
 877
 878        ret = devm_snd_soc_register_component(&pdev->dev, &dma->dai, NULL, 0);
 879        if (ret) {
 880                dev_err(&pdev->dev, "could not register platform\n");
 881                kfree(dma);
 882                return ret;
 883        }
 884
 885        dma->channel = of_iomap(np, 0);
 886        dma->irq = irq_of_parse_and_map(np, 0);
 887
 888        dev_set_drvdata(&pdev->dev, dma);
 889
 890        return 0;
 891}
 892
 893static int fsl_soc_dma_remove(struct platform_device *pdev)
 894{
 895        struct dma_object *dma = dev_get_drvdata(&pdev->dev);
 896
 897        iounmap(dma->channel);
 898        irq_dispose_mapping(dma->irq);
 899        kfree(dma);
 900
 901        return 0;
 902}
 903
 904static const struct of_device_id fsl_soc_dma_ids[] = {
 905        { .compatible = "fsl,ssi-dma-channel", },
 906        {}
 907};
 908MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
 909
 910static struct platform_driver fsl_soc_dma_driver = {
 911        .driver = {
 912                .name = "fsl-pcm-audio",
 913                .of_match_table = fsl_soc_dma_ids,
 914        },
 915        .probe = fsl_soc_dma_probe,
 916        .remove = fsl_soc_dma_remove,
 917};
 918
 919module_platform_driver(fsl_soc_dma_driver);
 920
 921MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
 922MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
 923MODULE_LICENSE("GPL v2");
 924