linux/sound/soc/fsl/fsl_easrc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2// Copyright 2019 NXP
   3
   4#include <linux/atomic.h>
   5#include <linux/clk.h>
   6#include <linux/device.h>
   7#include <linux/dma-mapping.h>
   8#include <linux/firmware.h>
   9#include <linux/interrupt.h>
  10#include <linux/kobject.h>
  11#include <linux/kernel.h>
  12#include <linux/module.h>
  13#include <linux/miscdevice.h>
  14#include <linux/of.h>
  15#include <linux/of_address.h>
  16#include <linux/of_irq.h>
  17#include <linux/of_platform.h>
  18#include <linux/pm_runtime.h>
  19#include <linux/regmap.h>
  20#include <linux/sched/signal.h>
  21#include <linux/sysfs.h>
  22#include <linux/types.h>
  23#include <linux/gcd.h>
  24#include <sound/dmaengine_pcm.h>
  25#include <sound/pcm.h>
  26#include <sound/pcm_params.h>
  27#include <sound/soc.h>
  28#include <sound/tlv.h>
  29#include <sound/core.h>
  30
  31#include "fsl_easrc.h"
  32#include "imx-pcm.h"
  33
  34#define FSL_EASRC_FORMATS       (SNDRV_PCM_FMTBIT_S16_LE | \
  35                                 SNDRV_PCM_FMTBIT_U16_LE | \
  36                                 SNDRV_PCM_FMTBIT_S24_LE | \
  37                                 SNDRV_PCM_FMTBIT_S24_3LE | \
  38                                 SNDRV_PCM_FMTBIT_U24_LE | \
  39                                 SNDRV_PCM_FMTBIT_U24_3LE | \
  40                                 SNDRV_PCM_FMTBIT_S32_LE | \
  41                                 SNDRV_PCM_FMTBIT_U32_LE | \
  42                                 SNDRV_PCM_FMTBIT_S20_3LE | \
  43                                 SNDRV_PCM_FMTBIT_U20_3LE | \
  44                                 SNDRV_PCM_FMTBIT_FLOAT_LE)
  45
  46static int fsl_easrc_iec958_put_bits(struct snd_kcontrol *kcontrol,
  47                                     struct snd_ctl_elem_value *ucontrol)
  48{
  49        struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
  50        struct fsl_asrc *easrc = snd_soc_component_get_drvdata(comp);
  51        struct fsl_easrc_priv *easrc_priv = easrc->private;
  52        struct soc_mreg_control *mc =
  53                (struct soc_mreg_control *)kcontrol->private_value;
  54        unsigned int regval = ucontrol->value.integer.value[0];
  55
  56        easrc_priv->bps_iec958[mc->regbase] = regval;
  57
  58        return 0;
  59}
  60
  61static int fsl_easrc_iec958_get_bits(struct snd_kcontrol *kcontrol,
  62                                     struct snd_ctl_elem_value *ucontrol)
  63{
  64        struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
  65        struct fsl_asrc *easrc = snd_soc_component_get_drvdata(comp);
  66        struct fsl_easrc_priv *easrc_priv = easrc->private;
  67        struct soc_mreg_control *mc =
  68                (struct soc_mreg_control *)kcontrol->private_value;
  69
  70        ucontrol->value.enumerated.item[0] = easrc_priv->bps_iec958[mc->regbase];
  71
  72        return 0;
  73}
  74
  75static int fsl_easrc_get_reg(struct snd_kcontrol *kcontrol,
  76                             struct snd_ctl_elem_value *ucontrol)
  77{
  78        struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
  79        struct soc_mreg_control *mc =
  80                (struct soc_mreg_control *)kcontrol->private_value;
  81        unsigned int regval;
  82
  83        regval = snd_soc_component_read(component, mc->regbase);
  84
  85        ucontrol->value.integer.value[0] = regval;
  86
  87        return 0;
  88}
  89
  90static int fsl_easrc_set_reg(struct snd_kcontrol *kcontrol,
  91                             struct snd_ctl_elem_value *ucontrol)
  92{
  93        struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
  94        struct soc_mreg_control *mc =
  95                (struct soc_mreg_control *)kcontrol->private_value;
  96        unsigned int regval = ucontrol->value.integer.value[0];
  97        int ret;
  98
  99        ret = snd_soc_component_write(component, mc->regbase, regval);
 100        if (ret < 0)
 101                return ret;
 102
 103        return 0;
 104}
 105
 106#define SOC_SINGLE_REG_RW(xname, xreg) \
 107{       .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = (xname), \
 108        .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \
 109        .info = snd_soc_info_xr_sx, .get = fsl_easrc_get_reg, \
 110        .put = fsl_easrc_set_reg, \
 111        .private_value = (unsigned long)&(struct soc_mreg_control) \
 112                { .regbase = xreg, .regcount = 1, .nbits = 32, \
 113                  .invert = 0, .min = 0, .max = 0xffffffff, } }
 114
 115#define SOC_SINGLE_VAL_RW(xname, xreg) \
 116{       .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = (xname), \
 117        .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \
 118        .info = snd_soc_info_xr_sx, .get = fsl_easrc_iec958_get_bits, \
 119        .put = fsl_easrc_iec958_put_bits, \
 120        .private_value = (unsigned long)&(struct soc_mreg_control) \
 121                { .regbase = xreg, .regcount = 1, .nbits = 32, \
 122                  .invert = 0, .min = 0, .max = 2, } }
 123
 124static const struct snd_kcontrol_new fsl_easrc_snd_controls[] = {
 125        SOC_SINGLE("Context 0 Dither Switch", REG_EASRC_COC(0), 0, 1, 0),
 126        SOC_SINGLE("Context 1 Dither Switch", REG_EASRC_COC(1), 0, 1, 0),
 127        SOC_SINGLE("Context 2 Dither Switch", REG_EASRC_COC(2), 0, 1, 0),
 128        SOC_SINGLE("Context 3 Dither Switch", REG_EASRC_COC(3), 0, 1, 0),
 129
 130        SOC_SINGLE("Context 0 IEC958 Validity", REG_EASRC_COC(0), 2, 1, 0),
 131        SOC_SINGLE("Context 1 IEC958 Validity", REG_EASRC_COC(1), 2, 1, 0),
 132        SOC_SINGLE("Context 2 IEC958 Validity", REG_EASRC_COC(2), 2, 1, 0),
 133        SOC_SINGLE("Context 3 IEC958 Validity", REG_EASRC_COC(3), 2, 1, 0),
 134
 135        SOC_SINGLE_VAL_RW("Context 0 IEC958 Bits Per Sample", 0),
 136        SOC_SINGLE_VAL_RW("Context 1 IEC958 Bits Per Sample", 1),
 137        SOC_SINGLE_VAL_RW("Context 2 IEC958 Bits Per Sample", 2),
 138        SOC_SINGLE_VAL_RW("Context 3 IEC958 Bits Per Sample", 3),
 139
 140        SOC_SINGLE_REG_RW("Context 0 IEC958 CS0", REG_EASRC_CS0(0)),
 141        SOC_SINGLE_REG_RW("Context 1 IEC958 CS0", REG_EASRC_CS0(1)),
 142        SOC_SINGLE_REG_RW("Context 2 IEC958 CS0", REG_EASRC_CS0(2)),
 143        SOC_SINGLE_REG_RW("Context 3 IEC958 CS0", REG_EASRC_CS0(3)),
 144        SOC_SINGLE_REG_RW("Context 0 IEC958 CS1", REG_EASRC_CS1(0)),
 145        SOC_SINGLE_REG_RW("Context 1 IEC958 CS1", REG_EASRC_CS1(1)),
 146        SOC_SINGLE_REG_RW("Context 2 IEC958 CS1", REG_EASRC_CS1(2)),
 147        SOC_SINGLE_REG_RW("Context 3 IEC958 CS1", REG_EASRC_CS1(3)),
 148        SOC_SINGLE_REG_RW("Context 0 IEC958 CS2", REG_EASRC_CS2(0)),
 149        SOC_SINGLE_REG_RW("Context 1 IEC958 CS2", REG_EASRC_CS2(1)),
 150        SOC_SINGLE_REG_RW("Context 2 IEC958 CS2", REG_EASRC_CS2(2)),
 151        SOC_SINGLE_REG_RW("Context 3 IEC958 CS2", REG_EASRC_CS2(3)),
 152        SOC_SINGLE_REG_RW("Context 0 IEC958 CS3", REG_EASRC_CS3(0)),
 153        SOC_SINGLE_REG_RW("Context 1 IEC958 CS3", REG_EASRC_CS3(1)),
 154        SOC_SINGLE_REG_RW("Context 2 IEC958 CS3", REG_EASRC_CS3(2)),
 155        SOC_SINGLE_REG_RW("Context 3 IEC958 CS3", REG_EASRC_CS3(3)),
 156        SOC_SINGLE_REG_RW("Context 0 IEC958 CS4", REG_EASRC_CS4(0)),
 157        SOC_SINGLE_REG_RW("Context 1 IEC958 CS4", REG_EASRC_CS4(1)),
 158        SOC_SINGLE_REG_RW("Context 2 IEC958 CS4", REG_EASRC_CS4(2)),
 159        SOC_SINGLE_REG_RW("Context 3 IEC958 CS4", REG_EASRC_CS4(3)),
 160        SOC_SINGLE_REG_RW("Context 0 IEC958 CS5", REG_EASRC_CS5(0)),
 161        SOC_SINGLE_REG_RW("Context 1 IEC958 CS5", REG_EASRC_CS5(1)),
 162        SOC_SINGLE_REG_RW("Context 2 IEC958 CS5", REG_EASRC_CS5(2)),
 163        SOC_SINGLE_REG_RW("Context 3 IEC958 CS5", REG_EASRC_CS5(3)),
 164};
 165
 166/*
 167 * fsl_easrc_set_rs_ratio
 168 *
 169 * According to the resample taps, calculate the resample ratio
 170 * ratio = in_rate / out_rate
 171 */
 172static int fsl_easrc_set_rs_ratio(struct fsl_asrc_pair *ctx)
 173{
 174        struct fsl_asrc *easrc = ctx->asrc;
 175        struct fsl_easrc_priv *easrc_priv = easrc->private;
 176        struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
 177        unsigned int in_rate = ctx_priv->in_params.norm_rate;
 178        unsigned int out_rate = ctx_priv->out_params.norm_rate;
 179        unsigned int frac_bits;
 180        u64 val;
 181        u32 *r;
 182
 183        switch (easrc_priv->rs_num_taps) {
 184        case EASRC_RS_32_TAPS:
 185                /* integer bits = 5; */
 186                frac_bits = 39;
 187                break;
 188        case EASRC_RS_64_TAPS:
 189                /* integer bits = 6; */
 190                frac_bits = 38;
 191                break;
 192        case EASRC_RS_128_TAPS:
 193                /* integer bits = 7; */
 194                frac_bits = 37;
 195                break;
 196        default:
 197                return -EINVAL;
 198        }
 199
 200        val = (u64)in_rate << frac_bits;
 201        do_div(val, out_rate);
 202        r = (uint32_t *)&val;
 203
 204        if (r[1] & 0xFFFFF000) {
 205                dev_err(&easrc->pdev->dev, "ratio exceed range\n");
 206                return -EINVAL;
 207        }
 208
 209        regmap_write(easrc->regmap, REG_EASRC_RRL(ctx->index),
 210                     EASRC_RRL_RS_RL(r[0]));
 211        regmap_write(easrc->regmap, REG_EASRC_RRH(ctx->index),
 212                     EASRC_RRH_RS_RH(r[1]));
 213
 214        return 0;
 215}
 216
 217/* Normalize input and output sample rates */
 218static void fsl_easrc_normalize_rates(struct fsl_asrc_pair *ctx)
 219{
 220        struct fsl_easrc_ctx_priv *ctx_priv;
 221        int a, b;
 222
 223        if (!ctx)
 224                return;
 225
 226        ctx_priv = ctx->private;
 227
 228        a = ctx_priv->in_params.sample_rate;
 229        b = ctx_priv->out_params.sample_rate;
 230
 231        a = gcd(a, b);
 232
 233        /* Divide by gcd to normalize the rate */
 234        ctx_priv->in_params.norm_rate = ctx_priv->in_params.sample_rate / a;
 235        ctx_priv->out_params.norm_rate = ctx_priv->out_params.sample_rate / a;
 236}
 237
 238/* Resets the pointer of the coeff memory pointers */
 239static int fsl_easrc_coeff_mem_ptr_reset(struct fsl_asrc *easrc,
 240                                         unsigned int ctx_id, int mem_type)
 241{
 242        struct device *dev;
 243        u32 reg, mask, val;
 244
 245        if (!easrc)
 246                return -ENODEV;
 247
 248        dev = &easrc->pdev->dev;
 249
 250        switch (mem_type) {
 251        case EASRC_PF_COEFF_MEM:
 252                /* This resets the prefilter memory pointer addr */
 253                if (ctx_id >= EASRC_CTX_MAX_NUM) {
 254                        dev_err(dev, "Invalid context id[%d]\n", ctx_id);
 255                        return -EINVAL;
 256                }
 257
 258                reg = REG_EASRC_CCE1(ctx_id);
 259                mask = EASRC_CCE1_COEF_MEM_RST_MASK;
 260                val = EASRC_CCE1_COEF_MEM_RST;
 261                break;
 262        case EASRC_RS_COEFF_MEM:
 263                /* This resets the resampling memory pointer addr */
 264                reg = REG_EASRC_CRCC;
 265                mask = EASRC_CRCC_RS_CPR_MASK;
 266                val = EASRC_CRCC_RS_CPR;
 267                break;
 268        default:
 269                dev_err(dev, "Unknown memory type\n");
 270                return -EINVAL;
 271        }
 272
 273        /*
 274         * To reset the write pointer back to zero, the register field
 275         * ASRC_CTX_CTRL_EXT1x[PF_COEFF_MEM_RST] can be toggled from
 276         * 0x0 to 0x1 to 0x0.
 277         */
 278        regmap_update_bits(easrc->regmap, reg, mask, 0);
 279        regmap_update_bits(easrc->regmap, reg, mask, val);
 280        regmap_update_bits(easrc->regmap, reg, mask, 0);
 281
 282        return 0;
 283}
 284
 285static inline uint32_t bits_taps_to_val(unsigned int t)
 286{
 287        switch (t) {
 288        case EASRC_RS_32_TAPS:
 289                return 32;
 290        case EASRC_RS_64_TAPS:
 291                return 64;
 292        case EASRC_RS_128_TAPS:
 293                return 128;
 294        }
 295
 296        return 0;
 297}
 298
 299static int fsl_easrc_resampler_config(struct fsl_asrc *easrc)
 300{
 301        struct device *dev = &easrc->pdev->dev;
 302        struct fsl_easrc_priv *easrc_priv = easrc->private;
 303        struct asrc_firmware_hdr *hdr =  easrc_priv->firmware_hdr;
 304        struct interp_params *interp = easrc_priv->interp;
 305        struct interp_params *selected_interp = NULL;
 306        unsigned int num_coeff;
 307        unsigned int i;
 308        u64 *coef;
 309        u32 *r;
 310        int ret;
 311
 312        if (!hdr) {
 313                dev_err(dev, "firmware not loaded!\n");
 314                return -ENODEV;
 315        }
 316
 317        for (i = 0; i < hdr->interp_scen; i++) {
 318                if ((interp[i].num_taps - 1) !=
 319                    bits_taps_to_val(easrc_priv->rs_num_taps))
 320                        continue;
 321
 322                coef = interp[i].coeff;
 323                selected_interp = &interp[i];
 324                dev_dbg(dev, "Selected interp_filter: %u taps - %u phases\n",
 325                        selected_interp->num_taps,
 326                        selected_interp->num_phases);
 327                break;
 328        }
 329
 330        if (!selected_interp) {
 331                dev_err(dev, "failed to get interpreter configuration\n");
 332                return -EINVAL;
 333        }
 334
 335        /*
 336         * RS_LOW - first half of center tap of the sinc function
 337         * RS_HIGH - second half of center tap of the sinc function
 338         * This is due to the fact the resampling function must be
 339         * symetrical - i.e. odd number of taps
 340         */
 341        r = (uint32_t *)&selected_interp->center_tap;
 342        regmap_write(easrc->regmap, REG_EASRC_RCTCL, EASRC_RCTCL_RS_CL(r[0]));
 343        regmap_write(easrc->regmap, REG_EASRC_RCTCH, EASRC_RCTCH_RS_CH(r[1]));
 344
 345        /*
 346         * Write Number of Resampling Coefficient Taps
 347         * 00b - 32-Tap Resampling Filter
 348         * 01b - 64-Tap Resampling Filter
 349         * 10b - 128-Tap Resampling Filter
 350         * 11b - N/A
 351         */
 352        regmap_update_bits(easrc->regmap, REG_EASRC_CRCC,
 353                           EASRC_CRCC_RS_TAPS_MASK,
 354                           EASRC_CRCC_RS_TAPS(easrc_priv->rs_num_taps));
 355
 356        /* Reset prefilter coefficient pointer back to 0 */
 357        ret = fsl_easrc_coeff_mem_ptr_reset(easrc, 0, EASRC_RS_COEFF_MEM);
 358        if (ret)
 359                return ret;
 360
 361        /*
 362         * When the filter is programmed to run in:
 363         * 32-tap mode, 16-taps, 128-phases 4-coefficients per phase
 364         * 64-tap mode, 32-taps, 64-phases 4-coefficients per phase
 365         * 128-tap mode, 64-taps, 32-phases 4-coefficients per phase
 366         * This means the number of writes is constant no matter
 367         * the mode we are using
 368         */
 369        num_coeff = 16 * 128 * 4;
 370
 371        for (i = 0; i < num_coeff; i++) {
 372                r = (uint32_t *)&coef[i];
 373                regmap_write(easrc->regmap, REG_EASRC_CRCM,
 374                             EASRC_CRCM_RS_CWD(r[0]));
 375                regmap_write(easrc->regmap, REG_EASRC_CRCM,
 376                             EASRC_CRCM_RS_CWD(r[1]));
 377        }
 378
 379        return 0;
 380}
 381
 382/**
 383 *  fsl_easrc_normalize_filter - Scale filter coefficients (64 bits float)
 384 *  For input float32 normalized range (1.0,-1.0) -> output int[16,24,32]:
 385 *      scale it by multiplying filter coefficients by 2^31
 386 *  For input int[16, 24, 32] -> output float32
 387 *      scale it by multiplying filter coefficients by 2^-15, 2^-23, 2^-31
 388 *  input:
 389 *      @easrc:  Structure pointer of fsl_asrc
 390 *      @infilter : Pointer to non-scaled input filter
 391 *      @shift:  The multiply factor
 392 *  output:
 393 *      @outfilter: scaled filter
 394 */
 395static int fsl_easrc_normalize_filter(struct fsl_asrc *easrc,
 396                                      u64 *infilter,
 397                                      u64 *outfilter,
 398                                      int shift)
 399{
 400        struct device *dev = &easrc->pdev->dev;
 401        u64 coef = *infilter;
 402        s64 exp  = (coef & 0x7ff0000000000000ll) >> 52;
 403        u64 outcoef;
 404
 405        /*
 406         * If exponent is zero (value == 0), or 7ff (value == NaNs)
 407         * dont touch the content
 408         */
 409        if (exp == 0 || exp == 0x7ff) {
 410                *outfilter = coef;
 411                return 0;
 412        }
 413
 414        /* coef * 2^shift ==> exp + shift */
 415        exp += shift;
 416
 417        if ((shift > 0 && exp >= 0x7ff) || (shift < 0 && exp <= 0)) {
 418                dev_err(dev, "coef out of range\n");
 419                return -EINVAL;
 420        }
 421
 422        outcoef = (u64)(coef & 0x800FFFFFFFFFFFFFll) + ((u64)exp << 52);
 423        *outfilter = outcoef;
 424
 425        return 0;
 426}
 427
 428static int fsl_easrc_write_pf_coeff_mem(struct fsl_asrc *easrc, int ctx_id,
 429                                        u64 *coef, int n_taps, int shift)
 430{
 431        struct device *dev = &easrc->pdev->dev;
 432        int ret = 0;
 433        int i;
 434        u32 *r;
 435        u64 tmp;
 436
 437        /* If STx_NUM_TAPS is set to 0x0 then return */
 438        if (!n_taps)
 439                return 0;
 440
 441        if (!coef) {
 442                dev_err(dev, "coef table is NULL\n");
 443                return -EINVAL;
 444        }
 445
 446        /*
 447         * When switching between stages, the address pointer
 448         * should be reset back to 0x0 before performing a write
 449         */
 450        ret = fsl_easrc_coeff_mem_ptr_reset(easrc, ctx_id, EASRC_PF_COEFF_MEM);
 451        if (ret)
 452                return ret;
 453
 454        for (i = 0; i < (n_taps + 1) / 2; i++) {
 455                ret = fsl_easrc_normalize_filter(easrc, &coef[i], &tmp, shift);
 456                if (ret)
 457                        return ret;
 458
 459                r = (uint32_t *)&tmp;
 460                regmap_write(easrc->regmap, REG_EASRC_PCF(ctx_id),
 461                             EASRC_PCF_CD(r[0]));
 462                regmap_write(easrc->regmap, REG_EASRC_PCF(ctx_id),
 463                             EASRC_PCF_CD(r[1]));
 464        }
 465
 466        return 0;
 467}
 468
 469static int fsl_easrc_prefilter_config(struct fsl_asrc *easrc,
 470                                      unsigned int ctx_id)
 471{
 472        struct prefil_params *prefil, *selected_prefil = NULL;
 473        struct fsl_easrc_ctx_priv *ctx_priv;
 474        struct fsl_easrc_priv *easrc_priv;
 475        struct asrc_firmware_hdr *hdr;
 476        struct fsl_asrc_pair *ctx;
 477        struct device *dev;
 478        u32 inrate, outrate, offset = 0;
 479        u32 in_s_rate, out_s_rate, in_s_fmt, out_s_fmt;
 480        int ret, i;
 481
 482        if (!easrc)
 483                return -ENODEV;
 484
 485        dev = &easrc->pdev->dev;
 486
 487        if (ctx_id >= EASRC_CTX_MAX_NUM) {
 488                dev_err(dev, "Invalid context id[%d]\n", ctx_id);
 489                return -EINVAL;
 490        }
 491
 492        easrc_priv = easrc->private;
 493
 494        ctx = easrc->pair[ctx_id];
 495        ctx_priv = ctx->private;
 496
 497        in_s_rate = ctx_priv->in_params.sample_rate;
 498        out_s_rate = ctx_priv->out_params.sample_rate;
 499        in_s_fmt = ctx_priv->in_params.sample_format;
 500        out_s_fmt = ctx_priv->out_params.sample_format;
 501
 502        ctx_priv->in_filled_sample = bits_taps_to_val(easrc_priv->rs_num_taps) / 2;
 503        ctx_priv->out_missed_sample = ctx_priv->in_filled_sample * out_s_rate / in_s_rate;
 504
 505        ctx_priv->st1_num_taps = 0;
 506        ctx_priv->st2_num_taps = 0;
 507
 508        regmap_write(easrc->regmap, REG_EASRC_CCE1(ctx_id), 0);
 509        regmap_write(easrc->regmap, REG_EASRC_CCE2(ctx_id), 0);
 510
 511        /*
 512         * The audio float point data range is (-1, 1), the asrc would output
 513         * all zero for float point input and integer output case, that is to
 514         * drop the fractional part of the data directly.
 515         *
 516         * In order to support float to int conversion or int to float
 517         * conversion we need to do special operation on the coefficient to
 518         * enlarge/reduce the data to the expected range.
 519         *
 520         * For float to int case:
 521         * Up sampling:
 522         * 1. Create a 1 tap filter with center tap (only tap) of 2^31
 523         *    in 64 bits floating point.
 524         *    double value = (double)(((uint64_t)1) << 31)
 525         * 2. Program 1 tap prefilter with center tap above.
 526         *
 527         * Down sampling,
 528         * 1. If the filter is single stage filter, add "shift" to the exponent
 529         *    of stage 1 coefficients.
 530         * 2. If the filter is two stage filter , add "shift" to the exponent
 531         *    of stage 2 coefficients.
 532         *
 533         * The "shift" is 31, same for int16, int24, int32 case.
 534         *
 535         * For int to float case:
 536         * Up sampling:
 537         * 1. Create a 1 tap filter with center tap (only tap) of 2^-31
 538         *    in 64 bits floating point.
 539         * 2. Program 1 tap prefilter with center tap above.
 540         *
 541         * Down sampling,
 542         * 1. If the filter is single stage filter, subtract "shift" to the
 543         *    exponent of stage 1 coefficients.
 544         * 2. If the filter is two stage filter , subtract "shift" to the
 545         *    exponent of stage 2 coefficients.
 546         *
 547         * The "shift" is 15,23,31, different for int16, int24, int32 case.
 548         *
 549         */
 550        if (out_s_rate >= in_s_rate) {
 551                if (out_s_rate == in_s_rate)
 552                        regmap_update_bits(easrc->regmap,
 553                                           REG_EASRC_CCE1(ctx_id),
 554                                           EASRC_CCE1_RS_BYPASS_MASK,
 555                                           EASRC_CCE1_RS_BYPASS);
 556
 557                ctx_priv->st1_num_taps = 1;
 558                ctx_priv->st1_coeff    = &easrc_priv->const_coeff;
 559                ctx_priv->st1_num_exp  = 1;
 560                ctx_priv->st2_num_taps = 0;
 561
 562                if (in_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE &&
 563                    out_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE)
 564                        ctx_priv->st1_addexp = 31;
 565                else if (in_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE &&
 566                         out_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE)
 567                        ctx_priv->st1_addexp -= ctx_priv->in_params.fmt.addexp;
 568        } else {
 569                inrate = ctx_priv->in_params.norm_rate;
 570                outrate = ctx_priv->out_params.norm_rate;
 571
 572                hdr = easrc_priv->firmware_hdr;
 573                prefil = easrc_priv->prefil;
 574
 575                for (i = 0; i < hdr->prefil_scen; i++) {
 576                        if (inrate == prefil[i].insr &&
 577                            outrate == prefil[i].outsr) {
 578                                selected_prefil = &prefil[i];
 579                                dev_dbg(dev, "Selected prefilter: %u insr, %u outsr, %u st1_taps, %u st2_taps\n",
 580                                        selected_prefil->insr,
 581                                        selected_prefil->outsr,
 582                                        selected_prefil->st1_taps,
 583                                        selected_prefil->st2_taps);
 584                                break;
 585                        }
 586                }
 587
 588                if (!selected_prefil) {
 589                        dev_err(dev, "Conversion from in ratio %u(%u) to out ratio %u(%u) is not supported\n",
 590                                in_s_rate, inrate,
 591                                out_s_rate, outrate);
 592                        return -EINVAL;
 593                }
 594
 595                /*
 596                 * In prefilter coeff array, first st1_num_taps represent the
 597                 * stage1 prefilter coefficients followed by next st2_num_taps
 598                 * representing stage 2 coefficients
 599                 */
 600                ctx_priv->st1_num_taps = selected_prefil->st1_taps;
 601                ctx_priv->st1_coeff    = selected_prefil->coeff;
 602                ctx_priv->st1_num_exp  = selected_prefil->st1_exp;
 603
 604                offset = ((selected_prefil->st1_taps + 1) / 2);
 605                ctx_priv->st2_num_taps = selected_prefil->st2_taps;
 606                ctx_priv->st2_coeff    = selected_prefil->coeff + offset;
 607
 608                if (in_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE &&
 609                    out_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE) {
 610                        /* only change stage2 coefficient for 2 stage case */
 611                        if (ctx_priv->st2_num_taps > 0)
 612                                ctx_priv->st2_addexp = 31;
 613                        else
 614                                ctx_priv->st1_addexp = 31;
 615                } else if (in_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE &&
 616                           out_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE) {
 617                        if (ctx_priv->st2_num_taps > 0)
 618                                ctx_priv->st2_addexp -= ctx_priv->in_params.fmt.addexp;
 619                        else
 620                                ctx_priv->st1_addexp -= ctx_priv->in_params.fmt.addexp;
 621                }
 622        }
 623
 624        ctx_priv->in_filled_sample += (ctx_priv->st1_num_taps / 2) * ctx_priv->st1_num_exp +
 625                                  ctx_priv->st2_num_taps / 2;
 626        ctx_priv->out_missed_sample = ctx_priv->in_filled_sample * out_s_rate / in_s_rate;
 627
 628        if (ctx_priv->in_filled_sample * out_s_rate % in_s_rate != 0)
 629                ctx_priv->out_missed_sample += 1;
 630        /*
 631         * To modify the value of a prefilter coefficient, the user must
 632         * perform a write to the register ASRC_PRE_COEFF_FIFOn[COEFF_DATA]
 633         * while the respective context RUN_EN bit is set to 0b0
 634         */
 635        regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id),
 636                           EASRC_CC_EN_MASK, 0);
 637
 638        if (ctx_priv->st1_num_taps > EASRC_MAX_PF_TAPS) {
 639                dev_err(dev, "ST1 taps [%d] mus be lower than %d\n",
 640                        ctx_priv->st1_num_taps, EASRC_MAX_PF_TAPS);
 641                ret = -EINVAL;
 642                goto ctx_error;
 643        }
 644
 645        /* Update ctx ST1_NUM_TAPS in Context Control Extended 2 register */
 646        regmap_update_bits(easrc->regmap, REG_EASRC_CCE2(ctx_id),
 647                           EASRC_CCE2_ST1_TAPS_MASK,
 648                           EASRC_CCE2_ST1_TAPS(ctx_priv->st1_num_taps - 1));
 649
 650        /* Prefilter Coefficient Write Select to write in ST1 coeff */
 651        regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
 652                           EASRC_CCE1_COEF_WS_MASK,
 653                           EASRC_PF_ST1_COEFF_WR << EASRC_CCE1_COEF_WS_SHIFT);
 654
 655        ret = fsl_easrc_write_pf_coeff_mem(easrc, ctx_id,
 656                                           ctx_priv->st1_coeff,
 657                                           ctx_priv->st1_num_taps,
 658                                           ctx_priv->st1_addexp);
 659        if (ret)
 660                goto ctx_error;
 661
 662        if (ctx_priv->st2_num_taps > 0) {
 663                if (ctx_priv->st2_num_taps + ctx_priv->st1_num_taps > EASRC_MAX_PF_TAPS) {
 664                        dev_err(dev, "ST2 taps [%d] mus be lower than %d\n",
 665                                ctx_priv->st2_num_taps, EASRC_MAX_PF_TAPS);
 666                        ret = -EINVAL;
 667                        goto ctx_error;
 668                }
 669
 670                regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
 671                                   EASRC_CCE1_PF_TSEN_MASK,
 672                                   EASRC_CCE1_PF_TSEN);
 673                /*
 674                 * Enable prefilter stage1 writeback floating point
 675                 * which is used for FLOAT_LE case
 676                 */
 677                regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
 678                                   EASRC_CCE1_PF_ST1_WBFP_MASK,
 679                                   EASRC_CCE1_PF_ST1_WBFP);
 680
 681                regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
 682                                   EASRC_CCE1_PF_EXP_MASK,
 683                                   EASRC_CCE1_PF_EXP(ctx_priv->st1_num_exp - 1));
 684
 685                /* Update ctx ST2_NUM_TAPS in Context Control Extended 2 reg */
 686                regmap_update_bits(easrc->regmap, REG_EASRC_CCE2(ctx_id),
 687                                   EASRC_CCE2_ST2_TAPS_MASK,
 688                                   EASRC_CCE2_ST2_TAPS(ctx_priv->st2_num_taps - 1));
 689
 690                /* Prefilter Coefficient Write Select to write in ST2 coeff */
 691                regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
 692                                   EASRC_CCE1_COEF_WS_MASK,
 693                                   EASRC_PF_ST2_COEFF_WR << EASRC_CCE1_COEF_WS_SHIFT);
 694
 695                ret = fsl_easrc_write_pf_coeff_mem(easrc, ctx_id,
 696                                                   ctx_priv->st2_coeff,
 697                                                   ctx_priv->st2_num_taps,
 698                                                   ctx_priv->st2_addexp);
 699                if (ret)
 700                        goto ctx_error;
 701        }
 702
 703        return 0;
 704
 705ctx_error:
 706        return ret;
 707}
 708
 709static int fsl_easrc_max_ch_for_slot(struct fsl_asrc_pair *ctx,
 710                                     struct fsl_easrc_slot *slot)
 711{
 712        struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
 713        int st1_mem_alloc = 0, st2_mem_alloc = 0;
 714        int pf_mem_alloc = 0;
 715        int max_channels = 8 - slot->num_channel;
 716        int channels = 0;
 717
 718        if (ctx_priv->st1_num_taps > 0) {
 719                if (ctx_priv->st2_num_taps > 0)
 720                        st1_mem_alloc =
 721                                (ctx_priv->st1_num_taps - 1) * ctx_priv->st1_num_exp + 1;
 722                else
 723                        st1_mem_alloc = ctx_priv->st1_num_taps;
 724        }
 725
 726        if (ctx_priv->st2_num_taps > 0)
 727                st2_mem_alloc = ctx_priv->st2_num_taps;
 728
 729        pf_mem_alloc = st1_mem_alloc + st2_mem_alloc;
 730
 731        if (pf_mem_alloc != 0)
 732                channels = (6144 - slot->pf_mem_used) / pf_mem_alloc;
 733        else
 734                channels = 8;
 735
 736        if (channels < max_channels)
 737                max_channels = channels;
 738
 739        return max_channels;
 740}
 741
 742static int fsl_easrc_config_one_slot(struct fsl_asrc_pair *ctx,
 743                                     struct fsl_easrc_slot *slot,
 744                                     unsigned int slot_ctx_idx,
 745                                     unsigned int *req_channels,
 746                                     unsigned int *start_channel,
 747                                     unsigned int *avail_channel)
 748{
 749        struct fsl_asrc *easrc = ctx->asrc;
 750        struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
 751        int st1_chanxexp, st1_mem_alloc = 0, st2_mem_alloc;
 752        unsigned int reg0, reg1, reg2, reg3;
 753        unsigned int addr;
 754
 755        if (slot->slot_index == 0) {
 756                reg0 = REG_EASRC_DPCS0R0(slot_ctx_idx);
 757                reg1 = REG_EASRC_DPCS0R1(slot_ctx_idx);
 758                reg2 = REG_EASRC_DPCS0R2(slot_ctx_idx);
 759                reg3 = REG_EASRC_DPCS0R3(slot_ctx_idx);
 760        } else {
 761                reg0 = REG_EASRC_DPCS1R0(slot_ctx_idx);
 762                reg1 = REG_EASRC_DPCS1R1(slot_ctx_idx);
 763                reg2 = REG_EASRC_DPCS1R2(slot_ctx_idx);
 764                reg3 = REG_EASRC_DPCS1R3(slot_ctx_idx);
 765        }
 766
 767        if (*req_channels <= *avail_channel) {
 768                slot->num_channel = *req_channels;
 769                *req_channels = 0;
 770        } else {
 771                slot->num_channel = *avail_channel;
 772                *req_channels -= *avail_channel;
 773        }
 774
 775        slot->min_channel = *start_channel;
 776        slot->max_channel = *start_channel + slot->num_channel - 1;
 777        slot->ctx_index = ctx->index;
 778        slot->busy = true;
 779        *start_channel += slot->num_channel;
 780
 781        regmap_update_bits(easrc->regmap, reg0,
 782                           EASRC_DPCS0R0_MAXCH_MASK,
 783                           EASRC_DPCS0R0_MAXCH(slot->max_channel));
 784
 785        regmap_update_bits(easrc->regmap, reg0,
 786                           EASRC_DPCS0R0_MINCH_MASK,
 787                           EASRC_DPCS0R0_MINCH(slot->min_channel));
 788
 789        regmap_update_bits(easrc->regmap, reg0,
 790                           EASRC_DPCS0R0_NUMCH_MASK,
 791                           EASRC_DPCS0R0_NUMCH(slot->num_channel - 1));
 792
 793        regmap_update_bits(easrc->regmap, reg0,
 794                           EASRC_DPCS0R0_CTXNUM_MASK,
 795                           EASRC_DPCS0R0_CTXNUM(slot->ctx_index));
 796
 797        if (ctx_priv->st1_num_taps > 0) {
 798                if (ctx_priv->st2_num_taps > 0)
 799                        st1_mem_alloc =
 800                                (ctx_priv->st1_num_taps - 1) * slot->num_channel *
 801                                ctx_priv->st1_num_exp + slot->num_channel;
 802                else
 803                        st1_mem_alloc = ctx_priv->st1_num_taps * slot->num_channel;
 804
 805                slot->pf_mem_used = st1_mem_alloc;
 806                regmap_update_bits(easrc->regmap, reg2,
 807                                   EASRC_DPCS0R2_ST1_MA_MASK,
 808                                   EASRC_DPCS0R2_ST1_MA(st1_mem_alloc));
 809
 810                if (slot->slot_index == 1)
 811                        addr = PREFILTER_MEM_LEN - st1_mem_alloc;
 812                else
 813                        addr = 0;
 814
 815                regmap_update_bits(easrc->regmap, reg2,
 816                                   EASRC_DPCS0R2_ST1_SA_MASK,
 817                                   EASRC_DPCS0R2_ST1_SA(addr));
 818        }
 819
 820        if (ctx_priv->st2_num_taps > 0) {
 821                st1_chanxexp = slot->num_channel * (ctx_priv->st1_num_exp - 1);
 822
 823                regmap_update_bits(easrc->regmap, reg1,
 824                                   EASRC_DPCS0R1_ST1_EXP_MASK,
 825                                   EASRC_DPCS0R1_ST1_EXP(st1_chanxexp));
 826
 827                st2_mem_alloc = slot->num_channel * ctx_priv->st2_num_taps;
 828                slot->pf_mem_used += st2_mem_alloc;
 829                regmap_update_bits(easrc->regmap, reg3,
 830                                   EASRC_DPCS0R3_ST2_MA_MASK,
 831                                   EASRC_DPCS0R3_ST2_MA(st2_mem_alloc));
 832
 833                if (slot->slot_index == 1)
 834                        addr = PREFILTER_MEM_LEN - st1_mem_alloc - st2_mem_alloc;
 835                else
 836                        addr = st1_mem_alloc;
 837
 838                regmap_update_bits(easrc->regmap, reg3,
 839                                   EASRC_DPCS0R3_ST2_SA_MASK,
 840                                   EASRC_DPCS0R3_ST2_SA(addr));
 841        }
 842
 843        regmap_update_bits(easrc->regmap, reg0,
 844                           EASRC_DPCS0R0_EN_MASK, EASRC_DPCS0R0_EN);
 845
 846        return 0;
 847}
 848
 849/*
 850 * fsl_easrc_config_slot
 851 *
 852 * A single context can be split amongst any of the 4 context processing pipes
 853 * in the design.
 854 * The total number of channels consumed within the context processor must be
 855 * less than or equal to 8. if a single context is configured to contain more
 856 * than 8 channels then it must be distributed across multiple context
 857 * processing pipe slots.
 858 *
 859 */
 860static int fsl_easrc_config_slot(struct fsl_asrc *easrc, unsigned int ctx_id)
 861{
 862        struct fsl_easrc_priv *easrc_priv = easrc->private;
 863        struct fsl_asrc_pair *ctx = easrc->pair[ctx_id];
 864        int req_channels = ctx->channels;
 865        int start_channel = 0, avail_channel;
 866        struct fsl_easrc_slot *slot0, *slot1;
 867        struct fsl_easrc_slot *slota, *slotb;
 868        int i, ret;
 869
 870        if (req_channels <= 0)
 871                return -EINVAL;
 872
 873        for (i = 0; i < EASRC_CTX_MAX_NUM; i++) {
 874                slot0 = &easrc_priv->slot[i][0];
 875                slot1 = &easrc_priv->slot[i][1];
 876
 877                if (slot0->busy && slot1->busy) {
 878                        continue;
 879                } else if ((slot0->busy && slot0->ctx_index == ctx->index) ||
 880                         (slot1->busy && slot1->ctx_index == ctx->index)) {
 881                        continue;
 882                } else if (!slot0->busy) {
 883                        slota = slot0;
 884                        slotb = slot1;
 885                        slota->slot_index = 0;
 886                } else if (!slot1->busy) {
 887                        slota = slot1;
 888                        slotb = slot0;
 889                        slota->slot_index = 1;
 890                }
 891
 892                if (!slota || !slotb)
 893                        continue;
 894
 895                avail_channel = fsl_easrc_max_ch_for_slot(ctx, slotb);
 896                if (avail_channel <= 0)
 897                        continue;
 898
 899                ret = fsl_easrc_config_one_slot(ctx, slota, i, &req_channels,
 900                                                &start_channel, &avail_channel);
 901                if (ret)
 902                        return ret;
 903
 904                if (req_channels > 0)
 905                        continue;
 906                else
 907                        break;
 908        }
 909
 910        if (req_channels > 0) {
 911                dev_err(&easrc->pdev->dev, "no avail slot.\n");
 912                return -EINVAL;
 913        }
 914
 915        return 0;
 916}
 917
 918/*
 919 * fsl_easrc_release_slot
 920 *
 921 * Clear the slot configuration
 922 */
 923static int fsl_easrc_release_slot(struct fsl_asrc *easrc, unsigned int ctx_id)
 924{
 925        struct fsl_easrc_priv *easrc_priv = easrc->private;
 926        struct fsl_asrc_pair *ctx = easrc->pair[ctx_id];
 927        int i;
 928
 929        for (i = 0; i < EASRC_CTX_MAX_NUM; i++) {
 930                if (easrc_priv->slot[i][0].busy &&
 931                    easrc_priv->slot[i][0].ctx_index == ctx->index) {
 932                        easrc_priv->slot[i][0].busy = false;
 933                        easrc_priv->slot[i][0].num_channel = 0;
 934                        easrc_priv->slot[i][0].pf_mem_used = 0;
 935                        /* set registers */
 936                        regmap_write(easrc->regmap, REG_EASRC_DPCS0R0(i), 0);
 937                        regmap_write(easrc->regmap, REG_EASRC_DPCS0R1(i), 0);
 938                        regmap_write(easrc->regmap, REG_EASRC_DPCS0R2(i), 0);
 939                        regmap_write(easrc->regmap, REG_EASRC_DPCS0R3(i), 0);
 940                }
 941
 942                if (easrc_priv->slot[i][1].busy &&
 943                    easrc_priv->slot[i][1].ctx_index == ctx->index) {
 944                        easrc_priv->slot[i][1].busy = false;
 945                        easrc_priv->slot[i][1].num_channel = 0;
 946                        easrc_priv->slot[i][1].pf_mem_used = 0;
 947                        /* set registers */
 948                        regmap_write(easrc->regmap, REG_EASRC_DPCS1R0(i), 0);
 949                        regmap_write(easrc->regmap, REG_EASRC_DPCS1R1(i), 0);
 950                        regmap_write(easrc->regmap, REG_EASRC_DPCS1R2(i), 0);
 951                        regmap_write(easrc->regmap, REG_EASRC_DPCS1R3(i), 0);
 952                }
 953        }
 954
 955        return 0;
 956}
 957
 958/*
 959 * fsl_easrc_config_context
 960 *
 961 * Configure the register relate with context.
 962 */
 963static int fsl_easrc_config_context(struct fsl_asrc *easrc, unsigned int ctx_id)
 964{
 965        struct fsl_easrc_ctx_priv *ctx_priv;
 966        struct fsl_asrc_pair *ctx;
 967        struct device *dev;
 968        unsigned long lock_flags;
 969        int ret;
 970
 971        if (!easrc)
 972                return -ENODEV;
 973
 974        dev = &easrc->pdev->dev;
 975
 976        if (ctx_id >= EASRC_CTX_MAX_NUM) {
 977                dev_err(dev, "Invalid context id[%d]\n", ctx_id);
 978                return -EINVAL;
 979        }
 980
 981        ctx = easrc->pair[ctx_id];
 982
 983        ctx_priv = ctx->private;
 984
 985        fsl_easrc_normalize_rates(ctx);
 986
 987        ret = fsl_easrc_set_rs_ratio(ctx);
 988        if (ret)
 989                return ret;
 990
 991        /* Initialize the context coeficients */
 992        ret = fsl_easrc_prefilter_config(easrc, ctx->index);
 993        if (ret)
 994                return ret;
 995
 996        spin_lock_irqsave(&easrc->lock, lock_flags);
 997        ret = fsl_easrc_config_slot(easrc, ctx->index);
 998        spin_unlock_irqrestore(&easrc->lock, lock_flags);
 999        if (ret)
1000                return ret;
1001
1002        /*
1003         * Both prefilter and resampling filters can use following
1004         * initialization modes:
1005         * 2 - zero-fil mode
1006         * 1 - replication mode
1007         * 0 - software control
1008         */
1009        regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
1010                           EASRC_CCE1_RS_INIT_MASK,
1011                           EASRC_CCE1_RS_INIT(ctx_priv->rs_init_mode));
1012
1013        regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
1014                           EASRC_CCE1_PF_INIT_MASK,
1015                           EASRC_CCE1_PF_INIT(ctx_priv->pf_init_mode));
1016
1017        /*
1018         * Context Input FIFO Watermark
1019         * DMA request is generated when input FIFO < FIFO_WTMK
1020         */
1021        regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id),
1022                           EASRC_CC_FIFO_WTMK_MASK,
1023                           EASRC_CC_FIFO_WTMK(ctx_priv->in_params.fifo_wtmk));
1024
1025        /*
1026         * Context Output FIFO Watermark
1027         * DMA request is generated when output FIFO > FIFO_WTMK
1028         * So we set fifo_wtmk -1 to register.
1029         */
1030        regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx_id),
1031                           EASRC_COC_FIFO_WTMK_MASK,
1032                           EASRC_COC_FIFO_WTMK(ctx_priv->out_params.fifo_wtmk - 1));
1033
1034        /* Number of channels */
1035        regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id),
1036                           EASRC_CC_CHEN_MASK,
1037                           EASRC_CC_CHEN(ctx->channels - 1));
1038        return 0;
1039}
1040
1041static int fsl_easrc_process_format(struct fsl_asrc_pair *ctx,
1042                                    struct fsl_easrc_data_fmt *fmt,
1043                                    snd_pcm_format_t raw_fmt)
1044{
1045        struct fsl_asrc *easrc = ctx->asrc;
1046        struct fsl_easrc_priv *easrc_priv = easrc->private;
1047        int ret;
1048
1049        if (!fmt)
1050                return -EINVAL;
1051
1052        /*
1053         * Context Input Floating Point Format
1054         * 0 - Integer Format
1055         * 1 - Single Precision FP Format
1056         */
1057        fmt->floating_point = !snd_pcm_format_linear(raw_fmt);
1058        fmt->sample_pos = 0;
1059        fmt->iec958 = 0;
1060
1061        /* Get the data width */
1062        switch (snd_pcm_format_width(raw_fmt)) {
1063        case 16:
1064                fmt->width = EASRC_WIDTH_16_BIT;
1065                fmt->addexp = 15;
1066                break;
1067        case 20:
1068                fmt->width = EASRC_WIDTH_20_BIT;
1069                fmt->addexp = 19;
1070                break;
1071        case 24:
1072                fmt->width = EASRC_WIDTH_24_BIT;
1073                fmt->addexp = 23;
1074                break;
1075        case 32:
1076                fmt->width = EASRC_WIDTH_32_BIT;
1077                fmt->addexp = 31;
1078                break;
1079        default:
1080                return -EINVAL;
1081        }
1082
1083        switch (raw_fmt) {
1084        case SNDRV_PCM_FORMAT_IEC958_SUBFRAME_LE:
1085                fmt->width = easrc_priv->bps_iec958[ctx->index];
1086                fmt->iec958 = 1;
1087                fmt->floating_point = 0;
1088                if (fmt->width == EASRC_WIDTH_16_BIT) {
1089                        fmt->sample_pos = 12;
1090                        fmt->addexp = 15;
1091                } else if (fmt->width == EASRC_WIDTH_20_BIT) {
1092                        fmt->sample_pos = 8;
1093                        fmt->addexp = 19;
1094                } else if (fmt->width == EASRC_WIDTH_24_BIT) {
1095                        fmt->sample_pos = 4;
1096                        fmt->addexp = 23;
1097                }
1098                break;
1099        default:
1100                break;
1101        }
1102
1103        /*
1104         * Data Endianness
1105         * 0 - Little-Endian
1106         * 1 - Big-Endian
1107         */
1108        ret = snd_pcm_format_big_endian(raw_fmt);
1109        if (ret < 0)
1110                return ret;
1111
1112        fmt->endianness = ret;
1113
1114        /*
1115         * Input Data sign
1116         * 0b - Signed Format
1117         * 1b - Unsigned Format
1118         */
1119        fmt->unsign = snd_pcm_format_unsigned(raw_fmt) > 0 ? 1 : 0;
1120
1121        return 0;
1122}
1123
1124static int fsl_easrc_set_ctx_format(struct fsl_asrc_pair *ctx,
1125                                    snd_pcm_format_t *in_raw_format,
1126                                    snd_pcm_format_t *out_raw_format)
1127{
1128        struct fsl_asrc *easrc = ctx->asrc;
1129        struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
1130        struct fsl_easrc_data_fmt *in_fmt = &ctx_priv->in_params.fmt;
1131        struct fsl_easrc_data_fmt *out_fmt = &ctx_priv->out_params.fmt;
1132        int ret = 0;
1133
1134        /* Get the bitfield values for input data format */
1135        if (in_raw_format && out_raw_format) {
1136                ret = fsl_easrc_process_format(ctx, in_fmt, *in_raw_format);
1137                if (ret)
1138                        return ret;
1139        }
1140
1141        regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1142                           EASRC_CC_BPS_MASK,
1143                           EASRC_CC_BPS(in_fmt->width));
1144        regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1145                           EASRC_CC_ENDIANNESS_MASK,
1146                           in_fmt->endianness << EASRC_CC_ENDIANNESS_SHIFT);
1147        regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1148                           EASRC_CC_FMT_MASK,
1149                           in_fmt->floating_point << EASRC_CC_FMT_SHIFT);
1150        regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1151                           EASRC_CC_INSIGN_MASK,
1152                           in_fmt->unsign << EASRC_CC_INSIGN_SHIFT);
1153
1154        /* In Sample Position */
1155        regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1156                           EASRC_CC_SAMPLE_POS_MASK,
1157                           EASRC_CC_SAMPLE_POS(in_fmt->sample_pos));
1158
1159        /* Get the bitfield values for input data format */
1160        if (in_raw_format && out_raw_format) {
1161                ret = fsl_easrc_process_format(ctx, out_fmt, *out_raw_format);
1162                if (ret)
1163                        return ret;
1164        }
1165
1166        regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1167                           EASRC_COC_BPS_MASK,
1168                           EASRC_COC_BPS(out_fmt->width));
1169        regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1170                           EASRC_COC_ENDIANNESS_MASK,
1171                           out_fmt->endianness << EASRC_COC_ENDIANNESS_SHIFT);
1172        regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1173                           EASRC_COC_FMT_MASK,
1174                           out_fmt->floating_point << EASRC_COC_FMT_SHIFT);
1175        regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1176                           EASRC_COC_OUTSIGN_MASK,
1177                           out_fmt->unsign << EASRC_COC_OUTSIGN_SHIFT);
1178
1179        /* Out Sample Position */
1180        regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1181                           EASRC_COC_SAMPLE_POS_MASK,
1182                           EASRC_COC_SAMPLE_POS(out_fmt->sample_pos));
1183
1184        regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1185                           EASRC_COC_IEC_EN_MASK,
1186                           out_fmt->iec958 << EASRC_COC_IEC_EN_SHIFT);
1187
1188        return ret;
1189}
1190
1191/*
1192 * The ASRC provides interleaving support in hardware to ensure that a
1193 * variety of sample sources can be internally combined
1194 * to conform with this format. Interleaving parameters are accessed
1195 * through the ASRC_CTRL_IN_ACCESSa and ASRC_CTRL_OUT_ACCESSa registers
1196 */
1197static int fsl_easrc_set_ctx_organziation(struct fsl_asrc_pair *ctx)
1198{
1199        struct fsl_easrc_ctx_priv *ctx_priv;
1200        struct fsl_asrc *easrc;
1201
1202        if (!ctx)
1203                return -ENODEV;
1204
1205        easrc = ctx->asrc;
1206        ctx_priv = ctx->private;
1207
1208        /* input interleaving parameters */
1209        regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index),
1210                           EASRC_CIA_ITER_MASK,
1211                           EASRC_CIA_ITER(ctx_priv->in_params.iterations));
1212        regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index),
1213                           EASRC_CIA_GRLEN_MASK,
1214                           EASRC_CIA_GRLEN(ctx_priv->in_params.group_len));
1215        regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index),
1216                           EASRC_CIA_ACCLEN_MASK,
1217                           EASRC_CIA_ACCLEN(ctx_priv->in_params.access_len));
1218
1219        /* output interleaving parameters */
1220        regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index),
1221                           EASRC_COA_ITER_MASK,
1222                           EASRC_COA_ITER(ctx_priv->out_params.iterations));
1223        regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index),
1224                           EASRC_COA_GRLEN_MASK,
1225                           EASRC_COA_GRLEN(ctx_priv->out_params.group_len));
1226        regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index),
1227                           EASRC_COA_ACCLEN_MASK,
1228                           EASRC_COA_ACCLEN(ctx_priv->out_params.access_len));
1229
1230        return 0;
1231}
1232
1233/*
1234 * Request one of the available contexts
1235 *
1236 * Returns a negative number on error and >=0 as context id
1237 * on success
1238 */
1239static int fsl_easrc_request_context(int channels, struct fsl_asrc_pair *ctx)
1240{
1241        enum asrc_pair_index index = ASRC_INVALID_PAIR;
1242        struct fsl_asrc *easrc = ctx->asrc;
1243        struct device *dev;
1244        unsigned long lock_flags;
1245        int ret = 0;
1246        int i;
1247
1248        dev = &easrc->pdev->dev;
1249
1250        spin_lock_irqsave(&easrc->lock, lock_flags);
1251
1252        for (i = ASRC_PAIR_A; i < EASRC_CTX_MAX_NUM; i++) {
1253                if (easrc->pair[i])
1254                        continue;
1255
1256                index = i;
1257                break;
1258        }
1259
1260        if (index == ASRC_INVALID_PAIR) {
1261                dev_err(dev, "all contexts are busy\n");
1262                ret = -EBUSY;
1263        } else if (channels > easrc->channel_avail) {
1264                dev_err(dev, "can't give the required channels: %d\n",
1265                        channels);
1266                ret = -EINVAL;
1267        } else {
1268                ctx->index = index;
1269                ctx->channels = channels;
1270                easrc->pair[index] = ctx;
1271                easrc->channel_avail -= channels;
1272        }
1273
1274        spin_unlock_irqrestore(&easrc->lock, lock_flags);
1275
1276        return ret;
1277}
1278
1279/*
1280 * Release the context
1281 *
1282 * This funciton is mainly doing the revert thing in request context
1283 */
1284static void fsl_easrc_release_context(struct fsl_asrc_pair *ctx)
1285{
1286        unsigned long lock_flags;
1287        struct fsl_asrc *easrc;
1288
1289        if (!ctx)
1290                return;
1291
1292        easrc = ctx->asrc;
1293
1294        spin_lock_irqsave(&easrc->lock, lock_flags);
1295
1296        fsl_easrc_release_slot(easrc, ctx->index);
1297
1298        easrc->channel_avail += ctx->channels;
1299        easrc->pair[ctx->index] = NULL;
1300
1301        spin_unlock_irqrestore(&easrc->lock, lock_flags);
1302}
1303
1304/*
1305 * Start the context
1306 *
1307 * Enable the DMA request and context
1308 */
1309static int fsl_easrc_start_context(struct fsl_asrc_pair *ctx)
1310{
1311        struct fsl_asrc *easrc = ctx->asrc;
1312
1313        regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1314                           EASRC_CC_FWMDE_MASK, EASRC_CC_FWMDE);
1315        regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1316                           EASRC_COC_FWMDE_MASK, EASRC_COC_FWMDE);
1317        regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1318                           EASRC_CC_EN_MASK, EASRC_CC_EN);
1319        return 0;
1320}
1321
1322/*
1323 * Stop the context
1324 *
1325 * Disable the DMA request and context
1326 */
1327static int fsl_easrc_stop_context(struct fsl_asrc_pair *ctx)
1328{
1329        struct fsl_asrc *easrc = ctx->asrc;
1330        int val, i;
1331        int size;
1332        int retry = 200;
1333
1334        regmap_read(easrc->regmap, REG_EASRC_CC(ctx->index), &val);
1335
1336        if (val & EASRC_CC_EN_MASK) {
1337                regmap_update_bits(easrc->regmap,
1338                                   REG_EASRC_CC(ctx->index),
1339                                   EASRC_CC_STOP_MASK, EASRC_CC_STOP);
1340                do {
1341                        regmap_read(easrc->regmap, REG_EASRC_SFS(ctx->index), &val);
1342                        val &= EASRC_SFS_NSGO_MASK;
1343                        size = val >> EASRC_SFS_NSGO_SHIFT;
1344
1345                        /* Read FIFO, drop the data */
1346                        for (i = 0; i < size * ctx->channels; i++)
1347                                regmap_read(easrc->regmap, REG_EASRC_RDFIFO(ctx->index), &val);
1348                        /* Check RUN_STOP_DONE */
1349                        regmap_read(easrc->regmap, REG_EASRC_IRQF, &val);
1350                        if (val & EASRC_IRQF_RSD(1 << ctx->index)) {
1351                                /*Clear RUN_STOP_DONE*/
1352                                regmap_write_bits(easrc->regmap,
1353                                                  REG_EASRC_IRQF,
1354                                                  EASRC_IRQF_RSD(1 << ctx->index),
1355                                                  EASRC_IRQF_RSD(1 << ctx->index));
1356                                break;
1357                        }
1358                        udelay(100);
1359                } while (--retry);
1360
1361                if (retry == 0)
1362                        dev_warn(&easrc->pdev->dev, "RUN STOP fail\n");
1363        }
1364
1365        regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1366                           EASRC_CC_EN_MASK | EASRC_CC_STOP_MASK, 0);
1367        regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1368                           EASRC_CC_FWMDE_MASK, 0);
1369        regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1370                           EASRC_COC_FWMDE_MASK, 0);
1371        return 0;
1372}
1373
1374static struct dma_chan *fsl_easrc_get_dma_channel(struct fsl_asrc_pair *ctx,
1375                                                  bool dir)
1376{
1377        struct fsl_asrc *easrc = ctx->asrc;
1378        enum asrc_pair_index index = ctx->index;
1379        char name[8];
1380
1381        /* Example of dma name: ctx0_rx */
1382        sprintf(name, "ctx%c_%cx", index + '0', dir == IN ? 'r' : 't');
1383
1384        return dma_request_slave_channel(&easrc->pdev->dev, name);
1385};
1386
1387static const unsigned int easrc_rates[] = {
1388        8000, 11025, 12000, 16000,
1389        22050, 24000, 32000, 44100,
1390        48000, 64000, 88200, 96000,
1391        128000, 176400, 192000, 256000,
1392        352800, 384000, 705600, 768000,
1393};
1394
1395static const struct snd_pcm_hw_constraint_list easrc_rate_constraints = {
1396        .count = ARRAY_SIZE(easrc_rates),
1397        .list = easrc_rates,
1398};
1399
1400static int fsl_easrc_startup(struct snd_pcm_substream *substream,
1401                             struct snd_soc_dai *dai)
1402{
1403        return snd_pcm_hw_constraint_list(substream->runtime, 0,
1404                                          SNDRV_PCM_HW_PARAM_RATE,
1405                                          &easrc_rate_constraints);
1406}
1407
1408static int fsl_easrc_trigger(struct snd_pcm_substream *substream,
1409                             int cmd, struct snd_soc_dai *dai)
1410{
1411        struct snd_pcm_runtime *runtime = substream->runtime;
1412        struct fsl_asrc_pair *ctx = runtime->private_data;
1413        int ret;
1414
1415        switch (cmd) {
1416        case SNDRV_PCM_TRIGGER_START:
1417        case SNDRV_PCM_TRIGGER_RESUME:
1418        case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1419                ret = fsl_easrc_start_context(ctx);
1420                if (ret)
1421                        return ret;
1422                break;
1423        case SNDRV_PCM_TRIGGER_STOP:
1424        case SNDRV_PCM_TRIGGER_SUSPEND:
1425        case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1426                ret = fsl_easrc_stop_context(ctx);
1427                if (ret)
1428                        return ret;
1429                break;
1430        default:
1431                return -EINVAL;
1432        }
1433
1434        return 0;
1435}
1436
1437static int fsl_easrc_hw_params(struct snd_pcm_substream *substream,
1438                               struct snd_pcm_hw_params *params,
1439                               struct snd_soc_dai *dai)
1440{
1441        struct fsl_asrc *easrc = snd_soc_dai_get_drvdata(dai);
1442        struct snd_pcm_runtime *runtime = substream->runtime;
1443        struct device *dev = &easrc->pdev->dev;
1444        struct fsl_asrc_pair *ctx = runtime->private_data;
1445        struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
1446        unsigned int channels = params_channels(params);
1447        unsigned int rate = params_rate(params);
1448        snd_pcm_format_t format = params_format(params);
1449        int ret;
1450
1451        ret = fsl_easrc_request_context(channels, ctx);
1452        if (ret) {
1453                dev_err(dev, "failed to request context\n");
1454                return ret;
1455        }
1456
1457        ctx_priv->ctx_streams |= BIT(substream->stream);
1458
1459        /*
1460         * Set the input and output ratio so we can compute
1461         * the resampling ratio in RS_LOW/HIGH
1462         */
1463        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
1464                ctx_priv->in_params.sample_rate = rate;
1465                ctx_priv->in_params.sample_format = format;
1466                ctx_priv->out_params.sample_rate = easrc->asrc_rate;
1467                ctx_priv->out_params.sample_format = easrc->asrc_format;
1468        } else {
1469                ctx_priv->out_params.sample_rate = rate;
1470                ctx_priv->out_params.sample_format = format;
1471                ctx_priv->in_params.sample_rate = easrc->asrc_rate;
1472                ctx_priv->in_params.sample_format = easrc->asrc_format;
1473        }
1474
1475        ctx->channels = channels;
1476        ctx_priv->in_params.fifo_wtmk  = 0x20;
1477        ctx_priv->out_params.fifo_wtmk = 0x20;
1478
1479        /*
1480         * Do only rate conversion and keep the same format for input
1481         * and output data
1482         */
1483        ret = fsl_easrc_set_ctx_format(ctx,
1484                                       &ctx_priv->in_params.sample_format,
1485                                       &ctx_priv->out_params.sample_format);
1486        if (ret) {
1487                dev_err(dev, "failed to set format %d", ret);
1488                return ret;
1489        }
1490
1491        ret = fsl_easrc_config_context(easrc, ctx->index);
1492        if (ret) {
1493                dev_err(dev, "failed to config context\n");
1494                return ret;
1495        }
1496
1497        ctx_priv->in_params.iterations = 1;
1498        ctx_priv->in_params.group_len = ctx->channels;
1499        ctx_priv->in_params.access_len = ctx->channels;
1500        ctx_priv->out_params.iterations = 1;
1501        ctx_priv->out_params.group_len = ctx->channels;
1502        ctx_priv->out_params.access_len = ctx->channels;
1503
1504        ret = fsl_easrc_set_ctx_organziation(ctx);
1505        if (ret) {
1506                dev_err(dev, "failed to set fifo organization\n");
1507                return ret;
1508        }
1509
1510        return 0;
1511}
1512
1513static int fsl_easrc_hw_free(struct snd_pcm_substream *substream,
1514                             struct snd_soc_dai *dai)
1515{
1516        struct snd_pcm_runtime *runtime = substream->runtime;
1517        struct fsl_asrc_pair *ctx = runtime->private_data;
1518        struct fsl_easrc_ctx_priv *ctx_priv;
1519
1520        if (!ctx)
1521                return -EINVAL;
1522
1523        ctx_priv = ctx->private;
1524
1525        if (ctx_priv->ctx_streams & BIT(substream->stream)) {
1526                ctx_priv->ctx_streams &= ~BIT(substream->stream);
1527                fsl_easrc_release_context(ctx);
1528        }
1529
1530        return 0;
1531}
1532
1533static const struct snd_soc_dai_ops fsl_easrc_dai_ops = {
1534        .startup = fsl_easrc_startup,
1535        .trigger = fsl_easrc_trigger,
1536        .hw_params = fsl_easrc_hw_params,
1537        .hw_free = fsl_easrc_hw_free,
1538};
1539
1540static int fsl_easrc_dai_probe(struct snd_soc_dai *cpu_dai)
1541{
1542        struct fsl_asrc *easrc = dev_get_drvdata(cpu_dai->dev);
1543
1544        snd_soc_dai_init_dma_data(cpu_dai,
1545                                  &easrc->dma_params_tx,
1546                                  &easrc->dma_params_rx);
1547        return 0;
1548}
1549
1550static struct snd_soc_dai_driver fsl_easrc_dai = {
1551        .probe = fsl_easrc_dai_probe,
1552        .playback = {
1553                .stream_name = "ASRC-Playback",
1554                .channels_min = 1,
1555                .channels_max = 32,
1556                .rate_min = 8000,
1557                .rate_max = 768000,
1558                .rates = SNDRV_PCM_RATE_KNOT,
1559                .formats = FSL_EASRC_FORMATS,
1560        },
1561        .capture = {
1562                .stream_name = "ASRC-Capture",
1563                .channels_min = 1,
1564                .channels_max = 32,
1565                .rate_min = 8000,
1566                .rate_max = 768000,
1567                .rates = SNDRV_PCM_RATE_KNOT,
1568                .formats = FSL_EASRC_FORMATS |
1569                           SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1570        },
1571        .ops = &fsl_easrc_dai_ops,
1572};
1573
1574static const struct snd_soc_component_driver fsl_easrc_component = {
1575        .name           = "fsl-easrc-dai",
1576        .controls       = fsl_easrc_snd_controls,
1577        .num_controls   = ARRAY_SIZE(fsl_easrc_snd_controls),
1578};
1579
1580static const struct reg_default fsl_easrc_reg_defaults[] = {
1581        {REG_EASRC_WRFIFO(0),   0x00000000},
1582        {REG_EASRC_WRFIFO(1),   0x00000000},
1583        {REG_EASRC_WRFIFO(2),   0x00000000},
1584        {REG_EASRC_WRFIFO(3),   0x00000000},
1585        {REG_EASRC_RDFIFO(0),   0x00000000},
1586        {REG_EASRC_RDFIFO(1),   0x00000000},
1587        {REG_EASRC_RDFIFO(2),   0x00000000},
1588        {REG_EASRC_RDFIFO(3),   0x00000000},
1589        {REG_EASRC_CC(0),       0x00000000},
1590        {REG_EASRC_CC(1),       0x00000000},
1591        {REG_EASRC_CC(2),       0x00000000},
1592        {REG_EASRC_CC(3),       0x00000000},
1593        {REG_EASRC_CCE1(0),     0x00000000},
1594        {REG_EASRC_CCE1(1),     0x00000000},
1595        {REG_EASRC_CCE1(2),     0x00000000},
1596        {REG_EASRC_CCE1(3),     0x00000000},
1597        {REG_EASRC_CCE2(0),     0x00000000},
1598        {REG_EASRC_CCE2(1),     0x00000000},
1599        {REG_EASRC_CCE2(2),     0x00000000},
1600        {REG_EASRC_CCE2(3),     0x00000000},
1601        {REG_EASRC_CIA(0),      0x00000000},
1602        {REG_EASRC_CIA(1),      0x00000000},
1603        {REG_EASRC_CIA(2),      0x00000000},
1604        {REG_EASRC_CIA(3),      0x00000000},
1605        {REG_EASRC_DPCS0R0(0),  0x00000000},
1606        {REG_EASRC_DPCS0R0(1),  0x00000000},
1607        {REG_EASRC_DPCS0R0(2),  0x00000000},
1608        {REG_EASRC_DPCS0R0(3),  0x00000000},
1609        {REG_EASRC_DPCS0R1(0),  0x00000000},
1610        {REG_EASRC_DPCS0R1(1),  0x00000000},
1611        {REG_EASRC_DPCS0R1(2),  0x00000000},
1612        {REG_EASRC_DPCS0R1(3),  0x00000000},
1613        {REG_EASRC_DPCS0R2(0),  0x00000000},
1614        {REG_EASRC_DPCS0R2(1),  0x00000000},
1615        {REG_EASRC_DPCS0R2(2),  0x00000000},
1616        {REG_EASRC_DPCS0R2(3),  0x00000000},
1617        {REG_EASRC_DPCS0R3(0),  0x00000000},
1618        {REG_EASRC_DPCS0R3(1),  0x00000000},
1619        {REG_EASRC_DPCS0R3(2),  0x00000000},
1620        {REG_EASRC_DPCS0R3(3),  0x00000000},
1621        {REG_EASRC_DPCS1R0(0),  0x00000000},
1622        {REG_EASRC_DPCS1R0(1),  0x00000000},
1623        {REG_EASRC_DPCS1R0(2),  0x00000000},
1624        {REG_EASRC_DPCS1R0(3),  0x00000000},
1625        {REG_EASRC_DPCS1R1(0),  0x00000000},
1626        {REG_EASRC_DPCS1R1(1),  0x00000000},
1627        {REG_EASRC_DPCS1R1(2),  0x00000000},
1628        {REG_EASRC_DPCS1R1(3),  0x00000000},
1629        {REG_EASRC_DPCS1R2(0),  0x00000000},
1630        {REG_EASRC_DPCS1R2(1),  0x00000000},
1631        {REG_EASRC_DPCS1R2(2),  0x00000000},
1632        {REG_EASRC_DPCS1R2(3),  0x00000000},
1633        {REG_EASRC_DPCS1R3(0),  0x00000000},
1634        {REG_EASRC_DPCS1R3(1),  0x00000000},
1635        {REG_EASRC_DPCS1R3(2),  0x00000000},
1636        {REG_EASRC_DPCS1R3(3),  0x00000000},
1637        {REG_EASRC_COC(0),      0x00000000},
1638        {REG_EASRC_COC(1),      0x00000000},
1639        {REG_EASRC_COC(2),      0x00000000},
1640        {REG_EASRC_COC(3),      0x00000000},
1641        {REG_EASRC_COA(0),      0x00000000},
1642        {REG_EASRC_COA(1),      0x00000000},
1643        {REG_EASRC_COA(2),      0x00000000},
1644        {REG_EASRC_COA(3),      0x00000000},
1645        {REG_EASRC_SFS(0),      0x00000000},
1646        {REG_EASRC_SFS(1),      0x00000000},
1647        {REG_EASRC_SFS(2),      0x00000000},
1648        {REG_EASRC_SFS(3),      0x00000000},
1649        {REG_EASRC_RRL(0),      0x00000000},
1650        {REG_EASRC_RRL(1),      0x00000000},
1651        {REG_EASRC_RRL(2),      0x00000000},
1652        {REG_EASRC_RRL(3),      0x00000000},
1653        {REG_EASRC_RRH(0),      0x00000000},
1654        {REG_EASRC_RRH(1),      0x00000000},
1655        {REG_EASRC_RRH(2),      0x00000000},
1656        {REG_EASRC_RRH(3),      0x00000000},
1657        {REG_EASRC_RUC(0),      0x00000000},
1658        {REG_EASRC_RUC(1),      0x00000000},
1659        {REG_EASRC_RUC(2),      0x00000000},
1660        {REG_EASRC_RUC(3),      0x00000000},
1661        {REG_EASRC_RUR(0),      0x7FFFFFFF},
1662        {REG_EASRC_RUR(1),      0x7FFFFFFF},
1663        {REG_EASRC_RUR(2),      0x7FFFFFFF},
1664        {REG_EASRC_RUR(3),      0x7FFFFFFF},
1665        {REG_EASRC_RCTCL,       0x00000000},
1666        {REG_EASRC_RCTCH,       0x00000000},
1667        {REG_EASRC_PCF(0),      0x00000000},
1668        {REG_EASRC_PCF(1),      0x00000000},
1669        {REG_EASRC_PCF(2),      0x00000000},
1670        {REG_EASRC_PCF(3),      0x00000000},
1671        {REG_EASRC_CRCM,        0x00000000},
1672        {REG_EASRC_CRCC,        0x00000000},
1673        {REG_EASRC_IRQC,        0x00000FFF},
1674        {REG_EASRC_IRQF,        0x00000000},
1675        {REG_EASRC_CS0(0),      0x00000000},
1676        {REG_EASRC_CS0(1),      0x00000000},
1677        {REG_EASRC_CS0(2),      0x00000000},
1678        {REG_EASRC_CS0(3),      0x00000000},
1679        {REG_EASRC_CS1(0),      0x00000000},
1680        {REG_EASRC_CS1(1),      0x00000000},
1681        {REG_EASRC_CS1(2),      0x00000000},
1682        {REG_EASRC_CS1(3),      0x00000000},
1683        {REG_EASRC_CS2(0),      0x00000000},
1684        {REG_EASRC_CS2(1),      0x00000000},
1685        {REG_EASRC_CS2(2),      0x00000000},
1686        {REG_EASRC_CS2(3),      0x00000000},
1687        {REG_EASRC_CS3(0),      0x00000000},
1688        {REG_EASRC_CS3(1),      0x00000000},
1689        {REG_EASRC_CS3(2),      0x00000000},
1690        {REG_EASRC_CS3(3),      0x00000000},
1691        {REG_EASRC_CS4(0),      0x00000000},
1692        {REG_EASRC_CS4(1),      0x00000000},
1693        {REG_EASRC_CS4(2),      0x00000000},
1694        {REG_EASRC_CS4(3),      0x00000000},
1695        {REG_EASRC_CS5(0),      0x00000000},
1696        {REG_EASRC_CS5(1),      0x00000000},
1697        {REG_EASRC_CS5(2),      0x00000000},
1698        {REG_EASRC_CS5(3),      0x00000000},
1699        {REG_EASRC_DBGC,        0x00000000},
1700        {REG_EASRC_DBGS,        0x00000000},
1701};
1702
1703static const struct regmap_range fsl_easrc_readable_ranges[] = {
1704        regmap_reg_range(REG_EASRC_RDFIFO(0), REG_EASRC_RCTCH),
1705        regmap_reg_range(REG_EASRC_PCF(0), REG_EASRC_PCF(3)),
1706        regmap_reg_range(REG_EASRC_CRCC, REG_EASRC_DBGS),
1707};
1708
1709static const struct regmap_access_table fsl_easrc_readable_table = {
1710        .yes_ranges = fsl_easrc_readable_ranges,
1711        .n_yes_ranges = ARRAY_SIZE(fsl_easrc_readable_ranges),
1712};
1713
1714static const struct regmap_range fsl_easrc_writeable_ranges[] = {
1715        regmap_reg_range(REG_EASRC_WRFIFO(0), REG_EASRC_WRFIFO(3)),
1716        regmap_reg_range(REG_EASRC_CC(0), REG_EASRC_COA(3)),
1717        regmap_reg_range(REG_EASRC_RRL(0), REG_EASRC_RCTCH),
1718        regmap_reg_range(REG_EASRC_PCF(0), REG_EASRC_DBGC),
1719};
1720
1721static const struct regmap_access_table fsl_easrc_writeable_table = {
1722        .yes_ranges = fsl_easrc_writeable_ranges,
1723        .n_yes_ranges = ARRAY_SIZE(fsl_easrc_writeable_ranges),
1724};
1725
1726static const struct regmap_range fsl_easrc_volatileable_ranges[] = {
1727        regmap_reg_range(REG_EASRC_RDFIFO(0), REG_EASRC_RDFIFO(3)),
1728        regmap_reg_range(REG_EASRC_SFS(0), REG_EASRC_SFS(3)),
1729        regmap_reg_range(REG_EASRC_IRQF, REG_EASRC_IRQF),
1730        regmap_reg_range(REG_EASRC_DBGS, REG_EASRC_DBGS),
1731};
1732
1733static const struct regmap_access_table fsl_easrc_volatileable_table = {
1734        .yes_ranges = fsl_easrc_volatileable_ranges,
1735        .n_yes_ranges = ARRAY_SIZE(fsl_easrc_volatileable_ranges),
1736};
1737
1738static const struct regmap_config fsl_easrc_regmap_config = {
1739        .reg_bits = 32,
1740        .reg_stride = 4,
1741        .val_bits = 32,
1742
1743        .max_register = REG_EASRC_DBGS,
1744        .reg_defaults = fsl_easrc_reg_defaults,
1745        .num_reg_defaults = ARRAY_SIZE(fsl_easrc_reg_defaults),
1746        .rd_table = &fsl_easrc_readable_table,
1747        .wr_table = &fsl_easrc_writeable_table,
1748        .volatile_table = &fsl_easrc_volatileable_table,
1749        .cache_type = REGCACHE_RBTREE,
1750};
1751
1752#ifdef DEBUG
1753static void fsl_easrc_dump_firmware(struct fsl_asrc *easrc)
1754{
1755        struct fsl_easrc_priv *easrc_priv = easrc->private;
1756        struct asrc_firmware_hdr *firm = easrc_priv->firmware_hdr;
1757        struct interp_params *interp = easrc_priv->interp;
1758        struct prefil_params *prefil = easrc_priv->prefil;
1759        struct device *dev = &easrc->pdev->dev;
1760        int i;
1761
1762        if (firm->magic != FIRMWARE_MAGIC) {
1763                dev_err(dev, "Wrong magic. Something went wrong!");
1764                return;
1765        }
1766
1767        dev_dbg(dev, "Firmware v%u dump:\n", firm->firmware_version);
1768        dev_dbg(dev, "Num prefilter scenarios: %u\n", firm->prefil_scen);
1769        dev_dbg(dev, "Num interpolation scenarios: %u\n", firm->interp_scen);
1770        dev_dbg(dev, "\nInterpolation scenarios:\n");
1771
1772        for (i = 0; i < firm->interp_scen; i++) {
1773                if (interp[i].magic != FIRMWARE_MAGIC) {
1774                        dev_dbg(dev, "%d. wrong interp magic: %x\n",
1775                                i, interp[i].magic);
1776                        continue;
1777                }
1778                dev_dbg(dev, "%d. taps: %u, phases: %u, center: %llu\n", i,
1779                        interp[i].num_taps, interp[i].num_phases,
1780                        interp[i].center_tap);
1781        }
1782
1783        for (i = 0; i < firm->prefil_scen; i++) {
1784                if (prefil[i].magic != FIRMWARE_MAGIC) {
1785                        dev_dbg(dev, "%d. wrong prefil magic: %x\n",
1786                                i, prefil[i].magic);
1787                        continue;
1788                }
1789                dev_dbg(dev, "%d. insr: %u, outsr: %u, st1: %u, st2: %u\n", i,
1790                        prefil[i].insr, prefil[i].outsr,
1791                        prefil[i].st1_taps, prefil[i].st2_taps);
1792        }
1793
1794        dev_dbg(dev, "end of firmware dump\n");
1795}
1796#endif
1797
1798static int fsl_easrc_get_firmware(struct fsl_asrc *easrc)
1799{
1800        struct fsl_easrc_priv *easrc_priv;
1801        const struct firmware **fw_p;
1802        u32 pnum, inum, offset;
1803        const u8 *data;
1804        int ret;
1805
1806        if (!easrc)
1807                return -EINVAL;
1808
1809        easrc_priv = easrc->private;
1810        fw_p = &easrc_priv->fw;
1811
1812        ret = request_firmware(fw_p, easrc_priv->fw_name, &easrc->pdev->dev);
1813        if (ret)
1814                return ret;
1815
1816        data = easrc_priv->fw->data;
1817
1818        easrc_priv->firmware_hdr = (struct asrc_firmware_hdr *)data;
1819        pnum = easrc_priv->firmware_hdr->prefil_scen;
1820        inum = easrc_priv->firmware_hdr->interp_scen;
1821
1822        if (inum) {
1823                offset = sizeof(struct asrc_firmware_hdr);
1824                easrc_priv->interp = (struct interp_params *)(data + offset);
1825        }
1826
1827        if (pnum) {
1828                offset = sizeof(struct asrc_firmware_hdr) +
1829                                inum * sizeof(struct interp_params);
1830                easrc_priv->prefil = (struct prefil_params *)(data + offset);
1831        }
1832
1833#ifdef DEBUG
1834        fsl_easrc_dump_firmware(easrc);
1835#endif
1836
1837        return 0;
1838}
1839
1840static irqreturn_t fsl_easrc_isr(int irq, void *dev_id)
1841{
1842        struct fsl_asrc *easrc = (struct fsl_asrc *)dev_id;
1843        struct device *dev = &easrc->pdev->dev;
1844        int val;
1845
1846        regmap_read(easrc->regmap, REG_EASRC_IRQF, &val);
1847
1848        if (val & EASRC_IRQF_OER_MASK)
1849                dev_dbg(dev, "output FIFO underflow\n");
1850
1851        if (val & EASRC_IRQF_IFO_MASK)
1852                dev_dbg(dev, "input FIFO overflow\n");
1853
1854        return IRQ_HANDLED;
1855}
1856
1857static int fsl_easrc_get_fifo_addr(u8 dir, enum asrc_pair_index index)
1858{
1859        return REG_EASRC_FIFO(dir, index);
1860}
1861
1862static const struct of_device_id fsl_easrc_dt_ids[] = {
1863        { .compatible = "fsl,imx8mn-easrc",},
1864        {}
1865};
1866MODULE_DEVICE_TABLE(of, fsl_easrc_dt_ids);
1867
1868static int fsl_easrc_probe(struct platform_device *pdev)
1869{
1870        struct fsl_easrc_priv *easrc_priv;
1871        struct device *dev = &pdev->dev;
1872        struct fsl_asrc *easrc;
1873        struct resource *res;
1874        struct device_node *np;
1875        void __iomem *regs;
1876        int ret, irq;
1877
1878        easrc = devm_kzalloc(dev, sizeof(*easrc), GFP_KERNEL);
1879        if (!easrc)
1880                return -ENOMEM;
1881
1882        easrc_priv = devm_kzalloc(dev, sizeof(*easrc_priv), GFP_KERNEL);
1883        if (!easrc_priv)
1884                return -ENOMEM;
1885
1886        easrc->pdev = pdev;
1887        easrc->private = easrc_priv;
1888        np = dev->of_node;
1889
1890        regs = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1891        if (IS_ERR(regs))
1892                return PTR_ERR(regs);
1893
1894        easrc->paddr = res->start;
1895
1896        easrc->regmap = devm_regmap_init_mmio(dev, regs, &fsl_easrc_regmap_config);
1897        if (IS_ERR(easrc->regmap)) {
1898                dev_err(dev, "failed to init regmap");
1899                return PTR_ERR(easrc->regmap);
1900        }
1901
1902        irq = platform_get_irq(pdev, 0);
1903        if (irq < 0)
1904                return irq;
1905
1906        ret = devm_request_irq(&pdev->dev, irq, fsl_easrc_isr, 0,
1907                               dev_name(dev), easrc);
1908        if (ret) {
1909                dev_err(dev, "failed to claim irq %u: %d\n", irq, ret);
1910                return ret;
1911        }
1912
1913        easrc->mem_clk = devm_clk_get(dev, "mem");
1914        if (IS_ERR(easrc->mem_clk)) {
1915                dev_err(dev, "failed to get mem clock\n");
1916                return PTR_ERR(easrc->mem_clk);
1917        }
1918
1919        /* Set default value */
1920        easrc->channel_avail = 32;
1921        easrc->get_dma_channel = fsl_easrc_get_dma_channel;
1922        easrc->request_pair = fsl_easrc_request_context;
1923        easrc->release_pair = fsl_easrc_release_context;
1924        easrc->get_fifo_addr = fsl_easrc_get_fifo_addr;
1925        easrc->pair_priv_size = sizeof(struct fsl_easrc_ctx_priv);
1926
1927        easrc_priv->rs_num_taps = EASRC_RS_32_TAPS;
1928        easrc_priv->const_coeff = 0x3FF0000000000000;
1929
1930        ret = of_property_read_u32(np, "fsl,asrc-rate", &easrc->asrc_rate);
1931        if (ret) {
1932                dev_err(dev, "failed to asrc rate\n");
1933                return ret;
1934        }
1935
1936        ret = of_property_read_u32(np, "fsl,asrc-format", &easrc->asrc_format);
1937        if (ret) {
1938                dev_err(dev, "failed to asrc format\n");
1939                return ret;
1940        }
1941
1942        if (!(FSL_EASRC_FORMATS & (1ULL << easrc->asrc_format))) {
1943                dev_warn(dev, "unsupported format, switching to S24_LE\n");
1944                easrc->asrc_format = SNDRV_PCM_FORMAT_S24_LE;
1945        }
1946
1947        ret = of_property_read_string(np, "firmware-name",
1948                                      &easrc_priv->fw_name);
1949        if (ret) {
1950                dev_err(dev, "failed to get firmware name\n");
1951                return ret;
1952        }
1953
1954        platform_set_drvdata(pdev, easrc);
1955        pm_runtime_enable(dev);
1956
1957        spin_lock_init(&easrc->lock);
1958
1959        regcache_cache_only(easrc->regmap, true);
1960
1961        ret = devm_snd_soc_register_component(dev, &fsl_easrc_component,
1962                                              &fsl_easrc_dai, 1);
1963        if (ret) {
1964                dev_err(dev, "failed to register ASoC DAI\n");
1965                return ret;
1966        }
1967
1968        ret = devm_snd_soc_register_component(dev, &fsl_asrc_component,
1969                                              NULL, 0);
1970        if (ret) {
1971                dev_err(&pdev->dev, "failed to register ASoC platform\n");
1972                return ret;
1973        }
1974
1975        return 0;
1976}
1977
1978static int fsl_easrc_remove(struct platform_device *pdev)
1979{
1980        pm_runtime_disable(&pdev->dev);
1981
1982        return 0;
1983}
1984
1985static __maybe_unused int fsl_easrc_runtime_suspend(struct device *dev)
1986{
1987        struct fsl_asrc *easrc = dev_get_drvdata(dev);
1988        struct fsl_easrc_priv *easrc_priv = easrc->private;
1989        unsigned long lock_flags;
1990
1991        regcache_cache_only(easrc->regmap, true);
1992
1993        clk_disable_unprepare(easrc->mem_clk);
1994
1995        spin_lock_irqsave(&easrc->lock, lock_flags);
1996        easrc_priv->firmware_loaded = 0;
1997        spin_unlock_irqrestore(&easrc->lock, lock_flags);
1998
1999        return 0;
2000}
2001
2002static __maybe_unused int fsl_easrc_runtime_resume(struct device *dev)
2003{
2004        struct fsl_asrc *easrc = dev_get_drvdata(dev);
2005        struct fsl_easrc_priv *easrc_priv = easrc->private;
2006        struct fsl_easrc_ctx_priv *ctx_priv;
2007        struct fsl_asrc_pair *ctx;
2008        unsigned long lock_flags;
2009        int ret;
2010        int i;
2011
2012        ret = clk_prepare_enable(easrc->mem_clk);
2013        if (ret)
2014                return ret;
2015
2016        regcache_cache_only(easrc->regmap, false);
2017        regcache_mark_dirty(easrc->regmap);
2018        regcache_sync(easrc->regmap);
2019
2020        spin_lock_irqsave(&easrc->lock, lock_flags);
2021        if (easrc_priv->firmware_loaded) {
2022                spin_unlock_irqrestore(&easrc->lock, lock_flags);
2023                goto skip_load;
2024        }
2025        easrc_priv->firmware_loaded = 1;
2026        spin_unlock_irqrestore(&easrc->lock, lock_flags);
2027
2028        ret = fsl_easrc_get_firmware(easrc);
2029        if (ret) {
2030                dev_err(dev, "failed to get firmware\n");
2031                goto disable_mem_clk;
2032        }
2033
2034        /*
2035         * Write Resampling Coefficients
2036         * The coefficient RAM must be configured prior to beginning of
2037         * any context processing within the ASRC
2038         */
2039        ret = fsl_easrc_resampler_config(easrc);
2040        if (ret) {
2041                dev_err(dev, "resampler config failed\n");
2042                goto disable_mem_clk;
2043        }
2044
2045        for (i = ASRC_PAIR_A; i < EASRC_CTX_MAX_NUM; i++) {
2046                ctx = easrc->pair[i];
2047                if (!ctx)
2048                        continue;
2049
2050                ctx_priv = ctx->private;
2051                fsl_easrc_set_rs_ratio(ctx);
2052                ctx_priv->out_missed_sample = ctx_priv->in_filled_sample *
2053                                              ctx_priv->out_params.sample_rate /
2054                                              ctx_priv->in_params.sample_rate;
2055                if (ctx_priv->in_filled_sample * ctx_priv->out_params.sample_rate
2056                    % ctx_priv->in_params.sample_rate != 0)
2057                        ctx_priv->out_missed_sample += 1;
2058
2059                ret = fsl_easrc_write_pf_coeff_mem(easrc, i,
2060                                                   ctx_priv->st1_coeff,
2061                                                   ctx_priv->st1_num_taps,
2062                                                   ctx_priv->st1_addexp);
2063                if (ret)
2064                        goto disable_mem_clk;
2065
2066                ret = fsl_easrc_write_pf_coeff_mem(easrc, i,
2067                                                   ctx_priv->st2_coeff,
2068                                                   ctx_priv->st2_num_taps,
2069                                                   ctx_priv->st2_addexp);
2070                if (ret)
2071                        goto disable_mem_clk;
2072        }
2073
2074skip_load:
2075        return 0;
2076
2077disable_mem_clk:
2078        clk_disable_unprepare(easrc->mem_clk);
2079        return ret;
2080}
2081
2082static const struct dev_pm_ops fsl_easrc_pm_ops = {
2083        SET_RUNTIME_PM_OPS(fsl_easrc_runtime_suspend,
2084                           fsl_easrc_runtime_resume,
2085                           NULL)
2086        SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2087                                pm_runtime_force_resume)
2088};
2089
2090static struct platform_driver fsl_easrc_driver = {
2091        .probe = fsl_easrc_probe,
2092        .remove = fsl_easrc_remove,
2093        .driver = {
2094                .name = "fsl-easrc",
2095                .pm = &fsl_easrc_pm_ops,
2096                .of_match_table = fsl_easrc_dt_ids,
2097        },
2098};
2099module_platform_driver(fsl_easrc_driver);
2100
2101MODULE_DESCRIPTION("NXP Enhanced Asynchronous Sample Rate (eASRC) driver");
2102MODULE_LICENSE("GPL v2");
2103