linux/tools/include/uapi/drm/i915_drm.h
<<
>>
Prefs
   1/*
   2 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
   3 * All Rights Reserved.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the
   7 * "Software"), to deal in the Software without restriction, including
   8 * without limitation the rights to use, copy, modify, merge, publish,
   9 * distribute, sub license, and/or sell copies of the Software, and to
  10 * permit persons to whom the Software is furnished to do so, subject to
  11 * the following conditions:
  12 *
  13 * The above copyright notice and this permission notice (including the
  14 * next paragraph) shall be included in all copies or substantial portions
  15 * of the Software.
  16 *
  17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  20 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  24 *
  25 */
  26
  27#ifndef _UAPI_I915_DRM_H_
  28#define _UAPI_I915_DRM_H_
  29
  30#include "drm.h"
  31
  32#if defined(__cplusplus)
  33extern "C" {
  34#endif
  35
  36/* Please note that modifications to all structs defined here are
  37 * subject to backwards-compatibility constraints.
  38 */
  39
  40/**
  41 * DOC: uevents generated by i915 on it's device node
  42 *
  43 * I915_L3_PARITY_UEVENT - Generated when the driver receives a parity mismatch
  44 *      event from the gpu l3 cache. Additional information supplied is ROW,
  45 *      BANK, SUBBANK, SLICE of the affected cacheline. Userspace should keep
  46 *      track of these events and if a specific cache-line seems to have a
  47 *      persistent error remap it with the l3 remapping tool supplied in
  48 *      intel-gpu-tools.  The value supplied with the event is always 1.
  49 *
  50 * I915_ERROR_UEVENT - Generated upon error detection, currently only via
  51 *      hangcheck. The error detection event is a good indicator of when things
  52 *      began to go badly. The value supplied with the event is a 1 upon error
  53 *      detection, and a 0 upon reset completion, signifying no more error
  54 *      exists. NOTE: Disabling hangcheck or reset via module parameter will
  55 *      cause the related events to not be seen.
  56 *
  57 * I915_RESET_UEVENT - Event is generated just before an attempt to reset the
  58 *      GPU. The value supplied with the event is always 1. NOTE: Disable
  59 *      reset via module parameter will cause this event to not be seen.
  60 */
  61#define I915_L3_PARITY_UEVENT           "L3_PARITY_ERROR"
  62#define I915_ERROR_UEVENT               "ERROR"
  63#define I915_RESET_UEVENT               "RESET"
  64
  65/**
  66 * struct i915_user_extension - Base class for defining a chain of extensions
  67 *
  68 * Many interfaces need to grow over time. In most cases we can simply
  69 * extend the struct and have userspace pass in more data. Another option,
  70 * as demonstrated by Vulkan's approach to providing extensions for forward
  71 * and backward compatibility, is to use a list of optional structs to
  72 * provide those extra details.
  73 *
  74 * The key advantage to using an extension chain is that it allows us to
  75 * redefine the interface more easily than an ever growing struct of
  76 * increasing complexity, and for large parts of that interface to be
  77 * entirely optional. The downside is more pointer chasing; chasing across
  78 * the __user boundary with pointers encapsulated inside u64.
  79 *
  80 * Example chaining:
  81 *
  82 * .. code-block:: C
  83 *
  84 *      struct i915_user_extension ext3 {
  85 *              .next_extension = 0, // end
  86 *              .name = ...,
  87 *      };
  88 *      struct i915_user_extension ext2 {
  89 *              .next_extension = (uintptr_t)&ext3,
  90 *              .name = ...,
  91 *      };
  92 *      struct i915_user_extension ext1 {
  93 *              .next_extension = (uintptr_t)&ext2,
  94 *              .name = ...,
  95 *      };
  96 *
  97 * Typically the struct i915_user_extension would be embedded in some uAPI
  98 * struct, and in this case we would feed it the head of the chain(i.e ext1),
  99 * which would then apply all of the above extensions.
 100 *
 101 */
 102struct i915_user_extension {
 103        /**
 104         * @next_extension:
 105         *
 106         * Pointer to the next struct i915_user_extension, or zero if the end.
 107         */
 108        __u64 next_extension;
 109        /**
 110         * @name: Name of the extension.
 111         *
 112         * Note that the name here is just some integer.
 113         *
 114         * Also note that the name space for this is not global for the whole
 115         * driver, but rather its scope/meaning is limited to the specific piece
 116         * of uAPI which has embedded the struct i915_user_extension.
 117         */
 118        __u32 name;
 119        /**
 120         * @flags: MBZ
 121         *
 122         * All undefined bits must be zero.
 123         */
 124        __u32 flags;
 125        /**
 126         * @rsvd: MBZ
 127         *
 128         * Reserved for future use; must be zero.
 129         */
 130        __u32 rsvd[4];
 131};
 132
 133/*
 134 * MOCS indexes used for GPU surfaces, defining the cacheability of the
 135 * surface data and the coherency for this data wrt. CPU vs. GPU accesses.
 136 */
 137enum i915_mocs_table_index {
 138        /*
 139         * Not cached anywhere, coherency between CPU and GPU accesses is
 140         * guaranteed.
 141         */
 142        I915_MOCS_UNCACHED,
 143        /*
 144         * Cacheability and coherency controlled by the kernel automatically
 145         * based on the DRM_I915_GEM_SET_CACHING IOCTL setting and the current
 146         * usage of the surface (used for display scanout or not).
 147         */
 148        I915_MOCS_PTE,
 149        /*
 150         * Cached in all GPU caches available on the platform.
 151         * Coherency between CPU and GPU accesses to the surface is not
 152         * guaranteed without extra synchronization.
 153         */
 154        I915_MOCS_CACHED,
 155};
 156
 157/*
 158 * Different engines serve different roles, and there may be more than one
 159 * engine serving each role. enum drm_i915_gem_engine_class provides a
 160 * classification of the role of the engine, which may be used when requesting
 161 * operations to be performed on a certain subset of engines, or for providing
 162 * information about that group.
 163 */
 164enum drm_i915_gem_engine_class {
 165        I915_ENGINE_CLASS_RENDER        = 0,
 166        I915_ENGINE_CLASS_COPY          = 1,
 167        I915_ENGINE_CLASS_VIDEO         = 2,
 168        I915_ENGINE_CLASS_VIDEO_ENHANCE = 3,
 169
 170        /* should be kept compact */
 171
 172        I915_ENGINE_CLASS_INVALID       = -1
 173};
 174
 175/*
 176 * There may be more than one engine fulfilling any role within the system.
 177 * Each engine of a class is given a unique instance number and therefore
 178 * any engine can be specified by its class:instance tuplet. APIs that allow
 179 * access to any engine in the system will use struct i915_engine_class_instance
 180 * for this identification.
 181 */
 182struct i915_engine_class_instance {
 183        __u16 engine_class; /* see enum drm_i915_gem_engine_class */
 184        __u16 engine_instance;
 185#define I915_ENGINE_CLASS_INVALID_NONE -1
 186#define I915_ENGINE_CLASS_INVALID_VIRTUAL -2
 187};
 188
 189/**
 190 * DOC: perf_events exposed by i915 through /sys/bus/event_sources/drivers/i915
 191 *
 192 */
 193
 194enum drm_i915_pmu_engine_sample {
 195        I915_SAMPLE_BUSY = 0,
 196        I915_SAMPLE_WAIT = 1,
 197        I915_SAMPLE_SEMA = 2
 198};
 199
 200#define I915_PMU_SAMPLE_BITS (4)
 201#define I915_PMU_SAMPLE_MASK (0xf)
 202#define I915_PMU_SAMPLE_INSTANCE_BITS (8)
 203#define I915_PMU_CLASS_SHIFT \
 204        (I915_PMU_SAMPLE_BITS + I915_PMU_SAMPLE_INSTANCE_BITS)
 205
 206#define __I915_PMU_ENGINE(class, instance, sample) \
 207        ((class) << I915_PMU_CLASS_SHIFT | \
 208        (instance) << I915_PMU_SAMPLE_BITS | \
 209        (sample))
 210
 211#define I915_PMU_ENGINE_BUSY(class, instance) \
 212        __I915_PMU_ENGINE(class, instance, I915_SAMPLE_BUSY)
 213
 214#define I915_PMU_ENGINE_WAIT(class, instance) \
 215        __I915_PMU_ENGINE(class, instance, I915_SAMPLE_WAIT)
 216
 217#define I915_PMU_ENGINE_SEMA(class, instance) \
 218        __I915_PMU_ENGINE(class, instance, I915_SAMPLE_SEMA)
 219
 220#define __I915_PMU_OTHER(x) (__I915_PMU_ENGINE(0xff, 0xff, 0xf) + 1 + (x))
 221
 222#define I915_PMU_ACTUAL_FREQUENCY       __I915_PMU_OTHER(0)
 223#define I915_PMU_REQUESTED_FREQUENCY    __I915_PMU_OTHER(1)
 224#define I915_PMU_INTERRUPTS             __I915_PMU_OTHER(2)
 225#define I915_PMU_RC6_RESIDENCY          __I915_PMU_OTHER(3)
 226#define I915_PMU_SOFTWARE_GT_AWAKE_TIME __I915_PMU_OTHER(4)
 227
 228#define I915_PMU_LAST /* Deprecated - do not use */ I915_PMU_RC6_RESIDENCY
 229
 230/* Each region is a minimum of 16k, and there are at most 255 of them.
 231 */
 232#define I915_NR_TEX_REGIONS 255 /* table size 2k - maximum due to use
 233                                 * of chars for next/prev indices */
 234#define I915_LOG_MIN_TEX_REGION_SIZE 14
 235
 236typedef struct _drm_i915_init {
 237        enum {
 238                I915_INIT_DMA = 0x01,
 239                I915_CLEANUP_DMA = 0x02,
 240                I915_RESUME_DMA = 0x03
 241        } func;
 242        unsigned int mmio_offset;
 243        int sarea_priv_offset;
 244        unsigned int ring_start;
 245        unsigned int ring_end;
 246        unsigned int ring_size;
 247        unsigned int front_offset;
 248        unsigned int back_offset;
 249        unsigned int depth_offset;
 250        unsigned int w;
 251        unsigned int h;
 252        unsigned int pitch;
 253        unsigned int pitch_bits;
 254        unsigned int back_pitch;
 255        unsigned int depth_pitch;
 256        unsigned int cpp;
 257        unsigned int chipset;
 258} drm_i915_init_t;
 259
 260typedef struct _drm_i915_sarea {
 261        struct drm_tex_region texList[I915_NR_TEX_REGIONS + 1];
 262        int last_upload;        /* last time texture was uploaded */
 263        int last_enqueue;       /* last time a buffer was enqueued */
 264        int last_dispatch;      /* age of the most recently dispatched buffer */
 265        int ctxOwner;           /* last context to upload state */
 266        int texAge;
 267        int pf_enabled;         /* is pageflipping allowed? */
 268        int pf_active;
 269        int pf_current_page;    /* which buffer is being displayed? */
 270        int perf_boxes;         /* performance boxes to be displayed */
 271        int width, height;      /* screen size in pixels */
 272
 273        drm_handle_t front_handle;
 274        int front_offset;
 275        int front_size;
 276
 277        drm_handle_t back_handle;
 278        int back_offset;
 279        int back_size;
 280
 281        drm_handle_t depth_handle;
 282        int depth_offset;
 283        int depth_size;
 284
 285        drm_handle_t tex_handle;
 286        int tex_offset;
 287        int tex_size;
 288        int log_tex_granularity;
 289        int pitch;
 290        int rotation;           /* 0, 90, 180 or 270 */
 291        int rotated_offset;
 292        int rotated_size;
 293        int rotated_pitch;
 294        int virtualX, virtualY;
 295
 296        unsigned int front_tiled;
 297        unsigned int back_tiled;
 298        unsigned int depth_tiled;
 299        unsigned int rotated_tiled;
 300        unsigned int rotated2_tiled;
 301
 302        int pipeA_x;
 303        int pipeA_y;
 304        int pipeA_w;
 305        int pipeA_h;
 306        int pipeB_x;
 307        int pipeB_y;
 308        int pipeB_w;
 309        int pipeB_h;
 310
 311        /* fill out some space for old userspace triple buffer */
 312        drm_handle_t unused_handle;
 313        __u32 unused1, unused2, unused3;
 314
 315        /* buffer object handles for static buffers. May change
 316         * over the lifetime of the client.
 317         */
 318        __u32 front_bo_handle;
 319        __u32 back_bo_handle;
 320        __u32 unused_bo_handle;
 321        __u32 depth_bo_handle;
 322
 323} drm_i915_sarea_t;
 324
 325/* due to userspace building against these headers we need some compat here */
 326#define planeA_x pipeA_x
 327#define planeA_y pipeA_y
 328#define planeA_w pipeA_w
 329#define planeA_h pipeA_h
 330#define planeB_x pipeB_x
 331#define planeB_y pipeB_y
 332#define planeB_w pipeB_w
 333#define planeB_h pipeB_h
 334
 335/* Flags for perf_boxes
 336 */
 337#define I915_BOX_RING_EMPTY    0x1
 338#define I915_BOX_FLIP          0x2
 339#define I915_BOX_WAIT          0x4
 340#define I915_BOX_TEXTURE_LOAD  0x8
 341#define I915_BOX_LOST_CONTEXT  0x10
 342
 343/*
 344 * i915 specific ioctls.
 345 *
 346 * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
 347 * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
 348 * against DRM_COMMAND_BASE and should be between [0x0, 0x60).
 349 */
 350#define DRM_I915_INIT           0x00
 351#define DRM_I915_FLUSH          0x01
 352#define DRM_I915_FLIP           0x02
 353#define DRM_I915_BATCHBUFFER    0x03
 354#define DRM_I915_IRQ_EMIT       0x04
 355#define DRM_I915_IRQ_WAIT       0x05
 356#define DRM_I915_GETPARAM       0x06
 357#define DRM_I915_SETPARAM       0x07
 358#define DRM_I915_ALLOC          0x08
 359#define DRM_I915_FREE           0x09
 360#define DRM_I915_INIT_HEAP      0x0a
 361#define DRM_I915_CMDBUFFER      0x0b
 362#define DRM_I915_DESTROY_HEAP   0x0c
 363#define DRM_I915_SET_VBLANK_PIPE        0x0d
 364#define DRM_I915_GET_VBLANK_PIPE        0x0e
 365#define DRM_I915_VBLANK_SWAP    0x0f
 366#define DRM_I915_HWS_ADDR       0x11
 367#define DRM_I915_GEM_INIT       0x13
 368#define DRM_I915_GEM_EXECBUFFER 0x14
 369#define DRM_I915_GEM_PIN        0x15
 370#define DRM_I915_GEM_UNPIN      0x16
 371#define DRM_I915_GEM_BUSY       0x17
 372#define DRM_I915_GEM_THROTTLE   0x18
 373#define DRM_I915_GEM_ENTERVT    0x19
 374#define DRM_I915_GEM_LEAVEVT    0x1a
 375#define DRM_I915_GEM_CREATE     0x1b
 376#define DRM_I915_GEM_PREAD      0x1c
 377#define DRM_I915_GEM_PWRITE     0x1d
 378#define DRM_I915_GEM_MMAP       0x1e
 379#define DRM_I915_GEM_SET_DOMAIN 0x1f
 380#define DRM_I915_GEM_SW_FINISH  0x20
 381#define DRM_I915_GEM_SET_TILING 0x21
 382#define DRM_I915_GEM_GET_TILING 0x22
 383#define DRM_I915_GEM_GET_APERTURE 0x23
 384#define DRM_I915_GEM_MMAP_GTT   0x24
 385#define DRM_I915_GET_PIPE_FROM_CRTC_ID  0x25
 386#define DRM_I915_GEM_MADVISE    0x26
 387#define DRM_I915_OVERLAY_PUT_IMAGE      0x27
 388#define DRM_I915_OVERLAY_ATTRS  0x28
 389#define DRM_I915_GEM_EXECBUFFER2        0x29
 390#define DRM_I915_GEM_EXECBUFFER2_WR     DRM_I915_GEM_EXECBUFFER2
 391#define DRM_I915_GET_SPRITE_COLORKEY    0x2a
 392#define DRM_I915_SET_SPRITE_COLORKEY    0x2b
 393#define DRM_I915_GEM_WAIT       0x2c
 394#define DRM_I915_GEM_CONTEXT_CREATE     0x2d
 395#define DRM_I915_GEM_CONTEXT_DESTROY    0x2e
 396#define DRM_I915_GEM_SET_CACHING        0x2f
 397#define DRM_I915_GEM_GET_CACHING        0x30
 398#define DRM_I915_REG_READ               0x31
 399#define DRM_I915_GET_RESET_STATS        0x32
 400#define DRM_I915_GEM_USERPTR            0x33
 401#define DRM_I915_GEM_CONTEXT_GETPARAM   0x34
 402#define DRM_I915_GEM_CONTEXT_SETPARAM   0x35
 403#define DRM_I915_PERF_OPEN              0x36
 404#define DRM_I915_PERF_ADD_CONFIG        0x37
 405#define DRM_I915_PERF_REMOVE_CONFIG     0x38
 406#define DRM_I915_QUERY                  0x39
 407#define DRM_I915_GEM_VM_CREATE          0x3a
 408#define DRM_I915_GEM_VM_DESTROY         0x3b
 409#define DRM_I915_GEM_CREATE_EXT         0x3c
 410/* Must be kept compact -- no holes */
 411
 412#define DRM_IOCTL_I915_INIT             DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT, drm_i915_init_t)
 413#define DRM_IOCTL_I915_FLUSH            DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLUSH)
 414#define DRM_IOCTL_I915_FLIP             DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLIP)
 415#define DRM_IOCTL_I915_BATCHBUFFER      DRM_IOW( DRM_COMMAND_BASE + DRM_I915_BATCHBUFFER, drm_i915_batchbuffer_t)
 416#define DRM_IOCTL_I915_IRQ_EMIT         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_IRQ_EMIT, drm_i915_irq_emit_t)
 417#define DRM_IOCTL_I915_IRQ_WAIT         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_IRQ_WAIT, drm_i915_irq_wait_t)
 418#define DRM_IOCTL_I915_GETPARAM         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GETPARAM, drm_i915_getparam_t)
 419#define DRM_IOCTL_I915_SETPARAM         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SETPARAM, drm_i915_setparam_t)
 420#define DRM_IOCTL_I915_ALLOC            DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_ALLOC, drm_i915_mem_alloc_t)
 421#define DRM_IOCTL_I915_FREE             DRM_IOW( DRM_COMMAND_BASE + DRM_I915_FREE, drm_i915_mem_free_t)
 422#define DRM_IOCTL_I915_INIT_HEAP        DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT_HEAP, drm_i915_mem_init_heap_t)
 423#define DRM_IOCTL_I915_CMDBUFFER        DRM_IOW( DRM_COMMAND_BASE + DRM_I915_CMDBUFFER, drm_i915_cmdbuffer_t)
 424#define DRM_IOCTL_I915_DESTROY_HEAP     DRM_IOW( DRM_COMMAND_BASE + DRM_I915_DESTROY_HEAP, drm_i915_mem_destroy_heap_t)
 425#define DRM_IOCTL_I915_SET_VBLANK_PIPE  DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
 426#define DRM_IOCTL_I915_GET_VBLANK_PIPE  DRM_IOR( DRM_COMMAND_BASE + DRM_I915_GET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
 427#define DRM_IOCTL_I915_VBLANK_SWAP      DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_VBLANK_SWAP, drm_i915_vblank_swap_t)
 428#define DRM_IOCTL_I915_HWS_ADDR         DRM_IOW(DRM_COMMAND_BASE + DRM_I915_HWS_ADDR, struct drm_i915_gem_init)
 429#define DRM_IOCTL_I915_GEM_INIT         DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_INIT, struct drm_i915_gem_init)
 430#define DRM_IOCTL_I915_GEM_EXECBUFFER   DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER, struct drm_i915_gem_execbuffer)
 431#define DRM_IOCTL_I915_GEM_EXECBUFFER2  DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2, struct drm_i915_gem_execbuffer2)
 432#define DRM_IOCTL_I915_GEM_EXECBUFFER2_WR       DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2_WR, struct drm_i915_gem_execbuffer2)
 433#define DRM_IOCTL_I915_GEM_PIN          DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_PIN, struct drm_i915_gem_pin)
 434#define DRM_IOCTL_I915_GEM_UNPIN        DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_UNPIN, struct drm_i915_gem_unpin)
 435#define DRM_IOCTL_I915_GEM_BUSY         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_BUSY, struct drm_i915_gem_busy)
 436#define DRM_IOCTL_I915_GEM_SET_CACHING          DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_SET_CACHING, struct drm_i915_gem_caching)
 437#define DRM_IOCTL_I915_GEM_GET_CACHING          DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_GET_CACHING, struct drm_i915_gem_caching)
 438#define DRM_IOCTL_I915_GEM_THROTTLE     DRM_IO ( DRM_COMMAND_BASE + DRM_I915_GEM_THROTTLE)
 439#define DRM_IOCTL_I915_GEM_ENTERVT      DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_ENTERVT)
 440#define DRM_IOCTL_I915_GEM_LEAVEVT      DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_LEAVEVT)
 441#define DRM_IOCTL_I915_GEM_CREATE       DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE, struct drm_i915_gem_create)
 442#define DRM_IOCTL_I915_GEM_CREATE_EXT   DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE_EXT, struct drm_i915_gem_create_ext)
 443#define DRM_IOCTL_I915_GEM_PREAD        DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PREAD, struct drm_i915_gem_pread)
 444#define DRM_IOCTL_I915_GEM_PWRITE       DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PWRITE, struct drm_i915_gem_pwrite)
 445#define DRM_IOCTL_I915_GEM_MMAP         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP, struct drm_i915_gem_mmap)
 446#define DRM_IOCTL_I915_GEM_MMAP_GTT     DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_gtt)
 447#define DRM_IOCTL_I915_GEM_MMAP_OFFSET  DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_offset)
 448#define DRM_IOCTL_I915_GEM_SET_DOMAIN   DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SET_DOMAIN, struct drm_i915_gem_set_domain)
 449#define DRM_IOCTL_I915_GEM_SW_FINISH    DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SW_FINISH, struct drm_i915_gem_sw_finish)
 450#define DRM_IOCTL_I915_GEM_SET_TILING   DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_SET_TILING, struct drm_i915_gem_set_tiling)
 451#define DRM_IOCTL_I915_GEM_GET_TILING   DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_TILING, struct drm_i915_gem_get_tiling)
 452#define DRM_IOCTL_I915_GEM_GET_APERTURE DRM_IOR  (DRM_COMMAND_BASE + DRM_I915_GEM_GET_APERTURE, struct drm_i915_gem_get_aperture)
 453#define DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_PIPE_FROM_CRTC_ID, struct drm_i915_get_pipe_from_crtc_id)
 454#define DRM_IOCTL_I915_GEM_MADVISE      DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MADVISE, struct drm_i915_gem_madvise)
 455#define DRM_IOCTL_I915_OVERLAY_PUT_IMAGE        DRM_IOW(DRM_COMMAND_BASE + DRM_I915_OVERLAY_PUT_IMAGE, struct drm_intel_overlay_put_image)
 456#define DRM_IOCTL_I915_OVERLAY_ATTRS    DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_OVERLAY_ATTRS, struct drm_intel_overlay_attrs)
 457#define DRM_IOCTL_I915_SET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_SET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
 458#define DRM_IOCTL_I915_GET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
 459#define DRM_IOCTL_I915_GEM_WAIT         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_WAIT, struct drm_i915_gem_wait)
 460#define DRM_IOCTL_I915_GEM_CONTEXT_CREATE       DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create)
 461#define DRM_IOCTL_I915_GEM_CONTEXT_CREATE_EXT   DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create_ext)
 462#define DRM_IOCTL_I915_GEM_CONTEXT_DESTROY      DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_DESTROY, struct drm_i915_gem_context_destroy)
 463#define DRM_IOCTL_I915_REG_READ                 DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_REG_READ, struct drm_i915_reg_read)
 464#define DRM_IOCTL_I915_GET_RESET_STATS          DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GET_RESET_STATS, struct drm_i915_reset_stats)
 465#define DRM_IOCTL_I915_GEM_USERPTR                      DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_USERPTR, struct drm_i915_gem_userptr)
 466#define DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM     DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_GETPARAM, struct drm_i915_gem_context_param)
 467#define DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM     DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_SETPARAM, struct drm_i915_gem_context_param)
 468#define DRM_IOCTL_I915_PERF_OPEN        DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_OPEN, struct drm_i915_perf_open_param)
 469#define DRM_IOCTL_I915_PERF_ADD_CONFIG  DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_ADD_CONFIG, struct drm_i915_perf_oa_config)
 470#define DRM_IOCTL_I915_PERF_REMOVE_CONFIG       DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_REMOVE_CONFIG, __u64)
 471#define DRM_IOCTL_I915_QUERY                    DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_QUERY, struct drm_i915_query)
 472#define DRM_IOCTL_I915_GEM_VM_CREATE    DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_VM_CREATE, struct drm_i915_gem_vm_control)
 473#define DRM_IOCTL_I915_GEM_VM_DESTROY   DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_VM_DESTROY, struct drm_i915_gem_vm_control)
 474
 475/* Allow drivers to submit batchbuffers directly to hardware, relying
 476 * on the security mechanisms provided by hardware.
 477 */
 478typedef struct drm_i915_batchbuffer {
 479        int start;              /* agp offset */
 480        int used;               /* nr bytes in use */
 481        int DR1;                /* hw flags for GFX_OP_DRAWRECT_INFO */
 482        int DR4;                /* window origin for GFX_OP_DRAWRECT_INFO */
 483        int num_cliprects;      /* mulitpass with multiple cliprects? */
 484        struct drm_clip_rect __user *cliprects; /* pointer to userspace cliprects */
 485} drm_i915_batchbuffer_t;
 486
 487/* As above, but pass a pointer to userspace buffer which can be
 488 * validated by the kernel prior to sending to hardware.
 489 */
 490typedef struct _drm_i915_cmdbuffer {
 491        char __user *buf;       /* pointer to userspace command buffer */
 492        int sz;                 /* nr bytes in buf */
 493        int DR1;                /* hw flags for GFX_OP_DRAWRECT_INFO */
 494        int DR4;                /* window origin for GFX_OP_DRAWRECT_INFO */
 495        int num_cliprects;      /* mulitpass with multiple cliprects? */
 496        struct drm_clip_rect __user *cliprects; /* pointer to userspace cliprects */
 497} drm_i915_cmdbuffer_t;
 498
 499/* Userspace can request & wait on irq's:
 500 */
 501typedef struct drm_i915_irq_emit {
 502        int __user *irq_seq;
 503} drm_i915_irq_emit_t;
 504
 505typedef struct drm_i915_irq_wait {
 506        int irq_seq;
 507} drm_i915_irq_wait_t;
 508
 509/*
 510 * Different modes of per-process Graphics Translation Table,
 511 * see I915_PARAM_HAS_ALIASING_PPGTT
 512 */
 513#define I915_GEM_PPGTT_NONE     0
 514#define I915_GEM_PPGTT_ALIASING 1
 515#define I915_GEM_PPGTT_FULL     2
 516
 517/* Ioctl to query kernel params:
 518 */
 519#define I915_PARAM_IRQ_ACTIVE            1
 520#define I915_PARAM_ALLOW_BATCHBUFFER     2
 521#define I915_PARAM_LAST_DISPATCH         3
 522#define I915_PARAM_CHIPSET_ID            4
 523#define I915_PARAM_HAS_GEM               5
 524#define I915_PARAM_NUM_FENCES_AVAIL      6
 525#define I915_PARAM_HAS_OVERLAY           7
 526#define I915_PARAM_HAS_PAGEFLIPPING      8
 527#define I915_PARAM_HAS_EXECBUF2          9
 528#define I915_PARAM_HAS_BSD               10
 529#define I915_PARAM_HAS_BLT               11
 530#define I915_PARAM_HAS_RELAXED_FENCING   12
 531#define I915_PARAM_HAS_COHERENT_RINGS    13
 532#define I915_PARAM_HAS_EXEC_CONSTANTS    14
 533#define I915_PARAM_HAS_RELAXED_DELTA     15
 534#define I915_PARAM_HAS_GEN7_SOL_RESET    16
 535#define I915_PARAM_HAS_LLC               17
 536#define I915_PARAM_HAS_ALIASING_PPGTT    18
 537#define I915_PARAM_HAS_WAIT_TIMEOUT      19
 538#define I915_PARAM_HAS_SEMAPHORES        20
 539#define I915_PARAM_HAS_PRIME_VMAP_FLUSH  21
 540#define I915_PARAM_HAS_VEBOX             22
 541#define I915_PARAM_HAS_SECURE_BATCHES    23
 542#define I915_PARAM_HAS_PINNED_BATCHES    24
 543#define I915_PARAM_HAS_EXEC_NO_RELOC     25
 544#define I915_PARAM_HAS_EXEC_HANDLE_LUT   26
 545#define I915_PARAM_HAS_WT                27
 546#define I915_PARAM_CMD_PARSER_VERSION    28
 547#define I915_PARAM_HAS_COHERENT_PHYS_GTT 29
 548#define I915_PARAM_MMAP_VERSION          30
 549#define I915_PARAM_HAS_BSD2              31
 550#define I915_PARAM_REVISION              32
 551#define I915_PARAM_SUBSLICE_TOTAL        33
 552#define I915_PARAM_EU_TOTAL              34
 553#define I915_PARAM_HAS_GPU_RESET         35
 554#define I915_PARAM_HAS_RESOURCE_STREAMER 36
 555#define I915_PARAM_HAS_EXEC_SOFTPIN      37
 556#define I915_PARAM_HAS_POOLED_EU         38
 557#define I915_PARAM_MIN_EU_IN_POOL        39
 558#define I915_PARAM_MMAP_GTT_VERSION      40
 559
 560/*
 561 * Query whether DRM_I915_GEM_EXECBUFFER2 supports user defined execution
 562 * priorities and the driver will attempt to execute batches in priority order.
 563 * The param returns a capability bitmask, nonzero implies that the scheduler
 564 * is enabled, with different features present according to the mask.
 565 *
 566 * The initial priority for each batch is supplied by the context and is
 567 * controlled via I915_CONTEXT_PARAM_PRIORITY.
 568 */
 569#define I915_PARAM_HAS_SCHEDULER         41
 570#define   I915_SCHEDULER_CAP_ENABLED    (1ul << 0)
 571#define   I915_SCHEDULER_CAP_PRIORITY   (1ul << 1)
 572#define   I915_SCHEDULER_CAP_PREEMPTION (1ul << 2)
 573#define   I915_SCHEDULER_CAP_SEMAPHORES (1ul << 3)
 574#define   I915_SCHEDULER_CAP_ENGINE_BUSY_STATS  (1ul << 4)
 575/*
 576 * Indicates the 2k user priority levels are statically mapped into 3 buckets as
 577 * follows:
 578 *
 579 * -1k to -1    Low priority
 580 * 0            Normal priority
 581 * 1 to 1k      Highest priority
 582 */
 583#define   I915_SCHEDULER_CAP_STATIC_PRIORITY_MAP        (1ul << 5)
 584
 585#define I915_PARAM_HUC_STATUS            42
 586
 587/* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to opt-out of
 588 * synchronisation with implicit fencing on individual objects.
 589 * See EXEC_OBJECT_ASYNC.
 590 */
 591#define I915_PARAM_HAS_EXEC_ASYNC        43
 592
 593/* Query whether DRM_I915_GEM_EXECBUFFER2 supports explicit fence support -
 594 * both being able to pass in a sync_file fd to wait upon before executing,
 595 * and being able to return a new sync_file fd that is signaled when the
 596 * current request is complete. See I915_EXEC_FENCE_IN and I915_EXEC_FENCE_OUT.
 597 */
 598#define I915_PARAM_HAS_EXEC_FENCE        44
 599
 600/* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to capture
 601 * user specified bufffers for post-mortem debugging of GPU hangs. See
 602 * EXEC_OBJECT_CAPTURE.
 603 */
 604#define I915_PARAM_HAS_EXEC_CAPTURE      45
 605
 606#define I915_PARAM_SLICE_MASK            46
 607
 608/* Assuming it's uniform for each slice, this queries the mask of subslices
 609 * per-slice for this system.
 610 */
 611#define I915_PARAM_SUBSLICE_MASK         47
 612
 613/*
 614 * Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying the batch buffer
 615 * as the first execobject as opposed to the last. See I915_EXEC_BATCH_FIRST.
 616 */
 617#define I915_PARAM_HAS_EXEC_BATCH_FIRST  48
 618
 619/* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
 620 * drm_i915_gem_exec_fence structures.  See I915_EXEC_FENCE_ARRAY.
 621 */
 622#define I915_PARAM_HAS_EXEC_FENCE_ARRAY  49
 623
 624/*
 625 * Query whether every context (both per-file default and user created) is
 626 * isolated (insofar as HW supports). If this parameter is not true, then
 627 * freshly created contexts may inherit values from an existing context,
 628 * rather than default HW values. If true, it also ensures (insofar as HW
 629 * supports) that all state set by this context will not leak to any other
 630 * context.
 631 *
 632 * As not every engine across every gen support contexts, the returned
 633 * value reports the support of context isolation for individual engines by
 634 * returning a bitmask of each engine class set to true if that class supports
 635 * isolation.
 636 */
 637#define I915_PARAM_HAS_CONTEXT_ISOLATION 50
 638
 639/* Frequency of the command streamer timestamps given by the *_TIMESTAMP
 640 * registers. This used to be fixed per platform but from CNL onwards, this
 641 * might vary depending on the parts.
 642 */
 643#define I915_PARAM_CS_TIMESTAMP_FREQUENCY 51
 644
 645/*
 646 * Once upon a time we supposed that writes through the GGTT would be
 647 * immediately in physical memory (once flushed out of the CPU path). However,
 648 * on a few different processors and chipsets, this is not necessarily the case
 649 * as the writes appear to be buffered internally. Thus a read of the backing
 650 * storage (physical memory) via a different path (with different physical tags
 651 * to the indirect write via the GGTT) will see stale values from before
 652 * the GGTT write. Inside the kernel, we can for the most part keep track of
 653 * the different read/write domains in use (e.g. set-domain), but the assumption
 654 * of coherency is baked into the ABI, hence reporting its true state in this
 655 * parameter.
 656 *
 657 * Reports true when writes via mmap_gtt are immediately visible following an
 658 * lfence to flush the WCB.
 659 *
 660 * Reports false when writes via mmap_gtt are indeterminately delayed in an in
 661 * internal buffer and are _not_ immediately visible to third parties accessing
 662 * directly via mmap_cpu/mmap_wc. Use of mmap_gtt as part of an IPC
 663 * communications channel when reporting false is strongly disadvised.
 664 */
 665#define I915_PARAM_MMAP_GTT_COHERENT    52
 666
 667/*
 668 * Query whether DRM_I915_GEM_EXECBUFFER2 supports coordination of parallel
 669 * execution through use of explicit fence support.
 670 * See I915_EXEC_FENCE_OUT and I915_EXEC_FENCE_SUBMIT.
 671 */
 672#define I915_PARAM_HAS_EXEC_SUBMIT_FENCE 53
 673
 674/*
 675 * Revision of the i915-perf uAPI. The value returned helps determine what
 676 * i915-perf features are available. See drm_i915_perf_property_id.
 677 */
 678#define I915_PARAM_PERF_REVISION        54
 679
 680/* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
 681 * timeline syncobj through drm_i915_gem_execbuffer_ext_timeline_fences. See
 682 * I915_EXEC_USE_EXTENSIONS.
 683 */
 684#define I915_PARAM_HAS_EXEC_TIMELINE_FENCES 55
 685
 686/* Query if the kernel supports the I915_USERPTR_PROBE flag. */
 687#define I915_PARAM_HAS_USERPTR_PROBE 56
 688
 689/* Must be kept compact -- no holes and well documented */
 690
 691typedef struct drm_i915_getparam {
 692        __s32 param;
 693        /*
 694         * WARNING: Using pointers instead of fixed-size u64 means we need to write
 695         * compat32 code. Don't repeat this mistake.
 696         */
 697        int __user *value;
 698} drm_i915_getparam_t;
 699
 700/* Ioctl to set kernel params:
 701 */
 702#define I915_SETPARAM_USE_MI_BATCHBUFFER_START            1
 703#define I915_SETPARAM_TEX_LRU_LOG_GRANULARITY             2
 704#define I915_SETPARAM_ALLOW_BATCHBUFFER                   3
 705#define I915_SETPARAM_NUM_USED_FENCES                     4
 706/* Must be kept compact -- no holes */
 707
 708typedef struct drm_i915_setparam {
 709        int param;
 710        int value;
 711} drm_i915_setparam_t;
 712
 713/* A memory manager for regions of shared memory:
 714 */
 715#define I915_MEM_REGION_AGP 1
 716
 717typedef struct drm_i915_mem_alloc {
 718        int region;
 719        int alignment;
 720        int size;
 721        int __user *region_offset;      /* offset from start of fb or agp */
 722} drm_i915_mem_alloc_t;
 723
 724typedef struct drm_i915_mem_free {
 725        int region;
 726        int region_offset;
 727} drm_i915_mem_free_t;
 728
 729typedef struct drm_i915_mem_init_heap {
 730        int region;
 731        int size;
 732        int start;
 733} drm_i915_mem_init_heap_t;
 734
 735/* Allow memory manager to be torn down and re-initialized (eg on
 736 * rotate):
 737 */
 738typedef struct drm_i915_mem_destroy_heap {
 739        int region;
 740} drm_i915_mem_destroy_heap_t;
 741
 742/* Allow X server to configure which pipes to monitor for vblank signals
 743 */
 744#define DRM_I915_VBLANK_PIPE_A  1
 745#define DRM_I915_VBLANK_PIPE_B  2
 746
 747typedef struct drm_i915_vblank_pipe {
 748        int pipe;
 749} drm_i915_vblank_pipe_t;
 750
 751/* Schedule buffer swap at given vertical blank:
 752 */
 753typedef struct drm_i915_vblank_swap {
 754        drm_drawable_t drawable;
 755        enum drm_vblank_seq_type seqtype;
 756        unsigned int sequence;
 757} drm_i915_vblank_swap_t;
 758
 759typedef struct drm_i915_hws_addr {
 760        __u64 addr;
 761} drm_i915_hws_addr_t;
 762
 763struct drm_i915_gem_init {
 764        /**
 765         * Beginning offset in the GTT to be managed by the DRM memory
 766         * manager.
 767         */
 768        __u64 gtt_start;
 769        /**
 770         * Ending offset in the GTT to be managed by the DRM memory
 771         * manager.
 772         */
 773        __u64 gtt_end;
 774};
 775
 776struct drm_i915_gem_create {
 777        /**
 778         * Requested size for the object.
 779         *
 780         * The (page-aligned) allocated size for the object will be returned.
 781         */
 782        __u64 size;
 783        /**
 784         * Returned handle for the object.
 785         *
 786         * Object handles are nonzero.
 787         */
 788        __u32 handle;
 789        __u32 pad;
 790};
 791
 792struct drm_i915_gem_pread {
 793        /** Handle for the object being read. */
 794        __u32 handle;
 795        __u32 pad;
 796        /** Offset into the object to read from */
 797        __u64 offset;
 798        /** Length of data to read */
 799        __u64 size;
 800        /**
 801         * Pointer to write the data into.
 802         *
 803         * This is a fixed-size type for 32/64 compatibility.
 804         */
 805        __u64 data_ptr;
 806};
 807
 808struct drm_i915_gem_pwrite {
 809        /** Handle for the object being written to. */
 810        __u32 handle;
 811        __u32 pad;
 812        /** Offset into the object to write to */
 813        __u64 offset;
 814        /** Length of data to write */
 815        __u64 size;
 816        /**
 817         * Pointer to read the data from.
 818         *
 819         * This is a fixed-size type for 32/64 compatibility.
 820         */
 821        __u64 data_ptr;
 822};
 823
 824struct drm_i915_gem_mmap {
 825        /** Handle for the object being mapped. */
 826        __u32 handle;
 827        __u32 pad;
 828        /** Offset in the object to map. */
 829        __u64 offset;
 830        /**
 831         * Length of data to map.
 832         *
 833         * The value will be page-aligned.
 834         */
 835        __u64 size;
 836        /**
 837         * Returned pointer the data was mapped at.
 838         *
 839         * This is a fixed-size type for 32/64 compatibility.
 840         */
 841        __u64 addr_ptr;
 842
 843        /**
 844         * Flags for extended behaviour.
 845         *
 846         * Added in version 2.
 847         */
 848        __u64 flags;
 849#define I915_MMAP_WC 0x1
 850};
 851
 852struct drm_i915_gem_mmap_gtt {
 853        /** Handle for the object being mapped. */
 854        __u32 handle;
 855        __u32 pad;
 856        /**
 857         * Fake offset to use for subsequent mmap call
 858         *
 859         * This is a fixed-size type for 32/64 compatibility.
 860         */
 861        __u64 offset;
 862};
 863
 864/**
 865 * struct drm_i915_gem_mmap_offset - Retrieve an offset so we can mmap this buffer object.
 866 *
 867 * This struct is passed as argument to the `DRM_IOCTL_I915_GEM_MMAP_OFFSET` ioctl,
 868 * and is used to retrieve the fake offset to mmap an object specified by &handle.
 869 *
 870 * The legacy way of using `DRM_IOCTL_I915_GEM_MMAP` is removed on gen12+.
 871 * `DRM_IOCTL_I915_GEM_MMAP_GTT` is an older supported alias to this struct, but will behave
 872 * as setting the &extensions to 0, and &flags to `I915_MMAP_OFFSET_GTT`.
 873 */
 874struct drm_i915_gem_mmap_offset {
 875        /** @handle: Handle for the object being mapped. */
 876        __u32 handle;
 877        /** @pad: Must be zero */
 878        __u32 pad;
 879        /**
 880         * @offset: The fake offset to use for subsequent mmap call
 881         *
 882         * This is a fixed-size type for 32/64 compatibility.
 883         */
 884        __u64 offset;
 885
 886        /**
 887         * @flags: Flags for extended behaviour.
 888         *
 889         * It is mandatory that one of the `MMAP_OFFSET` types
 890         * should be included:
 891         *
 892         * - `I915_MMAP_OFFSET_GTT`: Use mmap with the object bound to GTT. (Write-Combined)
 893         * - `I915_MMAP_OFFSET_WC`: Use Write-Combined caching.
 894         * - `I915_MMAP_OFFSET_WB`: Use Write-Back caching.
 895         * - `I915_MMAP_OFFSET_FIXED`: Use object placement to determine caching.
 896         *
 897         * On devices with local memory `I915_MMAP_OFFSET_FIXED` is the only valid
 898         * type. On devices without local memory, this caching mode is invalid.
 899         *
 900         * As caching mode when specifying `I915_MMAP_OFFSET_FIXED`, WC or WB will
 901         * be used, depending on the object placement on creation. WB will be used
 902         * when the object can only exist in system memory, WC otherwise.
 903         */
 904        __u64 flags;
 905
 906#define I915_MMAP_OFFSET_GTT    0
 907#define I915_MMAP_OFFSET_WC     1
 908#define I915_MMAP_OFFSET_WB     2
 909#define I915_MMAP_OFFSET_UC     3
 910#define I915_MMAP_OFFSET_FIXED  4
 911
 912        /**
 913         * @extensions: Zero-terminated chain of extensions.
 914         *
 915         * No current extensions defined; mbz.
 916         */
 917        __u64 extensions;
 918};
 919
 920/**
 921 * struct drm_i915_gem_set_domain - Adjust the objects write or read domain, in
 922 * preparation for accessing the pages via some CPU domain.
 923 *
 924 * Specifying a new write or read domain will flush the object out of the
 925 * previous domain(if required), before then updating the objects domain
 926 * tracking with the new domain.
 927 *
 928 * Note this might involve waiting for the object first if it is still active on
 929 * the GPU.
 930 *
 931 * Supported values for @read_domains and @write_domain:
 932 *
 933 *      - I915_GEM_DOMAIN_WC: Uncached write-combined domain
 934 *      - I915_GEM_DOMAIN_CPU: CPU cache domain
 935 *      - I915_GEM_DOMAIN_GTT: Mappable aperture domain
 936 *
 937 * All other domains are rejected.
 938 *
 939 * Note that for discrete, starting from DG1, this is no longer supported, and
 940 * is instead rejected. On such platforms the CPU domain is effectively static,
 941 * where we also only support a single &drm_i915_gem_mmap_offset cache mode,
 942 * which can't be set explicitly and instead depends on the object placements,
 943 * as per the below.
 944 *
 945 * Implicit caching rules, starting from DG1:
 946 *
 947 *      - If any of the object placements (see &drm_i915_gem_create_ext_memory_regions)
 948 *        contain I915_MEMORY_CLASS_DEVICE then the object will be allocated and
 949 *        mapped as write-combined only.
 950 *
 951 *      - Everything else is always allocated and mapped as write-back, with the
 952 *        guarantee that everything is also coherent with the GPU.
 953 *
 954 * Note that this is likely to change in the future again, where we might need
 955 * more flexibility on future devices, so making this all explicit as part of a
 956 * new &drm_i915_gem_create_ext extension is probable.
 957 */
 958struct drm_i915_gem_set_domain {
 959        /** @handle: Handle for the object. */
 960        __u32 handle;
 961
 962        /** @read_domains: New read domains. */
 963        __u32 read_domains;
 964
 965        /**
 966         * @write_domain: New write domain.
 967         *
 968         * Note that having something in the write domain implies it's in the
 969         * read domain, and only that read domain.
 970         */
 971        __u32 write_domain;
 972};
 973
 974struct drm_i915_gem_sw_finish {
 975        /** Handle for the object */
 976        __u32 handle;
 977};
 978
 979struct drm_i915_gem_relocation_entry {
 980        /**
 981         * Handle of the buffer being pointed to by this relocation entry.
 982         *
 983         * It's appealing to make this be an index into the mm_validate_entry
 984         * list to refer to the buffer, but this allows the driver to create
 985         * a relocation list for state buffers and not re-write it per
 986         * exec using the buffer.
 987         */
 988        __u32 target_handle;
 989
 990        /**
 991         * Value to be added to the offset of the target buffer to make up
 992         * the relocation entry.
 993         */
 994        __u32 delta;
 995
 996        /** Offset in the buffer the relocation entry will be written into */
 997        __u64 offset;
 998
 999        /**
1000         * Offset value of the target buffer that the relocation entry was last
1001         * written as.
1002         *
1003         * If the buffer has the same offset as last time, we can skip syncing
1004         * and writing the relocation.  This value is written back out by
1005         * the execbuffer ioctl when the relocation is written.
1006         */
1007        __u64 presumed_offset;
1008
1009        /**
1010         * Target memory domains read by this operation.
1011         */
1012        __u32 read_domains;
1013
1014        /**
1015         * Target memory domains written by this operation.
1016         *
1017         * Note that only one domain may be written by the whole
1018         * execbuffer operation, so that where there are conflicts,
1019         * the application will get -EINVAL back.
1020         */
1021        __u32 write_domain;
1022};
1023
1024/** @{
1025 * Intel memory domains
1026 *
1027 * Most of these just align with the various caches in
1028 * the system and are used to flush and invalidate as
1029 * objects end up cached in different domains.
1030 */
1031/** CPU cache */
1032#define I915_GEM_DOMAIN_CPU             0x00000001
1033/** Render cache, used by 2D and 3D drawing */
1034#define I915_GEM_DOMAIN_RENDER          0x00000002
1035/** Sampler cache, used by texture engine */
1036#define I915_GEM_DOMAIN_SAMPLER         0x00000004
1037/** Command queue, used to load batch buffers */
1038#define I915_GEM_DOMAIN_COMMAND         0x00000008
1039/** Instruction cache, used by shader programs */
1040#define I915_GEM_DOMAIN_INSTRUCTION     0x00000010
1041/** Vertex address cache */
1042#define I915_GEM_DOMAIN_VERTEX          0x00000020
1043/** GTT domain - aperture and scanout */
1044#define I915_GEM_DOMAIN_GTT             0x00000040
1045/** WC domain - uncached access */
1046#define I915_GEM_DOMAIN_WC              0x00000080
1047/** @} */
1048
1049struct drm_i915_gem_exec_object {
1050        /**
1051         * User's handle for a buffer to be bound into the GTT for this
1052         * operation.
1053         */
1054        __u32 handle;
1055
1056        /** Number of relocations to be performed on this buffer */
1057        __u32 relocation_count;
1058        /**
1059         * Pointer to array of struct drm_i915_gem_relocation_entry containing
1060         * the relocations to be performed in this buffer.
1061         */
1062        __u64 relocs_ptr;
1063
1064        /** Required alignment in graphics aperture */
1065        __u64 alignment;
1066
1067        /**
1068         * Returned value of the updated offset of the object, for future
1069         * presumed_offset writes.
1070         */
1071        __u64 offset;
1072};
1073
1074/* DRM_IOCTL_I915_GEM_EXECBUFFER was removed in Linux 5.13 */
1075struct drm_i915_gem_execbuffer {
1076        /**
1077         * List of buffers to be validated with their relocations to be
1078         * performend on them.
1079         *
1080         * This is a pointer to an array of struct drm_i915_gem_validate_entry.
1081         *
1082         * These buffers must be listed in an order such that all relocations
1083         * a buffer is performing refer to buffers that have already appeared
1084         * in the validate list.
1085         */
1086        __u64 buffers_ptr;
1087        __u32 buffer_count;
1088
1089        /** Offset in the batchbuffer to start execution from. */
1090        __u32 batch_start_offset;
1091        /** Bytes used in batchbuffer from batch_start_offset */
1092        __u32 batch_len;
1093        __u32 DR1;
1094        __u32 DR4;
1095        __u32 num_cliprects;
1096        /** This is a struct drm_clip_rect *cliprects */
1097        __u64 cliprects_ptr;
1098};
1099
1100struct drm_i915_gem_exec_object2 {
1101        /**
1102         * User's handle for a buffer to be bound into the GTT for this
1103         * operation.
1104         */
1105        __u32 handle;
1106
1107        /** Number of relocations to be performed on this buffer */
1108        __u32 relocation_count;
1109        /**
1110         * Pointer to array of struct drm_i915_gem_relocation_entry containing
1111         * the relocations to be performed in this buffer.
1112         */
1113        __u64 relocs_ptr;
1114
1115        /** Required alignment in graphics aperture */
1116        __u64 alignment;
1117
1118        /**
1119         * When the EXEC_OBJECT_PINNED flag is specified this is populated by
1120         * the user with the GTT offset at which this object will be pinned.
1121         * When the I915_EXEC_NO_RELOC flag is specified this must contain the
1122         * presumed_offset of the object.
1123         * During execbuffer2 the kernel populates it with the value of the
1124         * current GTT offset of the object, for future presumed_offset writes.
1125         */
1126        __u64 offset;
1127
1128#define EXEC_OBJECT_NEEDS_FENCE          (1<<0)
1129#define EXEC_OBJECT_NEEDS_GTT            (1<<1)
1130#define EXEC_OBJECT_WRITE                (1<<2)
1131#define EXEC_OBJECT_SUPPORTS_48B_ADDRESS (1<<3)
1132#define EXEC_OBJECT_PINNED               (1<<4)
1133#define EXEC_OBJECT_PAD_TO_SIZE          (1<<5)
1134/* The kernel implicitly tracks GPU activity on all GEM objects, and
1135 * synchronises operations with outstanding rendering. This includes
1136 * rendering on other devices if exported via dma-buf. However, sometimes
1137 * this tracking is too coarse and the user knows better. For example,
1138 * if the object is split into non-overlapping ranges shared between different
1139 * clients or engines (i.e. suballocating objects), the implicit tracking
1140 * by kernel assumes that each operation affects the whole object rather
1141 * than an individual range, causing needless synchronisation between clients.
1142 * The kernel will also forgo any CPU cache flushes prior to rendering from
1143 * the object as the client is expected to be also handling such domain
1144 * tracking.
1145 *
1146 * The kernel maintains the implicit tracking in order to manage resources
1147 * used by the GPU - this flag only disables the synchronisation prior to
1148 * rendering with this object in this execbuf.
1149 *
1150 * Opting out of implicit synhronisation requires the user to do its own
1151 * explicit tracking to avoid rendering corruption. See, for example,
1152 * I915_PARAM_HAS_EXEC_FENCE to order execbufs and execute them asynchronously.
1153 */
1154#define EXEC_OBJECT_ASYNC               (1<<6)
1155/* Request that the contents of this execobject be copied into the error
1156 * state upon a GPU hang involving this batch for post-mortem debugging.
1157 * These buffers are recorded in no particular order as "user" in
1158 * /sys/class/drm/cardN/error. Query I915_PARAM_HAS_EXEC_CAPTURE to see
1159 * if the kernel supports this flag.
1160 */
1161#define EXEC_OBJECT_CAPTURE             (1<<7)
1162/* All remaining bits are MBZ and RESERVED FOR FUTURE USE */
1163#define __EXEC_OBJECT_UNKNOWN_FLAGS -(EXEC_OBJECT_CAPTURE<<1)
1164        __u64 flags;
1165
1166        union {
1167                __u64 rsvd1;
1168                __u64 pad_to_size;
1169        };
1170        __u64 rsvd2;
1171};
1172
1173struct drm_i915_gem_exec_fence {
1174        /**
1175         * User's handle for a drm_syncobj to wait on or signal.
1176         */
1177        __u32 handle;
1178
1179#define I915_EXEC_FENCE_WAIT            (1<<0)
1180#define I915_EXEC_FENCE_SIGNAL          (1<<1)
1181#define __I915_EXEC_FENCE_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_SIGNAL << 1))
1182        __u32 flags;
1183};
1184
1185/*
1186 * See drm_i915_gem_execbuffer_ext_timeline_fences.
1187 */
1188#define DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES 0
1189
1190/*
1191 * This structure describes an array of drm_syncobj and associated points for
1192 * timeline variants of drm_syncobj. It is invalid to append this structure to
1193 * the execbuf if I915_EXEC_FENCE_ARRAY is set.
1194 */
1195struct drm_i915_gem_execbuffer_ext_timeline_fences {
1196        struct i915_user_extension base;
1197
1198        /**
1199         * Number of element in the handles_ptr & value_ptr arrays.
1200         */
1201        __u64 fence_count;
1202
1203        /**
1204         * Pointer to an array of struct drm_i915_gem_exec_fence of length
1205         * fence_count.
1206         */
1207        __u64 handles_ptr;
1208
1209        /**
1210         * Pointer to an array of u64 values of length fence_count. Values
1211         * must be 0 for a binary drm_syncobj. A Value of 0 for a timeline
1212         * drm_syncobj is invalid as it turns a drm_syncobj into a binary one.
1213         */
1214        __u64 values_ptr;
1215};
1216
1217struct drm_i915_gem_execbuffer2 {
1218        /**
1219         * List of gem_exec_object2 structs
1220         */
1221        __u64 buffers_ptr;
1222        __u32 buffer_count;
1223
1224        /** Offset in the batchbuffer to start execution from. */
1225        __u32 batch_start_offset;
1226        /** Bytes used in batchbuffer from batch_start_offset */
1227        __u32 batch_len;
1228        __u32 DR1;
1229        __u32 DR4;
1230        __u32 num_cliprects;
1231        /**
1232         * This is a struct drm_clip_rect *cliprects if I915_EXEC_FENCE_ARRAY
1233         * & I915_EXEC_USE_EXTENSIONS are not set.
1234         *
1235         * If I915_EXEC_FENCE_ARRAY is set, then this is a pointer to an array
1236         * of struct drm_i915_gem_exec_fence and num_cliprects is the length
1237         * of the array.
1238         *
1239         * If I915_EXEC_USE_EXTENSIONS is set, then this is a pointer to a
1240         * single struct i915_user_extension and num_cliprects is 0.
1241         */
1242        __u64 cliprects_ptr;
1243#define I915_EXEC_RING_MASK              (0x3f)
1244#define I915_EXEC_DEFAULT                (0<<0)
1245#define I915_EXEC_RENDER                 (1<<0)
1246#define I915_EXEC_BSD                    (2<<0)
1247#define I915_EXEC_BLT                    (3<<0)
1248#define I915_EXEC_VEBOX                  (4<<0)
1249
1250/* Used for switching the constants addressing mode on gen4+ RENDER ring.
1251 * Gen6+ only supports relative addressing to dynamic state (default) and
1252 * absolute addressing.
1253 *
1254 * These flags are ignored for the BSD and BLT rings.
1255 */
1256#define I915_EXEC_CONSTANTS_MASK        (3<<6)
1257#define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
1258#define I915_EXEC_CONSTANTS_ABSOLUTE    (1<<6)
1259#define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */
1260        __u64 flags;
1261        __u64 rsvd1; /* now used for context info */
1262        __u64 rsvd2;
1263};
1264
1265/** Resets the SO write offset registers for transform feedback on gen7. */
1266#define I915_EXEC_GEN7_SOL_RESET        (1<<8)
1267
1268/** Request a privileged ("secure") batch buffer. Note only available for
1269 * DRM_ROOT_ONLY | DRM_MASTER processes.
1270 */
1271#define I915_EXEC_SECURE                (1<<9)
1272
1273/** Inform the kernel that the batch is and will always be pinned. This
1274 * negates the requirement for a workaround to be performed to avoid
1275 * an incoherent CS (such as can be found on 830/845). If this flag is
1276 * not passed, the kernel will endeavour to make sure the batch is
1277 * coherent with the CS before execution. If this flag is passed,
1278 * userspace assumes the responsibility for ensuring the same.
1279 */
1280#define I915_EXEC_IS_PINNED             (1<<10)
1281
1282/** Provide a hint to the kernel that the command stream and auxiliary
1283 * state buffers already holds the correct presumed addresses and so the
1284 * relocation process may be skipped if no buffers need to be moved in
1285 * preparation for the execbuffer.
1286 */
1287#define I915_EXEC_NO_RELOC              (1<<11)
1288
1289/** Use the reloc.handle as an index into the exec object array rather
1290 * than as the per-file handle.
1291 */
1292#define I915_EXEC_HANDLE_LUT            (1<<12)
1293
1294/** Used for switching BSD rings on the platforms with two BSD rings */
1295#define I915_EXEC_BSD_SHIFT      (13)
1296#define I915_EXEC_BSD_MASK       (3 << I915_EXEC_BSD_SHIFT)
1297/* default ping-pong mode */
1298#define I915_EXEC_BSD_DEFAULT    (0 << I915_EXEC_BSD_SHIFT)
1299#define I915_EXEC_BSD_RING1      (1 << I915_EXEC_BSD_SHIFT)
1300#define I915_EXEC_BSD_RING2      (2 << I915_EXEC_BSD_SHIFT)
1301
1302/** Tell the kernel that the batchbuffer is processed by
1303 *  the resource streamer.
1304 */
1305#define I915_EXEC_RESOURCE_STREAMER     (1<<15)
1306
1307/* Setting I915_EXEC_FENCE_IN implies that lower_32_bits(rsvd2) represent
1308 * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1309 * the batch.
1310 *
1311 * Returns -EINVAL if the sync_file fd cannot be found.
1312 */
1313#define I915_EXEC_FENCE_IN              (1<<16)
1314
1315/* Setting I915_EXEC_FENCE_OUT causes the ioctl to return a sync_file fd
1316 * in the upper_32_bits(rsvd2) upon success. Ownership of the fd is given
1317 * to the caller, and it should be close() after use. (The fd is a regular
1318 * file descriptor and will be cleaned up on process termination. It holds
1319 * a reference to the request, but nothing else.)
1320 *
1321 * The sync_file fd can be combined with other sync_file and passed either
1322 * to execbuf using I915_EXEC_FENCE_IN, to atomic KMS ioctls (so that a flip
1323 * will only occur after this request completes), or to other devices.
1324 *
1325 * Using I915_EXEC_FENCE_OUT requires use of
1326 * DRM_IOCTL_I915_GEM_EXECBUFFER2_WR ioctl so that the result is written
1327 * back to userspace. Failure to do so will cause the out-fence to always
1328 * be reported as zero, and the real fence fd to be leaked.
1329 */
1330#define I915_EXEC_FENCE_OUT             (1<<17)
1331
1332/*
1333 * Traditionally the execbuf ioctl has only considered the final element in
1334 * the execobject[] to be the executable batch. Often though, the client
1335 * will known the batch object prior to construction and being able to place
1336 * it into the execobject[] array first can simplify the relocation tracking.
1337 * Setting I915_EXEC_BATCH_FIRST tells execbuf to use element 0 of the
1338 * execobject[] as the * batch instead (the default is to use the last
1339 * element).
1340 */
1341#define I915_EXEC_BATCH_FIRST           (1<<18)
1342
1343/* Setting I915_FENCE_ARRAY implies that num_cliprects and cliprects_ptr
1344 * define an array of i915_gem_exec_fence structures which specify a set of
1345 * dma fences to wait upon or signal.
1346 */
1347#define I915_EXEC_FENCE_ARRAY   (1<<19)
1348
1349/*
1350 * Setting I915_EXEC_FENCE_SUBMIT implies that lower_32_bits(rsvd2) represent
1351 * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1352 * the batch.
1353 *
1354 * Returns -EINVAL if the sync_file fd cannot be found.
1355 */
1356#define I915_EXEC_FENCE_SUBMIT          (1 << 20)
1357
1358/*
1359 * Setting I915_EXEC_USE_EXTENSIONS implies that
1360 * drm_i915_gem_execbuffer2.cliprects_ptr is treated as a pointer to an linked
1361 * list of i915_user_extension. Each i915_user_extension node is the base of a
1362 * larger structure. The list of supported structures are listed in the
1363 * drm_i915_gem_execbuffer_ext enum.
1364 */
1365#define I915_EXEC_USE_EXTENSIONS        (1 << 21)
1366
1367#define __I915_EXEC_UNKNOWN_FLAGS (-(I915_EXEC_USE_EXTENSIONS << 1))
1368
1369#define I915_EXEC_CONTEXT_ID_MASK       (0xffffffff)
1370#define i915_execbuffer2_set_context_id(eb2, context) \
1371        (eb2).rsvd1 = context & I915_EXEC_CONTEXT_ID_MASK
1372#define i915_execbuffer2_get_context_id(eb2) \
1373        ((eb2).rsvd1 & I915_EXEC_CONTEXT_ID_MASK)
1374
1375struct drm_i915_gem_pin {
1376        /** Handle of the buffer to be pinned. */
1377        __u32 handle;
1378        __u32 pad;
1379
1380        /** alignment required within the aperture */
1381        __u64 alignment;
1382
1383        /** Returned GTT offset of the buffer. */
1384        __u64 offset;
1385};
1386
1387struct drm_i915_gem_unpin {
1388        /** Handle of the buffer to be unpinned. */
1389        __u32 handle;
1390        __u32 pad;
1391};
1392
1393struct drm_i915_gem_busy {
1394        /** Handle of the buffer to check for busy */
1395        __u32 handle;
1396
1397        /** Return busy status
1398         *
1399         * A return of 0 implies that the object is idle (after
1400         * having flushed any pending activity), and a non-zero return that
1401         * the object is still in-flight on the GPU. (The GPU has not yet
1402         * signaled completion for all pending requests that reference the
1403         * object.) An object is guaranteed to become idle eventually (so
1404         * long as no new GPU commands are executed upon it). Due to the
1405         * asynchronous nature of the hardware, an object reported
1406         * as busy may become idle before the ioctl is completed.
1407         *
1408         * Furthermore, if the object is busy, which engine is busy is only
1409         * provided as a guide and only indirectly by reporting its class
1410         * (there may be more than one engine in each class). There are race
1411         * conditions which prevent the report of which engines are busy from
1412         * being always accurate.  However, the converse is not true. If the
1413         * object is idle, the result of the ioctl, that all engines are idle,
1414         * is accurate.
1415         *
1416         * The returned dword is split into two fields to indicate both
1417         * the engine classess on which the object is being read, and the
1418         * engine class on which it is currently being written (if any).
1419         *
1420         * The low word (bits 0:15) indicate if the object is being written
1421         * to by any engine (there can only be one, as the GEM implicit
1422         * synchronisation rules force writes to be serialised). Only the
1423         * engine class (offset by 1, I915_ENGINE_CLASS_RENDER is reported as
1424         * 1 not 0 etc) for the last write is reported.
1425         *
1426         * The high word (bits 16:31) are a bitmask of which engines classes
1427         * are currently reading from the object. Multiple engines may be
1428         * reading from the object simultaneously.
1429         *
1430         * The value of each engine class is the same as specified in the
1431         * I915_CONTEXT_PARAM_ENGINES context parameter and via perf, i.e.
1432         * I915_ENGINE_CLASS_RENDER, I915_ENGINE_CLASS_COPY, etc.
1433         * Some hardware may have parallel execution engines, e.g. multiple
1434         * media engines, which are mapped to the same class identifier and so
1435         * are not separately reported for busyness.
1436         *
1437         * Caveat emptor:
1438         * Only the boolean result of this query is reliable; that is whether
1439         * the object is idle or busy. The report of which engines are busy
1440         * should be only used as a heuristic.
1441         */
1442        __u32 busy;
1443};
1444
1445/**
1446 * struct drm_i915_gem_caching - Set or get the caching for given object
1447 * handle.
1448 *
1449 * Allow userspace to control the GTT caching bits for a given object when the
1450 * object is later mapped through the ppGTT(or GGTT on older platforms lacking
1451 * ppGTT support, or if the object is used for scanout). Note that this might
1452 * require unbinding the object from the GTT first, if its current caching value
1453 * doesn't match.
1454 *
1455 * Note that this all changes on discrete platforms, starting from DG1, the
1456 * set/get caching is no longer supported, and is now rejected.  Instead the CPU
1457 * caching attributes(WB vs WC) will become an immutable creation time property
1458 * for the object, along with the GTT caching level. For now we don't expose any
1459 * new uAPI for this, instead on DG1 this is all implicit, although this largely
1460 * shouldn't matter since DG1 is coherent by default(without any way of
1461 * controlling it).
1462 *
1463 * Implicit caching rules, starting from DG1:
1464 *
1465 *     - If any of the object placements (see &drm_i915_gem_create_ext_memory_regions)
1466 *       contain I915_MEMORY_CLASS_DEVICE then the object will be allocated and
1467 *       mapped as write-combined only.
1468 *
1469 *     - Everything else is always allocated and mapped as write-back, with the
1470 *       guarantee that everything is also coherent with the GPU.
1471 *
1472 * Note that this is likely to change in the future again, where we might need
1473 * more flexibility on future devices, so making this all explicit as part of a
1474 * new &drm_i915_gem_create_ext extension is probable.
1475 *
1476 * Side note: Part of the reason for this is that changing the at-allocation-time CPU
1477 * caching attributes for the pages might be required(and is expensive) if we
1478 * need to then CPU map the pages later with different caching attributes. This
1479 * inconsistent caching behaviour, while supported on x86, is not universally
1480 * supported on other architectures. So for simplicity we opt for setting
1481 * everything at creation time, whilst also making it immutable, on discrete
1482 * platforms.
1483 */
1484struct drm_i915_gem_caching {
1485        /**
1486         * @handle: Handle of the buffer to set/get the caching level.
1487         */
1488        __u32 handle;
1489
1490        /**
1491         * @caching: The GTT caching level to apply or possible return value.
1492         *
1493         * The supported @caching values:
1494         *
1495         * I915_CACHING_NONE:
1496         *
1497         * GPU access is not coherent with CPU caches.  Default for machines
1498         * without an LLC. This means manual flushing might be needed, if we
1499         * want GPU access to be coherent.
1500         *
1501         * I915_CACHING_CACHED:
1502         *
1503         * GPU access is coherent with CPU caches and furthermore the data is
1504         * cached in last-level caches shared between CPU cores and the GPU GT.
1505         *
1506         * I915_CACHING_DISPLAY:
1507         *
1508         * Special GPU caching mode which is coherent with the scanout engines.
1509         * Transparently falls back to I915_CACHING_NONE on platforms where no
1510         * special cache mode (like write-through or gfdt flushing) is
1511         * available. The kernel automatically sets this mode when using a
1512         * buffer as a scanout target.  Userspace can manually set this mode to
1513         * avoid a costly stall and clflush in the hotpath of drawing the first
1514         * frame.
1515         */
1516#define I915_CACHING_NONE               0
1517#define I915_CACHING_CACHED             1
1518#define I915_CACHING_DISPLAY            2
1519        __u32 caching;
1520};
1521
1522#define I915_TILING_NONE        0
1523#define I915_TILING_X           1
1524#define I915_TILING_Y           2
1525#define I915_TILING_LAST        I915_TILING_Y
1526
1527#define I915_BIT_6_SWIZZLE_NONE         0
1528#define I915_BIT_6_SWIZZLE_9            1
1529#define I915_BIT_6_SWIZZLE_9_10         2
1530#define I915_BIT_6_SWIZZLE_9_11         3
1531#define I915_BIT_6_SWIZZLE_9_10_11      4
1532/* Not seen by userland */
1533#define I915_BIT_6_SWIZZLE_UNKNOWN      5
1534/* Seen by userland. */
1535#define I915_BIT_6_SWIZZLE_9_17         6
1536#define I915_BIT_6_SWIZZLE_9_10_17      7
1537
1538struct drm_i915_gem_set_tiling {
1539        /** Handle of the buffer to have its tiling state updated */
1540        __u32 handle;
1541
1542        /**
1543         * Tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1544         * I915_TILING_Y).
1545         *
1546         * This value is to be set on request, and will be updated by the
1547         * kernel on successful return with the actual chosen tiling layout.
1548         *
1549         * The tiling mode may be demoted to I915_TILING_NONE when the system
1550         * has bit 6 swizzling that can't be managed correctly by GEM.
1551         *
1552         * Buffer contents become undefined when changing tiling_mode.
1553         */
1554        __u32 tiling_mode;
1555
1556        /**
1557         * Stride in bytes for the object when in I915_TILING_X or
1558         * I915_TILING_Y.
1559         */
1560        __u32 stride;
1561
1562        /**
1563         * Returned address bit 6 swizzling required for CPU access through
1564         * mmap mapping.
1565         */
1566        __u32 swizzle_mode;
1567};
1568
1569struct drm_i915_gem_get_tiling {
1570        /** Handle of the buffer to get tiling state for. */
1571        __u32 handle;
1572
1573        /**
1574         * Current tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1575         * I915_TILING_Y).
1576         */
1577        __u32 tiling_mode;
1578
1579        /**
1580         * Returned address bit 6 swizzling required for CPU access through
1581         * mmap mapping.
1582         */
1583        __u32 swizzle_mode;
1584
1585        /**
1586         * Returned address bit 6 swizzling required for CPU access through
1587         * mmap mapping whilst bound.
1588         */
1589        __u32 phys_swizzle_mode;
1590};
1591
1592struct drm_i915_gem_get_aperture {
1593        /** Total size of the aperture used by i915_gem_execbuffer, in bytes */
1594        __u64 aper_size;
1595
1596        /**
1597         * Available space in the aperture used by i915_gem_execbuffer, in
1598         * bytes
1599         */
1600        __u64 aper_available_size;
1601};
1602
1603struct drm_i915_get_pipe_from_crtc_id {
1604        /** ID of CRTC being requested **/
1605        __u32 crtc_id;
1606
1607        /** pipe of requested CRTC **/
1608        __u32 pipe;
1609};
1610
1611#define I915_MADV_WILLNEED 0
1612#define I915_MADV_DONTNEED 1
1613#define __I915_MADV_PURGED 2 /* internal state */
1614
1615struct drm_i915_gem_madvise {
1616        /** Handle of the buffer to change the backing store advice */
1617        __u32 handle;
1618
1619        /* Advice: either the buffer will be needed again in the near future,
1620         *         or wont be and could be discarded under memory pressure.
1621         */
1622        __u32 madv;
1623
1624        /** Whether the backing store still exists. */
1625        __u32 retained;
1626};
1627
1628/* flags */
1629#define I915_OVERLAY_TYPE_MASK          0xff
1630#define I915_OVERLAY_YUV_PLANAR         0x01
1631#define I915_OVERLAY_YUV_PACKED         0x02
1632#define I915_OVERLAY_RGB                0x03
1633
1634#define I915_OVERLAY_DEPTH_MASK         0xff00
1635#define I915_OVERLAY_RGB24              0x1000
1636#define I915_OVERLAY_RGB16              0x2000
1637#define I915_OVERLAY_RGB15              0x3000
1638#define I915_OVERLAY_YUV422             0x0100
1639#define I915_OVERLAY_YUV411             0x0200
1640#define I915_OVERLAY_YUV420             0x0300
1641#define I915_OVERLAY_YUV410             0x0400
1642
1643#define I915_OVERLAY_SWAP_MASK          0xff0000
1644#define I915_OVERLAY_NO_SWAP            0x000000
1645#define I915_OVERLAY_UV_SWAP            0x010000
1646#define I915_OVERLAY_Y_SWAP             0x020000
1647#define I915_OVERLAY_Y_AND_UV_SWAP      0x030000
1648
1649#define I915_OVERLAY_FLAGS_MASK         0xff000000
1650#define I915_OVERLAY_ENABLE             0x01000000
1651
1652struct drm_intel_overlay_put_image {
1653        /* various flags and src format description */
1654        __u32 flags;
1655        /* source picture description */
1656        __u32 bo_handle;
1657        /* stride values and offsets are in bytes, buffer relative */
1658        __u16 stride_Y; /* stride for packed formats */
1659        __u16 stride_UV;
1660        __u32 offset_Y; /* offset for packet formats */
1661        __u32 offset_U;
1662        __u32 offset_V;
1663        /* in pixels */
1664        __u16 src_width;
1665        __u16 src_height;
1666        /* to compensate the scaling factors for partially covered surfaces */
1667        __u16 src_scan_width;
1668        __u16 src_scan_height;
1669        /* output crtc description */
1670        __u32 crtc_id;
1671        __u16 dst_x;
1672        __u16 dst_y;
1673        __u16 dst_width;
1674        __u16 dst_height;
1675};
1676
1677/* flags */
1678#define I915_OVERLAY_UPDATE_ATTRS       (1<<0)
1679#define I915_OVERLAY_UPDATE_GAMMA       (1<<1)
1680#define I915_OVERLAY_DISABLE_DEST_COLORKEY      (1<<2)
1681struct drm_intel_overlay_attrs {
1682        __u32 flags;
1683        __u32 color_key;
1684        __s32 brightness;
1685        __u32 contrast;
1686        __u32 saturation;
1687        __u32 gamma0;
1688        __u32 gamma1;
1689        __u32 gamma2;
1690        __u32 gamma3;
1691        __u32 gamma4;
1692        __u32 gamma5;
1693};
1694
1695/*
1696 * Intel sprite handling
1697 *
1698 * Color keying works with a min/mask/max tuple.  Both source and destination
1699 * color keying is allowed.
1700 *
1701 * Source keying:
1702 * Sprite pixels within the min & max values, masked against the color channels
1703 * specified in the mask field, will be transparent.  All other pixels will
1704 * be displayed on top of the primary plane.  For RGB surfaces, only the min
1705 * and mask fields will be used; ranged compares are not allowed.
1706 *
1707 * Destination keying:
1708 * Primary plane pixels that match the min value, masked against the color
1709 * channels specified in the mask field, will be replaced by corresponding
1710 * pixels from the sprite plane.
1711 *
1712 * Note that source & destination keying are exclusive; only one can be
1713 * active on a given plane.
1714 */
1715
1716#define I915_SET_COLORKEY_NONE          (1<<0) /* Deprecated. Instead set
1717                                                * flags==0 to disable colorkeying.
1718                                                */
1719#define I915_SET_COLORKEY_DESTINATION   (1<<1)
1720#define I915_SET_COLORKEY_SOURCE        (1<<2)
1721struct drm_intel_sprite_colorkey {
1722        __u32 plane_id;
1723        __u32 min_value;
1724        __u32 channel_mask;
1725        __u32 max_value;
1726        __u32 flags;
1727};
1728
1729struct drm_i915_gem_wait {
1730        /** Handle of BO we shall wait on */
1731        __u32 bo_handle;
1732        __u32 flags;
1733        /** Number of nanoseconds to wait, Returns time remaining. */
1734        __s64 timeout_ns;
1735};
1736
1737struct drm_i915_gem_context_create {
1738        __u32 ctx_id; /* output: id of new context*/
1739        __u32 pad;
1740};
1741
1742struct drm_i915_gem_context_create_ext {
1743        __u32 ctx_id; /* output: id of new context*/
1744        __u32 flags;
1745#define I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS        (1u << 0)
1746#define I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE       (1u << 1)
1747#define I915_CONTEXT_CREATE_FLAGS_UNKNOWN \
1748        (-(I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE << 1))
1749        __u64 extensions;
1750};
1751
1752struct drm_i915_gem_context_param {
1753        __u32 ctx_id;
1754        __u32 size;
1755        __u64 param;
1756#define I915_CONTEXT_PARAM_BAN_PERIOD   0x1
1757/* I915_CONTEXT_PARAM_NO_ZEROMAP has been removed.  On the off chance
1758 * someone somewhere has attempted to use it, never re-use this context
1759 * param number.
1760 */
1761#define I915_CONTEXT_PARAM_NO_ZEROMAP   0x2
1762#define I915_CONTEXT_PARAM_GTT_SIZE     0x3
1763#define I915_CONTEXT_PARAM_NO_ERROR_CAPTURE     0x4
1764#define I915_CONTEXT_PARAM_BANNABLE     0x5
1765#define I915_CONTEXT_PARAM_PRIORITY     0x6
1766#define   I915_CONTEXT_MAX_USER_PRIORITY        1023 /* inclusive */
1767#define   I915_CONTEXT_DEFAULT_PRIORITY         0
1768#define   I915_CONTEXT_MIN_USER_PRIORITY        -1023 /* inclusive */
1769        /*
1770         * When using the following param, value should be a pointer to
1771         * drm_i915_gem_context_param_sseu.
1772         */
1773#define I915_CONTEXT_PARAM_SSEU         0x7
1774
1775/*
1776 * Not all clients may want to attempt automatic recover of a context after
1777 * a hang (for example, some clients may only submit very small incremental
1778 * batches relying on known logical state of previous batches which will never
1779 * recover correctly and each attempt will hang), and so would prefer that
1780 * the context is forever banned instead.
1781 *
1782 * If set to false (0), after a reset, subsequent (and in flight) rendering
1783 * from this context is discarded, and the client will need to create a new
1784 * context to use instead.
1785 *
1786 * If set to true (1), the kernel will automatically attempt to recover the
1787 * context by skipping the hanging batch and executing the next batch starting
1788 * from the default context state (discarding the incomplete logical context
1789 * state lost due to the reset).
1790 *
1791 * On creation, all new contexts are marked as recoverable.
1792 */
1793#define I915_CONTEXT_PARAM_RECOVERABLE  0x8
1794
1795        /*
1796         * The id of the associated virtual memory address space (ppGTT) of
1797         * this context. Can be retrieved and passed to another context
1798         * (on the same fd) for both to use the same ppGTT and so share
1799         * address layouts, and avoid reloading the page tables on context
1800         * switches between themselves.
1801         *
1802         * See DRM_I915_GEM_VM_CREATE and DRM_I915_GEM_VM_DESTROY.
1803         */
1804#define I915_CONTEXT_PARAM_VM           0x9
1805
1806/*
1807 * I915_CONTEXT_PARAM_ENGINES:
1808 *
1809 * Bind this context to operate on this subset of available engines. Henceforth,
1810 * the I915_EXEC_RING selector for DRM_IOCTL_I915_GEM_EXECBUFFER2 operates as
1811 * an index into this array of engines; I915_EXEC_DEFAULT selecting engine[0]
1812 * and upwards. Slots 0...N are filled in using the specified (class, instance).
1813 * Use
1814 *      engine_class: I915_ENGINE_CLASS_INVALID,
1815 *      engine_instance: I915_ENGINE_CLASS_INVALID_NONE
1816 * to specify a gap in the array that can be filled in later, e.g. by a
1817 * virtual engine used for load balancing.
1818 *
1819 * Setting the number of engines bound to the context to 0, by passing a zero
1820 * sized argument, will revert back to default settings.
1821 *
1822 * See struct i915_context_param_engines.
1823 *
1824 * Extensions:
1825 *   i915_context_engines_load_balance (I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE)
1826 *   i915_context_engines_bond (I915_CONTEXT_ENGINES_EXT_BOND)
1827 */
1828#define I915_CONTEXT_PARAM_ENGINES      0xa
1829
1830/*
1831 * I915_CONTEXT_PARAM_PERSISTENCE:
1832 *
1833 * Allow the context and active rendering to survive the process until
1834 * completion. Persistence allows fire-and-forget clients to queue up a
1835 * bunch of work, hand the output over to a display server and then quit.
1836 * If the context is marked as not persistent, upon closing (either via
1837 * an explicit DRM_I915_GEM_CONTEXT_DESTROY or implicitly from file closure
1838 * or process termination), the context and any outstanding requests will be
1839 * cancelled (and exported fences for cancelled requests marked as -EIO).
1840 *
1841 * By default, new contexts allow persistence.
1842 */
1843#define I915_CONTEXT_PARAM_PERSISTENCE  0xb
1844
1845/* This API has been removed.  On the off chance someone somewhere has
1846 * attempted to use it, never re-use this context param number.
1847 */
1848#define I915_CONTEXT_PARAM_RINGSIZE     0xc
1849/* Must be kept compact -- no holes and well documented */
1850
1851        __u64 value;
1852};
1853
1854/*
1855 * Context SSEU programming
1856 *
1857 * It may be necessary for either functional or performance reason to configure
1858 * a context to run with a reduced number of SSEU (where SSEU stands for Slice/
1859 * Sub-slice/EU).
1860 *
1861 * This is done by configuring SSEU configuration using the below
1862 * @struct drm_i915_gem_context_param_sseu for every supported engine which
1863 * userspace intends to use.
1864 *
1865 * Not all GPUs or engines support this functionality in which case an error
1866 * code -ENODEV will be returned.
1867 *
1868 * Also, flexibility of possible SSEU configuration permutations varies between
1869 * GPU generations and software imposed limitations. Requesting such a
1870 * combination will return an error code of -EINVAL.
1871 *
1872 * NOTE: When perf/OA is active the context's SSEU configuration is ignored in
1873 * favour of a single global setting.
1874 */
1875struct drm_i915_gem_context_param_sseu {
1876        /*
1877         * Engine class & instance to be configured or queried.
1878         */
1879        struct i915_engine_class_instance engine;
1880
1881        /*
1882         * Unknown flags must be cleared to zero.
1883         */
1884        __u32 flags;
1885#define I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX (1u << 0)
1886
1887        /*
1888         * Mask of slices to enable for the context. Valid values are a subset
1889         * of the bitmask value returned for I915_PARAM_SLICE_MASK.
1890         */
1891        __u64 slice_mask;
1892
1893        /*
1894         * Mask of subslices to enable for the context. Valid values are a
1895         * subset of the bitmask value return by I915_PARAM_SUBSLICE_MASK.
1896         */
1897        __u64 subslice_mask;
1898
1899        /*
1900         * Minimum/Maximum number of EUs to enable per subslice for the
1901         * context. min_eus_per_subslice must be inferior or equal to
1902         * max_eus_per_subslice.
1903         */
1904        __u16 min_eus_per_subslice;
1905        __u16 max_eus_per_subslice;
1906
1907        /*
1908         * Unused for now. Must be cleared to zero.
1909         */
1910        __u32 rsvd;
1911};
1912
1913/**
1914 * DOC: Virtual Engine uAPI
1915 *
1916 * Virtual engine is a concept where userspace is able to configure a set of
1917 * physical engines, submit a batch buffer, and let the driver execute it on any
1918 * engine from the set as it sees fit.
1919 *
1920 * This is primarily useful on parts which have multiple instances of a same
1921 * class engine, like for example GT3+ Skylake parts with their two VCS engines.
1922 *
1923 * For instance userspace can enumerate all engines of a certain class using the
1924 * previously described `Engine Discovery uAPI`_. After that userspace can
1925 * create a GEM context with a placeholder slot for the virtual engine (using
1926 * `I915_ENGINE_CLASS_INVALID` and `I915_ENGINE_CLASS_INVALID_NONE` for class
1927 * and instance respectively) and finally using the
1928 * `I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE` extension place a virtual engine in
1929 * the same reserved slot.
1930 *
1931 * Example of creating a virtual engine and submitting a batch buffer to it:
1932 *
1933 * .. code-block:: C
1934 *
1935 *      I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(virtual, 2) = {
1936 *              .base.name = I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE,
1937 *              .engine_index = 0, // Place this virtual engine into engine map slot 0
1938 *              .num_siblings = 2,
1939 *              .engines = { { I915_ENGINE_CLASS_VIDEO, 0 },
1940 *                           { I915_ENGINE_CLASS_VIDEO, 1 }, },
1941 *      };
1942 *      I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 1) = {
1943 *              .engines = { { I915_ENGINE_CLASS_INVALID,
1944 *                             I915_ENGINE_CLASS_INVALID_NONE } },
1945 *              .extensions = to_user_pointer(&virtual), // Chains after load_balance extension
1946 *      };
1947 *      struct drm_i915_gem_context_create_ext_setparam p_engines = {
1948 *              .base = {
1949 *                      .name = I915_CONTEXT_CREATE_EXT_SETPARAM,
1950 *              },
1951 *              .param = {
1952 *                      .param = I915_CONTEXT_PARAM_ENGINES,
1953 *                      .value = to_user_pointer(&engines),
1954 *                      .size = sizeof(engines),
1955 *              },
1956 *      };
1957 *      struct drm_i915_gem_context_create_ext create = {
1958 *              .flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
1959 *              .extensions = to_user_pointer(&p_engines);
1960 *      };
1961 *
1962 *      ctx_id = gem_context_create_ext(drm_fd, &create);
1963 *
1964 *      // Now we have created a GEM context with its engine map containing a
1965 *      // single virtual engine. Submissions to this slot can go either to
1966 *      // vcs0 or vcs1, depending on the load balancing algorithm used inside
1967 *      // the driver. The load balancing is dynamic from one batch buffer to
1968 *      // another and transparent to userspace.
1969 *
1970 *      ...
1971 *      execbuf.rsvd1 = ctx_id;
1972 *      execbuf.flags = 0; // Submits to index 0 which is the virtual engine
1973 *      gem_execbuf(drm_fd, &execbuf);
1974 */
1975
1976/*
1977 * i915_context_engines_load_balance:
1978 *
1979 * Enable load balancing across this set of engines.
1980 *
1981 * Into the I915_EXEC_DEFAULT slot [0], a virtual engine is created that when
1982 * used will proxy the execbuffer request onto one of the set of engines
1983 * in such a way as to distribute the load evenly across the set.
1984 *
1985 * The set of engines must be compatible (e.g. the same HW class) as they
1986 * will share the same logical GPU context and ring.
1987 *
1988 * To intermix rendering with the virtual engine and direct rendering onto
1989 * the backing engines (bypassing the load balancing proxy), the context must
1990 * be defined to use a single timeline for all engines.
1991 */
1992struct i915_context_engines_load_balance {
1993        struct i915_user_extension base;
1994
1995        __u16 engine_index;
1996        __u16 num_siblings;
1997        __u32 flags; /* all undefined flags must be zero */
1998
1999        __u64 mbz64; /* reserved for future use; must be zero */
2000
2001        struct i915_engine_class_instance engines[0];
2002} __attribute__((packed));
2003
2004#define I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(name__, N__) struct { \
2005        struct i915_user_extension base; \
2006        __u16 engine_index; \
2007        __u16 num_siblings; \
2008        __u32 flags; \
2009        __u64 mbz64; \
2010        struct i915_engine_class_instance engines[N__]; \
2011} __attribute__((packed)) name__
2012
2013/*
2014 * i915_context_engines_bond:
2015 *
2016 * Constructed bonded pairs for execution within a virtual engine.
2017 *
2018 * All engines are equal, but some are more equal than others. Given
2019 * the distribution of resources in the HW, it may be preferable to run
2020 * a request on a given subset of engines in parallel to a request on a
2021 * specific engine. We enable this selection of engines within a virtual
2022 * engine by specifying bonding pairs, for any given master engine we will
2023 * only execute on one of the corresponding siblings within the virtual engine.
2024 *
2025 * To execute a request in parallel on the master engine and a sibling requires
2026 * coordination with a I915_EXEC_FENCE_SUBMIT.
2027 */
2028struct i915_context_engines_bond {
2029        struct i915_user_extension base;
2030
2031        struct i915_engine_class_instance master;
2032
2033        __u16 virtual_index; /* index of virtual engine in ctx->engines[] */
2034        __u16 num_bonds;
2035
2036        __u64 flags; /* all undefined flags must be zero */
2037        __u64 mbz64[4]; /* reserved for future use; must be zero */
2038
2039        struct i915_engine_class_instance engines[0];
2040} __attribute__((packed));
2041
2042#define I915_DEFINE_CONTEXT_ENGINES_BOND(name__, N__) struct { \
2043        struct i915_user_extension base; \
2044        struct i915_engine_class_instance master; \
2045        __u16 virtual_index; \
2046        __u16 num_bonds; \
2047        __u64 flags; \
2048        __u64 mbz64[4]; \
2049        struct i915_engine_class_instance engines[N__]; \
2050} __attribute__((packed)) name__
2051
2052/**
2053 * DOC: Context Engine Map uAPI
2054 *
2055 * Context engine map is a new way of addressing engines when submitting batch-
2056 * buffers, replacing the existing way of using identifiers like `I915_EXEC_BLT`
2057 * inside the flags field of `struct drm_i915_gem_execbuffer2`.
2058 *
2059 * To use it created GEM contexts need to be configured with a list of engines
2060 * the user is intending to submit to. This is accomplished using the
2061 * `I915_CONTEXT_PARAM_ENGINES` parameter and `struct
2062 * i915_context_param_engines`.
2063 *
2064 * For such contexts the `I915_EXEC_RING_MASK` field becomes an index into the
2065 * configured map.
2066 *
2067 * Example of creating such context and submitting against it:
2068 *
2069 * .. code-block:: C
2070 *
2071 *      I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 2) = {
2072 *              .engines = { { I915_ENGINE_CLASS_RENDER, 0 },
2073 *                           { I915_ENGINE_CLASS_COPY, 0 } }
2074 *      };
2075 *      struct drm_i915_gem_context_create_ext_setparam p_engines = {
2076 *              .base = {
2077 *                      .name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2078 *              },
2079 *              .param = {
2080 *                      .param = I915_CONTEXT_PARAM_ENGINES,
2081 *                      .value = to_user_pointer(&engines),
2082 *                      .size = sizeof(engines),
2083 *              },
2084 *      };
2085 *      struct drm_i915_gem_context_create_ext create = {
2086 *              .flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
2087 *              .extensions = to_user_pointer(&p_engines);
2088 *      };
2089 *
2090 *      ctx_id = gem_context_create_ext(drm_fd, &create);
2091 *
2092 *      // We have now created a GEM context with two engines in the map:
2093 *      // Index 0 points to rcs0 while index 1 points to bcs0. Other engines
2094 *      // will not be accessible from this context.
2095 *
2096 *      ...
2097 *      execbuf.rsvd1 = ctx_id;
2098 *      execbuf.flags = 0; // Submits to index 0, which is rcs0 for this context
2099 *      gem_execbuf(drm_fd, &execbuf);
2100 *
2101 *      ...
2102 *      execbuf.rsvd1 = ctx_id;
2103 *      execbuf.flags = 1; // Submits to index 0, which is bcs0 for this context
2104 *      gem_execbuf(drm_fd, &execbuf);
2105 */
2106
2107struct i915_context_param_engines {
2108        __u64 extensions; /* linked chain of extension blocks, 0 terminates */
2109#define I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE 0 /* see i915_context_engines_load_balance */
2110#define I915_CONTEXT_ENGINES_EXT_BOND 1 /* see i915_context_engines_bond */
2111        struct i915_engine_class_instance engines[0];
2112} __attribute__((packed));
2113
2114#define I915_DEFINE_CONTEXT_PARAM_ENGINES(name__, N__) struct { \
2115        __u64 extensions; \
2116        struct i915_engine_class_instance engines[N__]; \
2117} __attribute__((packed)) name__
2118
2119struct drm_i915_gem_context_create_ext_setparam {
2120#define I915_CONTEXT_CREATE_EXT_SETPARAM 0
2121        struct i915_user_extension base;
2122        struct drm_i915_gem_context_param param;
2123};
2124
2125/* This API has been removed.  On the off chance someone somewhere has
2126 * attempted to use it, never re-use this extension number.
2127 */
2128#define I915_CONTEXT_CREATE_EXT_CLONE 1
2129
2130struct drm_i915_gem_context_destroy {
2131        __u32 ctx_id;
2132        __u32 pad;
2133};
2134
2135/*
2136 * DRM_I915_GEM_VM_CREATE -
2137 *
2138 * Create a new virtual memory address space (ppGTT) for use within a context
2139 * on the same file. Extensions can be provided to configure exactly how the
2140 * address space is setup upon creation.
2141 *
2142 * The id of new VM (bound to the fd) for use with I915_CONTEXT_PARAM_VM is
2143 * returned in the outparam @id.
2144 *
2145 * No flags are defined, with all bits reserved and must be zero.
2146 *
2147 * An extension chain maybe provided, starting with @extensions, and terminated
2148 * by the @next_extension being 0. Currently, no extensions are defined.
2149 *
2150 * DRM_I915_GEM_VM_DESTROY -
2151 *
2152 * Destroys a previously created VM id, specified in @id.
2153 *
2154 * No extensions or flags are allowed currently, and so must be zero.
2155 */
2156struct drm_i915_gem_vm_control {
2157        __u64 extensions;
2158        __u32 flags;
2159        __u32 vm_id;
2160};
2161
2162struct drm_i915_reg_read {
2163        /*
2164         * Register offset.
2165         * For 64bit wide registers where the upper 32bits don't immediately
2166         * follow the lower 32bits, the offset of the lower 32bits must
2167         * be specified
2168         */
2169        __u64 offset;
2170#define I915_REG_READ_8B_WA (1ul << 0)
2171
2172        __u64 val; /* Return value */
2173};
2174
2175/* Known registers:
2176 *
2177 * Render engine timestamp - 0x2358 + 64bit - gen7+
2178 * - Note this register returns an invalid value if using the default
2179 *   single instruction 8byte read, in order to workaround that pass
2180 *   flag I915_REG_READ_8B_WA in offset field.
2181 *
2182 */
2183
2184struct drm_i915_reset_stats {
2185        __u32 ctx_id;
2186        __u32 flags;
2187
2188        /* All resets since boot/module reload, for all contexts */
2189        __u32 reset_count;
2190
2191        /* Number of batches lost when active in GPU, for this context */
2192        __u32 batch_active;
2193
2194        /* Number of batches lost pending for execution, for this context */
2195        __u32 batch_pending;
2196
2197        __u32 pad;
2198};
2199
2200/**
2201 * struct drm_i915_gem_userptr - Create GEM object from user allocated memory.
2202 *
2203 * Userptr objects have several restrictions on what ioctls can be used with the
2204 * object handle.
2205 */
2206struct drm_i915_gem_userptr {
2207        /**
2208         * @user_ptr: The pointer to the allocated memory.
2209         *
2210         * Needs to be aligned to PAGE_SIZE.
2211         */
2212        __u64 user_ptr;
2213
2214        /**
2215         * @user_size:
2216         *
2217         * The size in bytes for the allocated memory. This will also become the
2218         * object size.
2219         *
2220         * Needs to be aligned to PAGE_SIZE, and should be at least PAGE_SIZE,
2221         * or larger.
2222         */
2223        __u64 user_size;
2224
2225        /**
2226         * @flags:
2227         *
2228         * Supported flags:
2229         *
2230         * I915_USERPTR_READ_ONLY:
2231         *
2232         * Mark the object as readonly, this also means GPU access can only be
2233         * readonly. This is only supported on HW which supports readonly access
2234         * through the GTT. If the HW can't support readonly access, an error is
2235         * returned.
2236         *
2237         * I915_USERPTR_PROBE:
2238         *
2239         * Probe the provided @user_ptr range and validate that the @user_ptr is
2240         * indeed pointing to normal memory and that the range is also valid.
2241         * For example if some garbage address is given to the kernel, then this
2242         * should complain.
2243         *
2244         * Returns -EFAULT if the probe failed.
2245         *
2246         * Note that this doesn't populate the backing pages, and also doesn't
2247         * guarantee that the object will remain valid when the object is
2248         * eventually used.
2249         *
2250         * The kernel supports this feature if I915_PARAM_HAS_USERPTR_PROBE
2251         * returns a non-zero value.
2252         *
2253         * I915_USERPTR_UNSYNCHRONIZED:
2254         *
2255         * NOT USED. Setting this flag will result in an error.
2256         */
2257        __u32 flags;
2258#define I915_USERPTR_READ_ONLY 0x1
2259#define I915_USERPTR_PROBE 0x2
2260#define I915_USERPTR_UNSYNCHRONIZED 0x80000000
2261        /**
2262         * @handle: Returned handle for the object.
2263         *
2264         * Object handles are nonzero.
2265         */
2266        __u32 handle;
2267};
2268
2269enum drm_i915_oa_format {
2270        I915_OA_FORMAT_A13 = 1,     /* HSW only */
2271        I915_OA_FORMAT_A29,         /* HSW only */
2272        I915_OA_FORMAT_A13_B8_C8,   /* HSW only */
2273        I915_OA_FORMAT_B4_C8,       /* HSW only */
2274        I915_OA_FORMAT_A45_B8_C8,   /* HSW only */
2275        I915_OA_FORMAT_B4_C8_A16,   /* HSW only */
2276        I915_OA_FORMAT_C4_B8,       /* HSW+ */
2277
2278        /* Gen8+ */
2279        I915_OA_FORMAT_A12,
2280        I915_OA_FORMAT_A12_B8_C8,
2281        I915_OA_FORMAT_A32u40_A4u32_B8_C8,
2282
2283        I915_OA_FORMAT_MAX          /* non-ABI */
2284};
2285
2286enum drm_i915_perf_property_id {
2287        /**
2288         * Open the stream for a specific context handle (as used with
2289         * execbuffer2). A stream opened for a specific context this way
2290         * won't typically require root privileges.
2291         *
2292         * This property is available in perf revision 1.
2293         */
2294        DRM_I915_PERF_PROP_CTX_HANDLE = 1,
2295
2296        /**
2297         * A value of 1 requests the inclusion of raw OA unit reports as
2298         * part of stream samples.
2299         *
2300         * This property is available in perf revision 1.
2301         */
2302        DRM_I915_PERF_PROP_SAMPLE_OA,
2303
2304        /**
2305         * The value specifies which set of OA unit metrics should be
2306         * configured, defining the contents of any OA unit reports.
2307         *
2308         * This property is available in perf revision 1.
2309         */
2310        DRM_I915_PERF_PROP_OA_METRICS_SET,
2311
2312        /**
2313         * The value specifies the size and layout of OA unit reports.
2314         *
2315         * This property is available in perf revision 1.
2316         */
2317        DRM_I915_PERF_PROP_OA_FORMAT,
2318
2319        /**
2320         * Specifying this property implicitly requests periodic OA unit
2321         * sampling and (at least on Haswell) the sampling frequency is derived
2322         * from this exponent as follows:
2323         *
2324         *   80ns * 2^(period_exponent + 1)
2325         *
2326         * This property is available in perf revision 1.
2327         */
2328        DRM_I915_PERF_PROP_OA_EXPONENT,
2329
2330        /**
2331         * Specifying this property is only valid when specify a context to
2332         * filter with DRM_I915_PERF_PROP_CTX_HANDLE. Specifying this property
2333         * will hold preemption of the particular context we want to gather
2334         * performance data about. The execbuf2 submissions must include a
2335         * drm_i915_gem_execbuffer_ext_perf parameter for this to apply.
2336         *
2337         * This property is available in perf revision 3.
2338         */
2339        DRM_I915_PERF_PROP_HOLD_PREEMPTION,
2340
2341        /**
2342         * Specifying this pins all contexts to the specified SSEU power
2343         * configuration for the duration of the recording.
2344         *
2345         * This parameter's value is a pointer to a struct
2346         * drm_i915_gem_context_param_sseu.
2347         *
2348         * This property is available in perf revision 4.
2349         */
2350        DRM_I915_PERF_PROP_GLOBAL_SSEU,
2351
2352        /**
2353         * This optional parameter specifies the timer interval in nanoseconds
2354         * at which the i915 driver will check the OA buffer for available data.
2355         * Minimum allowed value is 100 microseconds. A default value is used by
2356         * the driver if this parameter is not specified. Note that larger timer
2357         * values will reduce cpu consumption during OA perf captures. However,
2358         * excessively large values would potentially result in OA buffer
2359         * overwrites as captures reach end of the OA buffer.
2360         *
2361         * This property is available in perf revision 5.
2362         */
2363        DRM_I915_PERF_PROP_POLL_OA_PERIOD,
2364
2365        DRM_I915_PERF_PROP_MAX /* non-ABI */
2366};
2367
2368struct drm_i915_perf_open_param {
2369        __u32 flags;
2370#define I915_PERF_FLAG_FD_CLOEXEC       (1<<0)
2371#define I915_PERF_FLAG_FD_NONBLOCK      (1<<1)
2372#define I915_PERF_FLAG_DISABLED         (1<<2)
2373
2374        /** The number of u64 (id, value) pairs */
2375        __u32 num_properties;
2376
2377        /**
2378         * Pointer to array of u64 (id, value) pairs configuring the stream
2379         * to open.
2380         */
2381        __u64 properties_ptr;
2382};
2383
2384/*
2385 * Enable data capture for a stream that was either opened in a disabled state
2386 * via I915_PERF_FLAG_DISABLED or was later disabled via
2387 * I915_PERF_IOCTL_DISABLE.
2388 *
2389 * It is intended to be cheaper to disable and enable a stream than it may be
2390 * to close and re-open a stream with the same configuration.
2391 *
2392 * It's undefined whether any pending data for the stream will be lost.
2393 *
2394 * This ioctl is available in perf revision 1.
2395 */
2396#define I915_PERF_IOCTL_ENABLE  _IO('i', 0x0)
2397
2398/*
2399 * Disable data capture for a stream.
2400 *
2401 * It is an error to try and read a stream that is disabled.
2402 *
2403 * This ioctl is available in perf revision 1.
2404 */
2405#define I915_PERF_IOCTL_DISABLE _IO('i', 0x1)
2406
2407/*
2408 * Change metrics_set captured by a stream.
2409 *
2410 * If the stream is bound to a specific context, the configuration change
2411 * will performed inline with that context such that it takes effect before
2412 * the next execbuf submission.
2413 *
2414 * Returns the previously bound metrics set id, or a negative error code.
2415 *
2416 * This ioctl is available in perf revision 2.
2417 */
2418#define I915_PERF_IOCTL_CONFIG  _IO('i', 0x2)
2419
2420/*
2421 * Common to all i915 perf records
2422 */
2423struct drm_i915_perf_record_header {
2424        __u32 type;
2425        __u16 pad;
2426        __u16 size;
2427};
2428
2429enum drm_i915_perf_record_type {
2430
2431        /**
2432         * Samples are the work horse record type whose contents are extensible
2433         * and defined when opening an i915 perf stream based on the given
2434         * properties.
2435         *
2436         * Boolean properties following the naming convention
2437         * DRM_I915_PERF_SAMPLE_xyz_PROP request the inclusion of 'xyz' data in
2438         * every sample.
2439         *
2440         * The order of these sample properties given by userspace has no
2441         * affect on the ordering of data within a sample. The order is
2442         * documented here.
2443         *
2444         * struct {
2445         *     struct drm_i915_perf_record_header header;
2446         *
2447         *     { u32 oa_report[]; } && DRM_I915_PERF_PROP_SAMPLE_OA
2448         * };
2449         */
2450        DRM_I915_PERF_RECORD_SAMPLE = 1,
2451
2452        /*
2453         * Indicates that one or more OA reports were not written by the
2454         * hardware. This can happen for example if an MI_REPORT_PERF_COUNT
2455         * command collides with periodic sampling - which would be more likely
2456         * at higher sampling frequencies.
2457         */
2458        DRM_I915_PERF_RECORD_OA_REPORT_LOST = 2,
2459
2460        /**
2461         * An error occurred that resulted in all pending OA reports being lost.
2462         */
2463        DRM_I915_PERF_RECORD_OA_BUFFER_LOST = 3,
2464
2465        DRM_I915_PERF_RECORD_MAX /* non-ABI */
2466};
2467
2468/*
2469 * Structure to upload perf dynamic configuration into the kernel.
2470 */
2471struct drm_i915_perf_oa_config {
2472        /** String formatted like "%08x-%04x-%04x-%04x-%012x" */
2473        char uuid[36];
2474
2475        __u32 n_mux_regs;
2476        __u32 n_boolean_regs;
2477        __u32 n_flex_regs;
2478
2479        /*
2480         * These fields are pointers to tuples of u32 values (register address,
2481         * value). For example the expected length of the buffer pointed by
2482         * mux_regs_ptr is (2 * sizeof(u32) * n_mux_regs).
2483         */
2484        __u64 mux_regs_ptr;
2485        __u64 boolean_regs_ptr;
2486        __u64 flex_regs_ptr;
2487};
2488
2489/**
2490 * struct drm_i915_query_item - An individual query for the kernel to process.
2491 *
2492 * The behaviour is determined by the @query_id. Note that exactly what
2493 * @data_ptr is also depends on the specific @query_id.
2494 */
2495struct drm_i915_query_item {
2496        /** @query_id: The id for this query */
2497        __u64 query_id;
2498#define DRM_I915_QUERY_TOPOLOGY_INFO    1
2499#define DRM_I915_QUERY_ENGINE_INFO      2
2500#define DRM_I915_QUERY_PERF_CONFIG      3
2501#define DRM_I915_QUERY_MEMORY_REGIONS   4
2502/* Must be kept compact -- no holes and well documented */
2503
2504        /**
2505         * @length:
2506         *
2507         * When set to zero by userspace, this is filled with the size of the
2508         * data to be written at the @data_ptr pointer. The kernel sets this
2509         * value to a negative value to signal an error on a particular query
2510         * item.
2511         */
2512        __s32 length;
2513
2514        /**
2515         * @flags:
2516         *
2517         * When query_id == DRM_I915_QUERY_TOPOLOGY_INFO, must be 0.
2518         *
2519         * When query_id == DRM_I915_QUERY_PERF_CONFIG, must be one of the
2520         * following:
2521         *
2522         *      - DRM_I915_QUERY_PERF_CONFIG_LIST
2523         *      - DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID
2524         *      - DRM_I915_QUERY_PERF_CONFIG_FOR_UUID
2525         */
2526        __u32 flags;
2527#define DRM_I915_QUERY_PERF_CONFIG_LIST          1
2528#define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID 2
2529#define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID   3
2530
2531        /**
2532         * @data_ptr:
2533         *
2534         * Data will be written at the location pointed by @data_ptr when the
2535         * value of @length matches the length of the data to be written by the
2536         * kernel.
2537         */
2538        __u64 data_ptr;
2539};
2540
2541/**
2542 * struct drm_i915_query - Supply an array of struct drm_i915_query_item for the
2543 * kernel to fill out.
2544 *
2545 * Note that this is generally a two step process for each struct
2546 * drm_i915_query_item in the array:
2547 *
2548 * 1. Call the DRM_IOCTL_I915_QUERY, giving it our array of struct
2549 *    drm_i915_query_item, with &drm_i915_query_item.length set to zero. The
2550 *    kernel will then fill in the size, in bytes, which tells userspace how
2551 *    memory it needs to allocate for the blob(say for an array of properties).
2552 *
2553 * 2. Next we call DRM_IOCTL_I915_QUERY again, this time with the
2554 *    &drm_i915_query_item.data_ptr equal to our newly allocated blob. Note that
2555 *    the &drm_i915_query_item.length should still be the same as what the
2556 *    kernel previously set. At this point the kernel can fill in the blob.
2557 *
2558 * Note that for some query items it can make sense for userspace to just pass
2559 * in a buffer/blob equal to or larger than the required size. In this case only
2560 * a single ioctl call is needed. For some smaller query items this can work
2561 * quite well.
2562 *
2563 */
2564struct drm_i915_query {
2565        /** @num_items: The number of elements in the @items_ptr array */
2566        __u32 num_items;
2567
2568        /**
2569         * @flags: Unused for now. Must be cleared to zero.
2570         */
2571        __u32 flags;
2572
2573        /**
2574         * @items_ptr:
2575         *
2576         * Pointer to an array of struct drm_i915_query_item. The number of
2577         * array elements is @num_items.
2578         */
2579        __u64 items_ptr;
2580};
2581
2582/*
2583 * Data written by the kernel with query DRM_I915_QUERY_TOPOLOGY_INFO :
2584 *
2585 * data: contains the 3 pieces of information :
2586 *
2587 * - the slice mask with one bit per slice telling whether a slice is
2588 *   available. The availability of slice X can be queried with the following
2589 *   formula :
2590 *
2591 *           (data[X / 8] >> (X % 8)) & 1
2592 *
2593 * - the subslice mask for each slice with one bit per subslice telling
2594 *   whether a subslice is available. Gen12 has dual-subslices, which are
2595 *   similar to two gen11 subslices. For gen12, this array represents dual-
2596 *   subslices. The availability of subslice Y in slice X can be queried
2597 *   with the following formula :
2598 *
2599 *           (data[subslice_offset +
2600 *                 X * subslice_stride +
2601 *                 Y / 8] >> (Y % 8)) & 1
2602 *
2603 * - the EU mask for each subslice in each slice with one bit per EU telling
2604 *   whether an EU is available. The availability of EU Z in subslice Y in
2605 *   slice X can be queried with the following formula :
2606 *
2607 *           (data[eu_offset +
2608 *                 (X * max_subslices + Y) * eu_stride +
2609 *                 Z / 8] >> (Z % 8)) & 1
2610 */
2611struct drm_i915_query_topology_info {
2612        /*
2613         * Unused for now. Must be cleared to zero.
2614         */
2615        __u16 flags;
2616
2617        __u16 max_slices;
2618        __u16 max_subslices;
2619        __u16 max_eus_per_subslice;
2620
2621        /*
2622         * Offset in data[] at which the subslice masks are stored.
2623         */
2624        __u16 subslice_offset;
2625
2626        /*
2627         * Stride at which each of the subslice masks for each slice are
2628         * stored.
2629         */
2630        __u16 subslice_stride;
2631
2632        /*
2633         * Offset in data[] at which the EU masks are stored.
2634         */
2635        __u16 eu_offset;
2636
2637        /*
2638         * Stride at which each of the EU masks for each subslice are stored.
2639         */
2640        __u16 eu_stride;
2641
2642        __u8 data[];
2643};
2644
2645/**
2646 * DOC: Engine Discovery uAPI
2647 *
2648 * Engine discovery uAPI is a way of enumerating physical engines present in a
2649 * GPU associated with an open i915 DRM file descriptor. This supersedes the old
2650 * way of using `DRM_IOCTL_I915_GETPARAM` and engine identifiers like
2651 * `I915_PARAM_HAS_BLT`.
2652 *
2653 * The need for this interface came starting with Icelake and newer GPUs, which
2654 * started to establish a pattern of having multiple engines of a same class,
2655 * where not all instances were always completely functionally equivalent.
2656 *
2657 * Entry point for this uapi is `DRM_IOCTL_I915_QUERY` with the
2658 * `DRM_I915_QUERY_ENGINE_INFO` as the queried item id.
2659 *
2660 * Example for getting the list of engines:
2661 *
2662 * .. code-block:: C
2663 *
2664 *      struct drm_i915_query_engine_info *info;
2665 *      struct drm_i915_query_item item = {
2666 *              .query_id = DRM_I915_QUERY_ENGINE_INFO;
2667 *      };
2668 *      struct drm_i915_query query = {
2669 *              .num_items = 1,
2670 *              .items_ptr = (uintptr_t)&item,
2671 *      };
2672 *      int err, i;
2673 *
2674 *      // First query the size of the blob we need, this needs to be large
2675 *      // enough to hold our array of engines. The kernel will fill out the
2676 *      // item.length for us, which is the number of bytes we need.
2677 *      //
2678 *      // Alternatively a large buffer can be allocated straight away enabling
2679 *      // querying in one pass, in which case item.length should contain the
2680 *      // length of the provided buffer.
2681 *      err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
2682 *      if (err) ...
2683 *
2684 *      info = calloc(1, item.length);
2685 *      // Now that we allocated the required number of bytes, we call the ioctl
2686 *      // again, this time with the data_ptr pointing to our newly allocated
2687 *      // blob, which the kernel can then populate with info on all engines.
2688 *      item.data_ptr = (uintptr_t)&info,
2689 *
2690 *      err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
2691 *      if (err) ...
2692 *
2693 *      // We can now access each engine in the array
2694 *      for (i = 0; i < info->num_engines; i++) {
2695 *              struct drm_i915_engine_info einfo = info->engines[i];
2696 *              u16 class = einfo.engine.class;
2697 *              u16 instance = einfo.engine.instance;
2698 *              ....
2699 *      }
2700 *
2701 *      free(info);
2702 *
2703 * Each of the enumerated engines, apart from being defined by its class and
2704 * instance (see `struct i915_engine_class_instance`), also can have flags and
2705 * capabilities defined as documented in i915_drm.h.
2706 *
2707 * For instance video engines which support HEVC encoding will have the
2708 * `I915_VIDEO_CLASS_CAPABILITY_HEVC` capability bit set.
2709 *
2710 * Engine discovery only fully comes to its own when combined with the new way
2711 * of addressing engines when submitting batch buffers using contexts with
2712 * engine maps configured.
2713 */
2714
2715/**
2716 * struct drm_i915_engine_info
2717 *
2718 * Describes one engine and it's capabilities as known to the driver.
2719 */
2720struct drm_i915_engine_info {
2721        /** @engine: Engine class and instance. */
2722        struct i915_engine_class_instance engine;
2723
2724        /** @rsvd0: Reserved field. */
2725        __u32 rsvd0;
2726
2727        /** @flags: Engine flags. */
2728        __u64 flags;
2729
2730        /** @capabilities: Capabilities of this engine. */
2731        __u64 capabilities;
2732#define I915_VIDEO_CLASS_CAPABILITY_HEVC                (1 << 0)
2733#define I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC     (1 << 1)
2734
2735        /** @rsvd1: Reserved fields. */
2736        __u64 rsvd1[4];
2737};
2738
2739/**
2740 * struct drm_i915_query_engine_info
2741 *
2742 * Engine info query enumerates all engines known to the driver by filling in
2743 * an array of struct drm_i915_engine_info structures.
2744 */
2745struct drm_i915_query_engine_info {
2746        /** @num_engines: Number of struct drm_i915_engine_info structs following. */
2747        __u32 num_engines;
2748
2749        /** @rsvd: MBZ */
2750        __u32 rsvd[3];
2751
2752        /** @engines: Marker for drm_i915_engine_info structures. */
2753        struct drm_i915_engine_info engines[];
2754};
2755
2756/*
2757 * Data written by the kernel with query DRM_I915_QUERY_PERF_CONFIG.
2758 */
2759struct drm_i915_query_perf_config {
2760        union {
2761                /*
2762                 * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_LIST, i915 sets
2763                 * this fields to the number of configurations available.
2764                 */
2765                __u64 n_configs;
2766
2767                /*
2768                 * When query_id == DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID,
2769                 * i915 will use the value in this field as configuration
2770                 * identifier to decide what data to write into config_ptr.
2771                 */
2772                __u64 config;
2773
2774                /*
2775                 * When query_id == DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID,
2776                 * i915 will use the value in this field as configuration
2777                 * identifier to decide what data to write into config_ptr.
2778                 *
2779                 * String formatted like "%08x-%04x-%04x-%04x-%012x"
2780                 */
2781                char uuid[36];
2782        };
2783
2784        /*
2785         * Unused for now. Must be cleared to zero.
2786         */
2787        __u32 flags;
2788
2789        /*
2790         * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_LIST, i915 will
2791         * write an array of __u64 of configuration identifiers.
2792         *
2793         * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_DATA, i915 will
2794         * write a struct drm_i915_perf_oa_config. If the following fields of
2795         * drm_i915_perf_oa_config are set not set to 0, i915 will write into
2796         * the associated pointers the values of submitted when the
2797         * configuration was created :
2798         *
2799         *         - n_mux_regs
2800         *         - n_boolean_regs
2801         *         - n_flex_regs
2802         */
2803        __u8 data[];
2804};
2805
2806/**
2807 * enum drm_i915_gem_memory_class - Supported memory classes
2808 */
2809enum drm_i915_gem_memory_class {
2810        /** @I915_MEMORY_CLASS_SYSTEM: System memory */
2811        I915_MEMORY_CLASS_SYSTEM = 0,
2812        /** @I915_MEMORY_CLASS_DEVICE: Device local-memory */
2813        I915_MEMORY_CLASS_DEVICE,
2814};
2815
2816/**
2817 * struct drm_i915_gem_memory_class_instance - Identify particular memory region
2818 */
2819struct drm_i915_gem_memory_class_instance {
2820        /** @memory_class: See enum drm_i915_gem_memory_class */
2821        __u16 memory_class;
2822
2823        /** @memory_instance: Which instance */
2824        __u16 memory_instance;
2825};
2826
2827/**
2828 * struct drm_i915_memory_region_info - Describes one region as known to the
2829 * driver.
2830 *
2831 * Note that we reserve some stuff here for potential future work. As an example
2832 * we might want expose the capabilities for a given region, which could include
2833 * things like if the region is CPU mappable/accessible, what are the supported
2834 * mapping types etc.
2835 *
2836 * Note that to extend struct drm_i915_memory_region_info and struct
2837 * drm_i915_query_memory_regions in the future the plan is to do the following:
2838 *
2839 * .. code-block:: C
2840 *
2841 *      struct drm_i915_memory_region_info {
2842 *              struct drm_i915_gem_memory_class_instance region;
2843 *              union {
2844 *                      __u32 rsvd0;
2845 *                      __u32 new_thing1;
2846 *              };
2847 *              ...
2848 *              union {
2849 *                      __u64 rsvd1[8];
2850 *                      struct {
2851 *                              __u64 new_thing2;
2852 *                              __u64 new_thing3;
2853 *                              ...
2854 *                      };
2855 *              };
2856 *      };
2857 *
2858 * With this things should remain source compatible between versions for
2859 * userspace, even as we add new fields.
2860 *
2861 * Note this is using both struct drm_i915_query_item and struct drm_i915_query.
2862 * For this new query we are adding the new query id DRM_I915_QUERY_MEMORY_REGIONS
2863 * at &drm_i915_query_item.query_id.
2864 */
2865struct drm_i915_memory_region_info {
2866        /** @region: The class:instance pair encoding */
2867        struct drm_i915_gem_memory_class_instance region;
2868
2869        /** @rsvd0: MBZ */
2870        __u32 rsvd0;
2871
2872        /** @probed_size: Memory probed by the driver (-1 = unknown) */
2873        __u64 probed_size;
2874
2875        /** @unallocated_size: Estimate of memory remaining (-1 = unknown) */
2876        __u64 unallocated_size;
2877
2878        /** @rsvd1: MBZ */
2879        __u64 rsvd1[8];
2880};
2881
2882/**
2883 * struct drm_i915_query_memory_regions
2884 *
2885 * The region info query enumerates all regions known to the driver by filling
2886 * in an array of struct drm_i915_memory_region_info structures.
2887 *
2888 * Example for getting the list of supported regions:
2889 *
2890 * .. code-block:: C
2891 *
2892 *      struct drm_i915_query_memory_regions *info;
2893 *      struct drm_i915_query_item item = {
2894 *              .query_id = DRM_I915_QUERY_MEMORY_REGIONS;
2895 *      };
2896 *      struct drm_i915_query query = {
2897 *              .num_items = 1,
2898 *              .items_ptr = (uintptr_t)&item,
2899 *      };
2900 *      int err, i;
2901 *
2902 *      // First query the size of the blob we need, this needs to be large
2903 *      // enough to hold our array of regions. The kernel will fill out the
2904 *      // item.length for us, which is the number of bytes we need.
2905 *      err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
2906 *      if (err) ...
2907 *
2908 *      info = calloc(1, item.length);
2909 *      // Now that we allocated the required number of bytes, we call the ioctl
2910 *      // again, this time with the data_ptr pointing to our newly allocated
2911 *      // blob, which the kernel can then populate with the all the region info.
2912 *      item.data_ptr = (uintptr_t)&info,
2913 *
2914 *      err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
2915 *      if (err) ...
2916 *
2917 *      // We can now access each region in the array
2918 *      for (i = 0; i < info->num_regions; i++) {
2919 *              struct drm_i915_memory_region_info mr = info->regions[i];
2920 *              u16 class = mr.region.class;
2921 *              u16 instance = mr.region.instance;
2922 *
2923 *              ....
2924 *      }
2925 *
2926 *      free(info);
2927 */
2928struct drm_i915_query_memory_regions {
2929        /** @num_regions: Number of supported regions */
2930        __u32 num_regions;
2931
2932        /** @rsvd: MBZ */
2933        __u32 rsvd[3];
2934
2935        /** @regions: Info about each supported region */
2936        struct drm_i915_memory_region_info regions[];
2937};
2938
2939/**
2940 * struct drm_i915_gem_create_ext - Existing gem_create behaviour, with added
2941 * extension support using struct i915_user_extension.
2942 *
2943 * Note that in the future we want to have our buffer flags here, at least for
2944 * the stuff that is immutable. Previously we would have two ioctls, one to
2945 * create the object with gem_create, and another to apply various parameters,
2946 * however this creates some ambiguity for the params which are considered
2947 * immutable. Also in general we're phasing out the various SET/GET ioctls.
2948 */
2949struct drm_i915_gem_create_ext {
2950        /**
2951         * @size: Requested size for the object.
2952         *
2953         * The (page-aligned) allocated size for the object will be returned.
2954         *
2955         * Note that for some devices we have might have further minimum
2956         * page-size restrictions(larger than 4K), like for device local-memory.
2957         * However in general the final size here should always reflect any
2958         * rounding up, if for example using the I915_GEM_CREATE_EXT_MEMORY_REGIONS
2959         * extension to place the object in device local-memory.
2960         */
2961        __u64 size;
2962        /**
2963         * @handle: Returned handle for the object.
2964         *
2965         * Object handles are nonzero.
2966         */
2967        __u32 handle;
2968        /** @flags: MBZ */
2969        __u32 flags;
2970        /**
2971         * @extensions: The chain of extensions to apply to this object.
2972         *
2973         * This will be useful in the future when we need to support several
2974         * different extensions, and we need to apply more than one when
2975         * creating the object. See struct i915_user_extension.
2976         *
2977         * If we don't supply any extensions then we get the same old gem_create
2978         * behaviour.
2979         *
2980         * For I915_GEM_CREATE_EXT_MEMORY_REGIONS usage see
2981         * struct drm_i915_gem_create_ext_memory_regions.
2982         */
2983#define I915_GEM_CREATE_EXT_MEMORY_REGIONS 0
2984        __u64 extensions;
2985};
2986
2987/**
2988 * struct drm_i915_gem_create_ext_memory_regions - The
2989 * I915_GEM_CREATE_EXT_MEMORY_REGIONS extension.
2990 *
2991 * Set the object with the desired set of placements/regions in priority
2992 * order. Each entry must be unique and supported by the device.
2993 *
2994 * This is provided as an array of struct drm_i915_gem_memory_class_instance, or
2995 * an equivalent layout of class:instance pair encodings. See struct
2996 * drm_i915_query_memory_regions and DRM_I915_QUERY_MEMORY_REGIONS for how to
2997 * query the supported regions for a device.
2998 *
2999 * As an example, on discrete devices, if we wish to set the placement as
3000 * device local-memory we can do something like:
3001 *
3002 * .. code-block:: C
3003 *
3004 *      struct drm_i915_gem_memory_class_instance region_lmem = {
3005 *              .memory_class = I915_MEMORY_CLASS_DEVICE,
3006 *              .memory_instance = 0,
3007 *      };
3008 *      struct drm_i915_gem_create_ext_memory_regions regions = {
3009 *              .base = { .name = I915_GEM_CREATE_EXT_MEMORY_REGIONS },
3010 *              .regions = (uintptr_t)&region_lmem,
3011 *              .num_regions = 1,
3012 *      };
3013 *      struct drm_i915_gem_create_ext create_ext = {
3014 *              .size = 16 * PAGE_SIZE,
3015 *              .extensions = (uintptr_t)&regions,
3016 *      };
3017 *
3018 *      int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext);
3019 *      if (err) ...
3020 *
3021 * At which point we get the object handle in &drm_i915_gem_create_ext.handle,
3022 * along with the final object size in &drm_i915_gem_create_ext.size, which
3023 * should account for any rounding up, if required.
3024 */
3025struct drm_i915_gem_create_ext_memory_regions {
3026        /** @base: Extension link. See struct i915_user_extension. */
3027        struct i915_user_extension base;
3028
3029        /** @pad: MBZ */
3030        __u32 pad;
3031        /** @num_regions: Number of elements in the @regions array. */
3032        __u32 num_regions;
3033        /**
3034         * @regions: The regions/placements array.
3035         *
3036         * An array of struct drm_i915_gem_memory_class_instance.
3037         */
3038        __u64 regions;
3039};
3040
3041#if defined(__cplusplus)
3042}
3043#endif
3044
3045#endif /* _UAPI_I915_DRM_H_ */
3046