linux/tools/perf/builtin-timechart.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * builtin-timechart.c - make an svg timechart of system activity
   4 *
   5 * (C) Copyright 2009 Intel Corporation
   6 *
   7 * Authors:
   8 *     Arjan van de Ven <arjan@linux.intel.com>
   9 */
  10
  11#include <errno.h>
  12#include <inttypes.h>
  13
  14#include "builtin.h"
  15#include "util/color.h"
  16#include <linux/list.h>
  17#include "util/evlist.h" // for struct evsel_str_handler
  18#include "util/evsel.h"
  19#include <linux/kernel.h>
  20#include <linux/rbtree.h>
  21#include <linux/time64.h>
  22#include <linux/zalloc.h>
  23#include "util/symbol.h"
  24#include "util/thread.h"
  25#include "util/callchain.h"
  26
  27#include "perf.h"
  28#include "util/header.h"
  29#include <subcmd/pager.h>
  30#include <subcmd/parse-options.h>
  31#include "util/parse-events.h"
  32#include "util/event.h"
  33#include "util/session.h"
  34#include "util/svghelper.h"
  35#include "util/tool.h"
  36#include "util/data.h"
  37#include "util/debug.h"
  38#include <linux/err.h>
  39
  40#ifdef LACKS_OPEN_MEMSTREAM_PROTOTYPE
  41FILE *open_memstream(char **ptr, size_t *sizeloc);
  42#endif
  43
  44#define SUPPORT_OLD_POWER_EVENTS 1
  45#define PWR_EVENT_EXIT -1
  46
  47struct per_pid;
  48struct power_event;
  49struct wake_event;
  50
  51struct timechart {
  52        struct perf_tool        tool;
  53        struct per_pid          *all_data;
  54        struct power_event      *power_events;
  55        struct wake_event       *wake_events;
  56        int                     proc_num;
  57        unsigned int            numcpus;
  58        u64                     min_freq,       /* Lowest CPU frequency seen */
  59                                max_freq,       /* Highest CPU frequency seen */
  60                                turbo_frequency,
  61                                first_time, last_time;
  62        bool                    power_only,
  63                                tasks_only,
  64                                with_backtrace,
  65                                topology;
  66        bool                    force;
  67        /* IO related settings */
  68        bool                    io_only,
  69                                skip_eagain;
  70        u64                     io_events;
  71        u64                     min_time,
  72                                merge_dist;
  73};
  74
  75struct per_pidcomm;
  76struct cpu_sample;
  77struct io_sample;
  78
  79/*
  80 * Datastructure layout:
  81 * We keep an list of "pid"s, matching the kernels notion of a task struct.
  82 * Each "pid" entry, has a list of "comm"s.
  83 *      this is because we want to track different programs different, while
  84 *      exec will reuse the original pid (by design).
  85 * Each comm has a list of samples that will be used to draw
  86 * final graph.
  87 */
  88
  89struct per_pid {
  90        struct per_pid *next;
  91
  92        int             pid;
  93        int             ppid;
  94
  95        u64             start_time;
  96        u64             end_time;
  97        u64             total_time;
  98        u64             total_bytes;
  99        int             display;
 100
 101        struct per_pidcomm *all;
 102        struct per_pidcomm *current;
 103};
 104
 105
 106struct per_pidcomm {
 107        struct per_pidcomm *next;
 108
 109        u64             start_time;
 110        u64             end_time;
 111        u64             total_time;
 112        u64             max_bytes;
 113        u64             total_bytes;
 114
 115        int             Y;
 116        int             display;
 117
 118        long            state;
 119        u64             state_since;
 120
 121        char            *comm;
 122
 123        struct cpu_sample *samples;
 124        struct io_sample  *io_samples;
 125};
 126
 127struct sample_wrapper {
 128        struct sample_wrapper *next;
 129
 130        u64             timestamp;
 131        unsigned char   data[];
 132};
 133
 134#define TYPE_NONE       0
 135#define TYPE_RUNNING    1
 136#define TYPE_WAITING    2
 137#define TYPE_BLOCKED    3
 138
 139struct cpu_sample {
 140        struct cpu_sample *next;
 141
 142        u64 start_time;
 143        u64 end_time;
 144        int type;
 145        int cpu;
 146        const char *backtrace;
 147};
 148
 149enum {
 150        IOTYPE_READ,
 151        IOTYPE_WRITE,
 152        IOTYPE_SYNC,
 153        IOTYPE_TX,
 154        IOTYPE_RX,
 155        IOTYPE_POLL,
 156};
 157
 158struct io_sample {
 159        struct io_sample *next;
 160
 161        u64 start_time;
 162        u64 end_time;
 163        u64 bytes;
 164        int type;
 165        int fd;
 166        int err;
 167        int merges;
 168};
 169
 170#define CSTATE 1
 171#define PSTATE 2
 172
 173struct power_event {
 174        struct power_event *next;
 175        int type;
 176        int state;
 177        u64 start_time;
 178        u64 end_time;
 179        int cpu;
 180};
 181
 182struct wake_event {
 183        struct wake_event *next;
 184        int waker;
 185        int wakee;
 186        u64 time;
 187        const char *backtrace;
 188};
 189
 190struct process_filter {
 191        char                    *name;
 192        int                     pid;
 193        struct process_filter   *next;
 194};
 195
 196static struct process_filter *process_filter;
 197
 198
 199static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
 200{
 201        struct per_pid *cursor = tchart->all_data;
 202
 203        while (cursor) {
 204                if (cursor->pid == pid)
 205                        return cursor;
 206                cursor = cursor->next;
 207        }
 208        cursor = zalloc(sizeof(*cursor));
 209        assert(cursor != NULL);
 210        cursor->pid = pid;
 211        cursor->next = tchart->all_data;
 212        tchart->all_data = cursor;
 213        return cursor;
 214}
 215
 216static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
 217{
 218        struct per_pid *p;
 219        struct per_pidcomm *c;
 220        p = find_create_pid(tchart, pid);
 221        c = p->all;
 222        while (c) {
 223                if (c->comm && strcmp(c->comm, comm) == 0) {
 224                        p->current = c;
 225                        return;
 226                }
 227                if (!c->comm) {
 228                        c->comm = strdup(comm);
 229                        p->current = c;
 230                        return;
 231                }
 232                c = c->next;
 233        }
 234        c = zalloc(sizeof(*c));
 235        assert(c != NULL);
 236        c->comm = strdup(comm);
 237        p->current = c;
 238        c->next = p->all;
 239        p->all = c;
 240}
 241
 242static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
 243{
 244        struct per_pid *p, *pp;
 245        p = find_create_pid(tchart, pid);
 246        pp = find_create_pid(tchart, ppid);
 247        p->ppid = ppid;
 248        if (pp->current && pp->current->comm && !p->current)
 249                pid_set_comm(tchart, pid, pp->current->comm);
 250
 251        p->start_time = timestamp;
 252        if (p->current && !p->current->start_time) {
 253                p->current->start_time = timestamp;
 254                p->current->state_since = timestamp;
 255        }
 256}
 257
 258static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
 259{
 260        struct per_pid *p;
 261        p = find_create_pid(tchart, pid);
 262        p->end_time = timestamp;
 263        if (p->current)
 264                p->current->end_time = timestamp;
 265}
 266
 267static void pid_put_sample(struct timechart *tchart, int pid, int type,
 268                           unsigned int cpu, u64 start, u64 end,
 269                           const char *backtrace)
 270{
 271        struct per_pid *p;
 272        struct per_pidcomm *c;
 273        struct cpu_sample *sample;
 274
 275        p = find_create_pid(tchart, pid);
 276        c = p->current;
 277        if (!c) {
 278                c = zalloc(sizeof(*c));
 279                assert(c != NULL);
 280                p->current = c;
 281                c->next = p->all;
 282                p->all = c;
 283        }
 284
 285        sample = zalloc(sizeof(*sample));
 286        assert(sample != NULL);
 287        sample->start_time = start;
 288        sample->end_time = end;
 289        sample->type = type;
 290        sample->next = c->samples;
 291        sample->cpu = cpu;
 292        sample->backtrace = backtrace;
 293        c->samples = sample;
 294
 295        if (sample->type == TYPE_RUNNING && end > start && start > 0) {
 296                c->total_time += (end-start);
 297                p->total_time += (end-start);
 298        }
 299
 300        if (c->start_time == 0 || c->start_time > start)
 301                c->start_time = start;
 302        if (p->start_time == 0 || p->start_time > start)
 303                p->start_time = start;
 304}
 305
 306#define MAX_CPUS 4096
 307
 308static u64 cpus_cstate_start_times[MAX_CPUS];
 309static int cpus_cstate_state[MAX_CPUS];
 310static u64 cpus_pstate_start_times[MAX_CPUS];
 311static u64 cpus_pstate_state[MAX_CPUS];
 312
 313static int process_comm_event(struct perf_tool *tool,
 314                              union perf_event *event,
 315                              struct perf_sample *sample __maybe_unused,
 316                              struct machine *machine __maybe_unused)
 317{
 318        struct timechart *tchart = container_of(tool, struct timechart, tool);
 319        pid_set_comm(tchart, event->comm.tid, event->comm.comm);
 320        return 0;
 321}
 322
 323static int process_fork_event(struct perf_tool *tool,
 324                              union perf_event *event,
 325                              struct perf_sample *sample __maybe_unused,
 326                              struct machine *machine __maybe_unused)
 327{
 328        struct timechart *tchart = container_of(tool, struct timechart, tool);
 329        pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
 330        return 0;
 331}
 332
 333static int process_exit_event(struct perf_tool *tool,
 334                              union perf_event *event,
 335                              struct perf_sample *sample __maybe_unused,
 336                              struct machine *machine __maybe_unused)
 337{
 338        struct timechart *tchart = container_of(tool, struct timechart, tool);
 339        pid_exit(tchart, event->fork.pid, event->fork.time);
 340        return 0;
 341}
 342
 343#ifdef SUPPORT_OLD_POWER_EVENTS
 344static int use_old_power_events;
 345#endif
 346
 347static void c_state_start(int cpu, u64 timestamp, int state)
 348{
 349        cpus_cstate_start_times[cpu] = timestamp;
 350        cpus_cstate_state[cpu] = state;
 351}
 352
 353static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
 354{
 355        struct power_event *pwr = zalloc(sizeof(*pwr));
 356
 357        if (!pwr)
 358                return;
 359
 360        pwr->state = cpus_cstate_state[cpu];
 361        pwr->start_time = cpus_cstate_start_times[cpu];
 362        pwr->end_time = timestamp;
 363        pwr->cpu = cpu;
 364        pwr->type = CSTATE;
 365        pwr->next = tchart->power_events;
 366
 367        tchart->power_events = pwr;
 368}
 369
 370static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
 371{
 372        struct power_event *pwr;
 373
 374        if (new_freq > 8000000) /* detect invalid data */
 375                return;
 376
 377        pwr = zalloc(sizeof(*pwr));
 378        if (!pwr)
 379                return;
 380
 381        pwr->state = cpus_pstate_state[cpu];
 382        pwr->start_time = cpus_pstate_start_times[cpu];
 383        pwr->end_time = timestamp;
 384        pwr->cpu = cpu;
 385        pwr->type = PSTATE;
 386        pwr->next = tchart->power_events;
 387
 388        if (!pwr->start_time)
 389                pwr->start_time = tchart->first_time;
 390
 391        tchart->power_events = pwr;
 392
 393        cpus_pstate_state[cpu] = new_freq;
 394        cpus_pstate_start_times[cpu] = timestamp;
 395
 396        if ((u64)new_freq > tchart->max_freq)
 397                tchart->max_freq = new_freq;
 398
 399        if (new_freq < tchart->min_freq || tchart->min_freq == 0)
 400                tchart->min_freq = new_freq;
 401
 402        if (new_freq == tchart->max_freq - 1000)
 403                tchart->turbo_frequency = tchart->max_freq;
 404}
 405
 406static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
 407                         int waker, int wakee, u8 flags, const char *backtrace)
 408{
 409        struct per_pid *p;
 410        struct wake_event *we = zalloc(sizeof(*we));
 411
 412        if (!we)
 413                return;
 414
 415        we->time = timestamp;
 416        we->waker = waker;
 417        we->backtrace = backtrace;
 418
 419        if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
 420                we->waker = -1;
 421
 422        we->wakee = wakee;
 423        we->next = tchart->wake_events;
 424        tchart->wake_events = we;
 425        p = find_create_pid(tchart, we->wakee);
 426
 427        if (p && p->current && p->current->state == TYPE_NONE) {
 428                p->current->state_since = timestamp;
 429                p->current->state = TYPE_WAITING;
 430        }
 431        if (p && p->current && p->current->state == TYPE_BLOCKED) {
 432                pid_put_sample(tchart, p->pid, p->current->state, cpu,
 433                               p->current->state_since, timestamp, NULL);
 434                p->current->state_since = timestamp;
 435                p->current->state = TYPE_WAITING;
 436        }
 437}
 438
 439static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
 440                         int prev_pid, int next_pid, u64 prev_state,
 441                         const char *backtrace)
 442{
 443        struct per_pid *p = NULL, *prev_p;
 444
 445        prev_p = find_create_pid(tchart, prev_pid);
 446
 447        p = find_create_pid(tchart, next_pid);
 448
 449        if (prev_p->current && prev_p->current->state != TYPE_NONE)
 450                pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
 451                               prev_p->current->state_since, timestamp,
 452                               backtrace);
 453        if (p && p->current) {
 454                if (p->current->state != TYPE_NONE)
 455                        pid_put_sample(tchart, next_pid, p->current->state, cpu,
 456                                       p->current->state_since, timestamp,
 457                                       backtrace);
 458
 459                p->current->state_since = timestamp;
 460                p->current->state = TYPE_RUNNING;
 461        }
 462
 463        if (prev_p->current) {
 464                prev_p->current->state = TYPE_NONE;
 465                prev_p->current->state_since = timestamp;
 466                if (prev_state & 2)
 467                        prev_p->current->state = TYPE_BLOCKED;
 468                if (prev_state == 0)
 469                        prev_p->current->state = TYPE_WAITING;
 470        }
 471}
 472
 473static const char *cat_backtrace(union perf_event *event,
 474                                 struct perf_sample *sample,
 475                                 struct machine *machine)
 476{
 477        struct addr_location al;
 478        unsigned int i;
 479        char *p = NULL;
 480        size_t p_len;
 481        u8 cpumode = PERF_RECORD_MISC_USER;
 482        struct addr_location tal;
 483        struct ip_callchain *chain = sample->callchain;
 484        FILE *f = open_memstream(&p, &p_len);
 485
 486        if (!f) {
 487                perror("open_memstream error");
 488                return NULL;
 489        }
 490
 491        if (!chain)
 492                goto exit;
 493
 494        if (machine__resolve(machine, &al, sample) < 0) {
 495                fprintf(stderr, "problem processing %d event, skipping it.\n",
 496                        event->header.type);
 497                goto exit;
 498        }
 499
 500        for (i = 0; i < chain->nr; i++) {
 501                u64 ip;
 502
 503                if (callchain_param.order == ORDER_CALLEE)
 504                        ip = chain->ips[i];
 505                else
 506                        ip = chain->ips[chain->nr - i - 1];
 507
 508                if (ip >= PERF_CONTEXT_MAX) {
 509                        switch (ip) {
 510                        case PERF_CONTEXT_HV:
 511                                cpumode = PERF_RECORD_MISC_HYPERVISOR;
 512                                break;
 513                        case PERF_CONTEXT_KERNEL:
 514                                cpumode = PERF_RECORD_MISC_KERNEL;
 515                                break;
 516                        case PERF_CONTEXT_USER:
 517                                cpumode = PERF_RECORD_MISC_USER;
 518                                break;
 519                        default:
 520                                pr_debug("invalid callchain context: "
 521                                         "%"PRId64"\n", (s64) ip);
 522
 523                                /*
 524                                 * It seems the callchain is corrupted.
 525                                 * Discard all.
 526                                 */
 527                                zfree(&p);
 528                                goto exit_put;
 529                        }
 530                        continue;
 531                }
 532
 533                tal.filtered = 0;
 534                if (thread__find_symbol(al.thread, cpumode, ip, &tal))
 535                        fprintf(f, "..... %016" PRIx64 " %s\n", ip, tal.sym->name);
 536                else
 537                        fprintf(f, "..... %016" PRIx64 "\n", ip);
 538        }
 539exit_put:
 540        addr_location__put(&al);
 541exit:
 542        fclose(f);
 543
 544        return p;
 545}
 546
 547typedef int (*tracepoint_handler)(struct timechart *tchart,
 548                                  struct evsel *evsel,
 549                                  struct perf_sample *sample,
 550                                  const char *backtrace);
 551
 552static int process_sample_event(struct perf_tool *tool,
 553                                union perf_event *event,
 554                                struct perf_sample *sample,
 555                                struct evsel *evsel,
 556                                struct machine *machine)
 557{
 558        struct timechart *tchart = container_of(tool, struct timechart, tool);
 559
 560        if (evsel->core.attr.sample_type & PERF_SAMPLE_TIME) {
 561                if (!tchart->first_time || tchart->first_time > sample->time)
 562                        tchart->first_time = sample->time;
 563                if (tchart->last_time < sample->time)
 564                        tchart->last_time = sample->time;
 565        }
 566
 567        if (evsel->handler != NULL) {
 568                tracepoint_handler f = evsel->handler;
 569                return f(tchart, evsel, sample,
 570                         cat_backtrace(event, sample, machine));
 571        }
 572
 573        return 0;
 574}
 575
 576static int
 577process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
 578                        struct evsel *evsel,
 579                        struct perf_sample *sample,
 580                        const char *backtrace __maybe_unused)
 581{
 582        u32 state  = evsel__intval(evsel, sample, "state");
 583        u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
 584
 585        if (state == (u32)PWR_EVENT_EXIT)
 586                c_state_end(tchart, cpu_id, sample->time);
 587        else
 588                c_state_start(cpu_id, sample->time, state);
 589        return 0;
 590}
 591
 592static int
 593process_sample_cpu_frequency(struct timechart *tchart,
 594                             struct evsel *evsel,
 595                             struct perf_sample *sample,
 596                             const char *backtrace __maybe_unused)
 597{
 598        u32 state  = evsel__intval(evsel, sample, "state");
 599        u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
 600
 601        p_state_change(tchart, cpu_id, sample->time, state);
 602        return 0;
 603}
 604
 605static int
 606process_sample_sched_wakeup(struct timechart *tchart,
 607                            struct evsel *evsel,
 608                            struct perf_sample *sample,
 609                            const char *backtrace)
 610{
 611        u8 flags  = evsel__intval(evsel, sample, "common_flags");
 612        int waker = evsel__intval(evsel, sample, "common_pid");
 613        int wakee = evsel__intval(evsel, sample, "pid");
 614
 615        sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
 616        return 0;
 617}
 618
 619static int
 620process_sample_sched_switch(struct timechart *tchart,
 621                            struct evsel *evsel,
 622                            struct perf_sample *sample,
 623                            const char *backtrace)
 624{
 625        int prev_pid   = evsel__intval(evsel, sample, "prev_pid");
 626        int next_pid   = evsel__intval(evsel, sample, "next_pid");
 627        u64 prev_state = evsel__intval(evsel, sample, "prev_state");
 628
 629        sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
 630                     prev_state, backtrace);
 631        return 0;
 632}
 633
 634#ifdef SUPPORT_OLD_POWER_EVENTS
 635static int
 636process_sample_power_start(struct timechart *tchart __maybe_unused,
 637                           struct evsel *evsel,
 638                           struct perf_sample *sample,
 639                           const char *backtrace __maybe_unused)
 640{
 641        u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
 642        u64 value  = evsel__intval(evsel, sample, "value");
 643
 644        c_state_start(cpu_id, sample->time, value);
 645        return 0;
 646}
 647
 648static int
 649process_sample_power_end(struct timechart *tchart,
 650                         struct evsel *evsel __maybe_unused,
 651                         struct perf_sample *sample,
 652                         const char *backtrace __maybe_unused)
 653{
 654        c_state_end(tchart, sample->cpu, sample->time);
 655        return 0;
 656}
 657
 658static int
 659process_sample_power_frequency(struct timechart *tchart,
 660                               struct evsel *evsel,
 661                               struct perf_sample *sample,
 662                               const char *backtrace __maybe_unused)
 663{
 664        u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
 665        u64 value  = evsel__intval(evsel, sample, "value");
 666
 667        p_state_change(tchart, cpu_id, sample->time, value);
 668        return 0;
 669}
 670#endif /* SUPPORT_OLD_POWER_EVENTS */
 671
 672/*
 673 * After the last sample we need to wrap up the current C/P state
 674 * and close out each CPU for these.
 675 */
 676static void end_sample_processing(struct timechart *tchart)
 677{
 678        u64 cpu;
 679        struct power_event *pwr;
 680
 681        for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
 682                /* C state */
 683#if 0
 684                pwr = zalloc(sizeof(*pwr));
 685                if (!pwr)
 686                        return;
 687
 688                pwr->state = cpus_cstate_state[cpu];
 689                pwr->start_time = cpus_cstate_start_times[cpu];
 690                pwr->end_time = tchart->last_time;
 691                pwr->cpu = cpu;
 692                pwr->type = CSTATE;
 693                pwr->next = tchart->power_events;
 694
 695                tchart->power_events = pwr;
 696#endif
 697                /* P state */
 698
 699                pwr = zalloc(sizeof(*pwr));
 700                if (!pwr)
 701                        return;
 702
 703                pwr->state = cpus_pstate_state[cpu];
 704                pwr->start_time = cpus_pstate_start_times[cpu];
 705                pwr->end_time = tchart->last_time;
 706                pwr->cpu = cpu;
 707                pwr->type = PSTATE;
 708                pwr->next = tchart->power_events;
 709
 710                if (!pwr->start_time)
 711                        pwr->start_time = tchart->first_time;
 712                if (!pwr->state)
 713                        pwr->state = tchart->min_freq;
 714                tchart->power_events = pwr;
 715        }
 716}
 717
 718static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
 719                               u64 start, int fd)
 720{
 721        struct per_pid *p = find_create_pid(tchart, pid);
 722        struct per_pidcomm *c = p->current;
 723        struct io_sample *sample;
 724        struct io_sample *prev;
 725
 726        if (!c) {
 727                c = zalloc(sizeof(*c));
 728                if (!c)
 729                        return -ENOMEM;
 730                p->current = c;
 731                c->next = p->all;
 732                p->all = c;
 733        }
 734
 735        prev = c->io_samples;
 736
 737        if (prev && prev->start_time && !prev->end_time) {
 738                pr_warning("Skip invalid start event: "
 739                           "previous event already started!\n");
 740
 741                /* remove previous event that has been started,
 742                 * we are not sure we will ever get an end for it */
 743                c->io_samples = prev->next;
 744                free(prev);
 745                return 0;
 746        }
 747
 748        sample = zalloc(sizeof(*sample));
 749        if (!sample)
 750                return -ENOMEM;
 751        sample->start_time = start;
 752        sample->type = type;
 753        sample->fd = fd;
 754        sample->next = c->io_samples;
 755        c->io_samples = sample;
 756
 757        if (c->start_time == 0 || c->start_time > start)
 758                c->start_time = start;
 759
 760        return 0;
 761}
 762
 763static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
 764                             u64 end, long ret)
 765{
 766        struct per_pid *p = find_create_pid(tchart, pid);
 767        struct per_pidcomm *c = p->current;
 768        struct io_sample *sample, *prev;
 769
 770        if (!c) {
 771                pr_warning("Invalid pidcomm!\n");
 772                return -1;
 773        }
 774
 775        sample = c->io_samples;
 776
 777        if (!sample) /* skip partially captured events */
 778                return 0;
 779
 780        if (sample->end_time) {
 781                pr_warning("Skip invalid end event: "
 782                           "previous event already ended!\n");
 783                return 0;
 784        }
 785
 786        if (sample->type != type) {
 787                pr_warning("Skip invalid end event: invalid event type!\n");
 788                return 0;
 789        }
 790
 791        sample->end_time = end;
 792        prev = sample->next;
 793
 794        /* we want to be able to see small and fast transfers, so make them
 795         * at least min_time long, but don't overlap them */
 796        if (sample->end_time - sample->start_time < tchart->min_time)
 797                sample->end_time = sample->start_time + tchart->min_time;
 798        if (prev && sample->start_time < prev->end_time) {
 799                if (prev->err) /* try to make errors more visible */
 800                        sample->start_time = prev->end_time;
 801                else
 802                        prev->end_time = sample->start_time;
 803        }
 804
 805        if (ret < 0) {
 806                sample->err = ret;
 807        } else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
 808                   type == IOTYPE_TX || type == IOTYPE_RX) {
 809
 810                if ((u64)ret > c->max_bytes)
 811                        c->max_bytes = ret;
 812
 813                c->total_bytes += ret;
 814                p->total_bytes += ret;
 815                sample->bytes = ret;
 816        }
 817
 818        /* merge two requests to make svg smaller and render-friendly */
 819        if (prev &&
 820            prev->type == sample->type &&
 821            prev->err == sample->err &&
 822            prev->fd == sample->fd &&
 823            prev->end_time + tchart->merge_dist >= sample->start_time) {
 824
 825                sample->bytes += prev->bytes;
 826                sample->merges += prev->merges + 1;
 827
 828                sample->start_time = prev->start_time;
 829                sample->next = prev->next;
 830                free(prev);
 831
 832                if (!sample->err && sample->bytes > c->max_bytes)
 833                        c->max_bytes = sample->bytes;
 834        }
 835
 836        tchart->io_events++;
 837
 838        return 0;
 839}
 840
 841static int
 842process_enter_read(struct timechart *tchart,
 843                   struct evsel *evsel,
 844                   struct perf_sample *sample)
 845{
 846        long fd = evsel__intval(evsel, sample, "fd");
 847        return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
 848                                   sample->time, fd);
 849}
 850
 851static int
 852process_exit_read(struct timechart *tchart,
 853                  struct evsel *evsel,
 854                  struct perf_sample *sample)
 855{
 856        long ret = evsel__intval(evsel, sample, "ret");
 857        return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
 858                                 sample->time, ret);
 859}
 860
 861static int
 862process_enter_write(struct timechart *tchart,
 863                    struct evsel *evsel,
 864                    struct perf_sample *sample)
 865{
 866        long fd = evsel__intval(evsel, sample, "fd");
 867        return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
 868                                   sample->time, fd);
 869}
 870
 871static int
 872process_exit_write(struct timechart *tchart,
 873                   struct evsel *evsel,
 874                   struct perf_sample *sample)
 875{
 876        long ret = evsel__intval(evsel, sample, "ret");
 877        return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
 878                                 sample->time, ret);
 879}
 880
 881static int
 882process_enter_sync(struct timechart *tchart,
 883                   struct evsel *evsel,
 884                   struct perf_sample *sample)
 885{
 886        long fd = evsel__intval(evsel, sample, "fd");
 887        return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
 888                                   sample->time, fd);
 889}
 890
 891static int
 892process_exit_sync(struct timechart *tchart,
 893                  struct evsel *evsel,
 894                  struct perf_sample *sample)
 895{
 896        long ret = evsel__intval(evsel, sample, "ret");
 897        return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
 898                                 sample->time, ret);
 899}
 900
 901static int
 902process_enter_tx(struct timechart *tchart,
 903                 struct evsel *evsel,
 904                 struct perf_sample *sample)
 905{
 906        long fd = evsel__intval(evsel, sample, "fd");
 907        return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
 908                                   sample->time, fd);
 909}
 910
 911static int
 912process_exit_tx(struct timechart *tchart,
 913                struct evsel *evsel,
 914                struct perf_sample *sample)
 915{
 916        long ret = evsel__intval(evsel, sample, "ret");
 917        return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
 918                                 sample->time, ret);
 919}
 920
 921static int
 922process_enter_rx(struct timechart *tchart,
 923                 struct evsel *evsel,
 924                 struct perf_sample *sample)
 925{
 926        long fd = evsel__intval(evsel, sample, "fd");
 927        return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
 928                                   sample->time, fd);
 929}
 930
 931static int
 932process_exit_rx(struct timechart *tchart,
 933                struct evsel *evsel,
 934                struct perf_sample *sample)
 935{
 936        long ret = evsel__intval(evsel, sample, "ret");
 937        return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
 938                                 sample->time, ret);
 939}
 940
 941static int
 942process_enter_poll(struct timechart *tchart,
 943                   struct evsel *evsel,
 944                   struct perf_sample *sample)
 945{
 946        long fd = evsel__intval(evsel, sample, "fd");
 947        return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
 948                                   sample->time, fd);
 949}
 950
 951static int
 952process_exit_poll(struct timechart *tchart,
 953                  struct evsel *evsel,
 954                  struct perf_sample *sample)
 955{
 956        long ret = evsel__intval(evsel, sample, "ret");
 957        return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
 958                                 sample->time, ret);
 959}
 960
 961/*
 962 * Sort the pid datastructure
 963 */
 964static void sort_pids(struct timechart *tchart)
 965{
 966        struct per_pid *new_list, *p, *cursor, *prev;
 967        /* sort by ppid first, then by pid, lowest to highest */
 968
 969        new_list = NULL;
 970
 971        while (tchart->all_data) {
 972                p = tchart->all_data;
 973                tchart->all_data = p->next;
 974                p->next = NULL;
 975
 976                if (new_list == NULL) {
 977                        new_list = p;
 978                        p->next = NULL;
 979                        continue;
 980                }
 981                prev = NULL;
 982                cursor = new_list;
 983                while (cursor) {
 984                        if (cursor->ppid > p->ppid ||
 985                                (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
 986                                /* must insert before */
 987                                if (prev) {
 988                                        p->next = prev->next;
 989                                        prev->next = p;
 990                                        cursor = NULL;
 991                                        continue;
 992                                } else {
 993                                        p->next = new_list;
 994                                        new_list = p;
 995                                        cursor = NULL;
 996                                        continue;
 997                                }
 998                        }
 999
1000                        prev = cursor;
1001                        cursor = cursor->next;
1002                        if (!cursor)
1003                                prev->next = p;
1004                }
1005        }
1006        tchart->all_data = new_list;
1007}
1008
1009
1010static void draw_c_p_states(struct timechart *tchart)
1011{
1012        struct power_event *pwr;
1013        pwr = tchart->power_events;
1014
1015        /*
1016         * two pass drawing so that the P state bars are on top of the C state blocks
1017         */
1018        while (pwr) {
1019                if (pwr->type == CSTATE)
1020                        svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1021                pwr = pwr->next;
1022        }
1023
1024        pwr = tchart->power_events;
1025        while (pwr) {
1026                if (pwr->type == PSTATE) {
1027                        if (!pwr->state)
1028                                pwr->state = tchart->min_freq;
1029                        svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1030                }
1031                pwr = pwr->next;
1032        }
1033}
1034
1035static void draw_wakeups(struct timechart *tchart)
1036{
1037        struct wake_event *we;
1038        struct per_pid *p;
1039        struct per_pidcomm *c;
1040
1041        we = tchart->wake_events;
1042        while (we) {
1043                int from = 0, to = 0;
1044                char *task_from = NULL, *task_to = NULL;
1045
1046                /* locate the column of the waker and wakee */
1047                p = tchart->all_data;
1048                while (p) {
1049                        if (p->pid == we->waker || p->pid == we->wakee) {
1050                                c = p->all;
1051                                while (c) {
1052                                        if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1053                                                if (p->pid == we->waker && !from) {
1054                                                        from = c->Y;
1055                                                        task_from = strdup(c->comm);
1056                                                }
1057                                                if (p->pid == we->wakee && !to) {
1058                                                        to = c->Y;
1059                                                        task_to = strdup(c->comm);
1060                                                }
1061                                        }
1062                                        c = c->next;
1063                                }
1064                                c = p->all;
1065                                while (c) {
1066                                        if (p->pid == we->waker && !from) {
1067                                                from = c->Y;
1068                                                task_from = strdup(c->comm);
1069                                        }
1070                                        if (p->pid == we->wakee && !to) {
1071                                                to = c->Y;
1072                                                task_to = strdup(c->comm);
1073                                        }
1074                                        c = c->next;
1075                                }
1076                        }
1077                        p = p->next;
1078                }
1079
1080                if (!task_from) {
1081                        task_from = malloc(40);
1082                        sprintf(task_from, "[%i]", we->waker);
1083                }
1084                if (!task_to) {
1085                        task_to = malloc(40);
1086                        sprintf(task_to, "[%i]", we->wakee);
1087                }
1088
1089                if (we->waker == -1)
1090                        svg_interrupt(we->time, to, we->backtrace);
1091                else if (from && to && abs(from - to) == 1)
1092                        svg_wakeline(we->time, from, to, we->backtrace);
1093                else
1094                        svg_partial_wakeline(we->time, from, task_from, to,
1095                                             task_to, we->backtrace);
1096                we = we->next;
1097
1098                free(task_from);
1099                free(task_to);
1100        }
1101}
1102
1103static void draw_cpu_usage(struct timechart *tchart)
1104{
1105        struct per_pid *p;
1106        struct per_pidcomm *c;
1107        struct cpu_sample *sample;
1108        p = tchart->all_data;
1109        while (p) {
1110                c = p->all;
1111                while (c) {
1112                        sample = c->samples;
1113                        while (sample) {
1114                                if (sample->type == TYPE_RUNNING) {
1115                                        svg_process(sample->cpu,
1116                                                    sample->start_time,
1117                                                    sample->end_time,
1118                                                    p->pid,
1119                                                    c->comm,
1120                                                    sample->backtrace);
1121                                }
1122
1123                                sample = sample->next;
1124                        }
1125                        c = c->next;
1126                }
1127                p = p->next;
1128        }
1129}
1130
1131static void draw_io_bars(struct timechart *tchart)
1132{
1133        const char *suf;
1134        double bytes;
1135        char comm[256];
1136        struct per_pid *p;
1137        struct per_pidcomm *c;
1138        struct io_sample *sample;
1139        int Y = 1;
1140
1141        p = tchart->all_data;
1142        while (p) {
1143                c = p->all;
1144                while (c) {
1145                        if (!c->display) {
1146                                c->Y = 0;
1147                                c = c->next;
1148                                continue;
1149                        }
1150
1151                        svg_box(Y, c->start_time, c->end_time, "process3");
1152                        sample = c->io_samples;
1153                        for (sample = c->io_samples; sample; sample = sample->next) {
1154                                double h = (double)sample->bytes / c->max_bytes;
1155
1156                                if (tchart->skip_eagain &&
1157                                    sample->err == -EAGAIN)
1158                                        continue;
1159
1160                                if (sample->err)
1161                                        h = 1;
1162
1163                                if (sample->type == IOTYPE_SYNC)
1164                                        svg_fbox(Y,
1165                                                sample->start_time,
1166                                                sample->end_time,
1167                                                1,
1168                                                sample->err ? "error" : "sync",
1169                                                sample->fd,
1170                                                sample->err,
1171                                                sample->merges);
1172                                else if (sample->type == IOTYPE_POLL)
1173                                        svg_fbox(Y,
1174                                                sample->start_time,
1175                                                sample->end_time,
1176                                                1,
1177                                                sample->err ? "error" : "poll",
1178                                                sample->fd,
1179                                                sample->err,
1180                                                sample->merges);
1181                                else if (sample->type == IOTYPE_READ)
1182                                        svg_ubox(Y,
1183                                                sample->start_time,
1184                                                sample->end_time,
1185                                                h,
1186                                                sample->err ? "error" : "disk",
1187                                                sample->fd,
1188                                                sample->err,
1189                                                sample->merges);
1190                                else if (sample->type == IOTYPE_WRITE)
1191                                        svg_lbox(Y,
1192                                                sample->start_time,
1193                                                sample->end_time,
1194                                                h,
1195                                                sample->err ? "error" : "disk",
1196                                                sample->fd,
1197                                                sample->err,
1198                                                sample->merges);
1199                                else if (sample->type == IOTYPE_RX)
1200                                        svg_ubox(Y,
1201                                                sample->start_time,
1202                                                sample->end_time,
1203                                                h,
1204                                                sample->err ? "error" : "net",
1205                                                sample->fd,
1206                                                sample->err,
1207                                                sample->merges);
1208                                else if (sample->type == IOTYPE_TX)
1209                                        svg_lbox(Y,
1210                                                sample->start_time,
1211                                                sample->end_time,
1212                                                h,
1213                                                sample->err ? "error" : "net",
1214                                                sample->fd,
1215                                                sample->err,
1216                                                sample->merges);
1217                        }
1218
1219                        suf = "";
1220                        bytes = c->total_bytes;
1221                        if (bytes > 1024) {
1222                                bytes = bytes / 1024;
1223                                suf = "K";
1224                        }
1225                        if (bytes > 1024) {
1226                                bytes = bytes / 1024;
1227                                suf = "M";
1228                        }
1229                        if (bytes > 1024) {
1230                                bytes = bytes / 1024;
1231                                suf = "G";
1232                        }
1233
1234
1235                        sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1236                        svg_text(Y, c->start_time, comm);
1237
1238                        c->Y = Y;
1239                        Y++;
1240                        c = c->next;
1241                }
1242                p = p->next;
1243        }
1244}
1245
1246static void draw_process_bars(struct timechart *tchart)
1247{
1248        struct per_pid *p;
1249        struct per_pidcomm *c;
1250        struct cpu_sample *sample;
1251        int Y = 0;
1252
1253        Y = 2 * tchart->numcpus + 2;
1254
1255        p = tchart->all_data;
1256        while (p) {
1257                c = p->all;
1258                while (c) {
1259                        if (!c->display) {
1260                                c->Y = 0;
1261                                c = c->next;
1262                                continue;
1263                        }
1264
1265                        svg_box(Y, c->start_time, c->end_time, "process");
1266                        sample = c->samples;
1267                        while (sample) {
1268                                if (sample->type == TYPE_RUNNING)
1269                                        svg_running(Y, sample->cpu,
1270                                                    sample->start_time,
1271                                                    sample->end_time,
1272                                                    sample->backtrace);
1273                                if (sample->type == TYPE_BLOCKED)
1274                                        svg_blocked(Y, sample->cpu,
1275                                                    sample->start_time,
1276                                                    sample->end_time,
1277                                                    sample->backtrace);
1278                                if (sample->type == TYPE_WAITING)
1279                                        svg_waiting(Y, sample->cpu,
1280                                                    sample->start_time,
1281                                                    sample->end_time,
1282                                                    sample->backtrace);
1283                                sample = sample->next;
1284                        }
1285
1286                        if (c->comm) {
1287                                char comm[256];
1288                                if (c->total_time > 5000000000) /* 5 seconds */
1289                                        sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
1290                                else
1291                                        sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
1292
1293                                svg_text(Y, c->start_time, comm);
1294                        }
1295                        c->Y = Y;
1296                        Y++;
1297                        c = c->next;
1298                }
1299                p = p->next;
1300        }
1301}
1302
1303static void add_process_filter(const char *string)
1304{
1305        int pid = strtoull(string, NULL, 10);
1306        struct process_filter *filt = malloc(sizeof(*filt));
1307
1308        if (!filt)
1309                return;
1310
1311        filt->name = strdup(string);
1312        filt->pid  = pid;
1313        filt->next = process_filter;
1314
1315        process_filter = filt;
1316}
1317
1318static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1319{
1320        struct process_filter *filt;
1321        if (!process_filter)
1322                return 1;
1323
1324        filt = process_filter;
1325        while (filt) {
1326                if (filt->pid && p->pid == filt->pid)
1327                        return 1;
1328                if (strcmp(filt->name, c->comm) == 0)
1329                        return 1;
1330                filt = filt->next;
1331        }
1332        return 0;
1333}
1334
1335static int determine_display_tasks_filtered(struct timechart *tchart)
1336{
1337        struct per_pid *p;
1338        struct per_pidcomm *c;
1339        int count = 0;
1340
1341        p = tchart->all_data;
1342        while (p) {
1343                p->display = 0;
1344                if (p->start_time == 1)
1345                        p->start_time = tchart->first_time;
1346
1347                /* no exit marker, task kept running to the end */
1348                if (p->end_time == 0)
1349                        p->end_time = tchart->last_time;
1350
1351                c = p->all;
1352
1353                while (c) {
1354                        c->display = 0;
1355
1356                        if (c->start_time == 1)
1357                                c->start_time = tchart->first_time;
1358
1359                        if (passes_filter(p, c)) {
1360                                c->display = 1;
1361                                p->display = 1;
1362                                count++;
1363                        }
1364
1365                        if (c->end_time == 0)
1366                                c->end_time = tchart->last_time;
1367
1368                        c = c->next;
1369                }
1370                p = p->next;
1371        }
1372        return count;
1373}
1374
1375static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1376{
1377        struct per_pid *p;
1378        struct per_pidcomm *c;
1379        int count = 0;
1380
1381        p = tchart->all_data;
1382        while (p) {
1383                p->display = 0;
1384                if (p->start_time == 1)
1385                        p->start_time = tchart->first_time;
1386
1387                /* no exit marker, task kept running to the end */
1388                if (p->end_time == 0)
1389                        p->end_time = tchart->last_time;
1390                if (p->total_time >= threshold)
1391                        p->display = 1;
1392
1393                c = p->all;
1394
1395                while (c) {
1396                        c->display = 0;
1397
1398                        if (c->start_time == 1)
1399                                c->start_time = tchart->first_time;
1400
1401                        if (c->total_time >= threshold) {
1402                                c->display = 1;
1403                                count++;
1404                        }
1405
1406                        if (c->end_time == 0)
1407                                c->end_time = tchart->last_time;
1408
1409                        c = c->next;
1410                }
1411                p = p->next;
1412        }
1413        return count;
1414}
1415
1416static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1417{
1418        struct per_pid *p;
1419        struct per_pidcomm *c;
1420        int count = 0;
1421
1422        p = timechart->all_data;
1423        while (p) {
1424                /* no exit marker, task kept running to the end */
1425                if (p->end_time == 0)
1426                        p->end_time = timechart->last_time;
1427
1428                c = p->all;
1429
1430                while (c) {
1431                        c->display = 0;
1432
1433                        if (c->total_bytes >= threshold) {
1434                                c->display = 1;
1435                                count++;
1436                        }
1437
1438                        if (c->end_time == 0)
1439                                c->end_time = timechart->last_time;
1440
1441                        c = c->next;
1442                }
1443                p = p->next;
1444        }
1445        return count;
1446}
1447
1448#define BYTES_THRESH (1 * 1024 * 1024)
1449#define TIME_THRESH 10000000
1450
1451static void write_svg_file(struct timechart *tchart, const char *filename)
1452{
1453        u64 i;
1454        int count;
1455        int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1456
1457        if (tchart->power_only)
1458                tchart->proc_num = 0;
1459
1460        /* We'd like to show at least proc_num tasks;
1461         * be less picky if we have fewer */
1462        do {
1463                if (process_filter)
1464                        count = determine_display_tasks_filtered(tchart);
1465                else if (tchart->io_events)
1466                        count = determine_display_io_tasks(tchart, thresh);
1467                else
1468                        count = determine_display_tasks(tchart, thresh);
1469                thresh /= 10;
1470        } while (!process_filter && thresh && count < tchart->proc_num);
1471
1472        if (!tchart->proc_num)
1473                count = 0;
1474
1475        if (tchart->io_events) {
1476                open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1477
1478                svg_time_grid(0.5);
1479                svg_io_legenda();
1480
1481                draw_io_bars(tchart);
1482        } else {
1483                open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1484
1485                svg_time_grid(0);
1486
1487                svg_legenda();
1488
1489                for (i = 0; i < tchart->numcpus; i++)
1490                        svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1491
1492                draw_cpu_usage(tchart);
1493                if (tchart->proc_num)
1494                        draw_process_bars(tchart);
1495                if (!tchart->tasks_only)
1496                        draw_c_p_states(tchart);
1497                if (tchart->proc_num)
1498                        draw_wakeups(tchart);
1499        }
1500
1501        svg_close();
1502}
1503
1504static int process_header(struct perf_file_section *section __maybe_unused,
1505                          struct perf_header *ph,
1506                          int feat,
1507                          int fd __maybe_unused,
1508                          void *data)
1509{
1510        struct timechart *tchart = data;
1511
1512        switch (feat) {
1513        case HEADER_NRCPUS:
1514                tchart->numcpus = ph->env.nr_cpus_avail;
1515                break;
1516
1517        case HEADER_CPU_TOPOLOGY:
1518                if (!tchart->topology)
1519                        break;
1520
1521                if (svg_build_topology_map(&ph->env))
1522                        fprintf(stderr, "problem building topology\n");
1523                break;
1524
1525        default:
1526                break;
1527        }
1528
1529        return 0;
1530}
1531
1532static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1533{
1534        const struct evsel_str_handler power_tracepoints[] = {
1535                { "power:cpu_idle",             process_sample_cpu_idle },
1536                { "power:cpu_frequency",        process_sample_cpu_frequency },
1537                { "sched:sched_wakeup",         process_sample_sched_wakeup },
1538                { "sched:sched_switch",         process_sample_sched_switch },
1539#ifdef SUPPORT_OLD_POWER_EVENTS
1540                { "power:power_start",          process_sample_power_start },
1541                { "power:power_end",            process_sample_power_end },
1542                { "power:power_frequency",      process_sample_power_frequency },
1543#endif
1544
1545                { "syscalls:sys_enter_read",            process_enter_read },
1546                { "syscalls:sys_enter_pread64",         process_enter_read },
1547                { "syscalls:sys_enter_readv",           process_enter_read },
1548                { "syscalls:sys_enter_preadv",          process_enter_read },
1549                { "syscalls:sys_enter_write",           process_enter_write },
1550                { "syscalls:sys_enter_pwrite64",        process_enter_write },
1551                { "syscalls:sys_enter_writev",          process_enter_write },
1552                { "syscalls:sys_enter_pwritev",         process_enter_write },
1553                { "syscalls:sys_enter_sync",            process_enter_sync },
1554                { "syscalls:sys_enter_sync_file_range", process_enter_sync },
1555                { "syscalls:sys_enter_fsync",           process_enter_sync },
1556                { "syscalls:sys_enter_msync",           process_enter_sync },
1557                { "syscalls:sys_enter_recvfrom",        process_enter_rx },
1558                { "syscalls:sys_enter_recvmmsg",        process_enter_rx },
1559                { "syscalls:sys_enter_recvmsg",         process_enter_rx },
1560                { "syscalls:sys_enter_sendto",          process_enter_tx },
1561                { "syscalls:sys_enter_sendmsg",         process_enter_tx },
1562                { "syscalls:sys_enter_sendmmsg",        process_enter_tx },
1563                { "syscalls:sys_enter_epoll_pwait",     process_enter_poll },
1564                { "syscalls:sys_enter_epoll_wait",      process_enter_poll },
1565                { "syscalls:sys_enter_poll",            process_enter_poll },
1566                { "syscalls:sys_enter_ppoll",           process_enter_poll },
1567                { "syscalls:sys_enter_pselect6",        process_enter_poll },
1568                { "syscalls:sys_enter_select",          process_enter_poll },
1569
1570                { "syscalls:sys_exit_read",             process_exit_read },
1571                { "syscalls:sys_exit_pread64",          process_exit_read },
1572                { "syscalls:sys_exit_readv",            process_exit_read },
1573                { "syscalls:sys_exit_preadv",           process_exit_read },
1574                { "syscalls:sys_exit_write",            process_exit_write },
1575                { "syscalls:sys_exit_pwrite64",         process_exit_write },
1576                { "syscalls:sys_exit_writev",           process_exit_write },
1577                { "syscalls:sys_exit_pwritev",          process_exit_write },
1578                { "syscalls:sys_exit_sync",             process_exit_sync },
1579                { "syscalls:sys_exit_sync_file_range",  process_exit_sync },
1580                { "syscalls:sys_exit_fsync",            process_exit_sync },
1581                { "syscalls:sys_exit_msync",            process_exit_sync },
1582                { "syscalls:sys_exit_recvfrom",         process_exit_rx },
1583                { "syscalls:sys_exit_recvmmsg",         process_exit_rx },
1584                { "syscalls:sys_exit_recvmsg",          process_exit_rx },
1585                { "syscalls:sys_exit_sendto",           process_exit_tx },
1586                { "syscalls:sys_exit_sendmsg",          process_exit_tx },
1587                { "syscalls:sys_exit_sendmmsg",         process_exit_tx },
1588                { "syscalls:sys_exit_epoll_pwait",      process_exit_poll },
1589                { "syscalls:sys_exit_epoll_wait",       process_exit_poll },
1590                { "syscalls:sys_exit_poll",             process_exit_poll },
1591                { "syscalls:sys_exit_ppoll",            process_exit_poll },
1592                { "syscalls:sys_exit_pselect6",         process_exit_poll },
1593                { "syscalls:sys_exit_select",           process_exit_poll },
1594        };
1595        struct perf_data data = {
1596                .path  = input_name,
1597                .mode  = PERF_DATA_MODE_READ,
1598                .force = tchart->force,
1599        };
1600
1601        struct perf_session *session = perf_session__new(&data, &tchart->tool);
1602        int ret = -EINVAL;
1603
1604        if (IS_ERR(session))
1605                return PTR_ERR(session);
1606
1607        symbol__init(&session->header.env);
1608
1609        (void)perf_header__process_sections(&session->header,
1610                                            perf_data__fd(session->data),
1611                                            tchart,
1612                                            process_header);
1613
1614        if (!perf_session__has_traces(session, "timechart record"))
1615                goto out_delete;
1616
1617        if (perf_session__set_tracepoints_handlers(session,
1618                                                   power_tracepoints)) {
1619                pr_err("Initializing session tracepoint handlers failed\n");
1620                goto out_delete;
1621        }
1622
1623        ret = perf_session__process_events(session);
1624        if (ret)
1625                goto out_delete;
1626
1627        end_sample_processing(tchart);
1628
1629        sort_pids(tchart);
1630
1631        write_svg_file(tchart, output_name);
1632
1633        pr_info("Written %2.1f seconds of trace to %s.\n",
1634                (tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
1635out_delete:
1636        perf_session__delete(session);
1637        return ret;
1638}
1639
1640static int timechart__io_record(int argc, const char **argv)
1641{
1642        unsigned int rec_argc, i;
1643        const char **rec_argv;
1644        const char **p;
1645        char *filter = NULL;
1646
1647        const char * const common_args[] = {
1648                "record", "-a", "-R", "-c", "1",
1649        };
1650        unsigned int common_args_nr = ARRAY_SIZE(common_args);
1651
1652        const char * const disk_events[] = {
1653                "syscalls:sys_enter_read",
1654                "syscalls:sys_enter_pread64",
1655                "syscalls:sys_enter_readv",
1656                "syscalls:sys_enter_preadv",
1657                "syscalls:sys_enter_write",
1658                "syscalls:sys_enter_pwrite64",
1659                "syscalls:sys_enter_writev",
1660                "syscalls:sys_enter_pwritev",
1661                "syscalls:sys_enter_sync",
1662                "syscalls:sys_enter_sync_file_range",
1663                "syscalls:sys_enter_fsync",
1664                "syscalls:sys_enter_msync",
1665
1666                "syscalls:sys_exit_read",
1667                "syscalls:sys_exit_pread64",
1668                "syscalls:sys_exit_readv",
1669                "syscalls:sys_exit_preadv",
1670                "syscalls:sys_exit_write",
1671                "syscalls:sys_exit_pwrite64",
1672                "syscalls:sys_exit_writev",
1673                "syscalls:sys_exit_pwritev",
1674                "syscalls:sys_exit_sync",
1675                "syscalls:sys_exit_sync_file_range",
1676                "syscalls:sys_exit_fsync",
1677                "syscalls:sys_exit_msync",
1678        };
1679        unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1680
1681        const char * const net_events[] = {
1682                "syscalls:sys_enter_recvfrom",
1683                "syscalls:sys_enter_recvmmsg",
1684                "syscalls:sys_enter_recvmsg",
1685                "syscalls:sys_enter_sendto",
1686                "syscalls:sys_enter_sendmsg",
1687                "syscalls:sys_enter_sendmmsg",
1688
1689                "syscalls:sys_exit_recvfrom",
1690                "syscalls:sys_exit_recvmmsg",
1691                "syscalls:sys_exit_recvmsg",
1692                "syscalls:sys_exit_sendto",
1693                "syscalls:sys_exit_sendmsg",
1694                "syscalls:sys_exit_sendmmsg",
1695        };
1696        unsigned int net_events_nr = ARRAY_SIZE(net_events);
1697
1698        const char * const poll_events[] = {
1699                "syscalls:sys_enter_epoll_pwait",
1700                "syscalls:sys_enter_epoll_wait",
1701                "syscalls:sys_enter_poll",
1702                "syscalls:sys_enter_ppoll",
1703                "syscalls:sys_enter_pselect6",
1704                "syscalls:sys_enter_select",
1705
1706                "syscalls:sys_exit_epoll_pwait",
1707                "syscalls:sys_exit_epoll_wait",
1708                "syscalls:sys_exit_poll",
1709                "syscalls:sys_exit_ppoll",
1710                "syscalls:sys_exit_pselect6",
1711                "syscalls:sys_exit_select",
1712        };
1713        unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1714
1715        rec_argc = common_args_nr +
1716                disk_events_nr * 4 +
1717                net_events_nr * 4 +
1718                poll_events_nr * 4 +
1719                argc;
1720        rec_argv = calloc(rec_argc + 1, sizeof(char *));
1721
1722        if (rec_argv == NULL)
1723                return -ENOMEM;
1724
1725        if (asprintf(&filter, "common_pid != %d", getpid()) < 0) {
1726                free(rec_argv);
1727                return -ENOMEM;
1728        }
1729
1730        p = rec_argv;
1731        for (i = 0; i < common_args_nr; i++)
1732                *p++ = strdup(common_args[i]);
1733
1734        for (i = 0; i < disk_events_nr; i++) {
1735                if (!is_valid_tracepoint(disk_events[i])) {
1736                        rec_argc -= 4;
1737                        continue;
1738                }
1739
1740                *p++ = "-e";
1741                *p++ = strdup(disk_events[i]);
1742                *p++ = "--filter";
1743                *p++ = filter;
1744        }
1745        for (i = 0; i < net_events_nr; i++) {
1746                if (!is_valid_tracepoint(net_events[i])) {
1747                        rec_argc -= 4;
1748                        continue;
1749                }
1750
1751                *p++ = "-e";
1752                *p++ = strdup(net_events[i]);
1753                *p++ = "--filter";
1754                *p++ = filter;
1755        }
1756        for (i = 0; i < poll_events_nr; i++) {
1757                if (!is_valid_tracepoint(poll_events[i])) {
1758                        rec_argc -= 4;
1759                        continue;
1760                }
1761
1762                *p++ = "-e";
1763                *p++ = strdup(poll_events[i]);
1764                *p++ = "--filter";
1765                *p++ = filter;
1766        }
1767
1768        for (i = 0; i < (unsigned int)argc; i++)
1769                *p++ = argv[i];
1770
1771        return cmd_record(rec_argc, rec_argv);
1772}
1773
1774
1775static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1776{
1777        unsigned int rec_argc, i, j;
1778        const char **rec_argv;
1779        const char **p;
1780        unsigned int record_elems;
1781
1782        const char * const common_args[] = {
1783                "record", "-a", "-R", "-c", "1",
1784        };
1785        unsigned int common_args_nr = ARRAY_SIZE(common_args);
1786
1787        const char * const backtrace_args[] = {
1788                "-g",
1789        };
1790        unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1791
1792        const char * const power_args[] = {
1793                "-e", "power:cpu_frequency",
1794                "-e", "power:cpu_idle",
1795        };
1796        unsigned int power_args_nr = ARRAY_SIZE(power_args);
1797
1798        const char * const old_power_args[] = {
1799#ifdef SUPPORT_OLD_POWER_EVENTS
1800                "-e", "power:power_start",
1801                "-e", "power:power_end",
1802                "-e", "power:power_frequency",
1803#endif
1804        };
1805        unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1806
1807        const char * const tasks_args[] = {
1808                "-e", "sched:sched_wakeup",
1809                "-e", "sched:sched_switch",
1810        };
1811        unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1812
1813#ifdef SUPPORT_OLD_POWER_EVENTS
1814        if (!is_valid_tracepoint("power:cpu_idle") &&
1815            is_valid_tracepoint("power:power_start")) {
1816                use_old_power_events = 1;
1817                power_args_nr = 0;
1818        } else {
1819                old_power_args_nr = 0;
1820        }
1821#endif
1822
1823        if (tchart->power_only)
1824                tasks_args_nr = 0;
1825
1826        if (tchart->tasks_only) {
1827                power_args_nr = 0;
1828                old_power_args_nr = 0;
1829        }
1830
1831        if (!tchart->with_backtrace)
1832                backtrace_args_no = 0;
1833
1834        record_elems = common_args_nr + tasks_args_nr +
1835                power_args_nr + old_power_args_nr + backtrace_args_no;
1836
1837        rec_argc = record_elems + argc;
1838        rec_argv = calloc(rec_argc + 1, sizeof(char *));
1839
1840        if (rec_argv == NULL)
1841                return -ENOMEM;
1842
1843        p = rec_argv;
1844        for (i = 0; i < common_args_nr; i++)
1845                *p++ = strdup(common_args[i]);
1846
1847        for (i = 0; i < backtrace_args_no; i++)
1848                *p++ = strdup(backtrace_args[i]);
1849
1850        for (i = 0; i < tasks_args_nr; i++)
1851                *p++ = strdup(tasks_args[i]);
1852
1853        for (i = 0; i < power_args_nr; i++)
1854                *p++ = strdup(power_args[i]);
1855
1856        for (i = 0; i < old_power_args_nr; i++)
1857                *p++ = strdup(old_power_args[i]);
1858
1859        for (j = 0; j < (unsigned int)argc; j++)
1860                *p++ = argv[j];
1861
1862        return cmd_record(rec_argc, rec_argv);
1863}
1864
1865static int
1866parse_process(const struct option *opt __maybe_unused, const char *arg,
1867              int __maybe_unused unset)
1868{
1869        if (arg)
1870                add_process_filter(arg);
1871        return 0;
1872}
1873
1874static int
1875parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1876                int __maybe_unused unset)
1877{
1878        unsigned long duration = strtoul(arg, NULL, 0);
1879
1880        if (svg_highlight || svg_highlight_name)
1881                return -1;
1882
1883        if (duration)
1884                svg_highlight = duration;
1885        else
1886                svg_highlight_name = strdup(arg);
1887
1888        return 0;
1889}
1890
1891static int
1892parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1893{
1894        char unit = 'n';
1895        u64 *value = opt->value;
1896
1897        if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1898                switch (unit) {
1899                case 'm':
1900                        *value *= NSEC_PER_MSEC;
1901                        break;
1902                case 'u':
1903                        *value *= NSEC_PER_USEC;
1904                        break;
1905                case 'n':
1906                        break;
1907                default:
1908                        return -1;
1909                }
1910        }
1911
1912        return 0;
1913}
1914
1915int cmd_timechart(int argc, const char **argv)
1916{
1917        struct timechart tchart = {
1918                .tool = {
1919                        .comm            = process_comm_event,
1920                        .fork            = process_fork_event,
1921                        .exit            = process_exit_event,
1922                        .sample          = process_sample_event,
1923                        .ordered_events  = true,
1924                },
1925                .proc_num = 15,
1926                .min_time = NSEC_PER_MSEC,
1927                .merge_dist = 1000,
1928        };
1929        const char *output_name = "output.svg";
1930        const struct option timechart_common_options[] = {
1931        OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1932        OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"),
1933        OPT_END()
1934        };
1935        const struct option timechart_options[] = {
1936        OPT_STRING('i', "input", &input_name, "file", "input file name"),
1937        OPT_STRING('o', "output", &output_name, "file", "output file name"),
1938        OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1939        OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1940                      "highlight tasks. Pass duration in ns or process name.",
1941                       parse_highlight),
1942        OPT_CALLBACK('p', "process", NULL, "process",
1943                      "process selector. Pass a pid or process name.",
1944                       parse_process),
1945        OPT_CALLBACK(0, "symfs", NULL, "directory",
1946                     "Look for files with symbols relative to this directory",
1947                     symbol__config_symfs),
1948        OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1949                    "min. number of tasks to print"),
1950        OPT_BOOLEAN('t', "topology", &tchart.topology,
1951                    "sort CPUs according to topology"),
1952        OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1953                    "skip EAGAIN errors"),
1954        OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1955                     "all IO faster than min-time will visually appear longer",
1956                     parse_time),
1957        OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1958                     "merge events that are merge-dist us apart",
1959                     parse_time),
1960        OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1961        OPT_PARENT(timechart_common_options),
1962        };
1963        const char * const timechart_subcommands[] = { "record", NULL };
1964        const char *timechart_usage[] = {
1965                "perf timechart [<options>] {record}",
1966                NULL
1967        };
1968        const struct option timechart_record_options[] = {
1969        OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1970                    "record only IO data"),
1971        OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1972        OPT_PARENT(timechart_common_options),
1973        };
1974        const char * const timechart_record_usage[] = {
1975                "perf timechart record [<options>]",
1976                NULL
1977        };
1978        argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1979                        timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1980
1981        if (tchart.power_only && tchart.tasks_only) {
1982                pr_err("-P and -T options cannot be used at the same time.\n");
1983                return -1;
1984        }
1985
1986        if (argc && !strncmp(argv[0], "rec", 3)) {
1987                argc = parse_options(argc, argv, timechart_record_options,
1988                                     timechart_record_usage,
1989                                     PARSE_OPT_STOP_AT_NON_OPTION);
1990
1991                if (tchart.power_only && tchart.tasks_only) {
1992                        pr_err("-P and -T options cannot be used at the same time.\n");
1993                        return -1;
1994                }
1995
1996                if (tchart.io_only)
1997                        return timechart__io_record(argc, argv);
1998                else
1999                        return timechart__record(&tchart, argc, argv);
2000        } else if (argc)
2001                usage_with_options(timechart_usage, timechart_options);
2002
2003        setup_pager();
2004
2005        return __cmd_timechart(&tchart, output_name);
2006}
2007