linux/tools/perf/util/header.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include <errno.h>
   3#include <inttypes.h>
   4#include "string2.h"
   5#include <sys/param.h>
   6#include <sys/types.h>
   7#include <byteswap.h>
   8#include <unistd.h>
   9#include <stdio.h>
  10#include <stdlib.h>
  11#include <linux/compiler.h>
  12#include <linux/list.h>
  13#include <linux/kernel.h>
  14#include <linux/bitops.h>
  15#include <linux/string.h>
  16#include <linux/stringify.h>
  17#include <linux/zalloc.h>
  18#include <sys/stat.h>
  19#include <sys/utsname.h>
  20#include <linux/time64.h>
  21#include <dirent.h>
  22#ifdef HAVE_LIBBPF_SUPPORT
  23#include <bpf/libbpf.h>
  24#endif
  25#include <perf/cpumap.h>
  26
  27#include "dso.h"
  28#include "evlist.h"
  29#include "evsel.h"
  30#include "util/evsel_fprintf.h"
  31#include "header.h"
  32#include "memswap.h"
  33#include "trace-event.h"
  34#include "session.h"
  35#include "symbol.h"
  36#include "debug.h"
  37#include "cpumap.h"
  38#include "pmu.h"
  39#include "vdso.h"
  40#include "strbuf.h"
  41#include "build-id.h"
  42#include "data.h"
  43#include <api/fs/fs.h>
  44#include "asm/bug.h"
  45#include "tool.h"
  46#include "time-utils.h"
  47#include "units.h"
  48#include "util/util.h" // perf_exe()
  49#include "cputopo.h"
  50#include "bpf-event.h"
  51#include "clockid.h"
  52#include "pmu-hybrid.h"
  53
  54#include <linux/ctype.h>
  55#include <internal/lib.h>
  56
  57/*
  58 * magic2 = "PERFILE2"
  59 * must be a numerical value to let the endianness
  60 * determine the memory layout. That way we are able
  61 * to detect endianness when reading the perf.data file
  62 * back.
  63 *
  64 * we check for legacy (PERFFILE) format.
  65 */
  66static const char *__perf_magic1 = "PERFFILE";
  67static const u64 __perf_magic2    = 0x32454c4946524550ULL;
  68static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
  69
  70#define PERF_MAGIC      __perf_magic2
  71
  72const char perf_version_string[] = PERF_VERSION;
  73
  74struct perf_file_attr {
  75        struct perf_event_attr  attr;
  76        struct perf_file_section        ids;
  77};
  78
  79void perf_header__set_feat(struct perf_header *header, int feat)
  80{
  81        set_bit(feat, header->adds_features);
  82}
  83
  84void perf_header__clear_feat(struct perf_header *header, int feat)
  85{
  86        clear_bit(feat, header->adds_features);
  87}
  88
  89bool perf_header__has_feat(const struct perf_header *header, int feat)
  90{
  91        return test_bit(feat, header->adds_features);
  92}
  93
  94static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
  95{
  96        ssize_t ret = writen(ff->fd, buf, size);
  97
  98        if (ret != (ssize_t)size)
  99                return ret < 0 ? (int)ret : -1;
 100        return 0;
 101}
 102
 103static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
 104{
 105        /* struct perf_event_header::size is u16 */
 106        const size_t max_size = 0xffff - sizeof(struct perf_event_header);
 107        size_t new_size = ff->size;
 108        void *addr;
 109
 110        if (size + ff->offset > max_size)
 111                return -E2BIG;
 112
 113        while (size > (new_size - ff->offset))
 114                new_size <<= 1;
 115        new_size = min(max_size, new_size);
 116
 117        if (ff->size < new_size) {
 118                addr = realloc(ff->buf, new_size);
 119                if (!addr)
 120                        return -ENOMEM;
 121                ff->buf = addr;
 122                ff->size = new_size;
 123        }
 124
 125        memcpy(ff->buf + ff->offset, buf, size);
 126        ff->offset += size;
 127
 128        return 0;
 129}
 130
 131/* Return: 0 if succeeded, -ERR if failed. */
 132int do_write(struct feat_fd *ff, const void *buf, size_t size)
 133{
 134        if (!ff->buf)
 135                return __do_write_fd(ff, buf, size);
 136        return __do_write_buf(ff, buf, size);
 137}
 138
 139/* Return: 0 if succeeded, -ERR if failed. */
 140static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
 141{
 142        u64 *p = (u64 *) set;
 143        int i, ret;
 144
 145        ret = do_write(ff, &size, sizeof(size));
 146        if (ret < 0)
 147                return ret;
 148
 149        for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
 150                ret = do_write(ff, p + i, sizeof(*p));
 151                if (ret < 0)
 152                        return ret;
 153        }
 154
 155        return 0;
 156}
 157
 158/* Return: 0 if succeeded, -ERR if failed. */
 159int write_padded(struct feat_fd *ff, const void *bf,
 160                 size_t count, size_t count_aligned)
 161{
 162        static const char zero_buf[NAME_ALIGN];
 163        int err = do_write(ff, bf, count);
 164
 165        if (!err)
 166                err = do_write(ff, zero_buf, count_aligned - count);
 167
 168        return err;
 169}
 170
 171#define string_size(str)                                                \
 172        (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
 173
 174/* Return: 0 if succeeded, -ERR if failed. */
 175static int do_write_string(struct feat_fd *ff, const char *str)
 176{
 177        u32 len, olen;
 178        int ret;
 179
 180        olen = strlen(str) + 1;
 181        len = PERF_ALIGN(olen, NAME_ALIGN);
 182
 183        /* write len, incl. \0 */
 184        ret = do_write(ff, &len, sizeof(len));
 185        if (ret < 0)
 186                return ret;
 187
 188        return write_padded(ff, str, olen, len);
 189}
 190
 191static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
 192{
 193        ssize_t ret = readn(ff->fd, addr, size);
 194
 195        if (ret != size)
 196                return ret < 0 ? (int)ret : -1;
 197        return 0;
 198}
 199
 200static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
 201{
 202        if (size > (ssize_t)ff->size - ff->offset)
 203                return -1;
 204
 205        memcpy(addr, ff->buf + ff->offset, size);
 206        ff->offset += size;
 207
 208        return 0;
 209
 210}
 211
 212static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
 213{
 214        if (!ff->buf)
 215                return __do_read_fd(ff, addr, size);
 216        return __do_read_buf(ff, addr, size);
 217}
 218
 219static int do_read_u32(struct feat_fd *ff, u32 *addr)
 220{
 221        int ret;
 222
 223        ret = __do_read(ff, addr, sizeof(*addr));
 224        if (ret)
 225                return ret;
 226
 227        if (ff->ph->needs_swap)
 228                *addr = bswap_32(*addr);
 229        return 0;
 230}
 231
 232static int do_read_u64(struct feat_fd *ff, u64 *addr)
 233{
 234        int ret;
 235
 236        ret = __do_read(ff, addr, sizeof(*addr));
 237        if (ret)
 238                return ret;
 239
 240        if (ff->ph->needs_swap)
 241                *addr = bswap_64(*addr);
 242        return 0;
 243}
 244
 245static char *do_read_string(struct feat_fd *ff)
 246{
 247        u32 len;
 248        char *buf;
 249
 250        if (do_read_u32(ff, &len))
 251                return NULL;
 252
 253        buf = malloc(len);
 254        if (!buf)
 255                return NULL;
 256
 257        if (!__do_read(ff, buf, len)) {
 258                /*
 259                 * strings are padded by zeroes
 260                 * thus the actual strlen of buf
 261                 * may be less than len
 262                 */
 263                return buf;
 264        }
 265
 266        free(buf);
 267        return NULL;
 268}
 269
 270/* Return: 0 if succeeded, -ERR if failed. */
 271static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
 272{
 273        unsigned long *set;
 274        u64 size, *p;
 275        int i, ret;
 276
 277        ret = do_read_u64(ff, &size);
 278        if (ret)
 279                return ret;
 280
 281        set = bitmap_zalloc(size);
 282        if (!set)
 283                return -ENOMEM;
 284
 285        p = (u64 *) set;
 286
 287        for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
 288                ret = do_read_u64(ff, p + i);
 289                if (ret < 0) {
 290                        free(set);
 291                        return ret;
 292                }
 293        }
 294
 295        *pset  = set;
 296        *psize = size;
 297        return 0;
 298}
 299
 300static int write_tracing_data(struct feat_fd *ff,
 301                              struct evlist *evlist)
 302{
 303        if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 304                return -1;
 305
 306        return read_tracing_data(ff->fd, &evlist->core.entries);
 307}
 308
 309static int write_build_id(struct feat_fd *ff,
 310                          struct evlist *evlist __maybe_unused)
 311{
 312        struct perf_session *session;
 313        int err;
 314
 315        session = container_of(ff->ph, struct perf_session, header);
 316
 317        if (!perf_session__read_build_ids(session, true))
 318                return -1;
 319
 320        if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 321                return -1;
 322
 323        err = perf_session__write_buildid_table(session, ff);
 324        if (err < 0) {
 325                pr_debug("failed to write buildid table\n");
 326                return err;
 327        }
 328        perf_session__cache_build_ids(session);
 329
 330        return 0;
 331}
 332
 333static int write_hostname(struct feat_fd *ff,
 334                          struct evlist *evlist __maybe_unused)
 335{
 336        struct utsname uts;
 337        int ret;
 338
 339        ret = uname(&uts);
 340        if (ret < 0)
 341                return -1;
 342
 343        return do_write_string(ff, uts.nodename);
 344}
 345
 346static int write_osrelease(struct feat_fd *ff,
 347                           struct evlist *evlist __maybe_unused)
 348{
 349        struct utsname uts;
 350        int ret;
 351
 352        ret = uname(&uts);
 353        if (ret < 0)
 354                return -1;
 355
 356        return do_write_string(ff, uts.release);
 357}
 358
 359static int write_arch(struct feat_fd *ff,
 360                      struct evlist *evlist __maybe_unused)
 361{
 362        struct utsname uts;
 363        int ret;
 364
 365        ret = uname(&uts);
 366        if (ret < 0)
 367                return -1;
 368
 369        return do_write_string(ff, uts.machine);
 370}
 371
 372static int write_version(struct feat_fd *ff,
 373                         struct evlist *evlist __maybe_unused)
 374{
 375        return do_write_string(ff, perf_version_string);
 376}
 377
 378static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
 379{
 380        FILE *file;
 381        char *buf = NULL;
 382        char *s, *p;
 383        const char *search = cpuinfo_proc;
 384        size_t len = 0;
 385        int ret = -1;
 386
 387        if (!search)
 388                return -1;
 389
 390        file = fopen("/proc/cpuinfo", "r");
 391        if (!file)
 392                return -1;
 393
 394        while (getline(&buf, &len, file) > 0) {
 395                ret = strncmp(buf, search, strlen(search));
 396                if (!ret)
 397                        break;
 398        }
 399
 400        if (ret) {
 401                ret = -1;
 402                goto done;
 403        }
 404
 405        s = buf;
 406
 407        p = strchr(buf, ':');
 408        if (p && *(p+1) == ' ' && *(p+2))
 409                s = p + 2;
 410        p = strchr(s, '\n');
 411        if (p)
 412                *p = '\0';
 413
 414        /* squash extra space characters (branding string) */
 415        p = s;
 416        while (*p) {
 417                if (isspace(*p)) {
 418                        char *r = p + 1;
 419                        char *q = skip_spaces(r);
 420                        *p = ' ';
 421                        if (q != (p+1))
 422                                while ((*r++ = *q++));
 423                }
 424                p++;
 425        }
 426        ret = do_write_string(ff, s);
 427done:
 428        free(buf);
 429        fclose(file);
 430        return ret;
 431}
 432
 433static int write_cpudesc(struct feat_fd *ff,
 434                       struct evlist *evlist __maybe_unused)
 435{
 436#if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
 437#define CPUINFO_PROC    { "cpu", }
 438#elif defined(__s390__)
 439#define CPUINFO_PROC    { "vendor_id", }
 440#elif defined(__sh__)
 441#define CPUINFO_PROC    { "cpu type", }
 442#elif defined(__alpha__) || defined(__mips__)
 443#define CPUINFO_PROC    { "cpu model", }
 444#elif defined(__arm__)
 445#define CPUINFO_PROC    { "model name", "Processor", }
 446#elif defined(__arc__)
 447#define CPUINFO_PROC    { "Processor", }
 448#elif defined(__xtensa__)
 449#define CPUINFO_PROC    { "core ID", }
 450#else
 451#define CPUINFO_PROC    { "model name", }
 452#endif
 453        const char *cpuinfo_procs[] = CPUINFO_PROC;
 454#undef CPUINFO_PROC
 455        unsigned int i;
 456
 457        for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
 458                int ret;
 459                ret = __write_cpudesc(ff, cpuinfo_procs[i]);
 460                if (ret >= 0)
 461                        return ret;
 462        }
 463        return -1;
 464}
 465
 466
 467static int write_nrcpus(struct feat_fd *ff,
 468                        struct evlist *evlist __maybe_unused)
 469{
 470        long nr;
 471        u32 nrc, nra;
 472        int ret;
 473
 474        nrc = cpu__max_present_cpu();
 475
 476        nr = sysconf(_SC_NPROCESSORS_ONLN);
 477        if (nr < 0)
 478                return -1;
 479
 480        nra = (u32)(nr & UINT_MAX);
 481
 482        ret = do_write(ff, &nrc, sizeof(nrc));
 483        if (ret < 0)
 484                return ret;
 485
 486        return do_write(ff, &nra, sizeof(nra));
 487}
 488
 489static int write_event_desc(struct feat_fd *ff,
 490                            struct evlist *evlist)
 491{
 492        struct evsel *evsel;
 493        u32 nre, nri, sz;
 494        int ret;
 495
 496        nre = evlist->core.nr_entries;
 497
 498        /*
 499         * write number of events
 500         */
 501        ret = do_write(ff, &nre, sizeof(nre));
 502        if (ret < 0)
 503                return ret;
 504
 505        /*
 506         * size of perf_event_attr struct
 507         */
 508        sz = (u32)sizeof(evsel->core.attr);
 509        ret = do_write(ff, &sz, sizeof(sz));
 510        if (ret < 0)
 511                return ret;
 512
 513        evlist__for_each_entry(evlist, evsel) {
 514                ret = do_write(ff, &evsel->core.attr, sz);
 515                if (ret < 0)
 516                        return ret;
 517                /*
 518                 * write number of unique id per event
 519                 * there is one id per instance of an event
 520                 *
 521                 * copy into an nri to be independent of the
 522                 * type of ids,
 523                 */
 524                nri = evsel->core.ids;
 525                ret = do_write(ff, &nri, sizeof(nri));
 526                if (ret < 0)
 527                        return ret;
 528
 529                /*
 530                 * write event string as passed on cmdline
 531                 */
 532                ret = do_write_string(ff, evsel__name(evsel));
 533                if (ret < 0)
 534                        return ret;
 535                /*
 536                 * write unique ids for this event
 537                 */
 538                ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
 539                if (ret < 0)
 540                        return ret;
 541        }
 542        return 0;
 543}
 544
 545static int write_cmdline(struct feat_fd *ff,
 546                         struct evlist *evlist __maybe_unused)
 547{
 548        char pbuf[MAXPATHLEN], *buf;
 549        int i, ret, n;
 550
 551        /* actual path to perf binary */
 552        buf = perf_exe(pbuf, MAXPATHLEN);
 553
 554        /* account for binary path */
 555        n = perf_env.nr_cmdline + 1;
 556
 557        ret = do_write(ff, &n, sizeof(n));
 558        if (ret < 0)
 559                return ret;
 560
 561        ret = do_write_string(ff, buf);
 562        if (ret < 0)
 563                return ret;
 564
 565        for (i = 0 ; i < perf_env.nr_cmdline; i++) {
 566                ret = do_write_string(ff, perf_env.cmdline_argv[i]);
 567                if (ret < 0)
 568                        return ret;
 569        }
 570        return 0;
 571}
 572
 573
 574static int write_cpu_topology(struct feat_fd *ff,
 575                              struct evlist *evlist __maybe_unused)
 576{
 577        struct cpu_topology *tp;
 578        u32 i;
 579        int ret, j;
 580
 581        tp = cpu_topology__new();
 582        if (!tp)
 583                return -1;
 584
 585        ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
 586        if (ret < 0)
 587                goto done;
 588
 589        for (i = 0; i < tp->core_sib; i++) {
 590                ret = do_write_string(ff, tp->core_siblings[i]);
 591                if (ret < 0)
 592                        goto done;
 593        }
 594        ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
 595        if (ret < 0)
 596                goto done;
 597
 598        for (i = 0; i < tp->thread_sib; i++) {
 599                ret = do_write_string(ff, tp->thread_siblings[i]);
 600                if (ret < 0)
 601                        break;
 602        }
 603
 604        ret = perf_env__read_cpu_topology_map(&perf_env);
 605        if (ret < 0)
 606                goto done;
 607
 608        for (j = 0; j < perf_env.nr_cpus_avail; j++) {
 609                ret = do_write(ff, &perf_env.cpu[j].core_id,
 610                               sizeof(perf_env.cpu[j].core_id));
 611                if (ret < 0)
 612                        return ret;
 613                ret = do_write(ff, &perf_env.cpu[j].socket_id,
 614                               sizeof(perf_env.cpu[j].socket_id));
 615                if (ret < 0)
 616                        return ret;
 617        }
 618
 619        if (!tp->die_sib)
 620                goto done;
 621
 622        ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
 623        if (ret < 0)
 624                goto done;
 625
 626        for (i = 0; i < tp->die_sib; i++) {
 627                ret = do_write_string(ff, tp->die_siblings[i]);
 628                if (ret < 0)
 629                        goto done;
 630        }
 631
 632        for (j = 0; j < perf_env.nr_cpus_avail; j++) {
 633                ret = do_write(ff, &perf_env.cpu[j].die_id,
 634                               sizeof(perf_env.cpu[j].die_id));
 635                if (ret < 0)
 636                        return ret;
 637        }
 638
 639done:
 640        cpu_topology__delete(tp);
 641        return ret;
 642}
 643
 644
 645
 646static int write_total_mem(struct feat_fd *ff,
 647                           struct evlist *evlist __maybe_unused)
 648{
 649        char *buf = NULL;
 650        FILE *fp;
 651        size_t len = 0;
 652        int ret = -1, n;
 653        uint64_t mem;
 654
 655        fp = fopen("/proc/meminfo", "r");
 656        if (!fp)
 657                return -1;
 658
 659        while (getline(&buf, &len, fp) > 0) {
 660                ret = strncmp(buf, "MemTotal:", 9);
 661                if (!ret)
 662                        break;
 663        }
 664        if (!ret) {
 665                n = sscanf(buf, "%*s %"PRIu64, &mem);
 666                if (n == 1)
 667                        ret = do_write(ff, &mem, sizeof(mem));
 668        } else
 669                ret = -1;
 670        free(buf);
 671        fclose(fp);
 672        return ret;
 673}
 674
 675static int write_numa_topology(struct feat_fd *ff,
 676                               struct evlist *evlist __maybe_unused)
 677{
 678        struct numa_topology *tp;
 679        int ret = -1;
 680        u32 i;
 681
 682        tp = numa_topology__new();
 683        if (!tp)
 684                return -ENOMEM;
 685
 686        ret = do_write(ff, &tp->nr, sizeof(u32));
 687        if (ret < 0)
 688                goto err;
 689
 690        for (i = 0; i < tp->nr; i++) {
 691                struct numa_topology_node *n = &tp->nodes[i];
 692
 693                ret = do_write(ff, &n->node, sizeof(u32));
 694                if (ret < 0)
 695                        goto err;
 696
 697                ret = do_write(ff, &n->mem_total, sizeof(u64));
 698                if (ret)
 699                        goto err;
 700
 701                ret = do_write(ff, &n->mem_free, sizeof(u64));
 702                if (ret)
 703                        goto err;
 704
 705                ret = do_write_string(ff, n->cpus);
 706                if (ret < 0)
 707                        goto err;
 708        }
 709
 710        ret = 0;
 711
 712err:
 713        numa_topology__delete(tp);
 714        return ret;
 715}
 716
 717/*
 718 * File format:
 719 *
 720 * struct pmu_mappings {
 721 *      u32     pmu_num;
 722 *      struct pmu_map {
 723 *              u32     type;
 724 *              char    name[];
 725 *      }[pmu_num];
 726 * };
 727 */
 728
 729static int write_pmu_mappings(struct feat_fd *ff,
 730                              struct evlist *evlist __maybe_unused)
 731{
 732        struct perf_pmu *pmu = NULL;
 733        u32 pmu_num = 0;
 734        int ret;
 735
 736        /*
 737         * Do a first pass to count number of pmu to avoid lseek so this
 738         * works in pipe mode as well.
 739         */
 740        while ((pmu = perf_pmu__scan(pmu))) {
 741                if (!pmu->name)
 742                        continue;
 743                pmu_num++;
 744        }
 745
 746        ret = do_write(ff, &pmu_num, sizeof(pmu_num));
 747        if (ret < 0)
 748                return ret;
 749
 750        while ((pmu = perf_pmu__scan(pmu))) {
 751                if (!pmu->name)
 752                        continue;
 753
 754                ret = do_write(ff, &pmu->type, sizeof(pmu->type));
 755                if (ret < 0)
 756                        return ret;
 757
 758                ret = do_write_string(ff, pmu->name);
 759                if (ret < 0)
 760                        return ret;
 761        }
 762
 763        return 0;
 764}
 765
 766/*
 767 * File format:
 768 *
 769 * struct group_descs {
 770 *      u32     nr_groups;
 771 *      struct group_desc {
 772 *              char    name[];
 773 *              u32     leader_idx;
 774 *              u32     nr_members;
 775 *      }[nr_groups];
 776 * };
 777 */
 778static int write_group_desc(struct feat_fd *ff,
 779                            struct evlist *evlist)
 780{
 781        u32 nr_groups = evlist->core.nr_groups;
 782        struct evsel *evsel;
 783        int ret;
 784
 785        ret = do_write(ff, &nr_groups, sizeof(nr_groups));
 786        if (ret < 0)
 787                return ret;
 788
 789        evlist__for_each_entry(evlist, evsel) {
 790                if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
 791                        const char *name = evsel->group_name ?: "{anon_group}";
 792                        u32 leader_idx = evsel->core.idx;
 793                        u32 nr_members = evsel->core.nr_members;
 794
 795                        ret = do_write_string(ff, name);
 796                        if (ret < 0)
 797                                return ret;
 798
 799                        ret = do_write(ff, &leader_idx, sizeof(leader_idx));
 800                        if (ret < 0)
 801                                return ret;
 802
 803                        ret = do_write(ff, &nr_members, sizeof(nr_members));
 804                        if (ret < 0)
 805                                return ret;
 806                }
 807        }
 808        return 0;
 809}
 810
 811/*
 812 * Return the CPU id as a raw string.
 813 *
 814 * Each architecture should provide a more precise id string that
 815 * can be use to match the architecture's "mapfile".
 816 */
 817char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
 818{
 819        return NULL;
 820}
 821
 822/* Return zero when the cpuid from the mapfile.csv matches the
 823 * cpuid string generated on this platform.
 824 * Otherwise return non-zero.
 825 */
 826int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
 827{
 828        regex_t re;
 829        regmatch_t pmatch[1];
 830        int match;
 831
 832        if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
 833                /* Warn unable to generate match particular string. */
 834                pr_info("Invalid regular expression %s\n", mapcpuid);
 835                return 1;
 836        }
 837
 838        match = !regexec(&re, cpuid, 1, pmatch, 0);
 839        regfree(&re);
 840        if (match) {
 841                size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
 842
 843                /* Verify the entire string matched. */
 844                if (match_len == strlen(cpuid))
 845                        return 0;
 846        }
 847        return 1;
 848}
 849
 850/*
 851 * default get_cpuid(): nothing gets recorded
 852 * actual implementation must be in arch/$(SRCARCH)/util/header.c
 853 */
 854int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
 855{
 856        return ENOSYS; /* Not implemented */
 857}
 858
 859static int write_cpuid(struct feat_fd *ff,
 860                       struct evlist *evlist __maybe_unused)
 861{
 862        char buffer[64];
 863        int ret;
 864
 865        ret = get_cpuid(buffer, sizeof(buffer));
 866        if (ret)
 867                return -1;
 868
 869        return do_write_string(ff, buffer);
 870}
 871
 872static int write_branch_stack(struct feat_fd *ff __maybe_unused,
 873                              struct evlist *evlist __maybe_unused)
 874{
 875        return 0;
 876}
 877
 878static int write_auxtrace(struct feat_fd *ff,
 879                          struct evlist *evlist __maybe_unused)
 880{
 881        struct perf_session *session;
 882        int err;
 883
 884        if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 885                return -1;
 886
 887        session = container_of(ff->ph, struct perf_session, header);
 888
 889        err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
 890        if (err < 0)
 891                pr_err("Failed to write auxtrace index\n");
 892        return err;
 893}
 894
 895static int write_clockid(struct feat_fd *ff,
 896                         struct evlist *evlist __maybe_unused)
 897{
 898        return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
 899                        sizeof(ff->ph->env.clock.clockid_res_ns));
 900}
 901
 902static int write_clock_data(struct feat_fd *ff,
 903                            struct evlist *evlist __maybe_unused)
 904{
 905        u64 *data64;
 906        u32 data32;
 907        int ret;
 908
 909        /* version */
 910        data32 = 1;
 911
 912        ret = do_write(ff, &data32, sizeof(data32));
 913        if (ret < 0)
 914                return ret;
 915
 916        /* clockid */
 917        data32 = ff->ph->env.clock.clockid;
 918
 919        ret = do_write(ff, &data32, sizeof(data32));
 920        if (ret < 0)
 921                return ret;
 922
 923        /* TOD ref time */
 924        data64 = &ff->ph->env.clock.tod_ns;
 925
 926        ret = do_write(ff, data64, sizeof(*data64));
 927        if (ret < 0)
 928                return ret;
 929
 930        /* clockid ref time */
 931        data64 = &ff->ph->env.clock.clockid_ns;
 932
 933        return do_write(ff, data64, sizeof(*data64));
 934}
 935
 936static int write_hybrid_topology(struct feat_fd *ff,
 937                                 struct evlist *evlist __maybe_unused)
 938{
 939        struct hybrid_topology *tp;
 940        int ret;
 941        u32 i;
 942
 943        tp = hybrid_topology__new();
 944        if (!tp)
 945                return -ENOENT;
 946
 947        ret = do_write(ff, &tp->nr, sizeof(u32));
 948        if (ret < 0)
 949                goto err;
 950
 951        for (i = 0; i < tp->nr; i++) {
 952                struct hybrid_topology_node *n = &tp->nodes[i];
 953
 954                ret = do_write_string(ff, n->pmu_name);
 955                if (ret < 0)
 956                        goto err;
 957
 958                ret = do_write_string(ff, n->cpus);
 959                if (ret < 0)
 960                        goto err;
 961        }
 962
 963        ret = 0;
 964
 965err:
 966        hybrid_topology__delete(tp);
 967        return ret;
 968}
 969
 970static int write_dir_format(struct feat_fd *ff,
 971                            struct evlist *evlist __maybe_unused)
 972{
 973        struct perf_session *session;
 974        struct perf_data *data;
 975
 976        session = container_of(ff->ph, struct perf_session, header);
 977        data = session->data;
 978
 979        if (WARN_ON(!perf_data__is_dir(data)))
 980                return -1;
 981
 982        return do_write(ff, &data->dir.version, sizeof(data->dir.version));
 983}
 984
 985#ifdef HAVE_LIBBPF_SUPPORT
 986static int write_bpf_prog_info(struct feat_fd *ff,
 987                               struct evlist *evlist __maybe_unused)
 988{
 989        struct perf_env *env = &ff->ph->env;
 990        struct rb_root *root;
 991        struct rb_node *next;
 992        int ret;
 993
 994        down_read(&env->bpf_progs.lock);
 995
 996        ret = do_write(ff, &env->bpf_progs.infos_cnt,
 997                       sizeof(env->bpf_progs.infos_cnt));
 998        if (ret < 0)
 999                goto out;
1000
1001        root = &env->bpf_progs.infos;
1002        next = rb_first(root);
1003        while (next) {
1004                struct bpf_prog_info_node *node;
1005                size_t len;
1006
1007                node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1008                next = rb_next(&node->rb_node);
1009                len = sizeof(struct bpf_prog_info_linear) +
1010                        node->info_linear->data_len;
1011
1012                /* before writing to file, translate address to offset */
1013                bpf_program__bpil_addr_to_offs(node->info_linear);
1014                ret = do_write(ff, node->info_linear, len);
1015                /*
1016                 * translate back to address even when do_write() fails,
1017                 * so that this function never changes the data.
1018                 */
1019                bpf_program__bpil_offs_to_addr(node->info_linear);
1020                if (ret < 0)
1021                        goto out;
1022        }
1023out:
1024        up_read(&env->bpf_progs.lock);
1025        return ret;
1026}
1027
1028static int write_bpf_btf(struct feat_fd *ff,
1029                         struct evlist *evlist __maybe_unused)
1030{
1031        struct perf_env *env = &ff->ph->env;
1032        struct rb_root *root;
1033        struct rb_node *next;
1034        int ret;
1035
1036        down_read(&env->bpf_progs.lock);
1037
1038        ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1039                       sizeof(env->bpf_progs.btfs_cnt));
1040
1041        if (ret < 0)
1042                goto out;
1043
1044        root = &env->bpf_progs.btfs;
1045        next = rb_first(root);
1046        while (next) {
1047                struct btf_node *node;
1048
1049                node = rb_entry(next, struct btf_node, rb_node);
1050                next = rb_next(&node->rb_node);
1051                ret = do_write(ff, &node->id,
1052                               sizeof(u32) * 2 + node->data_size);
1053                if (ret < 0)
1054                        goto out;
1055        }
1056out:
1057        up_read(&env->bpf_progs.lock);
1058        return ret;
1059}
1060#endif // HAVE_LIBBPF_SUPPORT
1061
1062static int cpu_cache_level__sort(const void *a, const void *b)
1063{
1064        struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1065        struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1066
1067        return cache_a->level - cache_b->level;
1068}
1069
1070static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1071{
1072        if (a->level != b->level)
1073                return false;
1074
1075        if (a->line_size != b->line_size)
1076                return false;
1077
1078        if (a->sets != b->sets)
1079                return false;
1080
1081        if (a->ways != b->ways)
1082                return false;
1083
1084        if (strcmp(a->type, b->type))
1085                return false;
1086
1087        if (strcmp(a->size, b->size))
1088                return false;
1089
1090        if (strcmp(a->map, b->map))
1091                return false;
1092
1093        return true;
1094}
1095
1096static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1097{
1098        char path[PATH_MAX], file[PATH_MAX];
1099        struct stat st;
1100        size_t len;
1101
1102        scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1103        scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1104
1105        if (stat(file, &st))
1106                return 1;
1107
1108        scnprintf(file, PATH_MAX, "%s/level", path);
1109        if (sysfs__read_int(file, (int *) &cache->level))
1110                return -1;
1111
1112        scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1113        if (sysfs__read_int(file, (int *) &cache->line_size))
1114                return -1;
1115
1116        scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1117        if (sysfs__read_int(file, (int *) &cache->sets))
1118                return -1;
1119
1120        scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1121        if (sysfs__read_int(file, (int *) &cache->ways))
1122                return -1;
1123
1124        scnprintf(file, PATH_MAX, "%s/type", path);
1125        if (sysfs__read_str(file, &cache->type, &len))
1126                return -1;
1127
1128        cache->type[len] = 0;
1129        cache->type = strim(cache->type);
1130
1131        scnprintf(file, PATH_MAX, "%s/size", path);
1132        if (sysfs__read_str(file, &cache->size, &len)) {
1133                zfree(&cache->type);
1134                return -1;
1135        }
1136
1137        cache->size[len] = 0;
1138        cache->size = strim(cache->size);
1139
1140        scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1141        if (sysfs__read_str(file, &cache->map, &len)) {
1142                zfree(&cache->size);
1143                zfree(&cache->type);
1144                return -1;
1145        }
1146
1147        cache->map[len] = 0;
1148        cache->map = strim(cache->map);
1149        return 0;
1150}
1151
1152static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1153{
1154        fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1155}
1156
1157#define MAX_CACHE_LVL 4
1158
1159static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1160{
1161        u32 i, cnt = 0;
1162        u32 nr, cpu;
1163        u16 level;
1164
1165        nr = cpu__max_cpu();
1166
1167        for (cpu = 0; cpu < nr; cpu++) {
1168                for (level = 0; level < MAX_CACHE_LVL; level++) {
1169                        struct cpu_cache_level c;
1170                        int err;
1171
1172                        err = cpu_cache_level__read(&c, cpu, level);
1173                        if (err < 0)
1174                                return err;
1175
1176                        if (err == 1)
1177                                break;
1178
1179                        for (i = 0; i < cnt; i++) {
1180                                if (cpu_cache_level__cmp(&c, &caches[i]))
1181                                        break;
1182                        }
1183
1184                        if (i == cnt)
1185                                caches[cnt++] = c;
1186                        else
1187                                cpu_cache_level__free(&c);
1188                }
1189        }
1190        *cntp = cnt;
1191        return 0;
1192}
1193
1194static int write_cache(struct feat_fd *ff,
1195                       struct evlist *evlist __maybe_unused)
1196{
1197        u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
1198        struct cpu_cache_level caches[max_caches];
1199        u32 cnt = 0, i, version = 1;
1200        int ret;
1201
1202        ret = build_caches(caches, &cnt);
1203        if (ret)
1204                goto out;
1205
1206        qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1207
1208        ret = do_write(ff, &version, sizeof(u32));
1209        if (ret < 0)
1210                goto out;
1211
1212        ret = do_write(ff, &cnt, sizeof(u32));
1213        if (ret < 0)
1214                goto out;
1215
1216        for (i = 0; i < cnt; i++) {
1217                struct cpu_cache_level *c = &caches[i];
1218
1219                #define _W(v)                                   \
1220                        ret = do_write(ff, &c->v, sizeof(u32)); \
1221                        if (ret < 0)                            \
1222                                goto out;
1223
1224                _W(level)
1225                _W(line_size)
1226                _W(sets)
1227                _W(ways)
1228                #undef _W
1229
1230                #define _W(v)                                           \
1231                        ret = do_write_string(ff, (const char *) c->v); \
1232                        if (ret < 0)                                    \
1233                                goto out;
1234
1235                _W(type)
1236                _W(size)
1237                _W(map)
1238                #undef _W
1239        }
1240
1241out:
1242        for (i = 0; i < cnt; i++)
1243                cpu_cache_level__free(&caches[i]);
1244        return ret;
1245}
1246
1247static int write_stat(struct feat_fd *ff __maybe_unused,
1248                      struct evlist *evlist __maybe_unused)
1249{
1250        return 0;
1251}
1252
1253static int write_sample_time(struct feat_fd *ff,
1254                             struct evlist *evlist)
1255{
1256        int ret;
1257
1258        ret = do_write(ff, &evlist->first_sample_time,
1259                       sizeof(evlist->first_sample_time));
1260        if (ret < 0)
1261                return ret;
1262
1263        return do_write(ff, &evlist->last_sample_time,
1264                        sizeof(evlist->last_sample_time));
1265}
1266
1267
1268static int memory_node__read(struct memory_node *n, unsigned long idx)
1269{
1270        unsigned int phys, size = 0;
1271        char path[PATH_MAX];
1272        struct dirent *ent;
1273        DIR *dir;
1274
1275#define for_each_memory(mem, dir)                                       \
1276        while ((ent = readdir(dir)))                                    \
1277                if (strcmp(ent->d_name, ".") &&                         \
1278                    strcmp(ent->d_name, "..") &&                        \
1279                    sscanf(ent->d_name, "memory%u", &mem) == 1)
1280
1281        scnprintf(path, PATH_MAX,
1282                  "%s/devices/system/node/node%lu",
1283                  sysfs__mountpoint(), idx);
1284
1285        dir = opendir(path);
1286        if (!dir) {
1287                pr_warning("failed: can't open memory sysfs data\n");
1288                return -1;
1289        }
1290
1291        for_each_memory(phys, dir) {
1292                size = max(phys, size);
1293        }
1294
1295        size++;
1296
1297        n->set = bitmap_zalloc(size);
1298        if (!n->set) {
1299                closedir(dir);
1300                return -ENOMEM;
1301        }
1302
1303        n->node = idx;
1304        n->size = size;
1305
1306        rewinddir(dir);
1307
1308        for_each_memory(phys, dir) {
1309                set_bit(phys, n->set);
1310        }
1311
1312        closedir(dir);
1313        return 0;
1314}
1315
1316static int memory_node__sort(const void *a, const void *b)
1317{
1318        const struct memory_node *na = a;
1319        const struct memory_node *nb = b;
1320
1321        return na->node - nb->node;
1322}
1323
1324static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1325{
1326        char path[PATH_MAX];
1327        struct dirent *ent;
1328        DIR *dir;
1329        u64 cnt = 0;
1330        int ret = 0;
1331
1332        scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1333                  sysfs__mountpoint());
1334
1335        dir = opendir(path);
1336        if (!dir) {
1337                pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1338                          __func__, path);
1339                return -1;
1340        }
1341
1342        while (!ret && (ent = readdir(dir))) {
1343                unsigned int idx;
1344                int r;
1345
1346                if (!strcmp(ent->d_name, ".") ||
1347                    !strcmp(ent->d_name, ".."))
1348                        continue;
1349
1350                r = sscanf(ent->d_name, "node%u", &idx);
1351                if (r != 1)
1352                        continue;
1353
1354                if (WARN_ONCE(cnt >= size,
1355                        "failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1356                        closedir(dir);
1357                        return -1;
1358                }
1359
1360                ret = memory_node__read(&nodes[cnt++], idx);
1361        }
1362
1363        *cntp = cnt;
1364        closedir(dir);
1365
1366        if (!ret)
1367                qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1368
1369        return ret;
1370}
1371
1372#define MAX_MEMORY_NODES 2000
1373
1374/*
1375 * The MEM_TOPOLOGY holds physical memory map for every
1376 * node in system. The format of data is as follows:
1377 *
1378 *  0 - version          | for future changes
1379 *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1380 * 16 - count            | number of nodes
1381 *
1382 * For each node we store map of physical indexes for
1383 * each node:
1384 *
1385 * 32 - node id          | node index
1386 * 40 - size             | size of bitmap
1387 * 48 - bitmap           | bitmap of memory indexes that belongs to node
1388 */
1389static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1390                              struct evlist *evlist __maybe_unused)
1391{
1392        static struct memory_node nodes[MAX_MEMORY_NODES];
1393        u64 bsize, version = 1, i, nr;
1394        int ret;
1395
1396        ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1397                              (unsigned long long *) &bsize);
1398        if (ret)
1399                return ret;
1400
1401        ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1402        if (ret)
1403                return ret;
1404
1405        ret = do_write(ff, &version, sizeof(version));
1406        if (ret < 0)
1407                goto out;
1408
1409        ret = do_write(ff, &bsize, sizeof(bsize));
1410        if (ret < 0)
1411                goto out;
1412
1413        ret = do_write(ff, &nr, sizeof(nr));
1414        if (ret < 0)
1415                goto out;
1416
1417        for (i = 0; i < nr; i++) {
1418                struct memory_node *n = &nodes[i];
1419
1420                #define _W(v)                                           \
1421                        ret = do_write(ff, &n->v, sizeof(n->v));        \
1422                        if (ret < 0)                                    \
1423                                goto out;
1424
1425                _W(node)
1426                _W(size)
1427
1428                #undef _W
1429
1430                ret = do_write_bitmap(ff, n->set, n->size);
1431                if (ret < 0)
1432                        goto out;
1433        }
1434
1435out:
1436        return ret;
1437}
1438
1439static int write_compressed(struct feat_fd *ff __maybe_unused,
1440                            struct evlist *evlist __maybe_unused)
1441{
1442        int ret;
1443
1444        ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1445        if (ret)
1446                return ret;
1447
1448        ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1449        if (ret)
1450                return ret;
1451
1452        ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1453        if (ret)
1454                return ret;
1455
1456        ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1457        if (ret)
1458                return ret;
1459
1460        return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1461}
1462
1463static int write_per_cpu_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu,
1464                                  bool write_pmu)
1465{
1466        struct perf_pmu_caps *caps = NULL;
1467        int nr_caps;
1468        int ret;
1469
1470        nr_caps = perf_pmu__caps_parse(pmu);
1471        if (nr_caps < 0)
1472                return nr_caps;
1473
1474        ret = do_write(ff, &nr_caps, sizeof(nr_caps));
1475        if (ret < 0)
1476                return ret;
1477
1478        list_for_each_entry(caps, &pmu->caps, list) {
1479                ret = do_write_string(ff, caps->name);
1480                if (ret < 0)
1481                        return ret;
1482
1483                ret = do_write_string(ff, caps->value);
1484                if (ret < 0)
1485                        return ret;
1486        }
1487
1488        if (write_pmu) {
1489                ret = do_write_string(ff, pmu->name);
1490                if (ret < 0)
1491                        return ret;
1492        }
1493
1494        return ret;
1495}
1496
1497static int write_cpu_pmu_caps(struct feat_fd *ff,
1498                              struct evlist *evlist __maybe_unused)
1499{
1500        struct perf_pmu *cpu_pmu = perf_pmu__find("cpu");
1501
1502        if (!cpu_pmu)
1503                return -ENOENT;
1504
1505        return write_per_cpu_pmu_caps(ff, cpu_pmu, false);
1506}
1507
1508static int write_hybrid_cpu_pmu_caps(struct feat_fd *ff,
1509                                     struct evlist *evlist __maybe_unused)
1510{
1511        struct perf_pmu *pmu;
1512        u32 nr_pmu = perf_pmu__hybrid_pmu_num();
1513        int ret;
1514
1515        if (nr_pmu == 0)
1516                return -ENOENT;
1517
1518        ret = do_write(ff, &nr_pmu, sizeof(nr_pmu));
1519        if (ret < 0)
1520                return ret;
1521
1522        perf_pmu__for_each_hybrid_pmu(pmu) {
1523                ret = write_per_cpu_pmu_caps(ff, pmu, true);
1524                if (ret < 0)
1525                        return ret;
1526        }
1527
1528        return 0;
1529}
1530
1531static void print_hostname(struct feat_fd *ff, FILE *fp)
1532{
1533        fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1534}
1535
1536static void print_osrelease(struct feat_fd *ff, FILE *fp)
1537{
1538        fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1539}
1540
1541static void print_arch(struct feat_fd *ff, FILE *fp)
1542{
1543        fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1544}
1545
1546static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1547{
1548        fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1549}
1550
1551static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1552{
1553        fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1554        fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1555}
1556
1557static void print_version(struct feat_fd *ff, FILE *fp)
1558{
1559        fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1560}
1561
1562static void print_cmdline(struct feat_fd *ff, FILE *fp)
1563{
1564        int nr, i;
1565
1566        nr = ff->ph->env.nr_cmdline;
1567
1568        fprintf(fp, "# cmdline : ");
1569
1570        for (i = 0; i < nr; i++) {
1571                char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1572                if (!argv_i) {
1573                        fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1574                } else {
1575                        char *mem = argv_i;
1576                        do {
1577                                char *quote = strchr(argv_i, '\'');
1578                                if (!quote)
1579                                        break;
1580                                *quote++ = '\0';
1581                                fprintf(fp, "%s\\\'", argv_i);
1582                                argv_i = quote;
1583                        } while (1);
1584                        fprintf(fp, "%s ", argv_i);
1585                        free(mem);
1586                }
1587        }
1588        fputc('\n', fp);
1589}
1590
1591static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1592{
1593        struct perf_header *ph = ff->ph;
1594        int cpu_nr = ph->env.nr_cpus_avail;
1595        int nr, i;
1596        char *str;
1597
1598        nr = ph->env.nr_sibling_cores;
1599        str = ph->env.sibling_cores;
1600
1601        for (i = 0; i < nr; i++) {
1602                fprintf(fp, "# sibling sockets : %s\n", str);
1603                str += strlen(str) + 1;
1604        }
1605
1606        if (ph->env.nr_sibling_dies) {
1607                nr = ph->env.nr_sibling_dies;
1608                str = ph->env.sibling_dies;
1609
1610                for (i = 0; i < nr; i++) {
1611                        fprintf(fp, "# sibling dies    : %s\n", str);
1612                        str += strlen(str) + 1;
1613                }
1614        }
1615
1616        nr = ph->env.nr_sibling_threads;
1617        str = ph->env.sibling_threads;
1618
1619        for (i = 0; i < nr; i++) {
1620                fprintf(fp, "# sibling threads : %s\n", str);
1621                str += strlen(str) + 1;
1622        }
1623
1624        if (ph->env.nr_sibling_dies) {
1625                if (ph->env.cpu != NULL) {
1626                        for (i = 0; i < cpu_nr; i++)
1627                                fprintf(fp, "# CPU %d: Core ID %d, "
1628                                            "Die ID %d, Socket ID %d\n",
1629                                            i, ph->env.cpu[i].core_id,
1630                                            ph->env.cpu[i].die_id,
1631                                            ph->env.cpu[i].socket_id);
1632                } else
1633                        fprintf(fp, "# Core ID, Die ID and Socket ID "
1634                                    "information is not available\n");
1635        } else {
1636                if (ph->env.cpu != NULL) {
1637                        for (i = 0; i < cpu_nr; i++)
1638                                fprintf(fp, "# CPU %d: Core ID %d, "
1639                                            "Socket ID %d\n",
1640                                            i, ph->env.cpu[i].core_id,
1641                                            ph->env.cpu[i].socket_id);
1642                } else
1643                        fprintf(fp, "# Core ID and Socket ID "
1644                                    "information is not available\n");
1645        }
1646}
1647
1648static void print_clockid(struct feat_fd *ff, FILE *fp)
1649{
1650        fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1651                ff->ph->env.clock.clockid_res_ns * 1000);
1652}
1653
1654static void print_clock_data(struct feat_fd *ff, FILE *fp)
1655{
1656        struct timespec clockid_ns;
1657        char tstr[64], date[64];
1658        struct timeval tod_ns;
1659        clockid_t clockid;
1660        struct tm ltime;
1661        u64 ref;
1662
1663        if (!ff->ph->env.clock.enabled) {
1664                fprintf(fp, "# reference time disabled\n");
1665                return;
1666        }
1667
1668        /* Compute TOD time. */
1669        ref = ff->ph->env.clock.tod_ns;
1670        tod_ns.tv_sec = ref / NSEC_PER_SEC;
1671        ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1672        tod_ns.tv_usec = ref / NSEC_PER_USEC;
1673
1674        /* Compute clockid time. */
1675        ref = ff->ph->env.clock.clockid_ns;
1676        clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1677        ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1678        clockid_ns.tv_nsec = ref;
1679
1680        clockid = ff->ph->env.clock.clockid;
1681
1682        if (localtime_r(&tod_ns.tv_sec, &ltime) == NULL)
1683                snprintf(tstr, sizeof(tstr), "<error>");
1684        else {
1685                strftime(date, sizeof(date), "%F %T", &ltime);
1686                scnprintf(tstr, sizeof(tstr), "%s.%06d",
1687                          date, (int) tod_ns.tv_usec);
1688        }
1689
1690        fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1691        fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1692                    tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec,
1693                    (long) clockid_ns.tv_sec, clockid_ns.tv_nsec,
1694                    clockid_name(clockid));
1695}
1696
1697static void print_hybrid_topology(struct feat_fd *ff, FILE *fp)
1698{
1699        int i;
1700        struct hybrid_node *n;
1701
1702        fprintf(fp, "# hybrid cpu system:\n");
1703        for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) {
1704                n = &ff->ph->env.hybrid_nodes[i];
1705                fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus);
1706        }
1707}
1708
1709static void print_dir_format(struct feat_fd *ff, FILE *fp)
1710{
1711        struct perf_session *session;
1712        struct perf_data *data;
1713
1714        session = container_of(ff->ph, struct perf_session, header);
1715        data = session->data;
1716
1717        fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1718}
1719
1720#ifdef HAVE_LIBBPF_SUPPORT
1721static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1722{
1723        struct perf_env *env = &ff->ph->env;
1724        struct rb_root *root;
1725        struct rb_node *next;
1726
1727        down_read(&env->bpf_progs.lock);
1728
1729        root = &env->bpf_progs.infos;
1730        next = rb_first(root);
1731
1732        while (next) {
1733                struct bpf_prog_info_node *node;
1734
1735                node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1736                next = rb_next(&node->rb_node);
1737
1738                bpf_event__print_bpf_prog_info(&node->info_linear->info,
1739                                               env, fp);
1740        }
1741
1742        up_read(&env->bpf_progs.lock);
1743}
1744
1745static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1746{
1747        struct perf_env *env = &ff->ph->env;
1748        struct rb_root *root;
1749        struct rb_node *next;
1750
1751        down_read(&env->bpf_progs.lock);
1752
1753        root = &env->bpf_progs.btfs;
1754        next = rb_first(root);
1755
1756        while (next) {
1757                struct btf_node *node;
1758
1759                node = rb_entry(next, struct btf_node, rb_node);
1760                next = rb_next(&node->rb_node);
1761                fprintf(fp, "# btf info of id %u\n", node->id);
1762        }
1763
1764        up_read(&env->bpf_progs.lock);
1765}
1766#endif // HAVE_LIBBPF_SUPPORT
1767
1768static void free_event_desc(struct evsel *events)
1769{
1770        struct evsel *evsel;
1771
1772        if (!events)
1773                return;
1774
1775        for (evsel = events; evsel->core.attr.size; evsel++) {
1776                zfree(&evsel->name);
1777                zfree(&evsel->core.id);
1778        }
1779
1780        free(events);
1781}
1782
1783static bool perf_attr_check(struct perf_event_attr *attr)
1784{
1785        if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1786                pr_warning("Reserved bits are set unexpectedly. "
1787                           "Please update perf tool.\n");
1788                return false;
1789        }
1790
1791        if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1792                pr_warning("Unknown sample type (0x%llx) is detected. "
1793                           "Please update perf tool.\n",
1794                           attr->sample_type);
1795                return false;
1796        }
1797
1798        if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1799                pr_warning("Unknown read format (0x%llx) is detected. "
1800                           "Please update perf tool.\n",
1801                           attr->read_format);
1802                return false;
1803        }
1804
1805        if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1806            (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1807                pr_warning("Unknown branch sample type (0x%llx) is detected. "
1808                           "Please update perf tool.\n",
1809                           attr->branch_sample_type);
1810
1811                return false;
1812        }
1813
1814        return true;
1815}
1816
1817static struct evsel *read_event_desc(struct feat_fd *ff)
1818{
1819        struct evsel *evsel, *events = NULL;
1820        u64 *id;
1821        void *buf = NULL;
1822        u32 nre, sz, nr, i, j;
1823        size_t msz;
1824
1825        /* number of events */
1826        if (do_read_u32(ff, &nre))
1827                goto error;
1828
1829        if (do_read_u32(ff, &sz))
1830                goto error;
1831
1832        /* buffer to hold on file attr struct */
1833        buf = malloc(sz);
1834        if (!buf)
1835                goto error;
1836
1837        /* the last event terminates with evsel->core.attr.size == 0: */
1838        events = calloc(nre + 1, sizeof(*events));
1839        if (!events)
1840                goto error;
1841
1842        msz = sizeof(evsel->core.attr);
1843        if (sz < msz)
1844                msz = sz;
1845
1846        for (i = 0, evsel = events; i < nre; evsel++, i++) {
1847                evsel->core.idx = i;
1848
1849                /*
1850                 * must read entire on-file attr struct to
1851                 * sync up with layout.
1852                 */
1853                if (__do_read(ff, buf, sz))
1854                        goto error;
1855
1856                if (ff->ph->needs_swap)
1857                        perf_event__attr_swap(buf);
1858
1859                memcpy(&evsel->core.attr, buf, msz);
1860
1861                if (!perf_attr_check(&evsel->core.attr))
1862                        goto error;
1863
1864                if (do_read_u32(ff, &nr))
1865                        goto error;
1866
1867                if (ff->ph->needs_swap)
1868                        evsel->needs_swap = true;
1869
1870                evsel->name = do_read_string(ff);
1871                if (!evsel->name)
1872                        goto error;
1873
1874                if (!nr)
1875                        continue;
1876
1877                id = calloc(nr, sizeof(*id));
1878                if (!id)
1879                        goto error;
1880                evsel->core.ids = nr;
1881                evsel->core.id = id;
1882
1883                for (j = 0 ; j < nr; j++) {
1884                        if (do_read_u64(ff, id))
1885                                goto error;
1886                        id++;
1887                }
1888        }
1889out:
1890        free(buf);
1891        return events;
1892error:
1893        free_event_desc(events);
1894        events = NULL;
1895        goto out;
1896}
1897
1898static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1899                                void *priv __maybe_unused)
1900{
1901        return fprintf(fp, ", %s = %s", name, val);
1902}
1903
1904static void print_event_desc(struct feat_fd *ff, FILE *fp)
1905{
1906        struct evsel *evsel, *events;
1907        u32 j;
1908        u64 *id;
1909
1910        if (ff->events)
1911                events = ff->events;
1912        else
1913                events = read_event_desc(ff);
1914
1915        if (!events) {
1916                fprintf(fp, "# event desc: not available or unable to read\n");
1917                return;
1918        }
1919
1920        for (evsel = events; evsel->core.attr.size; evsel++) {
1921                fprintf(fp, "# event : name = %s, ", evsel->name);
1922
1923                if (evsel->core.ids) {
1924                        fprintf(fp, ", id = {");
1925                        for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1926                                if (j)
1927                                        fputc(',', fp);
1928                                fprintf(fp, " %"PRIu64, *id);
1929                        }
1930                        fprintf(fp, " }");
1931                }
1932
1933                perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1934
1935                fputc('\n', fp);
1936        }
1937
1938        free_event_desc(events);
1939        ff->events = NULL;
1940}
1941
1942static void print_total_mem(struct feat_fd *ff, FILE *fp)
1943{
1944        fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1945}
1946
1947static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1948{
1949        int i;
1950        struct numa_node *n;
1951
1952        for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1953                n = &ff->ph->env.numa_nodes[i];
1954
1955                fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1956                            " free = %"PRIu64" kB\n",
1957                        n->node, n->mem_total, n->mem_free);
1958
1959                fprintf(fp, "# node%u cpu list : ", n->node);
1960                cpu_map__fprintf(n->map, fp);
1961        }
1962}
1963
1964static void print_cpuid(struct feat_fd *ff, FILE *fp)
1965{
1966        fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1967}
1968
1969static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1970{
1971        fprintf(fp, "# contains samples with branch stack\n");
1972}
1973
1974static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1975{
1976        fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1977}
1978
1979static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1980{
1981        fprintf(fp, "# contains stat data\n");
1982}
1983
1984static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1985{
1986        int i;
1987
1988        fprintf(fp, "# CPU cache info:\n");
1989        for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1990                fprintf(fp, "#  ");
1991                cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1992        }
1993}
1994
1995static void print_compressed(struct feat_fd *ff, FILE *fp)
1996{
1997        fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1998                ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1999                ff->ph->env.comp_level, ff->ph->env.comp_ratio);
2000}
2001
2002static void print_per_cpu_pmu_caps(FILE *fp, int nr_caps, char *cpu_pmu_caps,
2003                                   char *pmu_name)
2004{
2005        const char *delimiter;
2006        char *str, buf[128];
2007
2008        if (!nr_caps) {
2009                if (!pmu_name)
2010                        fprintf(fp, "# cpu pmu capabilities: not available\n");
2011                else
2012                        fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name);
2013                return;
2014        }
2015
2016        if (!pmu_name)
2017                scnprintf(buf, sizeof(buf), "# cpu pmu capabilities: ");
2018        else
2019                scnprintf(buf, sizeof(buf), "# %s pmu capabilities: ", pmu_name);
2020
2021        delimiter = buf;
2022
2023        str = cpu_pmu_caps;
2024        while (nr_caps--) {
2025                fprintf(fp, "%s%s", delimiter, str);
2026                delimiter = ", ";
2027                str += strlen(str) + 1;
2028        }
2029
2030        fprintf(fp, "\n");
2031}
2032
2033static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2034{
2035        print_per_cpu_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps,
2036                               ff->ph->env.cpu_pmu_caps, NULL);
2037}
2038
2039static void print_hybrid_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2040{
2041        struct hybrid_cpc_node *n;
2042
2043        for (int i = 0; i < ff->ph->env.nr_hybrid_cpc_nodes; i++) {
2044                n = &ff->ph->env.hybrid_cpc_nodes[i];
2045                print_per_cpu_pmu_caps(fp, n->nr_cpu_pmu_caps,
2046                                       n->cpu_pmu_caps,
2047                                       n->pmu_name);
2048        }
2049}
2050
2051static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
2052{
2053        const char *delimiter = "# pmu mappings: ";
2054        char *str, *tmp;
2055        u32 pmu_num;
2056        u32 type;
2057
2058        pmu_num = ff->ph->env.nr_pmu_mappings;
2059        if (!pmu_num) {
2060                fprintf(fp, "# pmu mappings: not available\n");
2061                return;
2062        }
2063
2064        str = ff->ph->env.pmu_mappings;
2065
2066        while (pmu_num) {
2067                type = strtoul(str, &tmp, 0);
2068                if (*tmp != ':')
2069                        goto error;
2070
2071                str = tmp + 1;
2072                fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
2073
2074                delimiter = ", ";
2075                str += strlen(str) + 1;
2076                pmu_num--;
2077        }
2078
2079        fprintf(fp, "\n");
2080
2081        if (!pmu_num)
2082                return;
2083error:
2084        fprintf(fp, "# pmu mappings: unable to read\n");
2085}
2086
2087static void print_group_desc(struct feat_fd *ff, FILE *fp)
2088{
2089        struct perf_session *session;
2090        struct evsel *evsel;
2091        u32 nr = 0;
2092
2093        session = container_of(ff->ph, struct perf_session, header);
2094
2095        evlist__for_each_entry(session->evlist, evsel) {
2096                if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
2097                        fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
2098
2099                        nr = evsel->core.nr_members - 1;
2100                } else if (nr) {
2101                        fprintf(fp, ",%s", evsel__name(evsel));
2102
2103                        if (--nr == 0)
2104                                fprintf(fp, "}\n");
2105                }
2106        }
2107}
2108
2109static void print_sample_time(struct feat_fd *ff, FILE *fp)
2110{
2111        struct perf_session *session;
2112        char time_buf[32];
2113        double d;
2114
2115        session = container_of(ff->ph, struct perf_session, header);
2116
2117        timestamp__scnprintf_usec(session->evlist->first_sample_time,
2118                                  time_buf, sizeof(time_buf));
2119        fprintf(fp, "# time of first sample : %s\n", time_buf);
2120
2121        timestamp__scnprintf_usec(session->evlist->last_sample_time,
2122                                  time_buf, sizeof(time_buf));
2123        fprintf(fp, "# time of last sample : %s\n", time_buf);
2124
2125        d = (double)(session->evlist->last_sample_time -
2126                session->evlist->first_sample_time) / NSEC_PER_MSEC;
2127
2128        fprintf(fp, "# sample duration : %10.3f ms\n", d);
2129}
2130
2131static void memory_node__fprintf(struct memory_node *n,
2132                                 unsigned long long bsize, FILE *fp)
2133{
2134        char buf_map[100], buf_size[50];
2135        unsigned long long size;
2136
2137        size = bsize * bitmap_weight(n->set, n->size);
2138        unit_number__scnprintf(buf_size, 50, size);
2139
2140        bitmap_scnprintf(n->set, n->size, buf_map, 100);
2141        fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2142}
2143
2144static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2145{
2146        struct memory_node *nodes;
2147        int i, nr;
2148
2149        nodes = ff->ph->env.memory_nodes;
2150        nr    = ff->ph->env.nr_memory_nodes;
2151
2152        fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2153                nr, ff->ph->env.memory_bsize);
2154
2155        for (i = 0; i < nr; i++) {
2156                memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2157        }
2158}
2159
2160static int __event_process_build_id(struct perf_record_header_build_id *bev,
2161                                    char *filename,
2162                                    struct perf_session *session)
2163{
2164        int err = -1;
2165        struct machine *machine;
2166        u16 cpumode;
2167        struct dso *dso;
2168        enum dso_space_type dso_space;
2169
2170        machine = perf_session__findnew_machine(session, bev->pid);
2171        if (!machine)
2172                goto out;
2173
2174        cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2175
2176        switch (cpumode) {
2177        case PERF_RECORD_MISC_KERNEL:
2178                dso_space = DSO_SPACE__KERNEL;
2179                break;
2180        case PERF_RECORD_MISC_GUEST_KERNEL:
2181                dso_space = DSO_SPACE__KERNEL_GUEST;
2182                break;
2183        case PERF_RECORD_MISC_USER:
2184        case PERF_RECORD_MISC_GUEST_USER:
2185                dso_space = DSO_SPACE__USER;
2186                break;
2187        default:
2188                goto out;
2189        }
2190
2191        dso = machine__findnew_dso(machine, filename);
2192        if (dso != NULL) {
2193                char sbuild_id[SBUILD_ID_SIZE];
2194                struct build_id bid;
2195                size_t size = BUILD_ID_SIZE;
2196
2197                if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2198                        size = bev->size;
2199
2200                build_id__init(&bid, bev->data, size);
2201                dso__set_build_id(dso, &bid);
2202
2203                if (dso_space != DSO_SPACE__USER) {
2204                        struct kmod_path m = { .name = NULL, };
2205
2206                        if (!kmod_path__parse_name(&m, filename) && m.kmod)
2207                                dso__set_module_info(dso, &m, machine);
2208
2209                        dso->kernel = dso_space;
2210                        free(m.name);
2211                }
2212
2213                build_id__sprintf(&dso->bid, sbuild_id);
2214                pr_debug("build id event received for %s: %s [%zu]\n",
2215                         dso->long_name, sbuild_id, size);
2216                dso__put(dso);
2217        }
2218
2219        err = 0;
2220out:
2221        return err;
2222}
2223
2224static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2225                                                 int input, u64 offset, u64 size)
2226{
2227        struct perf_session *session = container_of(header, struct perf_session, header);
2228        struct {
2229                struct perf_event_header   header;
2230                u8                         build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2231                char                       filename[0];
2232        } old_bev;
2233        struct perf_record_header_build_id bev;
2234        char filename[PATH_MAX];
2235        u64 limit = offset + size;
2236
2237        while (offset < limit) {
2238                ssize_t len;
2239
2240                if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2241                        return -1;
2242
2243                if (header->needs_swap)
2244                        perf_event_header__bswap(&old_bev.header);
2245
2246                len = old_bev.header.size - sizeof(old_bev);
2247                if (readn(input, filename, len) != len)
2248                        return -1;
2249
2250                bev.header = old_bev.header;
2251
2252                /*
2253                 * As the pid is the missing value, we need to fill
2254                 * it properly. The header.misc value give us nice hint.
2255                 */
2256                bev.pid = HOST_KERNEL_ID;
2257                if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2258                    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2259                        bev.pid = DEFAULT_GUEST_KERNEL_ID;
2260
2261                memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2262                __event_process_build_id(&bev, filename, session);
2263
2264                offset += bev.header.size;
2265        }
2266
2267        return 0;
2268}
2269
2270static int perf_header__read_build_ids(struct perf_header *header,
2271                                       int input, u64 offset, u64 size)
2272{
2273        struct perf_session *session = container_of(header, struct perf_session, header);
2274        struct perf_record_header_build_id bev;
2275        char filename[PATH_MAX];
2276        u64 limit = offset + size, orig_offset = offset;
2277        int err = -1;
2278
2279        while (offset < limit) {
2280                ssize_t len;
2281
2282                if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2283                        goto out;
2284
2285                if (header->needs_swap)
2286                        perf_event_header__bswap(&bev.header);
2287
2288                len = bev.header.size - sizeof(bev);
2289                if (readn(input, filename, len) != len)
2290                        goto out;
2291                /*
2292                 * The a1645ce1 changeset:
2293                 *
2294                 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2295                 *
2296                 * Added a field to struct perf_record_header_build_id that broke the file
2297                 * format.
2298                 *
2299                 * Since the kernel build-id is the first entry, process the
2300                 * table using the old format if the well known
2301                 * '[kernel.kallsyms]' string for the kernel build-id has the
2302                 * first 4 characters chopped off (where the pid_t sits).
2303                 */
2304                if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2305                        if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2306                                return -1;
2307                        return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2308                }
2309
2310                __event_process_build_id(&bev, filename, session);
2311
2312                offset += bev.header.size;
2313        }
2314        err = 0;
2315out:
2316        return err;
2317}
2318
2319/* Macro for features that simply need to read and store a string. */
2320#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2321static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2322{\
2323        ff->ph->env.__feat_env = do_read_string(ff); \
2324        return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2325}
2326
2327FEAT_PROCESS_STR_FUN(hostname, hostname);
2328FEAT_PROCESS_STR_FUN(osrelease, os_release);
2329FEAT_PROCESS_STR_FUN(version, version);
2330FEAT_PROCESS_STR_FUN(arch, arch);
2331FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2332FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2333
2334static int process_tracing_data(struct feat_fd *ff, void *data)
2335{
2336        ssize_t ret = trace_report(ff->fd, data, false);
2337
2338        return ret < 0 ? -1 : 0;
2339}
2340
2341static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2342{
2343        if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2344                pr_debug("Failed to read buildids, continuing...\n");
2345        return 0;
2346}
2347
2348static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2349{
2350        int ret;
2351        u32 nr_cpus_avail, nr_cpus_online;
2352
2353        ret = do_read_u32(ff, &nr_cpus_avail);
2354        if (ret)
2355                return ret;
2356
2357        ret = do_read_u32(ff, &nr_cpus_online);
2358        if (ret)
2359                return ret;
2360        ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2361        ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2362        return 0;
2363}
2364
2365static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2366{
2367        u64 total_mem;
2368        int ret;
2369
2370        ret = do_read_u64(ff, &total_mem);
2371        if (ret)
2372                return -1;
2373        ff->ph->env.total_mem = (unsigned long long)total_mem;
2374        return 0;
2375}
2376
2377static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
2378{
2379        struct evsel *evsel;
2380
2381        evlist__for_each_entry(evlist, evsel) {
2382                if (evsel->core.idx == idx)
2383                        return evsel;
2384        }
2385
2386        return NULL;
2387}
2388
2389static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
2390{
2391        struct evsel *evsel;
2392
2393        if (!event->name)
2394                return;
2395
2396        evsel = evlist__find_by_index(evlist, event->core.idx);
2397        if (!evsel)
2398                return;
2399
2400        if (evsel->name)
2401                return;
2402
2403        evsel->name = strdup(event->name);
2404}
2405
2406static int
2407process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2408{
2409        struct perf_session *session;
2410        struct evsel *evsel, *events = read_event_desc(ff);
2411
2412        if (!events)
2413                return 0;
2414
2415        session = container_of(ff->ph, struct perf_session, header);
2416
2417        if (session->data->is_pipe) {
2418                /* Save events for reading later by print_event_desc,
2419                 * since they can't be read again in pipe mode. */
2420                ff->events = events;
2421        }
2422
2423        for (evsel = events; evsel->core.attr.size; evsel++)
2424                evlist__set_event_name(session->evlist, evsel);
2425
2426        if (!session->data->is_pipe)
2427                free_event_desc(events);
2428
2429        return 0;
2430}
2431
2432static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2433{
2434        char *str, *cmdline = NULL, **argv = NULL;
2435        u32 nr, i, len = 0;
2436
2437        if (do_read_u32(ff, &nr))
2438                return -1;
2439
2440        ff->ph->env.nr_cmdline = nr;
2441
2442        cmdline = zalloc(ff->size + nr + 1);
2443        if (!cmdline)
2444                return -1;
2445
2446        argv = zalloc(sizeof(char *) * (nr + 1));
2447        if (!argv)
2448                goto error;
2449
2450        for (i = 0; i < nr; i++) {
2451                str = do_read_string(ff);
2452                if (!str)
2453                        goto error;
2454
2455                argv[i] = cmdline + len;
2456                memcpy(argv[i], str, strlen(str) + 1);
2457                len += strlen(str) + 1;
2458                free(str);
2459        }
2460        ff->ph->env.cmdline = cmdline;
2461        ff->ph->env.cmdline_argv = (const char **) argv;
2462        return 0;
2463
2464error:
2465        free(argv);
2466        free(cmdline);
2467        return -1;
2468}
2469
2470static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2471{
2472        u32 nr, i;
2473        char *str;
2474        struct strbuf sb;
2475        int cpu_nr = ff->ph->env.nr_cpus_avail;
2476        u64 size = 0;
2477        struct perf_header *ph = ff->ph;
2478        bool do_core_id_test = true;
2479
2480        ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2481        if (!ph->env.cpu)
2482                return -1;
2483
2484        if (do_read_u32(ff, &nr))
2485                goto free_cpu;
2486
2487        ph->env.nr_sibling_cores = nr;
2488        size += sizeof(u32);
2489        if (strbuf_init(&sb, 128) < 0)
2490                goto free_cpu;
2491
2492        for (i = 0; i < nr; i++) {
2493                str = do_read_string(ff);
2494                if (!str)
2495                        goto error;
2496
2497                /* include a NULL character at the end */
2498                if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2499                        goto error;
2500                size += string_size(str);
2501                free(str);
2502        }
2503        ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2504
2505        if (do_read_u32(ff, &nr))
2506                return -1;
2507
2508        ph->env.nr_sibling_threads = nr;
2509        size += sizeof(u32);
2510
2511        for (i = 0; i < nr; i++) {
2512                str = do_read_string(ff);
2513                if (!str)
2514                        goto error;
2515
2516                /* include a NULL character at the end */
2517                if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2518                        goto error;
2519                size += string_size(str);
2520                free(str);
2521        }
2522        ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2523
2524        /*
2525         * The header may be from old perf,
2526         * which doesn't include core id and socket id information.
2527         */
2528        if (ff->size <= size) {
2529                zfree(&ph->env.cpu);
2530                return 0;
2531        }
2532
2533        /* On s390 the socket_id number is not related to the numbers of cpus.
2534         * The socket_id number might be higher than the numbers of cpus.
2535         * This depends on the configuration.
2536         * AArch64 is the same.
2537         */
2538        if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2539                          || !strncmp(ph->env.arch, "aarch64", 7)))
2540                do_core_id_test = false;
2541
2542        for (i = 0; i < (u32)cpu_nr; i++) {
2543                if (do_read_u32(ff, &nr))
2544                        goto free_cpu;
2545
2546                ph->env.cpu[i].core_id = nr;
2547                size += sizeof(u32);
2548
2549                if (do_read_u32(ff, &nr))
2550                        goto free_cpu;
2551
2552                if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2553                        pr_debug("socket_id number is too big."
2554                                 "You may need to upgrade the perf tool.\n");
2555                        goto free_cpu;
2556                }
2557
2558                ph->env.cpu[i].socket_id = nr;
2559                size += sizeof(u32);
2560        }
2561
2562        /*
2563         * The header may be from old perf,
2564         * which doesn't include die information.
2565         */
2566        if (ff->size <= size)
2567                return 0;
2568
2569        if (do_read_u32(ff, &nr))
2570                return -1;
2571
2572        ph->env.nr_sibling_dies = nr;
2573        size += sizeof(u32);
2574
2575        for (i = 0; i < nr; i++) {
2576                str = do_read_string(ff);
2577                if (!str)
2578                        goto error;
2579
2580                /* include a NULL character at the end */
2581                if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2582                        goto error;
2583                size += string_size(str);
2584                free(str);
2585        }
2586        ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2587
2588        for (i = 0; i < (u32)cpu_nr; i++) {
2589                if (do_read_u32(ff, &nr))
2590                        goto free_cpu;
2591
2592                ph->env.cpu[i].die_id = nr;
2593        }
2594
2595        return 0;
2596
2597error:
2598        strbuf_release(&sb);
2599free_cpu:
2600        zfree(&ph->env.cpu);
2601        return -1;
2602}
2603
2604static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2605{
2606        struct numa_node *nodes, *n;
2607        u32 nr, i;
2608        char *str;
2609
2610        /* nr nodes */
2611        if (do_read_u32(ff, &nr))
2612                return -1;
2613
2614        nodes = zalloc(sizeof(*nodes) * nr);
2615        if (!nodes)
2616                return -ENOMEM;
2617
2618        for (i = 0; i < nr; i++) {
2619                n = &nodes[i];
2620
2621                /* node number */
2622                if (do_read_u32(ff, &n->node))
2623                        goto error;
2624
2625                if (do_read_u64(ff, &n->mem_total))
2626                        goto error;
2627
2628                if (do_read_u64(ff, &n->mem_free))
2629                        goto error;
2630
2631                str = do_read_string(ff);
2632                if (!str)
2633                        goto error;
2634
2635                n->map = perf_cpu_map__new(str);
2636                if (!n->map)
2637                        goto error;
2638
2639                free(str);
2640        }
2641        ff->ph->env.nr_numa_nodes = nr;
2642        ff->ph->env.numa_nodes = nodes;
2643        return 0;
2644
2645error:
2646        free(nodes);
2647        return -1;
2648}
2649
2650static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2651{
2652        char *name;
2653        u32 pmu_num;
2654        u32 type;
2655        struct strbuf sb;
2656
2657        if (do_read_u32(ff, &pmu_num))
2658                return -1;
2659
2660        if (!pmu_num) {
2661                pr_debug("pmu mappings not available\n");
2662                return 0;
2663        }
2664
2665        ff->ph->env.nr_pmu_mappings = pmu_num;
2666        if (strbuf_init(&sb, 128) < 0)
2667                return -1;
2668
2669        while (pmu_num) {
2670                if (do_read_u32(ff, &type))
2671                        goto error;
2672
2673                name = do_read_string(ff);
2674                if (!name)
2675                        goto error;
2676
2677                if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2678                        goto error;
2679                /* include a NULL character at the end */
2680                if (strbuf_add(&sb, "", 1) < 0)
2681                        goto error;
2682
2683                if (!strcmp(name, "msr"))
2684                        ff->ph->env.msr_pmu_type = type;
2685
2686                free(name);
2687                pmu_num--;
2688        }
2689        ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2690        return 0;
2691
2692error:
2693        strbuf_release(&sb);
2694        return -1;
2695}
2696
2697static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2698{
2699        size_t ret = -1;
2700        u32 i, nr, nr_groups;
2701        struct perf_session *session;
2702        struct evsel *evsel, *leader = NULL;
2703        struct group_desc {
2704                char *name;
2705                u32 leader_idx;
2706                u32 nr_members;
2707        } *desc;
2708
2709        if (do_read_u32(ff, &nr_groups))
2710                return -1;
2711
2712        ff->ph->env.nr_groups = nr_groups;
2713        if (!nr_groups) {
2714                pr_debug("group desc not available\n");
2715                return 0;
2716        }
2717
2718        desc = calloc(nr_groups, sizeof(*desc));
2719        if (!desc)
2720                return -1;
2721
2722        for (i = 0; i < nr_groups; i++) {
2723                desc[i].name = do_read_string(ff);
2724                if (!desc[i].name)
2725                        goto out_free;
2726
2727                if (do_read_u32(ff, &desc[i].leader_idx))
2728                        goto out_free;
2729
2730                if (do_read_u32(ff, &desc[i].nr_members))
2731                        goto out_free;
2732        }
2733
2734        /*
2735         * Rebuild group relationship based on the group_desc
2736         */
2737        session = container_of(ff->ph, struct perf_session, header);
2738        session->evlist->core.nr_groups = nr_groups;
2739
2740        i = nr = 0;
2741        evlist__for_each_entry(session->evlist, evsel) {
2742                if (evsel->core.idx == (int) desc[i].leader_idx) {
2743                        evsel__set_leader(evsel, evsel);
2744                        /* {anon_group} is a dummy name */
2745                        if (strcmp(desc[i].name, "{anon_group}")) {
2746                                evsel->group_name = desc[i].name;
2747                                desc[i].name = NULL;
2748                        }
2749                        evsel->core.nr_members = desc[i].nr_members;
2750
2751                        if (i >= nr_groups || nr > 0) {
2752                                pr_debug("invalid group desc\n");
2753                                goto out_free;
2754                        }
2755
2756                        leader = evsel;
2757                        nr = evsel->core.nr_members - 1;
2758                        i++;
2759                } else if (nr) {
2760                        /* This is a group member */
2761                        evsel__set_leader(evsel, leader);
2762
2763                        nr--;
2764                }
2765        }
2766
2767        if (i != nr_groups || nr != 0) {
2768                pr_debug("invalid group desc\n");
2769                goto out_free;
2770        }
2771
2772        ret = 0;
2773out_free:
2774        for (i = 0; i < nr_groups; i++)
2775                zfree(&desc[i].name);
2776        free(desc);
2777
2778        return ret;
2779}
2780
2781static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2782{
2783        struct perf_session *session;
2784        int err;
2785
2786        session = container_of(ff->ph, struct perf_session, header);
2787
2788        err = auxtrace_index__process(ff->fd, ff->size, session,
2789                                      ff->ph->needs_swap);
2790        if (err < 0)
2791                pr_err("Failed to process auxtrace index\n");
2792        return err;
2793}
2794
2795static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2796{
2797        struct cpu_cache_level *caches;
2798        u32 cnt, i, version;
2799
2800        if (do_read_u32(ff, &version))
2801                return -1;
2802
2803        if (version != 1)
2804                return -1;
2805
2806        if (do_read_u32(ff, &cnt))
2807                return -1;
2808
2809        caches = zalloc(sizeof(*caches) * cnt);
2810        if (!caches)
2811                return -1;
2812
2813        for (i = 0; i < cnt; i++) {
2814                struct cpu_cache_level c;
2815
2816                #define _R(v)                                           \
2817                        if (do_read_u32(ff, &c.v))\
2818                                goto out_free_caches;                   \
2819
2820                _R(level)
2821                _R(line_size)
2822                _R(sets)
2823                _R(ways)
2824                #undef _R
2825
2826                #define _R(v)                                   \
2827                        c.v = do_read_string(ff);               \
2828                        if (!c.v)                               \
2829                                goto out_free_caches;
2830
2831                _R(type)
2832                _R(size)
2833                _R(map)
2834                #undef _R
2835
2836                caches[i] = c;
2837        }
2838
2839        ff->ph->env.caches = caches;
2840        ff->ph->env.caches_cnt = cnt;
2841        return 0;
2842out_free_caches:
2843        free(caches);
2844        return -1;
2845}
2846
2847static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2848{
2849        struct perf_session *session;
2850        u64 first_sample_time, last_sample_time;
2851        int ret;
2852
2853        session = container_of(ff->ph, struct perf_session, header);
2854
2855        ret = do_read_u64(ff, &first_sample_time);
2856        if (ret)
2857                return -1;
2858
2859        ret = do_read_u64(ff, &last_sample_time);
2860        if (ret)
2861                return -1;
2862
2863        session->evlist->first_sample_time = first_sample_time;
2864        session->evlist->last_sample_time = last_sample_time;
2865        return 0;
2866}
2867
2868static int process_mem_topology(struct feat_fd *ff,
2869                                void *data __maybe_unused)
2870{
2871        struct memory_node *nodes;
2872        u64 version, i, nr, bsize;
2873        int ret = -1;
2874
2875        if (do_read_u64(ff, &version))
2876                return -1;
2877
2878        if (version != 1)
2879                return -1;
2880
2881        if (do_read_u64(ff, &bsize))
2882                return -1;
2883
2884        if (do_read_u64(ff, &nr))
2885                return -1;
2886
2887        nodes = zalloc(sizeof(*nodes) * nr);
2888        if (!nodes)
2889                return -1;
2890
2891        for (i = 0; i < nr; i++) {
2892                struct memory_node n;
2893
2894                #define _R(v)                           \
2895                        if (do_read_u64(ff, &n.v))      \
2896                                goto out;               \
2897
2898                _R(node)
2899                _R(size)
2900
2901                #undef _R
2902
2903                if (do_read_bitmap(ff, &n.set, &n.size))
2904                        goto out;
2905
2906                nodes[i] = n;
2907        }
2908
2909        ff->ph->env.memory_bsize    = bsize;
2910        ff->ph->env.memory_nodes    = nodes;
2911        ff->ph->env.nr_memory_nodes = nr;
2912        ret = 0;
2913
2914out:
2915        if (ret)
2916                free(nodes);
2917        return ret;
2918}
2919
2920static int process_clockid(struct feat_fd *ff,
2921                           void *data __maybe_unused)
2922{
2923        if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
2924                return -1;
2925
2926        return 0;
2927}
2928
2929static int process_clock_data(struct feat_fd *ff,
2930                              void *_data __maybe_unused)
2931{
2932        u32 data32;
2933        u64 data64;
2934
2935        /* version */
2936        if (do_read_u32(ff, &data32))
2937                return -1;
2938
2939        if (data32 != 1)
2940                return -1;
2941
2942        /* clockid */
2943        if (do_read_u32(ff, &data32))
2944                return -1;
2945
2946        ff->ph->env.clock.clockid = data32;
2947
2948        /* TOD ref time */
2949        if (do_read_u64(ff, &data64))
2950                return -1;
2951
2952        ff->ph->env.clock.tod_ns = data64;
2953
2954        /* clockid ref time */
2955        if (do_read_u64(ff, &data64))
2956                return -1;
2957
2958        ff->ph->env.clock.clockid_ns = data64;
2959        ff->ph->env.clock.enabled = true;
2960        return 0;
2961}
2962
2963static int process_hybrid_topology(struct feat_fd *ff,
2964                                   void *data __maybe_unused)
2965{
2966        struct hybrid_node *nodes, *n;
2967        u32 nr, i;
2968
2969        /* nr nodes */
2970        if (do_read_u32(ff, &nr))
2971                return -1;
2972
2973        nodes = zalloc(sizeof(*nodes) * nr);
2974        if (!nodes)
2975                return -ENOMEM;
2976
2977        for (i = 0; i < nr; i++) {
2978                n = &nodes[i];
2979
2980                n->pmu_name = do_read_string(ff);
2981                if (!n->pmu_name)
2982                        goto error;
2983
2984                n->cpus = do_read_string(ff);
2985                if (!n->cpus)
2986                        goto error;
2987        }
2988
2989        ff->ph->env.nr_hybrid_nodes = nr;
2990        ff->ph->env.hybrid_nodes = nodes;
2991        return 0;
2992
2993error:
2994        for (i = 0; i < nr; i++) {
2995                free(nodes[i].pmu_name);
2996                free(nodes[i].cpus);
2997        }
2998
2999        free(nodes);
3000        return -1;
3001}
3002
3003static int process_dir_format(struct feat_fd *ff,
3004                              void *_data __maybe_unused)
3005{
3006        struct perf_session *session;
3007        struct perf_data *data;
3008
3009        session = container_of(ff->ph, struct perf_session, header);
3010        data = session->data;
3011
3012        if (WARN_ON(!perf_data__is_dir(data)))
3013                return -1;
3014
3015        return do_read_u64(ff, &data->dir.version);
3016}
3017
3018#ifdef HAVE_LIBBPF_SUPPORT
3019static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
3020{
3021        struct bpf_prog_info_linear *info_linear;
3022        struct bpf_prog_info_node *info_node;
3023        struct perf_env *env = &ff->ph->env;
3024        u32 count, i;
3025        int err = -1;
3026
3027        if (ff->ph->needs_swap) {
3028                pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n");
3029                return 0;
3030        }
3031
3032        if (do_read_u32(ff, &count))
3033                return -1;
3034
3035        down_write(&env->bpf_progs.lock);
3036
3037        for (i = 0; i < count; ++i) {
3038                u32 info_len, data_len;
3039
3040                info_linear = NULL;
3041                info_node = NULL;
3042                if (do_read_u32(ff, &info_len))
3043                        goto out;
3044                if (do_read_u32(ff, &data_len))
3045                        goto out;
3046
3047                if (info_len > sizeof(struct bpf_prog_info)) {
3048                        pr_warning("detected invalid bpf_prog_info\n");
3049                        goto out;
3050                }
3051
3052                info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
3053                                     data_len);
3054                if (!info_linear)
3055                        goto out;
3056                info_linear->info_len = sizeof(struct bpf_prog_info);
3057                info_linear->data_len = data_len;
3058                if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
3059                        goto out;
3060                if (__do_read(ff, &info_linear->info, info_len))
3061                        goto out;
3062                if (info_len < sizeof(struct bpf_prog_info))
3063                        memset(((void *)(&info_linear->info)) + info_len, 0,
3064                               sizeof(struct bpf_prog_info) - info_len);
3065
3066                if (__do_read(ff, info_linear->data, data_len))
3067                        goto out;
3068
3069                info_node = malloc(sizeof(struct bpf_prog_info_node));
3070                if (!info_node)
3071                        goto out;
3072
3073                /* after reading from file, translate offset to address */
3074                bpf_program__bpil_offs_to_addr(info_linear);
3075                info_node->info_linear = info_linear;
3076                perf_env__insert_bpf_prog_info(env, info_node);
3077        }
3078
3079        up_write(&env->bpf_progs.lock);
3080        return 0;
3081out:
3082        free(info_linear);
3083        free(info_node);
3084        up_write(&env->bpf_progs.lock);
3085        return err;
3086}
3087
3088static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
3089{
3090        struct perf_env *env = &ff->ph->env;
3091        struct btf_node *node = NULL;
3092        u32 count, i;
3093        int err = -1;
3094
3095        if (ff->ph->needs_swap) {
3096                pr_warning("interpreting btf from systems with endianness is not yet supported\n");
3097                return 0;
3098        }
3099
3100        if (do_read_u32(ff, &count))
3101                return -1;
3102
3103        down_write(&env->bpf_progs.lock);
3104
3105        for (i = 0; i < count; ++i) {
3106                u32 id, data_size;
3107
3108                if (do_read_u32(ff, &id))
3109                        goto out;
3110                if (do_read_u32(ff, &data_size))
3111                        goto out;
3112
3113                node = malloc(sizeof(struct btf_node) + data_size);
3114                if (!node)
3115                        goto out;
3116
3117                node->id = id;
3118                node->data_size = data_size;
3119
3120                if (__do_read(ff, node->data, data_size))
3121                        goto out;
3122
3123                perf_env__insert_btf(env, node);
3124                node = NULL;
3125        }
3126
3127        err = 0;
3128out:
3129        up_write(&env->bpf_progs.lock);
3130        free(node);
3131        return err;
3132}
3133#endif // HAVE_LIBBPF_SUPPORT
3134
3135static int process_compressed(struct feat_fd *ff,
3136                              void *data __maybe_unused)
3137{
3138        if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
3139                return -1;
3140
3141        if (do_read_u32(ff, &(ff->ph->env.comp_type)))
3142                return -1;
3143
3144        if (do_read_u32(ff, &(ff->ph->env.comp_level)))
3145                return -1;
3146
3147        if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3148                return -1;
3149
3150        if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3151                return -1;
3152
3153        return 0;
3154}
3155
3156static int process_per_cpu_pmu_caps(struct feat_fd *ff, int *nr_cpu_pmu_caps,
3157                                    char **cpu_pmu_caps,
3158                                    unsigned int *max_branches)
3159{
3160        char *name, *value;
3161        struct strbuf sb;
3162        u32 nr_caps;
3163
3164        if (do_read_u32(ff, &nr_caps))
3165                return -1;
3166
3167        if (!nr_caps) {
3168                pr_debug("cpu pmu capabilities not available\n");
3169                return 0;
3170        }
3171
3172        *nr_cpu_pmu_caps = nr_caps;
3173
3174        if (strbuf_init(&sb, 128) < 0)
3175                return -1;
3176
3177        while (nr_caps--) {
3178                name = do_read_string(ff);
3179                if (!name)
3180                        goto error;
3181
3182                value = do_read_string(ff);
3183                if (!value)
3184                        goto free_name;
3185
3186                if (strbuf_addf(&sb, "%s=%s", name, value) < 0)
3187                        goto free_value;
3188
3189                /* include a NULL character at the end */
3190                if (strbuf_add(&sb, "", 1) < 0)
3191                        goto free_value;
3192
3193                if (!strcmp(name, "branches"))
3194                        *max_branches = atoi(value);
3195
3196                free(value);
3197                free(name);
3198        }
3199        *cpu_pmu_caps = strbuf_detach(&sb, NULL);
3200        return 0;
3201
3202free_value:
3203        free(value);
3204free_name:
3205        free(name);
3206error:
3207        strbuf_release(&sb);
3208        return -1;
3209}
3210
3211static int process_cpu_pmu_caps(struct feat_fd *ff,
3212                                void *data __maybe_unused)
3213{
3214        return process_per_cpu_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps,
3215                                        &ff->ph->env.cpu_pmu_caps,
3216                                        &ff->ph->env.max_branches);
3217}
3218
3219static int process_hybrid_cpu_pmu_caps(struct feat_fd *ff,
3220                                       void *data __maybe_unused)
3221{
3222        struct hybrid_cpc_node *nodes;
3223        u32 nr_pmu, i;
3224        int ret;
3225
3226        if (do_read_u32(ff, &nr_pmu))
3227                return -1;
3228
3229        if (!nr_pmu) {
3230                pr_debug("hybrid cpu pmu capabilities not available\n");
3231                return 0;
3232        }
3233
3234        nodes = zalloc(sizeof(*nodes) * nr_pmu);
3235        if (!nodes)
3236                return -ENOMEM;
3237
3238        for (i = 0; i < nr_pmu; i++) {
3239                struct hybrid_cpc_node *n = &nodes[i];
3240
3241                ret = process_per_cpu_pmu_caps(ff, &n->nr_cpu_pmu_caps,
3242                                               &n->cpu_pmu_caps,
3243                                               &n->max_branches);
3244                if (ret)
3245                        goto err;
3246
3247                n->pmu_name = do_read_string(ff);
3248                if (!n->pmu_name) {
3249                        ret = -1;
3250                        goto err;
3251                }
3252        }
3253
3254        ff->ph->env.nr_hybrid_cpc_nodes = nr_pmu;
3255        ff->ph->env.hybrid_cpc_nodes = nodes;
3256        return 0;
3257
3258err:
3259        for (i = 0; i < nr_pmu; i++) {
3260                free(nodes[i].cpu_pmu_caps);
3261                free(nodes[i].pmu_name);
3262        }
3263
3264        free(nodes);
3265        return ret;
3266}
3267
3268#define FEAT_OPR(n, func, __full_only) \
3269        [HEADER_##n] = {                                        \
3270                .name       = __stringify(n),                   \
3271                .write      = write_##func,                     \
3272                .print      = print_##func,                     \
3273                .full_only  = __full_only,                      \
3274                .process    = process_##func,                   \
3275                .synthesize = true                              \
3276        }
3277
3278#define FEAT_OPN(n, func, __full_only) \
3279        [HEADER_##n] = {                                        \
3280                .name       = __stringify(n),                   \
3281                .write      = write_##func,                     \
3282                .print      = print_##func,                     \
3283                .full_only  = __full_only,                      \
3284                .process    = process_##func                    \
3285        }
3286
3287/* feature_ops not implemented: */
3288#define print_tracing_data      NULL
3289#define print_build_id          NULL
3290
3291#define process_branch_stack    NULL
3292#define process_stat            NULL
3293
3294// Only used in util/synthetic-events.c
3295const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3296
3297const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3298        FEAT_OPN(TRACING_DATA,  tracing_data,   false),
3299        FEAT_OPN(BUILD_ID,      build_id,       false),
3300        FEAT_OPR(HOSTNAME,      hostname,       false),
3301        FEAT_OPR(OSRELEASE,     osrelease,      false),
3302        FEAT_OPR(VERSION,       version,        false),
3303        FEAT_OPR(ARCH,          arch,           false),
3304        FEAT_OPR(NRCPUS,        nrcpus,         false),
3305        FEAT_OPR(CPUDESC,       cpudesc,        false),
3306        FEAT_OPR(CPUID,         cpuid,          false),
3307        FEAT_OPR(TOTAL_MEM,     total_mem,      false),
3308        FEAT_OPR(EVENT_DESC,    event_desc,     false),
3309        FEAT_OPR(CMDLINE,       cmdline,        false),
3310        FEAT_OPR(CPU_TOPOLOGY,  cpu_topology,   true),
3311        FEAT_OPR(NUMA_TOPOLOGY, numa_topology,  true),
3312        FEAT_OPN(BRANCH_STACK,  branch_stack,   false),
3313        FEAT_OPR(PMU_MAPPINGS,  pmu_mappings,   false),
3314        FEAT_OPR(GROUP_DESC,    group_desc,     false),
3315        FEAT_OPN(AUXTRACE,      auxtrace,       false),
3316        FEAT_OPN(STAT,          stat,           false),
3317        FEAT_OPN(CACHE,         cache,          true),
3318        FEAT_OPR(SAMPLE_TIME,   sample_time,    false),
3319        FEAT_OPR(MEM_TOPOLOGY,  mem_topology,   true),
3320        FEAT_OPR(CLOCKID,       clockid,        false),
3321        FEAT_OPN(DIR_FORMAT,    dir_format,     false),
3322#ifdef HAVE_LIBBPF_SUPPORT
3323        FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
3324        FEAT_OPR(BPF_BTF,       bpf_btf,        false),
3325#endif
3326        FEAT_OPR(COMPRESSED,    compressed,     false),
3327        FEAT_OPR(CPU_PMU_CAPS,  cpu_pmu_caps,   false),
3328        FEAT_OPR(CLOCK_DATA,    clock_data,     false),
3329        FEAT_OPN(HYBRID_TOPOLOGY,       hybrid_topology,        true),
3330        FEAT_OPR(HYBRID_CPU_PMU_CAPS,   hybrid_cpu_pmu_caps,    false),
3331};
3332
3333struct header_print_data {
3334        FILE *fp;
3335        bool full; /* extended list of headers */
3336};
3337
3338static int perf_file_section__fprintf_info(struct perf_file_section *section,
3339                                           struct perf_header *ph,
3340                                           int feat, int fd, void *data)
3341{
3342        struct header_print_data *hd = data;
3343        struct feat_fd ff;
3344
3345        if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3346                pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3347                                "%d, continuing...\n", section->offset, feat);
3348                return 0;
3349        }
3350        if (feat >= HEADER_LAST_FEATURE) {
3351                pr_warning("unknown feature %d\n", feat);
3352                return 0;
3353        }
3354        if (!feat_ops[feat].print)
3355                return 0;
3356
3357        ff = (struct  feat_fd) {
3358                .fd = fd,
3359                .ph = ph,
3360        };
3361
3362        if (!feat_ops[feat].full_only || hd->full)
3363                feat_ops[feat].print(&ff, hd->fp);
3364        else
3365                fprintf(hd->fp, "# %s info available, use -I to display\n",
3366                        feat_ops[feat].name);
3367
3368        return 0;
3369}
3370
3371int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3372{
3373        struct header_print_data hd;
3374        struct perf_header *header = &session->header;
3375        int fd = perf_data__fd(session->data);
3376        struct stat st;
3377        time_t stctime;
3378        int ret, bit;
3379
3380        hd.fp = fp;
3381        hd.full = full;
3382
3383        ret = fstat(fd, &st);
3384        if (ret == -1)
3385                return -1;
3386
3387        stctime = st.st_mtime;
3388        fprintf(fp, "# captured on    : %s", ctime(&stctime));
3389
3390        fprintf(fp, "# header version : %u\n", header->version);
3391        fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
3392        fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
3393        fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
3394
3395        perf_header__process_sections(header, fd, &hd,
3396                                      perf_file_section__fprintf_info);
3397
3398        if (session->data->is_pipe)
3399                return 0;
3400
3401        fprintf(fp, "# missing features: ");
3402        for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3403                if (bit)
3404                        fprintf(fp, "%s ", feat_ops[bit].name);
3405        }
3406
3407        fprintf(fp, "\n");
3408        return 0;
3409}
3410
3411static int do_write_feat(struct feat_fd *ff, int type,
3412                         struct perf_file_section **p,
3413                         struct evlist *evlist)
3414{
3415        int err;
3416        int ret = 0;
3417
3418        if (perf_header__has_feat(ff->ph, type)) {
3419                if (!feat_ops[type].write)
3420                        return -1;
3421
3422                if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3423                        return -1;
3424
3425                (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3426
3427                err = feat_ops[type].write(ff, evlist);
3428                if (err < 0) {
3429                        pr_debug("failed to write feature %s\n", feat_ops[type].name);
3430
3431                        /* undo anything written */
3432                        lseek(ff->fd, (*p)->offset, SEEK_SET);
3433
3434                        return -1;
3435                }
3436                (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3437                (*p)++;
3438        }
3439        return ret;
3440}
3441
3442static int perf_header__adds_write(struct perf_header *header,
3443                                   struct evlist *evlist, int fd)
3444{
3445        int nr_sections;
3446        struct feat_fd ff;
3447        struct perf_file_section *feat_sec, *p;
3448        int sec_size;
3449        u64 sec_start;
3450        int feat;
3451        int err;
3452
3453        ff = (struct feat_fd){
3454                .fd  = fd,
3455                .ph = header,
3456        };
3457
3458        nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3459        if (!nr_sections)
3460                return 0;
3461
3462        feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3463        if (feat_sec == NULL)
3464                return -ENOMEM;
3465
3466        sec_size = sizeof(*feat_sec) * nr_sections;
3467
3468        sec_start = header->feat_offset;
3469        lseek(fd, sec_start + sec_size, SEEK_SET);
3470
3471        for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3472                if (do_write_feat(&ff, feat, &p, evlist))
3473                        perf_header__clear_feat(header, feat);
3474        }
3475
3476        lseek(fd, sec_start, SEEK_SET);
3477        /*
3478         * may write more than needed due to dropped feature, but
3479         * this is okay, reader will skip the missing entries
3480         */
3481        err = do_write(&ff, feat_sec, sec_size);
3482        if (err < 0)
3483                pr_debug("failed to write feature section\n");
3484        free(feat_sec);
3485        return err;
3486}
3487
3488int perf_header__write_pipe(int fd)
3489{
3490        struct perf_pipe_file_header f_header;
3491        struct feat_fd ff;
3492        int err;
3493
3494        ff = (struct feat_fd){ .fd = fd };
3495
3496        f_header = (struct perf_pipe_file_header){
3497                .magic     = PERF_MAGIC,
3498                .size      = sizeof(f_header),
3499        };
3500
3501        err = do_write(&ff, &f_header, sizeof(f_header));
3502        if (err < 0) {
3503                pr_debug("failed to write perf pipe header\n");
3504                return err;
3505        }
3506
3507        return 0;
3508}
3509
3510int perf_session__write_header(struct perf_session *session,
3511                               struct evlist *evlist,
3512                               int fd, bool at_exit)
3513{
3514        struct perf_file_header f_header;
3515        struct perf_file_attr   f_attr;
3516        struct perf_header *header = &session->header;
3517        struct evsel *evsel;
3518        struct feat_fd ff;
3519        u64 attr_offset;
3520        int err;
3521
3522        ff = (struct feat_fd){ .fd = fd};
3523        lseek(fd, sizeof(f_header), SEEK_SET);
3524
3525        evlist__for_each_entry(session->evlist, evsel) {
3526                evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3527                err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3528                if (err < 0) {
3529                        pr_debug("failed to write perf header\n");
3530                        return err;
3531                }
3532        }
3533
3534        attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3535
3536        evlist__for_each_entry(evlist, evsel) {
3537                if (evsel->core.attr.size < sizeof(evsel->core.attr)) {
3538                        /*
3539                         * We are likely in "perf inject" and have read
3540                         * from an older file. Update attr size so that
3541                         * reader gets the right offset to the ids.
3542                         */
3543                        evsel->core.attr.size = sizeof(evsel->core.attr);
3544                }
3545                f_attr = (struct perf_file_attr){
3546                        .attr = evsel->core.attr,
3547                        .ids  = {
3548                                .offset = evsel->id_offset,
3549                                .size   = evsel->core.ids * sizeof(u64),
3550                        }
3551                };
3552                err = do_write(&ff, &f_attr, sizeof(f_attr));
3553                if (err < 0) {
3554                        pr_debug("failed to write perf header attribute\n");
3555                        return err;
3556                }
3557        }
3558
3559        if (!header->data_offset)
3560                header->data_offset = lseek(fd, 0, SEEK_CUR);
3561        header->feat_offset = header->data_offset + header->data_size;
3562
3563        if (at_exit) {
3564                err = perf_header__adds_write(header, evlist, fd);
3565                if (err < 0)
3566                        return err;
3567        }
3568
3569        f_header = (struct perf_file_header){
3570                .magic     = PERF_MAGIC,
3571                .size      = sizeof(f_header),
3572                .attr_size = sizeof(f_attr),
3573                .attrs = {
3574                        .offset = attr_offset,
3575                        .size   = evlist->core.nr_entries * sizeof(f_attr),
3576                },
3577                .data = {
3578                        .offset = header->data_offset,
3579                        .size   = header->data_size,
3580                },
3581                /* event_types is ignored, store zeros */
3582        };
3583
3584        memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3585
3586        lseek(fd, 0, SEEK_SET);
3587        err = do_write(&ff, &f_header, sizeof(f_header));
3588        if (err < 0) {
3589                pr_debug("failed to write perf header\n");
3590                return err;
3591        }
3592        lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3593
3594        return 0;
3595}
3596
3597static int perf_header__getbuffer64(struct perf_header *header,
3598                                    int fd, void *buf, size_t size)
3599{
3600        if (readn(fd, buf, size) <= 0)
3601                return -1;
3602
3603        if (header->needs_swap)
3604                mem_bswap_64(buf, size);
3605
3606        return 0;
3607}
3608
3609int perf_header__process_sections(struct perf_header *header, int fd,
3610                                  void *data,
3611                                  int (*process)(struct perf_file_section *section,
3612                                                 struct perf_header *ph,
3613                                                 int feat, int fd, void *data))
3614{
3615        struct perf_file_section *feat_sec, *sec;
3616        int nr_sections;
3617        int sec_size;
3618        int feat;
3619        int err;
3620
3621        nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3622        if (!nr_sections)
3623                return 0;
3624
3625        feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3626        if (!feat_sec)
3627                return -1;
3628
3629        sec_size = sizeof(*feat_sec) * nr_sections;
3630
3631        lseek(fd, header->feat_offset, SEEK_SET);
3632
3633        err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3634        if (err < 0)
3635                goto out_free;
3636
3637        for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3638                err = process(sec++, header, feat, fd, data);
3639                if (err < 0)
3640                        goto out_free;
3641        }
3642        err = 0;
3643out_free:
3644        free(feat_sec);
3645        return err;
3646}
3647
3648static const int attr_file_abi_sizes[] = {
3649        [0] = PERF_ATTR_SIZE_VER0,
3650        [1] = PERF_ATTR_SIZE_VER1,
3651        [2] = PERF_ATTR_SIZE_VER2,
3652        [3] = PERF_ATTR_SIZE_VER3,
3653        [4] = PERF_ATTR_SIZE_VER4,
3654        0,
3655};
3656
3657/*
3658 * In the legacy file format, the magic number is not used to encode endianness.
3659 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3660 * on ABI revisions, we need to try all combinations for all endianness to
3661 * detect the endianness.
3662 */
3663static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3664{
3665        uint64_t ref_size, attr_size;
3666        int i;
3667
3668        for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3669                ref_size = attr_file_abi_sizes[i]
3670                         + sizeof(struct perf_file_section);
3671                if (hdr_sz != ref_size) {
3672                        attr_size = bswap_64(hdr_sz);
3673                        if (attr_size != ref_size)
3674                                continue;
3675
3676                        ph->needs_swap = true;
3677                }
3678                pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3679                         i,
3680                         ph->needs_swap);
3681                return 0;
3682        }
3683        /* could not determine endianness */
3684        return -1;
3685}
3686
3687#define PERF_PIPE_HDR_VER0      16
3688
3689static const size_t attr_pipe_abi_sizes[] = {
3690        [0] = PERF_PIPE_HDR_VER0,
3691        0,
3692};
3693
3694/*
3695 * In the legacy pipe format, there is an implicit assumption that endianness
3696 * between host recording the samples, and host parsing the samples is the
3697 * same. This is not always the case given that the pipe output may always be
3698 * redirected into a file and analyzed on a different machine with possibly a
3699 * different endianness and perf_event ABI revisions in the perf tool itself.
3700 */
3701static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3702{
3703        u64 attr_size;
3704        int i;
3705
3706        for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3707                if (hdr_sz != attr_pipe_abi_sizes[i]) {
3708                        attr_size = bswap_64(hdr_sz);
3709                        if (attr_size != hdr_sz)
3710                                continue;
3711
3712                        ph->needs_swap = true;
3713                }
3714                pr_debug("Pipe ABI%d perf.data file detected\n", i);
3715                return 0;
3716        }
3717        return -1;
3718}
3719
3720bool is_perf_magic(u64 magic)
3721{
3722        if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3723                || magic == __perf_magic2
3724                || magic == __perf_magic2_sw)
3725                return true;
3726
3727        return false;
3728}
3729
3730static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3731                              bool is_pipe, struct perf_header *ph)
3732{
3733        int ret;
3734
3735        /* check for legacy format */
3736        ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3737        if (ret == 0) {
3738                ph->version = PERF_HEADER_VERSION_1;
3739                pr_debug("legacy perf.data format\n");
3740                if (is_pipe)
3741                        return try_all_pipe_abis(hdr_sz, ph);
3742
3743                return try_all_file_abis(hdr_sz, ph);
3744        }
3745        /*
3746         * the new magic number serves two purposes:
3747         * - unique number to identify actual perf.data files
3748         * - encode endianness of file
3749         */
3750        ph->version = PERF_HEADER_VERSION_2;
3751
3752        /* check magic number with one endianness */
3753        if (magic == __perf_magic2)
3754                return 0;
3755
3756        /* check magic number with opposite endianness */
3757        if (magic != __perf_magic2_sw)
3758                return -1;
3759
3760        ph->needs_swap = true;
3761
3762        return 0;
3763}
3764
3765int perf_file_header__read(struct perf_file_header *header,
3766                           struct perf_header *ph, int fd)
3767{
3768        ssize_t ret;
3769
3770        lseek(fd, 0, SEEK_SET);
3771
3772        ret = readn(fd, header, sizeof(*header));
3773        if (ret <= 0)
3774                return -1;
3775
3776        if (check_magic_endian(header->magic,
3777                               header->attr_size, false, ph) < 0) {
3778                pr_debug("magic/endian check failed\n");
3779                return -1;
3780        }
3781
3782        if (ph->needs_swap) {
3783                mem_bswap_64(header, offsetof(struct perf_file_header,
3784                             adds_features));
3785        }
3786
3787        if (header->size != sizeof(*header)) {
3788                /* Support the previous format */
3789                if (header->size == offsetof(typeof(*header), adds_features))
3790                        bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3791                else
3792                        return -1;
3793        } else if (ph->needs_swap) {
3794                /*
3795                 * feature bitmap is declared as an array of unsigned longs --
3796                 * not good since its size can differ between the host that
3797                 * generated the data file and the host analyzing the file.
3798                 *
3799                 * We need to handle endianness, but we don't know the size of
3800                 * the unsigned long where the file was generated. Take a best
3801                 * guess at determining it: try 64-bit swap first (ie., file
3802                 * created on a 64-bit host), and check if the hostname feature
3803                 * bit is set (this feature bit is forced on as of fbe96f2).
3804                 * If the bit is not, undo the 64-bit swap and try a 32-bit
3805                 * swap. If the hostname bit is still not set (e.g., older data
3806                 * file), punt and fallback to the original behavior --
3807                 * clearing all feature bits and setting buildid.
3808                 */
3809                mem_bswap_64(&header->adds_features,
3810                            BITS_TO_U64(HEADER_FEAT_BITS));
3811
3812                if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3813                        /* unswap as u64 */
3814                        mem_bswap_64(&header->adds_features,
3815                                    BITS_TO_U64(HEADER_FEAT_BITS));
3816
3817                        /* unswap as u32 */
3818                        mem_bswap_32(&header->adds_features,
3819                                    BITS_TO_U32(HEADER_FEAT_BITS));
3820                }
3821
3822                if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3823                        bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3824                        set_bit(HEADER_BUILD_ID, header->adds_features);
3825                }
3826        }
3827
3828        memcpy(&ph->adds_features, &header->adds_features,
3829               sizeof(ph->adds_features));
3830
3831        ph->data_offset  = header->data.offset;
3832        ph->data_size    = header->data.size;
3833        ph->feat_offset  = header->data.offset + header->data.size;
3834        return 0;
3835}
3836
3837static int perf_file_section__process(struct perf_file_section *section,
3838                                      struct perf_header *ph,
3839                                      int feat, int fd, void *data)
3840{
3841        struct feat_fd fdd = {
3842                .fd     = fd,
3843                .ph     = ph,
3844                .size   = section->size,
3845                .offset = section->offset,
3846        };
3847
3848        if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3849                pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3850                          "%d, continuing...\n", section->offset, feat);
3851                return 0;
3852        }
3853
3854        if (feat >= HEADER_LAST_FEATURE) {
3855                pr_debug("unknown feature %d, continuing...\n", feat);
3856                return 0;
3857        }
3858
3859        if (!feat_ops[feat].process)
3860                return 0;
3861
3862        return feat_ops[feat].process(&fdd, data);
3863}
3864
3865static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3866                                       struct perf_header *ph,
3867                                       struct perf_data* data,
3868                                       bool repipe, int repipe_fd)
3869{
3870        struct feat_fd ff = {
3871                .fd = repipe_fd,
3872                .ph = ph,
3873        };
3874        ssize_t ret;
3875
3876        ret = perf_data__read(data, header, sizeof(*header));
3877        if (ret <= 0)
3878                return -1;
3879
3880        if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3881                pr_debug("endian/magic failed\n");
3882                return -1;
3883        }
3884
3885        if (ph->needs_swap)
3886                header->size = bswap_64(header->size);
3887
3888        if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3889                return -1;
3890
3891        return 0;
3892}
3893
3894static int perf_header__read_pipe(struct perf_session *session, int repipe_fd)
3895{
3896        struct perf_header *header = &session->header;
3897        struct perf_pipe_file_header f_header;
3898
3899        if (perf_file_header__read_pipe(&f_header, header, session->data,
3900                                        session->repipe, repipe_fd) < 0) {
3901                pr_debug("incompatible file format\n");
3902                return -EINVAL;
3903        }
3904
3905        return f_header.size == sizeof(f_header) ? 0 : -1;
3906}
3907
3908static int read_attr(int fd, struct perf_header *ph,
3909                     struct perf_file_attr *f_attr)
3910{
3911        struct perf_event_attr *attr = &f_attr->attr;
3912        size_t sz, left;
3913        size_t our_sz = sizeof(f_attr->attr);
3914        ssize_t ret;
3915
3916        memset(f_attr, 0, sizeof(*f_attr));
3917
3918        /* read minimal guaranteed structure */
3919        ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3920        if (ret <= 0) {
3921                pr_debug("cannot read %d bytes of header attr\n",
3922                         PERF_ATTR_SIZE_VER0);
3923                return -1;
3924        }
3925
3926        /* on file perf_event_attr size */
3927        sz = attr->size;
3928
3929        if (ph->needs_swap)
3930                sz = bswap_32(sz);
3931
3932        if (sz == 0) {
3933                /* assume ABI0 */
3934                sz =  PERF_ATTR_SIZE_VER0;
3935        } else if (sz > our_sz) {
3936                pr_debug("file uses a more recent and unsupported ABI"
3937                         " (%zu bytes extra)\n", sz - our_sz);
3938                return -1;
3939        }
3940        /* what we have not yet read and that we know about */
3941        left = sz - PERF_ATTR_SIZE_VER0;
3942        if (left) {
3943                void *ptr = attr;
3944                ptr += PERF_ATTR_SIZE_VER0;
3945
3946                ret = readn(fd, ptr, left);
3947        }
3948        /* read perf_file_section, ids are read in caller */
3949        ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3950
3951        return ret <= 0 ? -1 : 0;
3952}
3953
3954static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
3955{
3956        struct tep_event *event;
3957        char bf[128];
3958
3959        /* already prepared */
3960        if (evsel->tp_format)
3961                return 0;
3962
3963        if (pevent == NULL) {
3964                pr_debug("broken or missing trace data\n");
3965                return -1;
3966        }
3967
3968        event = tep_find_event(pevent, evsel->core.attr.config);
3969        if (event == NULL) {
3970                pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3971                return -1;
3972        }
3973
3974        if (!evsel->name) {
3975                snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3976                evsel->name = strdup(bf);
3977                if (evsel->name == NULL)
3978                        return -1;
3979        }
3980
3981        evsel->tp_format = event;
3982        return 0;
3983}
3984
3985static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
3986{
3987        struct evsel *pos;
3988
3989        evlist__for_each_entry(evlist, pos) {
3990                if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3991                    evsel__prepare_tracepoint_event(pos, pevent))
3992                        return -1;
3993        }
3994
3995        return 0;
3996}
3997
3998int perf_session__read_header(struct perf_session *session, int repipe_fd)
3999{
4000        struct perf_data *data = session->data;
4001        struct perf_header *header = &session->header;
4002        struct perf_file_header f_header;
4003        struct perf_file_attr   f_attr;
4004        u64                     f_id;
4005        int nr_attrs, nr_ids, i, j, err;
4006        int fd = perf_data__fd(data);
4007
4008        session->evlist = evlist__new();
4009        if (session->evlist == NULL)
4010                return -ENOMEM;
4011
4012        session->evlist->env = &header->env;
4013        session->machines.host.env = &header->env;
4014
4015        /*
4016         * We can read 'pipe' data event from regular file,
4017         * check for the pipe header regardless of source.
4018         */
4019        err = perf_header__read_pipe(session, repipe_fd);
4020        if (!err || perf_data__is_pipe(data)) {
4021                data->is_pipe = true;
4022                return err;
4023        }
4024
4025        if (perf_file_header__read(&f_header, header, fd) < 0)
4026                return -EINVAL;
4027
4028        if (header->needs_swap && data->in_place_update) {
4029                pr_err("In-place update not supported when byte-swapping is required\n");
4030                return -EINVAL;
4031        }
4032
4033        /*
4034         * Sanity check that perf.data was written cleanly; data size is
4035         * initialized to 0 and updated only if the on_exit function is run.
4036         * If data size is still 0 then the file contains only partial
4037         * information.  Just warn user and process it as much as it can.
4038         */
4039        if (f_header.data.size == 0) {
4040                pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
4041                           "Was the 'perf record' command properly terminated?\n",
4042                           data->file.path);
4043        }
4044
4045        if (f_header.attr_size == 0) {
4046                pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
4047                       "Was the 'perf record' command properly terminated?\n",
4048                       data->file.path);
4049                return -EINVAL;
4050        }
4051
4052        nr_attrs = f_header.attrs.size / f_header.attr_size;
4053        lseek(fd, f_header.attrs.offset, SEEK_SET);
4054
4055        for (i = 0; i < nr_attrs; i++) {
4056                struct evsel *evsel;
4057                off_t tmp;
4058
4059                if (read_attr(fd, header, &f_attr) < 0)
4060                        goto out_errno;
4061
4062                if (header->needs_swap) {
4063                        f_attr.ids.size   = bswap_64(f_attr.ids.size);
4064                        f_attr.ids.offset = bswap_64(f_attr.ids.offset);
4065                        perf_event__attr_swap(&f_attr.attr);
4066                }
4067
4068                tmp = lseek(fd, 0, SEEK_CUR);
4069                evsel = evsel__new(&f_attr.attr);
4070
4071                if (evsel == NULL)
4072                        goto out_delete_evlist;
4073
4074                evsel->needs_swap = header->needs_swap;
4075                /*
4076                 * Do it before so that if perf_evsel__alloc_id fails, this
4077                 * entry gets purged too at evlist__delete().
4078                 */
4079                evlist__add(session->evlist, evsel);
4080
4081                nr_ids = f_attr.ids.size / sizeof(u64);
4082                /*
4083                 * We don't have the cpu and thread maps on the header, so
4084                 * for allocating the perf_sample_id table we fake 1 cpu and
4085                 * hattr->ids threads.
4086                 */
4087                if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
4088                        goto out_delete_evlist;
4089
4090                lseek(fd, f_attr.ids.offset, SEEK_SET);
4091
4092                for (j = 0; j < nr_ids; j++) {
4093                        if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
4094                                goto out_errno;
4095
4096                        perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
4097                }
4098
4099                lseek(fd, tmp, SEEK_SET);
4100        }
4101
4102        perf_header__process_sections(header, fd, &session->tevent,
4103                                      perf_file_section__process);
4104
4105        if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
4106                goto out_delete_evlist;
4107
4108        return 0;
4109out_errno:
4110        return -errno;
4111
4112out_delete_evlist:
4113        evlist__delete(session->evlist);
4114        session->evlist = NULL;
4115        return -ENOMEM;
4116}
4117
4118int perf_event__process_feature(struct perf_session *session,
4119                                union perf_event *event)
4120{
4121        struct perf_tool *tool = session->tool;
4122        struct feat_fd ff = { .fd = 0 };
4123        struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
4124        int type = fe->header.type;
4125        u64 feat = fe->feat_id;
4126
4127        if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
4128                pr_warning("invalid record type %d in pipe-mode\n", type);
4129                return 0;
4130        }
4131        if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
4132                pr_warning("invalid record type %d in pipe-mode\n", type);
4133                return -1;
4134        }
4135
4136        if (!feat_ops[feat].process)
4137                return 0;
4138
4139        ff.buf  = (void *)fe->data;
4140        ff.size = event->header.size - sizeof(*fe);
4141        ff.ph = &session->header;
4142
4143        if (feat_ops[feat].process(&ff, NULL))
4144                return -1;
4145
4146        if (!feat_ops[feat].print || !tool->show_feat_hdr)
4147                return 0;
4148
4149        if (!feat_ops[feat].full_only ||
4150            tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
4151                feat_ops[feat].print(&ff, stdout);
4152        } else {
4153                fprintf(stdout, "# %s info available, use -I to display\n",
4154                        feat_ops[feat].name);
4155        }
4156
4157        return 0;
4158}
4159
4160size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
4161{
4162        struct perf_record_event_update *ev = &event->event_update;
4163        struct perf_record_event_update_scale *ev_scale;
4164        struct perf_record_event_update_cpus *ev_cpus;
4165        struct perf_cpu_map *map;
4166        size_t ret;
4167
4168        ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
4169
4170        switch (ev->type) {
4171        case PERF_EVENT_UPDATE__SCALE:
4172                ev_scale = (struct perf_record_event_update_scale *)ev->data;
4173                ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
4174                break;
4175        case PERF_EVENT_UPDATE__UNIT:
4176                ret += fprintf(fp, "... unit:  %s\n", ev->data);
4177                break;
4178        case PERF_EVENT_UPDATE__NAME:
4179                ret += fprintf(fp, "... name:  %s\n", ev->data);
4180                break;
4181        case PERF_EVENT_UPDATE__CPUS:
4182                ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4183                ret += fprintf(fp, "... ");
4184
4185                map = cpu_map__new_data(&ev_cpus->cpus);
4186                if (map)
4187                        ret += cpu_map__fprintf(map, fp);
4188                else
4189                        ret += fprintf(fp, "failed to get cpus\n");
4190                break;
4191        default:
4192                ret += fprintf(fp, "... unknown type\n");
4193                break;
4194        }
4195
4196        return ret;
4197}
4198
4199int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
4200                             union perf_event *event,
4201                             struct evlist **pevlist)
4202{
4203        u32 i, ids, n_ids;
4204        struct evsel *evsel;
4205        struct evlist *evlist = *pevlist;
4206
4207        if (evlist == NULL) {
4208                *pevlist = evlist = evlist__new();
4209                if (evlist == NULL)
4210                        return -ENOMEM;
4211        }
4212
4213        evsel = evsel__new(&event->attr.attr);
4214        if (evsel == NULL)
4215                return -ENOMEM;
4216
4217        evlist__add(evlist, evsel);
4218
4219        ids = event->header.size;
4220        ids -= (void *)&event->attr.id - (void *)event;
4221        n_ids = ids / sizeof(u64);
4222        /*
4223         * We don't have the cpu and thread maps on the header, so
4224         * for allocating the perf_sample_id table we fake 1 cpu and
4225         * hattr->ids threads.
4226         */
4227        if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4228                return -ENOMEM;
4229
4230        for (i = 0; i < n_ids; i++) {
4231                perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
4232        }
4233
4234        return 0;
4235}
4236
4237int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4238                                     union perf_event *event,
4239                                     struct evlist **pevlist)
4240{
4241        struct perf_record_event_update *ev = &event->event_update;
4242        struct perf_record_event_update_scale *ev_scale;
4243        struct perf_record_event_update_cpus *ev_cpus;
4244        struct evlist *evlist;
4245        struct evsel *evsel;
4246        struct perf_cpu_map *map;
4247
4248        if (!pevlist || *pevlist == NULL)
4249                return -EINVAL;
4250
4251        evlist = *pevlist;
4252
4253        evsel = evlist__id2evsel(evlist, ev->id);
4254        if (evsel == NULL)
4255                return -EINVAL;
4256
4257        switch (ev->type) {
4258        case PERF_EVENT_UPDATE__UNIT:
4259                evsel->unit = strdup(ev->data);
4260                break;
4261        case PERF_EVENT_UPDATE__NAME:
4262                evsel->name = strdup(ev->data);
4263                break;
4264        case PERF_EVENT_UPDATE__SCALE:
4265                ev_scale = (struct perf_record_event_update_scale *)ev->data;
4266                evsel->scale = ev_scale->scale;
4267                break;
4268        case PERF_EVENT_UPDATE__CPUS:
4269                ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4270
4271                map = cpu_map__new_data(&ev_cpus->cpus);
4272                if (map)
4273                        evsel->core.own_cpus = map;
4274                else
4275                        pr_err("failed to get event_update cpus\n");
4276        default:
4277                break;
4278        }
4279
4280        return 0;
4281}
4282
4283int perf_event__process_tracing_data(struct perf_session *session,
4284                                     union perf_event *event)
4285{
4286        ssize_t size_read, padding, size = event->tracing_data.size;
4287        int fd = perf_data__fd(session->data);
4288        char buf[BUFSIZ];
4289
4290        /*
4291         * The pipe fd is already in proper place and in any case
4292         * we can't move it, and we'd screw the case where we read
4293         * 'pipe' data from regular file. The trace_report reads
4294         * data from 'fd' so we need to set it directly behind the
4295         * event, where the tracing data starts.
4296         */
4297        if (!perf_data__is_pipe(session->data)) {
4298                off_t offset = lseek(fd, 0, SEEK_CUR);
4299
4300                /* setup for reading amidst mmap */
4301                lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4302                      SEEK_SET);
4303        }
4304
4305        size_read = trace_report(fd, &session->tevent,
4306                                 session->repipe);
4307        padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4308
4309        if (readn(fd, buf, padding) < 0) {
4310                pr_err("%s: reading input file", __func__);
4311                return -1;
4312        }
4313        if (session->repipe) {
4314                int retw = write(STDOUT_FILENO, buf, padding);
4315                if (retw <= 0 || retw != padding) {
4316                        pr_err("%s: repiping tracing data padding", __func__);
4317                        return -1;
4318                }
4319        }
4320
4321        if (size_read + padding != size) {
4322                pr_err("%s: tracing data size mismatch", __func__);
4323                return -1;
4324        }
4325
4326        evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
4327
4328        return size_read + padding;
4329}
4330
4331int perf_event__process_build_id(struct perf_session *session,
4332                                 union perf_event *event)
4333{
4334        __event_process_build_id(&event->build_id,
4335                                 event->build_id.filename,
4336                                 session);
4337        return 0;
4338}
4339