linux/tools/perf/util/machine.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include <dirent.h>
   3#include <errno.h>
   4#include <inttypes.h>
   5#include <regex.h>
   6#include <stdlib.h>
   7#include "callchain.h"
   8#include "debug.h"
   9#include "dso.h"
  10#include "env.h"
  11#include "event.h"
  12#include "evsel.h"
  13#include "hist.h"
  14#include "machine.h"
  15#include "map.h"
  16#include "map_symbol.h"
  17#include "branch.h"
  18#include "mem-events.h"
  19#include "srcline.h"
  20#include "symbol.h"
  21#include "sort.h"
  22#include "strlist.h"
  23#include "target.h"
  24#include "thread.h"
  25#include "util.h"
  26#include "vdso.h"
  27#include <stdbool.h>
  28#include <sys/types.h>
  29#include <sys/stat.h>
  30#include <unistd.h>
  31#include "unwind.h"
  32#include "linux/hash.h"
  33#include "asm/bug.h"
  34#include "bpf-event.h"
  35#include <internal/lib.h> // page_size
  36
  37#include <linux/ctype.h>
  38#include <symbol/kallsyms.h>
  39#include <linux/mman.h>
  40#include <linux/string.h>
  41#include <linux/zalloc.h>
  42
  43static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
  44
  45static void dsos__init(struct dsos *dsos)
  46{
  47        INIT_LIST_HEAD(&dsos->head);
  48        dsos->root = RB_ROOT;
  49        init_rwsem(&dsos->lock);
  50}
  51
  52static void machine__threads_init(struct machine *machine)
  53{
  54        int i;
  55
  56        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
  57                struct threads *threads = &machine->threads[i];
  58                threads->entries = RB_ROOT_CACHED;
  59                init_rwsem(&threads->lock);
  60                threads->nr = 0;
  61                INIT_LIST_HEAD(&threads->dead);
  62                threads->last_match = NULL;
  63        }
  64}
  65
  66static int machine__set_mmap_name(struct machine *machine)
  67{
  68        if (machine__is_host(machine))
  69                machine->mmap_name = strdup("[kernel.kallsyms]");
  70        else if (machine__is_default_guest(machine))
  71                machine->mmap_name = strdup("[guest.kernel.kallsyms]");
  72        else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
  73                          machine->pid) < 0)
  74                machine->mmap_name = NULL;
  75
  76        return machine->mmap_name ? 0 : -ENOMEM;
  77}
  78
  79int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
  80{
  81        int err = -ENOMEM;
  82
  83        memset(machine, 0, sizeof(*machine));
  84        map_groups__init(&machine->kmaps, machine);
  85        RB_CLEAR_NODE(&machine->rb_node);
  86        dsos__init(&machine->dsos);
  87
  88        machine__threads_init(machine);
  89
  90        machine->vdso_info = NULL;
  91        machine->env = NULL;
  92
  93        machine->pid = pid;
  94
  95        machine->id_hdr_size = 0;
  96        machine->kptr_restrict_warned = false;
  97        machine->comm_exec = false;
  98        machine->kernel_start = 0;
  99        machine->vmlinux_map = NULL;
 100
 101        machine->root_dir = strdup(root_dir);
 102        if (machine->root_dir == NULL)
 103                return -ENOMEM;
 104
 105        if (machine__set_mmap_name(machine))
 106                goto out;
 107
 108        if (pid != HOST_KERNEL_ID) {
 109                struct thread *thread = machine__findnew_thread(machine, -1,
 110                                                                pid);
 111                char comm[64];
 112
 113                if (thread == NULL)
 114                        goto out;
 115
 116                snprintf(comm, sizeof(comm), "[guest/%d]", pid);
 117                thread__set_comm(thread, comm, 0);
 118                thread__put(thread);
 119        }
 120
 121        machine->current_tid = NULL;
 122        err = 0;
 123
 124out:
 125        if (err) {
 126                zfree(&machine->root_dir);
 127                zfree(&machine->mmap_name);
 128        }
 129        return 0;
 130}
 131
 132struct machine *machine__new_host(void)
 133{
 134        struct machine *machine = malloc(sizeof(*machine));
 135
 136        if (machine != NULL) {
 137                machine__init(machine, "", HOST_KERNEL_ID);
 138
 139                if (machine__create_kernel_maps(machine) < 0)
 140                        goto out_delete;
 141        }
 142
 143        return machine;
 144out_delete:
 145        free(machine);
 146        return NULL;
 147}
 148
 149struct machine *machine__new_kallsyms(void)
 150{
 151        struct machine *machine = machine__new_host();
 152        /*
 153         * FIXME:
 154         * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
 155         *    ask for not using the kcore parsing code, once this one is fixed
 156         *    to create a map per module.
 157         */
 158        if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
 159                machine__delete(machine);
 160                machine = NULL;
 161        }
 162
 163        return machine;
 164}
 165
 166static void dsos__purge(struct dsos *dsos)
 167{
 168        struct dso *pos, *n;
 169
 170        down_write(&dsos->lock);
 171
 172        list_for_each_entry_safe(pos, n, &dsos->head, node) {
 173                RB_CLEAR_NODE(&pos->rb_node);
 174                pos->root = NULL;
 175                list_del_init(&pos->node);
 176                dso__put(pos);
 177        }
 178
 179        up_write(&dsos->lock);
 180}
 181
 182static void dsos__exit(struct dsos *dsos)
 183{
 184        dsos__purge(dsos);
 185        exit_rwsem(&dsos->lock);
 186}
 187
 188void machine__delete_threads(struct machine *machine)
 189{
 190        struct rb_node *nd;
 191        int i;
 192
 193        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 194                struct threads *threads = &machine->threads[i];
 195                down_write(&threads->lock);
 196                nd = rb_first_cached(&threads->entries);
 197                while (nd) {
 198                        struct thread *t = rb_entry(nd, struct thread, rb_node);
 199
 200                        nd = rb_next(nd);
 201                        __machine__remove_thread(machine, t, false);
 202                }
 203                up_write(&threads->lock);
 204        }
 205}
 206
 207void machine__exit(struct machine *machine)
 208{
 209        int i;
 210
 211        if (machine == NULL)
 212                return;
 213
 214        machine__destroy_kernel_maps(machine);
 215        map_groups__exit(&machine->kmaps);
 216        dsos__exit(&machine->dsos);
 217        machine__exit_vdso(machine);
 218        zfree(&machine->root_dir);
 219        zfree(&machine->mmap_name);
 220        zfree(&machine->current_tid);
 221
 222        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 223                struct threads *threads = &machine->threads[i];
 224                struct thread *thread, *n;
 225                /*
 226                 * Forget about the dead, at this point whatever threads were
 227                 * left in the dead lists better have a reference count taken
 228                 * by who is using them, and then, when they drop those references
 229                 * and it finally hits zero, thread__put() will check and see that
 230                 * its not in the dead threads list and will not try to remove it
 231                 * from there, just calling thread__delete() straight away.
 232                 */
 233                list_for_each_entry_safe(thread, n, &threads->dead, node)
 234                        list_del_init(&thread->node);
 235
 236                exit_rwsem(&threads->lock);
 237        }
 238}
 239
 240void machine__delete(struct machine *machine)
 241{
 242        if (machine) {
 243                machine__exit(machine);
 244                free(machine);
 245        }
 246}
 247
 248void machines__init(struct machines *machines)
 249{
 250        machine__init(&machines->host, "", HOST_KERNEL_ID);
 251        machines->guests = RB_ROOT_CACHED;
 252}
 253
 254void machines__exit(struct machines *machines)
 255{
 256        machine__exit(&machines->host);
 257        /* XXX exit guest */
 258}
 259
 260struct machine *machines__add(struct machines *machines, pid_t pid,
 261                              const char *root_dir)
 262{
 263        struct rb_node **p = &machines->guests.rb_root.rb_node;
 264        struct rb_node *parent = NULL;
 265        struct machine *pos, *machine = malloc(sizeof(*machine));
 266        bool leftmost = true;
 267
 268        if (machine == NULL)
 269                return NULL;
 270
 271        if (machine__init(machine, root_dir, pid) != 0) {
 272                free(machine);
 273                return NULL;
 274        }
 275
 276        while (*p != NULL) {
 277                parent = *p;
 278                pos = rb_entry(parent, struct machine, rb_node);
 279                if (pid < pos->pid)
 280                        p = &(*p)->rb_left;
 281                else {
 282                        p = &(*p)->rb_right;
 283                        leftmost = false;
 284                }
 285        }
 286
 287        rb_link_node(&machine->rb_node, parent, p);
 288        rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
 289
 290        return machine;
 291}
 292
 293void machines__set_comm_exec(struct machines *machines, bool comm_exec)
 294{
 295        struct rb_node *nd;
 296
 297        machines->host.comm_exec = comm_exec;
 298
 299        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 300                struct machine *machine = rb_entry(nd, struct machine, rb_node);
 301
 302                machine->comm_exec = comm_exec;
 303        }
 304}
 305
 306struct machine *machines__find(struct machines *machines, pid_t pid)
 307{
 308        struct rb_node **p = &machines->guests.rb_root.rb_node;
 309        struct rb_node *parent = NULL;
 310        struct machine *machine;
 311        struct machine *default_machine = NULL;
 312
 313        if (pid == HOST_KERNEL_ID)
 314                return &machines->host;
 315
 316        while (*p != NULL) {
 317                parent = *p;
 318                machine = rb_entry(parent, struct machine, rb_node);
 319                if (pid < machine->pid)
 320                        p = &(*p)->rb_left;
 321                else if (pid > machine->pid)
 322                        p = &(*p)->rb_right;
 323                else
 324                        return machine;
 325                if (!machine->pid)
 326                        default_machine = machine;
 327        }
 328
 329        return default_machine;
 330}
 331
 332struct machine *machines__findnew(struct machines *machines, pid_t pid)
 333{
 334        char path[PATH_MAX];
 335        const char *root_dir = "";
 336        struct machine *machine = machines__find(machines, pid);
 337
 338        if (machine && (machine->pid == pid))
 339                goto out;
 340
 341        if ((pid != HOST_KERNEL_ID) &&
 342            (pid != DEFAULT_GUEST_KERNEL_ID) &&
 343            (symbol_conf.guestmount)) {
 344                sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
 345                if (access(path, R_OK)) {
 346                        static struct strlist *seen;
 347
 348                        if (!seen)
 349                                seen = strlist__new(NULL, NULL);
 350
 351                        if (!strlist__has_entry(seen, path)) {
 352                                pr_err("Can't access file %s\n", path);
 353                                strlist__add(seen, path);
 354                        }
 355                        machine = NULL;
 356                        goto out;
 357                }
 358                root_dir = path;
 359        }
 360
 361        machine = machines__add(machines, pid, root_dir);
 362out:
 363        return machine;
 364}
 365
 366void machines__process_guests(struct machines *machines,
 367                              machine__process_t process, void *data)
 368{
 369        struct rb_node *nd;
 370
 371        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 372                struct machine *pos = rb_entry(nd, struct machine, rb_node);
 373                process(pos, data);
 374        }
 375}
 376
 377void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
 378{
 379        struct rb_node *node;
 380        struct machine *machine;
 381
 382        machines->host.id_hdr_size = id_hdr_size;
 383
 384        for (node = rb_first_cached(&machines->guests); node;
 385             node = rb_next(node)) {
 386                machine = rb_entry(node, struct machine, rb_node);
 387                machine->id_hdr_size = id_hdr_size;
 388        }
 389
 390        return;
 391}
 392
 393static void machine__update_thread_pid(struct machine *machine,
 394                                       struct thread *th, pid_t pid)
 395{
 396        struct thread *leader;
 397
 398        if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
 399                return;
 400
 401        th->pid_ = pid;
 402
 403        if (th->pid_ == th->tid)
 404                return;
 405
 406        leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
 407        if (!leader)
 408                goto out_err;
 409
 410        if (!leader->mg)
 411                leader->mg = map_groups__new(machine);
 412
 413        if (!leader->mg)
 414                goto out_err;
 415
 416        if (th->mg == leader->mg)
 417                return;
 418
 419        if (th->mg) {
 420                /*
 421                 * Maps are created from MMAP events which provide the pid and
 422                 * tid.  Consequently there never should be any maps on a thread
 423                 * with an unknown pid.  Just print an error if there are.
 424                 */
 425                if (!map_groups__empty(th->mg))
 426                        pr_err("Discarding thread maps for %d:%d\n",
 427                               th->pid_, th->tid);
 428                map_groups__put(th->mg);
 429        }
 430
 431        th->mg = map_groups__get(leader->mg);
 432out_put:
 433        thread__put(leader);
 434        return;
 435out_err:
 436        pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
 437        goto out_put;
 438}
 439
 440/*
 441 * Front-end cache - TID lookups come in blocks,
 442 * so most of the time we dont have to look up
 443 * the full rbtree:
 444 */
 445static struct thread*
 446__threads__get_last_match(struct threads *threads, struct machine *machine,
 447                          int pid, int tid)
 448{
 449        struct thread *th;
 450
 451        th = threads->last_match;
 452        if (th != NULL) {
 453                if (th->tid == tid) {
 454                        machine__update_thread_pid(machine, th, pid);
 455                        return thread__get(th);
 456                }
 457
 458                threads->last_match = NULL;
 459        }
 460
 461        return NULL;
 462}
 463
 464static struct thread*
 465threads__get_last_match(struct threads *threads, struct machine *machine,
 466                        int pid, int tid)
 467{
 468        struct thread *th = NULL;
 469
 470        if (perf_singlethreaded)
 471                th = __threads__get_last_match(threads, machine, pid, tid);
 472
 473        return th;
 474}
 475
 476static void
 477__threads__set_last_match(struct threads *threads, struct thread *th)
 478{
 479        threads->last_match = th;
 480}
 481
 482static void
 483threads__set_last_match(struct threads *threads, struct thread *th)
 484{
 485        if (perf_singlethreaded)
 486                __threads__set_last_match(threads, th);
 487}
 488
 489/*
 490 * Caller must eventually drop thread->refcnt returned with a successful
 491 * lookup/new thread inserted.
 492 */
 493static struct thread *____machine__findnew_thread(struct machine *machine,
 494                                                  struct threads *threads,
 495                                                  pid_t pid, pid_t tid,
 496                                                  bool create)
 497{
 498        struct rb_node **p = &threads->entries.rb_root.rb_node;
 499        struct rb_node *parent = NULL;
 500        struct thread *th;
 501        bool leftmost = true;
 502
 503        th = threads__get_last_match(threads, machine, pid, tid);
 504        if (th)
 505                return th;
 506
 507        while (*p != NULL) {
 508                parent = *p;
 509                th = rb_entry(parent, struct thread, rb_node);
 510
 511                if (th->tid == tid) {
 512                        threads__set_last_match(threads, th);
 513                        machine__update_thread_pid(machine, th, pid);
 514                        return thread__get(th);
 515                }
 516
 517                if (tid < th->tid)
 518                        p = &(*p)->rb_left;
 519                else {
 520                        p = &(*p)->rb_right;
 521                        leftmost = false;
 522                }
 523        }
 524
 525        if (!create)
 526                return NULL;
 527
 528        th = thread__new(pid, tid);
 529        if (th != NULL) {
 530                rb_link_node(&th->rb_node, parent, p);
 531                rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
 532
 533                /*
 534                 * We have to initialize map_groups separately
 535                 * after rb tree is updated.
 536                 *
 537                 * The reason is that we call machine__findnew_thread
 538                 * within thread__init_map_groups to find the thread
 539                 * leader and that would screwed the rb tree.
 540                 */
 541                if (thread__init_map_groups(th, machine)) {
 542                        rb_erase_cached(&th->rb_node, &threads->entries);
 543                        RB_CLEAR_NODE(&th->rb_node);
 544                        thread__put(th);
 545                        return NULL;
 546                }
 547                /*
 548                 * It is now in the rbtree, get a ref
 549                 */
 550                thread__get(th);
 551                threads__set_last_match(threads, th);
 552                ++threads->nr;
 553        }
 554
 555        return th;
 556}
 557
 558struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
 559{
 560        return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
 561}
 562
 563struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
 564                                       pid_t tid)
 565{
 566        struct threads *threads = machine__threads(machine, tid);
 567        struct thread *th;
 568
 569        down_write(&threads->lock);
 570        th = __machine__findnew_thread(machine, pid, tid);
 571        up_write(&threads->lock);
 572        return th;
 573}
 574
 575struct thread *machine__find_thread(struct machine *machine, pid_t pid,
 576                                    pid_t tid)
 577{
 578        struct threads *threads = machine__threads(machine, tid);
 579        struct thread *th;
 580
 581        down_read(&threads->lock);
 582        th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
 583        up_read(&threads->lock);
 584        return th;
 585}
 586
 587struct comm *machine__thread_exec_comm(struct machine *machine,
 588                                       struct thread *thread)
 589{
 590        if (machine->comm_exec)
 591                return thread__exec_comm(thread);
 592        else
 593                return thread__comm(thread);
 594}
 595
 596int machine__process_comm_event(struct machine *machine, union perf_event *event,
 597                                struct perf_sample *sample)
 598{
 599        struct thread *thread = machine__findnew_thread(machine,
 600                                                        event->comm.pid,
 601                                                        event->comm.tid);
 602        bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
 603        int err = 0;
 604
 605        if (exec)
 606                machine->comm_exec = true;
 607
 608        if (dump_trace)
 609                perf_event__fprintf_comm(event, stdout);
 610
 611        if (thread == NULL ||
 612            __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
 613                dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
 614                err = -1;
 615        }
 616
 617        thread__put(thread);
 618
 619        return err;
 620}
 621
 622int machine__process_namespaces_event(struct machine *machine __maybe_unused,
 623                                      union perf_event *event,
 624                                      struct perf_sample *sample __maybe_unused)
 625{
 626        struct thread *thread = machine__findnew_thread(machine,
 627                                                        event->namespaces.pid,
 628                                                        event->namespaces.tid);
 629        int err = 0;
 630
 631        WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
 632                  "\nWARNING: kernel seems to support more namespaces than perf"
 633                  " tool.\nTry updating the perf tool..\n\n");
 634
 635        WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
 636                  "\nWARNING: perf tool seems to support more namespaces than"
 637                  " the kernel.\nTry updating the kernel..\n\n");
 638
 639        if (dump_trace)
 640                perf_event__fprintf_namespaces(event, stdout);
 641
 642        if (thread == NULL ||
 643            thread__set_namespaces(thread, sample->time, &event->namespaces)) {
 644                dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
 645                err = -1;
 646        }
 647
 648        thread__put(thread);
 649
 650        return err;
 651}
 652
 653int machine__process_lost_event(struct machine *machine __maybe_unused,
 654                                union perf_event *event, struct perf_sample *sample __maybe_unused)
 655{
 656        dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
 657                    event->lost.id, event->lost.lost);
 658        return 0;
 659}
 660
 661int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
 662                                        union perf_event *event, struct perf_sample *sample)
 663{
 664        dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
 665                    sample->id, event->lost_samples.lost);
 666        return 0;
 667}
 668
 669static struct dso *machine__findnew_module_dso(struct machine *machine,
 670                                               struct kmod_path *m,
 671                                               const char *filename)
 672{
 673        struct dso *dso;
 674
 675        down_write(&machine->dsos.lock);
 676
 677        dso = __dsos__find(&machine->dsos, m->name, true);
 678        if (!dso) {
 679                dso = __dsos__addnew(&machine->dsos, m->name);
 680                if (dso == NULL)
 681                        goto out_unlock;
 682
 683                dso__set_module_info(dso, m, machine);
 684                dso__set_long_name(dso, strdup(filename), true);
 685        }
 686
 687        dso__get(dso);
 688out_unlock:
 689        up_write(&machine->dsos.lock);
 690        return dso;
 691}
 692
 693int machine__process_aux_event(struct machine *machine __maybe_unused,
 694                               union perf_event *event)
 695{
 696        if (dump_trace)
 697                perf_event__fprintf_aux(event, stdout);
 698        return 0;
 699}
 700
 701int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
 702                                        union perf_event *event)
 703{
 704        if (dump_trace)
 705                perf_event__fprintf_itrace_start(event, stdout);
 706        return 0;
 707}
 708
 709int machine__process_switch_event(struct machine *machine __maybe_unused,
 710                                  union perf_event *event)
 711{
 712        if (dump_trace)
 713                perf_event__fprintf_switch(event, stdout);
 714        return 0;
 715}
 716
 717static int machine__process_ksymbol_register(struct machine *machine,
 718                                             union perf_event *event,
 719                                             struct perf_sample *sample __maybe_unused)
 720{
 721        struct symbol *sym;
 722        struct map *map;
 723
 724        map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
 725        if (!map) {
 726                map = dso__new_map(event->ksymbol.name);
 727                if (!map)
 728                        return -ENOMEM;
 729
 730                map->start = event->ksymbol.addr;
 731                map->end = map->start + event->ksymbol.len;
 732                map_groups__insert(&machine->kmaps, map);
 733        }
 734
 735        sym = symbol__new(map->map_ip(map, map->start),
 736                          event->ksymbol.len,
 737                          0, 0, event->ksymbol.name);
 738        if (!sym)
 739                return -ENOMEM;
 740        dso__insert_symbol(map->dso, sym);
 741        return 0;
 742}
 743
 744static int machine__process_ksymbol_unregister(struct machine *machine,
 745                                               union perf_event *event,
 746                                               struct perf_sample *sample __maybe_unused)
 747{
 748        struct map *map;
 749
 750        map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
 751        if (map)
 752                map_groups__remove(&machine->kmaps, map);
 753
 754        return 0;
 755}
 756
 757int machine__process_ksymbol(struct machine *machine __maybe_unused,
 758                             union perf_event *event,
 759                             struct perf_sample *sample)
 760{
 761        if (dump_trace)
 762                perf_event__fprintf_ksymbol(event, stdout);
 763
 764        if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
 765                return machine__process_ksymbol_unregister(machine, event,
 766                                                           sample);
 767        return machine__process_ksymbol_register(machine, event, sample);
 768}
 769
 770static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
 771{
 772        const char *dup_filename;
 773
 774        if (!filename || !dso || !dso->long_name)
 775                return;
 776        if (dso->long_name[0] != '[')
 777                return;
 778        if (!strchr(filename, '/'))
 779                return;
 780
 781        dup_filename = strdup(filename);
 782        if (!dup_filename)
 783                return;
 784
 785        dso__set_long_name(dso, dup_filename, true);
 786}
 787
 788struct map *machine__findnew_module_map(struct machine *machine, u64 start,
 789                                        const char *filename)
 790{
 791        struct map *map = NULL;
 792        struct dso *dso = NULL;
 793        struct kmod_path m;
 794
 795        if (kmod_path__parse_name(&m, filename))
 796                return NULL;
 797
 798        map = map_groups__find_by_name(&machine->kmaps, m.name);
 799        if (map) {
 800                /*
 801                 * If the map's dso is an offline module, give dso__load()
 802                 * a chance to find the file path of that module by fixing
 803                 * long_name.
 804                 */
 805                dso__adjust_kmod_long_name(map->dso, filename);
 806                goto out;
 807        }
 808
 809        dso = machine__findnew_module_dso(machine, &m, filename);
 810        if (dso == NULL)
 811                goto out;
 812
 813        map = map__new2(start, dso);
 814        if (map == NULL)
 815                goto out;
 816
 817        map_groups__insert(&machine->kmaps, map);
 818
 819        /* Put the map here because map_groups__insert alread got it */
 820        map__put(map);
 821out:
 822        /* put the dso here, corresponding to  machine__findnew_module_dso */
 823        dso__put(dso);
 824        zfree(&m.name);
 825        return map;
 826}
 827
 828size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
 829{
 830        struct rb_node *nd;
 831        size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
 832
 833        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 834                struct machine *pos = rb_entry(nd, struct machine, rb_node);
 835                ret += __dsos__fprintf(&pos->dsos.head, fp);
 836        }
 837
 838        return ret;
 839}
 840
 841size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
 842                                     bool (skip)(struct dso *dso, int parm), int parm)
 843{
 844        return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
 845}
 846
 847size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
 848                                     bool (skip)(struct dso *dso, int parm), int parm)
 849{
 850        struct rb_node *nd;
 851        size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
 852
 853        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 854                struct machine *pos = rb_entry(nd, struct machine, rb_node);
 855                ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
 856        }
 857        return ret;
 858}
 859
 860size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
 861{
 862        int i;
 863        size_t printed = 0;
 864        struct dso *kdso = machine__kernel_map(machine)->dso;
 865
 866        if (kdso->has_build_id) {
 867                char filename[PATH_MAX];
 868                if (dso__build_id_filename(kdso, filename, sizeof(filename),
 869                                           false))
 870                        printed += fprintf(fp, "[0] %s\n", filename);
 871        }
 872
 873        for (i = 0; i < vmlinux_path__nr_entries; ++i)
 874                printed += fprintf(fp, "[%d] %s\n",
 875                                   i + kdso->has_build_id, vmlinux_path[i]);
 876
 877        return printed;
 878}
 879
 880size_t machine__fprintf(struct machine *machine, FILE *fp)
 881{
 882        struct rb_node *nd;
 883        size_t ret;
 884        int i;
 885
 886        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 887                struct threads *threads = &machine->threads[i];
 888
 889                down_read(&threads->lock);
 890
 891                ret = fprintf(fp, "Threads: %u\n", threads->nr);
 892
 893                for (nd = rb_first_cached(&threads->entries); nd;
 894                     nd = rb_next(nd)) {
 895                        struct thread *pos = rb_entry(nd, struct thread, rb_node);
 896
 897                        ret += thread__fprintf(pos, fp);
 898                }
 899
 900                up_read(&threads->lock);
 901        }
 902        return ret;
 903}
 904
 905static struct dso *machine__get_kernel(struct machine *machine)
 906{
 907        const char *vmlinux_name = machine->mmap_name;
 908        struct dso *kernel;
 909
 910        if (machine__is_host(machine)) {
 911                if (symbol_conf.vmlinux_name)
 912                        vmlinux_name = symbol_conf.vmlinux_name;
 913
 914                kernel = machine__findnew_kernel(machine, vmlinux_name,
 915                                                 "[kernel]", DSO_TYPE_KERNEL);
 916        } else {
 917                if (symbol_conf.default_guest_vmlinux_name)
 918                        vmlinux_name = symbol_conf.default_guest_vmlinux_name;
 919
 920                kernel = machine__findnew_kernel(machine, vmlinux_name,
 921                                                 "[guest.kernel]",
 922                                                 DSO_TYPE_GUEST_KERNEL);
 923        }
 924
 925        if (kernel != NULL && (!kernel->has_build_id))
 926                dso__read_running_kernel_build_id(kernel, machine);
 927
 928        return kernel;
 929}
 930
 931struct process_args {
 932        u64 start;
 933};
 934
 935void machine__get_kallsyms_filename(struct machine *machine, char *buf,
 936                                    size_t bufsz)
 937{
 938        if (machine__is_default_guest(machine))
 939                scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
 940        else
 941                scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
 942}
 943
 944const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
 945
 946/* Figure out the start address of kernel map from /proc/kallsyms.
 947 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 948 * symbol_name if it's not that important.
 949 */
 950static int machine__get_running_kernel_start(struct machine *machine,
 951                                             const char **symbol_name,
 952                                             u64 *start, u64 *end)
 953{
 954        char filename[PATH_MAX];
 955        int i, err = -1;
 956        const char *name;
 957        u64 addr = 0;
 958
 959        machine__get_kallsyms_filename(machine, filename, PATH_MAX);
 960
 961        if (symbol__restricted_filename(filename, "/proc/kallsyms"))
 962                return 0;
 963
 964        for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
 965                err = kallsyms__get_function_start(filename, name, &addr);
 966                if (!err)
 967                        break;
 968        }
 969
 970        if (err)
 971                return -1;
 972
 973        if (symbol_name)
 974                *symbol_name = name;
 975
 976        *start = addr;
 977
 978        err = kallsyms__get_function_start(filename, "_etext", &addr);
 979        if (!err)
 980                *end = addr;
 981
 982        return 0;
 983}
 984
 985int machine__create_extra_kernel_map(struct machine *machine,
 986                                     struct dso *kernel,
 987                                     struct extra_kernel_map *xm)
 988{
 989        struct kmap *kmap;
 990        struct map *map;
 991
 992        map = map__new2(xm->start, kernel);
 993        if (!map)
 994                return -1;
 995
 996        map->end   = xm->end;
 997        map->pgoff = xm->pgoff;
 998
 999        kmap = map__kmap(map);
1000
1001        kmap->kmaps = &machine->kmaps;
1002        strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1003
1004        map_groups__insert(&machine->kmaps, map);
1005
1006        pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1007                  kmap->name, map->start, map->end);
1008
1009        map__put(map);
1010
1011        return 0;
1012}
1013
1014static u64 find_entry_trampoline(struct dso *dso)
1015{
1016        /* Duplicates are removed so lookup all aliases */
1017        const char *syms[] = {
1018                "_entry_trampoline",
1019                "__entry_trampoline_start",
1020                "entry_SYSCALL_64_trampoline",
1021        };
1022        struct symbol *sym = dso__first_symbol(dso);
1023        unsigned int i;
1024
1025        for (; sym; sym = dso__next_symbol(sym)) {
1026                if (sym->binding != STB_GLOBAL)
1027                        continue;
1028                for (i = 0; i < ARRAY_SIZE(syms); i++) {
1029                        if (!strcmp(sym->name, syms[i]))
1030                                return sym->start;
1031                }
1032        }
1033
1034        return 0;
1035}
1036
1037/*
1038 * These values can be used for kernels that do not have symbols for the entry
1039 * trampolines in kallsyms.
1040 */
1041#define X86_64_CPU_ENTRY_AREA_PER_CPU   0xfffffe0000000000ULL
1042#define X86_64_CPU_ENTRY_AREA_SIZE      0x2c000
1043#define X86_64_ENTRY_TRAMPOLINE         0x6000
1044
1045/* Map x86_64 PTI entry trampolines */
1046int machine__map_x86_64_entry_trampolines(struct machine *machine,
1047                                          struct dso *kernel)
1048{
1049        struct map_groups *kmaps = &machine->kmaps;
1050        struct maps *maps = &kmaps->maps;
1051        int nr_cpus_avail, cpu;
1052        bool found = false;
1053        struct map *map;
1054        u64 pgoff;
1055
1056        /*
1057         * In the vmlinux case, pgoff is a virtual address which must now be
1058         * mapped to a vmlinux offset.
1059         */
1060        for (map = maps__first(maps); map; map = map__next(map)) {
1061                struct kmap *kmap = __map__kmap(map);
1062                struct map *dest_map;
1063
1064                if (!kmap || !is_entry_trampoline(kmap->name))
1065                        continue;
1066
1067                dest_map = map_groups__find(kmaps, map->pgoff);
1068                if (dest_map != map)
1069                        map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1070                found = true;
1071        }
1072        if (found || machine->trampolines_mapped)
1073                return 0;
1074
1075        pgoff = find_entry_trampoline(kernel);
1076        if (!pgoff)
1077                return 0;
1078
1079        nr_cpus_avail = machine__nr_cpus_avail(machine);
1080
1081        /* Add a 1 page map for each CPU's entry trampoline */
1082        for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1083                u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1084                         cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1085                         X86_64_ENTRY_TRAMPOLINE;
1086                struct extra_kernel_map xm = {
1087                        .start = va,
1088                        .end   = va + page_size,
1089                        .pgoff = pgoff,
1090                };
1091
1092                strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1093
1094                if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1095                        return -1;
1096        }
1097
1098        machine->trampolines_mapped = nr_cpus_avail;
1099
1100        return 0;
1101}
1102
1103int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1104                                             struct dso *kernel __maybe_unused)
1105{
1106        return 0;
1107}
1108
1109static int
1110__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1111{
1112        struct kmap *kmap;
1113        struct map *map;
1114
1115        /* In case of renewal the kernel map, destroy previous one */
1116        machine__destroy_kernel_maps(machine);
1117
1118        machine->vmlinux_map = map__new2(0, kernel);
1119        if (machine->vmlinux_map == NULL)
1120                return -1;
1121
1122        machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1123        map = machine__kernel_map(machine);
1124        kmap = map__kmap(map);
1125        if (!kmap)
1126                return -1;
1127
1128        kmap->kmaps = &machine->kmaps;
1129        map_groups__insert(&machine->kmaps, map);
1130
1131        return 0;
1132}
1133
1134void machine__destroy_kernel_maps(struct machine *machine)
1135{
1136        struct kmap *kmap;
1137        struct map *map = machine__kernel_map(machine);
1138
1139        if (map == NULL)
1140                return;
1141
1142        kmap = map__kmap(map);
1143        map_groups__remove(&machine->kmaps, map);
1144        if (kmap && kmap->ref_reloc_sym) {
1145                zfree((char **)&kmap->ref_reloc_sym->name);
1146                zfree(&kmap->ref_reloc_sym);
1147        }
1148
1149        map__zput(machine->vmlinux_map);
1150}
1151
1152int machines__create_guest_kernel_maps(struct machines *machines)
1153{
1154        int ret = 0;
1155        struct dirent **namelist = NULL;
1156        int i, items = 0;
1157        char path[PATH_MAX];
1158        pid_t pid;
1159        char *endp;
1160
1161        if (symbol_conf.default_guest_vmlinux_name ||
1162            symbol_conf.default_guest_modules ||
1163            symbol_conf.default_guest_kallsyms) {
1164                machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1165        }
1166
1167        if (symbol_conf.guestmount) {
1168                items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1169                if (items <= 0)
1170                        return -ENOENT;
1171                for (i = 0; i < items; i++) {
1172                        if (!isdigit(namelist[i]->d_name[0])) {
1173                                /* Filter out . and .. */
1174                                continue;
1175                        }
1176                        pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1177                        if ((*endp != '\0') ||
1178                            (endp == namelist[i]->d_name) ||
1179                            (errno == ERANGE)) {
1180                                pr_debug("invalid directory (%s). Skipping.\n",
1181                                         namelist[i]->d_name);
1182                                continue;
1183                        }
1184                        sprintf(path, "%s/%s/proc/kallsyms",
1185                                symbol_conf.guestmount,
1186                                namelist[i]->d_name);
1187                        ret = access(path, R_OK);
1188                        if (ret) {
1189                                pr_debug("Can't access file %s\n", path);
1190                                goto failure;
1191                        }
1192                        machines__create_kernel_maps(machines, pid);
1193                }
1194failure:
1195                free(namelist);
1196        }
1197
1198        return ret;
1199}
1200
1201void machines__destroy_kernel_maps(struct machines *machines)
1202{
1203        struct rb_node *next = rb_first_cached(&machines->guests);
1204
1205        machine__destroy_kernel_maps(&machines->host);
1206
1207        while (next) {
1208                struct machine *pos = rb_entry(next, struct machine, rb_node);
1209
1210                next = rb_next(&pos->rb_node);
1211                rb_erase_cached(&pos->rb_node, &machines->guests);
1212                machine__delete(pos);
1213        }
1214}
1215
1216int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1217{
1218        struct machine *machine = machines__findnew(machines, pid);
1219
1220        if (machine == NULL)
1221                return -1;
1222
1223        return machine__create_kernel_maps(machine);
1224}
1225
1226int machine__load_kallsyms(struct machine *machine, const char *filename)
1227{
1228        struct map *map = machine__kernel_map(machine);
1229        int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1230
1231        if (ret > 0) {
1232                dso__set_loaded(map->dso);
1233                /*
1234                 * Since /proc/kallsyms will have multiple sessions for the
1235                 * kernel, with modules between them, fixup the end of all
1236                 * sections.
1237                 */
1238                map_groups__fixup_end(&machine->kmaps);
1239        }
1240
1241        return ret;
1242}
1243
1244int machine__load_vmlinux_path(struct machine *machine)
1245{
1246        struct map *map = machine__kernel_map(machine);
1247        int ret = dso__load_vmlinux_path(map->dso, map);
1248
1249        if (ret > 0)
1250                dso__set_loaded(map->dso);
1251
1252        return ret;
1253}
1254
1255static char *get_kernel_version(const char *root_dir)
1256{
1257        char version[PATH_MAX];
1258        FILE *file;
1259        char *name, *tmp;
1260        const char *prefix = "Linux version ";
1261
1262        sprintf(version, "%s/proc/version", root_dir);
1263        file = fopen(version, "r");
1264        if (!file)
1265                return NULL;
1266
1267        tmp = fgets(version, sizeof(version), file);
1268        fclose(file);
1269        if (!tmp)
1270                return NULL;
1271
1272        name = strstr(version, prefix);
1273        if (!name)
1274                return NULL;
1275        name += strlen(prefix);
1276        tmp = strchr(name, ' ');
1277        if (tmp)
1278                *tmp = '\0';
1279
1280        return strdup(name);
1281}
1282
1283static bool is_kmod_dso(struct dso *dso)
1284{
1285        return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1286               dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1287}
1288
1289static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1290                                       struct kmod_path *m)
1291{
1292        char *long_name;
1293        struct map *map = map_groups__find_by_name(mg, m->name);
1294
1295        if (map == NULL)
1296                return 0;
1297
1298        long_name = strdup(path);
1299        if (long_name == NULL)
1300                return -ENOMEM;
1301
1302        dso__set_long_name(map->dso, long_name, true);
1303        dso__kernel_module_get_build_id(map->dso, "");
1304
1305        /*
1306         * Full name could reveal us kmod compression, so
1307         * we need to update the symtab_type if needed.
1308         */
1309        if (m->comp && is_kmod_dso(map->dso)) {
1310                map->dso->symtab_type++;
1311                map->dso->comp = m->comp;
1312        }
1313
1314        return 0;
1315}
1316
1317static int map_groups__set_modules_path_dir(struct map_groups *mg,
1318                                const char *dir_name, int depth)
1319{
1320        struct dirent *dent;
1321        DIR *dir = opendir(dir_name);
1322        int ret = 0;
1323
1324        if (!dir) {
1325                pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1326                return -1;
1327        }
1328
1329        while ((dent = readdir(dir)) != NULL) {
1330                char path[PATH_MAX];
1331                struct stat st;
1332
1333                /*sshfs might return bad dent->d_type, so we have to stat*/
1334                snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1335                if (stat(path, &st))
1336                        continue;
1337
1338                if (S_ISDIR(st.st_mode)) {
1339                        if (!strcmp(dent->d_name, ".") ||
1340                            !strcmp(dent->d_name, ".."))
1341                                continue;
1342
1343                        /* Do not follow top-level source and build symlinks */
1344                        if (depth == 0) {
1345                                if (!strcmp(dent->d_name, "source") ||
1346                                    !strcmp(dent->d_name, "build"))
1347                                        continue;
1348                        }
1349
1350                        ret = map_groups__set_modules_path_dir(mg, path,
1351                                                               depth + 1);
1352                        if (ret < 0)
1353                                goto out;
1354                } else {
1355                        struct kmod_path m;
1356
1357                        ret = kmod_path__parse_name(&m, dent->d_name);
1358                        if (ret)
1359                                goto out;
1360
1361                        if (m.kmod)
1362                                ret = map_groups__set_module_path(mg, path, &m);
1363
1364                        zfree(&m.name);
1365
1366                        if (ret)
1367                                goto out;
1368                }
1369        }
1370
1371out:
1372        closedir(dir);
1373        return ret;
1374}
1375
1376static int machine__set_modules_path(struct machine *machine)
1377{
1378        char *version;
1379        char modules_path[PATH_MAX];
1380
1381        version = get_kernel_version(machine->root_dir);
1382        if (!version)
1383                return -1;
1384
1385        snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1386                 machine->root_dir, version);
1387        free(version);
1388
1389        return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1390}
1391int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1392                                u64 *size __maybe_unused,
1393                                const char *name __maybe_unused)
1394{
1395        return 0;
1396}
1397
1398static int machine__create_module(void *arg, const char *name, u64 start,
1399                                  u64 size)
1400{
1401        struct machine *machine = arg;
1402        struct map *map;
1403
1404        if (arch__fix_module_text_start(&start, &size, name) < 0)
1405                return -1;
1406
1407        map = machine__findnew_module_map(machine, start, name);
1408        if (map == NULL)
1409                return -1;
1410        map->end = start + size;
1411
1412        dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1413
1414        return 0;
1415}
1416
1417static int machine__create_modules(struct machine *machine)
1418{
1419        const char *modules;
1420        char path[PATH_MAX];
1421
1422        if (machine__is_default_guest(machine)) {
1423                modules = symbol_conf.default_guest_modules;
1424        } else {
1425                snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1426                modules = path;
1427        }
1428
1429        if (symbol__restricted_filename(modules, "/proc/modules"))
1430                return -1;
1431
1432        if (modules__parse(modules, machine, machine__create_module))
1433                return -1;
1434
1435        if (!machine__set_modules_path(machine))
1436                return 0;
1437
1438        pr_debug("Problems setting modules path maps, continuing anyway...\n");
1439
1440        return 0;
1441}
1442
1443static void machine__set_kernel_mmap(struct machine *machine,
1444                                     u64 start, u64 end)
1445{
1446        machine->vmlinux_map->start = start;
1447        machine->vmlinux_map->end   = end;
1448        /*
1449         * Be a bit paranoid here, some perf.data file came with
1450         * a zero sized synthesized MMAP event for the kernel.
1451         */
1452        if (start == 0 && end == 0)
1453                machine->vmlinux_map->end = ~0ULL;
1454}
1455
1456static void machine__update_kernel_mmap(struct machine *machine,
1457                                     u64 start, u64 end)
1458{
1459        struct map *map = machine__kernel_map(machine);
1460
1461        map__get(map);
1462        map_groups__remove(&machine->kmaps, map);
1463
1464        machine__set_kernel_mmap(machine, start, end);
1465
1466        map_groups__insert(&machine->kmaps, map);
1467        map__put(map);
1468}
1469
1470int machine__create_kernel_maps(struct machine *machine)
1471{
1472        struct dso *kernel = machine__get_kernel(machine);
1473        const char *name = NULL;
1474        struct map *map;
1475        u64 start = 0, end = ~0ULL;
1476        int ret;
1477
1478        if (kernel == NULL)
1479                return -1;
1480
1481        ret = __machine__create_kernel_maps(machine, kernel);
1482        if (ret < 0)
1483                goto out_put;
1484
1485        if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1486                if (machine__is_host(machine))
1487                        pr_debug("Problems creating module maps, "
1488                                 "continuing anyway...\n");
1489                else
1490                        pr_debug("Problems creating module maps for guest %d, "
1491                                 "continuing anyway...\n", machine->pid);
1492        }
1493
1494        if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1495                if (name &&
1496                    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1497                        machine__destroy_kernel_maps(machine);
1498                        ret = -1;
1499                        goto out_put;
1500                }
1501
1502                /*
1503                 * we have a real start address now, so re-order the kmaps
1504                 * assume it's the last in the kmaps
1505                 */
1506                machine__update_kernel_mmap(machine, start, end);
1507        }
1508
1509        if (machine__create_extra_kernel_maps(machine, kernel))
1510                pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1511
1512        if (end == ~0ULL) {
1513                /* update end address of the kernel map using adjacent module address */
1514                map = map__next(machine__kernel_map(machine));
1515                if (map)
1516                        machine__set_kernel_mmap(machine, start, map->start);
1517        }
1518
1519out_put:
1520        dso__put(kernel);
1521        return ret;
1522}
1523
1524static bool machine__uses_kcore(struct machine *machine)
1525{
1526        struct dso *dso;
1527
1528        list_for_each_entry(dso, &machine->dsos.head, node) {
1529                if (dso__is_kcore(dso))
1530                        return true;
1531        }
1532
1533        return false;
1534}
1535
1536static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1537                                             union perf_event *event)
1538{
1539        return machine__is(machine, "x86_64") &&
1540               is_entry_trampoline(event->mmap.filename);
1541}
1542
1543static int machine__process_extra_kernel_map(struct machine *machine,
1544                                             union perf_event *event)
1545{
1546        struct map *kernel_map = machine__kernel_map(machine);
1547        struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
1548        struct extra_kernel_map xm = {
1549                .start = event->mmap.start,
1550                .end   = event->mmap.start + event->mmap.len,
1551                .pgoff = event->mmap.pgoff,
1552        };
1553
1554        if (kernel == NULL)
1555                return -1;
1556
1557        strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1558
1559        return machine__create_extra_kernel_map(machine, kernel, &xm);
1560}
1561
1562static int machine__process_kernel_mmap_event(struct machine *machine,
1563                                              union perf_event *event)
1564{
1565        struct map *map;
1566        enum dso_kernel_type kernel_type;
1567        bool is_kernel_mmap;
1568
1569        /* If we have maps from kcore then we do not need or want any others */
1570        if (machine__uses_kcore(machine))
1571                return 0;
1572
1573        if (machine__is_host(machine))
1574                kernel_type = DSO_TYPE_KERNEL;
1575        else
1576                kernel_type = DSO_TYPE_GUEST_KERNEL;
1577
1578        is_kernel_mmap = memcmp(event->mmap.filename,
1579                                machine->mmap_name,
1580                                strlen(machine->mmap_name) - 1) == 0;
1581        if (event->mmap.filename[0] == '/' ||
1582            (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1583                map = machine__findnew_module_map(machine, event->mmap.start,
1584                                                  event->mmap.filename);
1585                if (map == NULL)
1586                        goto out_problem;
1587
1588                map->end = map->start + event->mmap.len;
1589        } else if (is_kernel_mmap) {
1590                const char *symbol_name = (event->mmap.filename +
1591                                strlen(machine->mmap_name));
1592                /*
1593                 * Should be there already, from the build-id table in
1594                 * the header.
1595                 */
1596                struct dso *kernel = NULL;
1597                struct dso *dso;
1598
1599                down_read(&machine->dsos.lock);
1600
1601                list_for_each_entry(dso, &machine->dsos.head, node) {
1602
1603                        /*
1604                         * The cpumode passed to is_kernel_module is not the
1605                         * cpumode of *this* event. If we insist on passing
1606                         * correct cpumode to is_kernel_module, we should
1607                         * record the cpumode when we adding this dso to the
1608                         * linked list.
1609                         *
1610                         * However we don't really need passing correct
1611                         * cpumode.  We know the correct cpumode must be kernel
1612                         * mode (if not, we should not link it onto kernel_dsos
1613                         * list).
1614                         *
1615                         * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1616                         * is_kernel_module() treats it as a kernel cpumode.
1617                         */
1618
1619                        if (!dso->kernel ||
1620                            is_kernel_module(dso->long_name,
1621                                             PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1622                                continue;
1623
1624
1625                        kernel = dso;
1626                        break;
1627                }
1628
1629                up_read(&machine->dsos.lock);
1630
1631                if (kernel == NULL)
1632                        kernel = machine__findnew_dso(machine, machine->mmap_name);
1633                if (kernel == NULL)
1634                        goto out_problem;
1635
1636                kernel->kernel = kernel_type;
1637                if (__machine__create_kernel_maps(machine, kernel) < 0) {
1638                        dso__put(kernel);
1639                        goto out_problem;
1640                }
1641
1642                if (strstr(kernel->long_name, "vmlinux"))
1643                        dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1644
1645                machine__update_kernel_mmap(machine, event->mmap.start,
1646                                         event->mmap.start + event->mmap.len);
1647
1648                /*
1649                 * Avoid using a zero address (kptr_restrict) for the ref reloc
1650                 * symbol. Effectively having zero here means that at record
1651                 * time /proc/sys/kernel/kptr_restrict was non zero.
1652                 */
1653                if (event->mmap.pgoff != 0) {
1654                        map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1655                                                        symbol_name,
1656                                                        event->mmap.pgoff);
1657                }
1658
1659                if (machine__is_default_guest(machine)) {
1660                        /*
1661                         * preload dso of guest kernel and modules
1662                         */
1663                        dso__load(kernel, machine__kernel_map(machine));
1664                }
1665        } else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1666                return machine__process_extra_kernel_map(machine, event);
1667        }
1668        return 0;
1669out_problem:
1670        return -1;
1671}
1672
1673int machine__process_mmap2_event(struct machine *machine,
1674                                 union perf_event *event,
1675                                 struct perf_sample *sample)
1676{
1677        struct thread *thread;
1678        struct map *map;
1679        int ret = 0;
1680
1681        if (dump_trace)
1682                perf_event__fprintf_mmap2(event, stdout);
1683
1684        if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1685            sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1686                ret = machine__process_kernel_mmap_event(machine, event);
1687                if (ret < 0)
1688                        goto out_problem;
1689                return 0;
1690        }
1691
1692        thread = machine__findnew_thread(machine, event->mmap2.pid,
1693                                        event->mmap2.tid);
1694        if (thread == NULL)
1695                goto out_problem;
1696
1697        map = map__new(machine, event->mmap2.start,
1698                        event->mmap2.len, event->mmap2.pgoff,
1699                        event->mmap2.maj,
1700                        event->mmap2.min, event->mmap2.ino,
1701                        event->mmap2.ino_generation,
1702                        event->mmap2.prot,
1703                        event->mmap2.flags,
1704                        event->mmap2.filename, thread);
1705
1706        if (map == NULL)
1707                goto out_problem_map;
1708
1709        ret = thread__insert_map(thread, map);
1710        if (ret)
1711                goto out_problem_insert;
1712
1713        thread__put(thread);
1714        map__put(map);
1715        return 0;
1716
1717out_problem_insert:
1718        map__put(map);
1719out_problem_map:
1720        thread__put(thread);
1721out_problem:
1722        dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1723        return 0;
1724}
1725
1726int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1727                                struct perf_sample *sample)
1728{
1729        struct thread *thread;
1730        struct map *map;
1731        u32 prot = 0;
1732        int ret = 0;
1733
1734        if (dump_trace)
1735                perf_event__fprintf_mmap(event, stdout);
1736
1737        if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1738            sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1739                ret = machine__process_kernel_mmap_event(machine, event);
1740                if (ret < 0)
1741                        goto out_problem;
1742                return 0;
1743        }
1744
1745        thread = machine__findnew_thread(machine, event->mmap.pid,
1746                                         event->mmap.tid);
1747        if (thread == NULL)
1748                goto out_problem;
1749
1750        if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1751                prot = PROT_EXEC;
1752
1753        map = map__new(machine, event->mmap.start,
1754                        event->mmap.len, event->mmap.pgoff,
1755                        0, 0, 0, 0, prot, 0,
1756                        event->mmap.filename,
1757                        thread);
1758
1759        if (map == NULL)
1760                goto out_problem_map;
1761
1762        ret = thread__insert_map(thread, map);
1763        if (ret)
1764                goto out_problem_insert;
1765
1766        thread__put(thread);
1767        map__put(map);
1768        return 0;
1769
1770out_problem_insert:
1771        map__put(map);
1772out_problem_map:
1773        thread__put(thread);
1774out_problem:
1775        dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1776        return 0;
1777}
1778
1779static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1780{
1781        struct threads *threads = machine__threads(machine, th->tid);
1782
1783        if (threads->last_match == th)
1784                threads__set_last_match(threads, NULL);
1785
1786        if (lock)
1787                down_write(&threads->lock);
1788
1789        BUG_ON(refcount_read(&th->refcnt) == 0);
1790
1791        rb_erase_cached(&th->rb_node, &threads->entries);
1792        RB_CLEAR_NODE(&th->rb_node);
1793        --threads->nr;
1794        /*
1795         * Move it first to the dead_threads list, then drop the reference,
1796         * if this is the last reference, then the thread__delete destructor
1797         * will be called and we will remove it from the dead_threads list.
1798         */
1799        list_add_tail(&th->node, &threads->dead);
1800
1801        /*
1802         * We need to do the put here because if this is the last refcount,
1803         * then we will be touching the threads->dead head when removing the
1804         * thread.
1805         */
1806        thread__put(th);
1807
1808        if (lock)
1809                up_write(&threads->lock);
1810}
1811
1812void machine__remove_thread(struct machine *machine, struct thread *th)
1813{
1814        return __machine__remove_thread(machine, th, true);
1815}
1816
1817int machine__process_fork_event(struct machine *machine, union perf_event *event,
1818                                struct perf_sample *sample)
1819{
1820        struct thread *thread = machine__find_thread(machine,
1821                                                     event->fork.pid,
1822                                                     event->fork.tid);
1823        struct thread *parent = machine__findnew_thread(machine,
1824                                                        event->fork.ppid,
1825                                                        event->fork.ptid);
1826        bool do_maps_clone = true;
1827        int err = 0;
1828
1829        if (dump_trace)
1830                perf_event__fprintf_task(event, stdout);
1831
1832        /*
1833         * There may be an existing thread that is not actually the parent,
1834         * either because we are processing events out of order, or because the
1835         * (fork) event that would have removed the thread was lost. Assume the
1836         * latter case and continue on as best we can.
1837         */
1838        if (parent->pid_ != (pid_t)event->fork.ppid) {
1839                dump_printf("removing erroneous parent thread %d/%d\n",
1840                            parent->pid_, parent->tid);
1841                machine__remove_thread(machine, parent);
1842                thread__put(parent);
1843                parent = machine__findnew_thread(machine, event->fork.ppid,
1844                                                 event->fork.ptid);
1845        }
1846
1847        /* if a thread currently exists for the thread id remove it */
1848        if (thread != NULL) {
1849                machine__remove_thread(machine, thread);
1850                thread__put(thread);
1851        }
1852
1853        thread = machine__findnew_thread(machine, event->fork.pid,
1854                                         event->fork.tid);
1855        /*
1856         * When synthesizing FORK events, we are trying to create thread
1857         * objects for the already running tasks on the machine.
1858         *
1859         * Normally, for a kernel FORK event, we want to clone the parent's
1860         * maps because that is what the kernel just did.
1861         *
1862         * But when synthesizing, this should not be done.  If we do, we end up
1863         * with overlapping maps as we process the sythesized MMAP2 events that
1864         * get delivered shortly thereafter.
1865         *
1866         * Use the FORK event misc flags in an internal way to signal this
1867         * situation, so we can elide the map clone when appropriate.
1868         */
1869        if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1870                do_maps_clone = false;
1871
1872        if (thread == NULL || parent == NULL ||
1873            thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1874                dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1875                err = -1;
1876        }
1877        thread__put(thread);
1878        thread__put(parent);
1879
1880        return err;
1881}
1882
1883int machine__process_exit_event(struct machine *machine, union perf_event *event,
1884                                struct perf_sample *sample __maybe_unused)
1885{
1886        struct thread *thread = machine__find_thread(machine,
1887                                                     event->fork.pid,
1888                                                     event->fork.tid);
1889
1890        if (dump_trace)
1891                perf_event__fprintf_task(event, stdout);
1892
1893        if (thread != NULL) {
1894                thread__exited(thread);
1895                thread__put(thread);
1896        }
1897
1898        return 0;
1899}
1900
1901int machine__process_event(struct machine *machine, union perf_event *event,
1902                           struct perf_sample *sample)
1903{
1904        int ret;
1905
1906        switch (event->header.type) {
1907        case PERF_RECORD_COMM:
1908                ret = machine__process_comm_event(machine, event, sample); break;
1909        case PERF_RECORD_MMAP:
1910                ret = machine__process_mmap_event(machine, event, sample); break;
1911        case PERF_RECORD_NAMESPACES:
1912                ret = machine__process_namespaces_event(machine, event, sample); break;
1913        case PERF_RECORD_MMAP2:
1914                ret = machine__process_mmap2_event(machine, event, sample); break;
1915        case PERF_RECORD_FORK:
1916                ret = machine__process_fork_event(machine, event, sample); break;
1917        case PERF_RECORD_EXIT:
1918                ret = machine__process_exit_event(machine, event, sample); break;
1919        case PERF_RECORD_LOST:
1920                ret = machine__process_lost_event(machine, event, sample); break;
1921        case PERF_RECORD_AUX:
1922                ret = machine__process_aux_event(machine, event); break;
1923        case PERF_RECORD_ITRACE_START:
1924                ret = machine__process_itrace_start_event(machine, event); break;
1925        case PERF_RECORD_LOST_SAMPLES:
1926                ret = machine__process_lost_samples_event(machine, event, sample); break;
1927        case PERF_RECORD_SWITCH:
1928        case PERF_RECORD_SWITCH_CPU_WIDE:
1929                ret = machine__process_switch_event(machine, event); break;
1930        case PERF_RECORD_KSYMBOL:
1931                ret = machine__process_ksymbol(machine, event, sample); break;
1932        case PERF_RECORD_BPF_EVENT:
1933                ret = machine__process_bpf(machine, event, sample); break;
1934        default:
1935                ret = -1;
1936                break;
1937        }
1938
1939        return ret;
1940}
1941
1942static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1943{
1944        if (!regexec(regex, sym->name, 0, NULL, 0))
1945                return 1;
1946        return 0;
1947}
1948
1949static void ip__resolve_ams(struct thread *thread,
1950                            struct addr_map_symbol *ams,
1951                            u64 ip)
1952{
1953        struct addr_location al;
1954
1955        memset(&al, 0, sizeof(al));
1956        /*
1957         * We cannot use the header.misc hint to determine whether a
1958         * branch stack address is user, kernel, guest, hypervisor.
1959         * Branches may straddle the kernel/user/hypervisor boundaries.
1960         * Thus, we have to try consecutively until we find a match
1961         * or else, the symbol is unknown
1962         */
1963        thread__find_cpumode_addr_location(thread, ip, &al);
1964
1965        ams->addr = ip;
1966        ams->al_addr = al.addr;
1967        ams->sym = al.sym;
1968        ams->map = al.map;
1969        ams->phys_addr = 0;
1970}
1971
1972static void ip__resolve_data(struct thread *thread,
1973                             u8 m, struct addr_map_symbol *ams,
1974                             u64 addr, u64 phys_addr)
1975{
1976        struct addr_location al;
1977
1978        memset(&al, 0, sizeof(al));
1979
1980        thread__find_symbol(thread, m, addr, &al);
1981
1982        ams->addr = addr;
1983        ams->al_addr = al.addr;
1984        ams->sym = al.sym;
1985        ams->map = al.map;
1986        ams->phys_addr = phys_addr;
1987}
1988
1989struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1990                                     struct addr_location *al)
1991{
1992        struct mem_info *mi = mem_info__new();
1993
1994        if (!mi)
1995                return NULL;
1996
1997        ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1998        ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1999                         sample->addr, sample->phys_addr);
2000        mi->data_src.val = sample->data_src;
2001
2002        return mi;
2003}
2004
2005static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
2006{
2007        char *srcline = NULL;
2008
2009        if (!map || callchain_param.key == CCKEY_FUNCTION)
2010                return srcline;
2011
2012        srcline = srcline__tree_find(&map->dso->srclines, ip);
2013        if (!srcline) {
2014                bool show_sym = false;
2015                bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2016
2017                srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2018                                      sym, show_sym, show_addr, ip);
2019                srcline__tree_insert(&map->dso->srclines, ip, srcline);
2020        }
2021
2022        return srcline;
2023}
2024
2025struct iterations {
2026        int nr_loop_iter;
2027        u64 cycles;
2028};
2029
2030static int add_callchain_ip(struct thread *thread,
2031                            struct callchain_cursor *cursor,
2032                            struct symbol **parent,
2033                            struct addr_location *root_al,
2034                            u8 *cpumode,
2035                            u64 ip,
2036                            bool branch,
2037                            struct branch_flags *flags,
2038                            struct iterations *iter,
2039                            u64 branch_from)
2040{
2041        struct addr_location al;
2042        int nr_loop_iter = 0;
2043        u64 iter_cycles = 0;
2044        const char *srcline = NULL;
2045
2046        al.filtered = 0;
2047        al.sym = NULL;
2048        if (!cpumode) {
2049                thread__find_cpumode_addr_location(thread, ip, &al);
2050        } else {
2051                if (ip >= PERF_CONTEXT_MAX) {
2052                        switch (ip) {
2053                        case PERF_CONTEXT_HV:
2054                                *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2055                                break;
2056                        case PERF_CONTEXT_KERNEL:
2057                                *cpumode = PERF_RECORD_MISC_KERNEL;
2058                                break;
2059                        case PERF_CONTEXT_USER:
2060                                *cpumode = PERF_RECORD_MISC_USER;
2061                                break;
2062                        default:
2063                                pr_debug("invalid callchain context: "
2064                                         "%"PRId64"\n", (s64) ip);
2065                                /*
2066                                 * It seems the callchain is corrupted.
2067                                 * Discard all.
2068                                 */
2069                                callchain_cursor_reset(cursor);
2070                                return 1;
2071                        }
2072                        return 0;
2073                }
2074                thread__find_symbol(thread, *cpumode, ip, &al);
2075        }
2076
2077        if (al.sym != NULL) {
2078                if (perf_hpp_list.parent && !*parent &&
2079                    symbol__match_regex(al.sym, &parent_regex))
2080                        *parent = al.sym;
2081                else if (have_ignore_callees && root_al &&
2082                  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2083                        /* Treat this symbol as the root,
2084                           forgetting its callees. */
2085                        *root_al = al;
2086                        callchain_cursor_reset(cursor);
2087                }
2088        }
2089
2090        if (symbol_conf.hide_unresolved && al.sym == NULL)
2091                return 0;
2092
2093        if (iter) {
2094                nr_loop_iter = iter->nr_loop_iter;
2095                iter_cycles = iter->cycles;
2096        }
2097
2098        srcline = callchain_srcline(al.map, al.sym, al.addr);
2099        return callchain_cursor_append(cursor, ip, al.map, al.sym,
2100                                       branch, flags, nr_loop_iter,
2101                                       iter_cycles, branch_from, srcline);
2102}
2103
2104struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2105                                           struct addr_location *al)
2106{
2107        unsigned int i;
2108        const struct branch_stack *bs = sample->branch_stack;
2109        struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2110
2111        if (!bi)
2112                return NULL;
2113
2114        for (i = 0; i < bs->nr; i++) {
2115                ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
2116                ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
2117                bi[i].flags = bs->entries[i].flags;
2118        }
2119        return bi;
2120}
2121
2122static void save_iterations(struct iterations *iter,
2123                            struct branch_entry *be, int nr)
2124{
2125        int i;
2126
2127        iter->nr_loop_iter++;
2128        iter->cycles = 0;
2129
2130        for (i = 0; i < nr; i++)
2131                iter->cycles += be[i].flags.cycles;
2132}
2133
2134#define CHASHSZ 127
2135#define CHASHBITS 7
2136#define NO_ENTRY 0xff
2137
2138#define PERF_MAX_BRANCH_DEPTH 127
2139
2140/* Remove loops. */
2141static int remove_loops(struct branch_entry *l, int nr,
2142                        struct iterations *iter)
2143{
2144        int i, j, off;
2145        unsigned char chash[CHASHSZ];
2146
2147        memset(chash, NO_ENTRY, sizeof(chash));
2148
2149        BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2150
2151        for (i = 0; i < nr; i++) {
2152                int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2153
2154                /* no collision handling for now */
2155                if (chash[h] == NO_ENTRY) {
2156                        chash[h] = i;
2157                } else if (l[chash[h]].from == l[i].from) {
2158                        bool is_loop = true;
2159                        /* check if it is a real loop */
2160                        off = 0;
2161                        for (j = chash[h]; j < i && i + off < nr; j++, off++)
2162                                if (l[j].from != l[i + off].from) {
2163                                        is_loop = false;
2164                                        break;
2165                                }
2166                        if (is_loop) {
2167                                j = nr - (i + off);
2168                                if (j > 0) {
2169                                        save_iterations(iter + i + off,
2170                                                l + i, off);
2171
2172                                        memmove(iter + i, iter + i + off,
2173                                                j * sizeof(*iter));
2174
2175                                        memmove(l + i, l + i + off,
2176                                                j * sizeof(*l));
2177                                }
2178
2179                                nr -= off;
2180                        }
2181                }
2182        }
2183        return nr;
2184}
2185
2186/*
2187 * Recolve LBR callstack chain sample
2188 * Return:
2189 * 1 on success get LBR callchain information
2190 * 0 no available LBR callchain information, should try fp
2191 * negative error code on other errors.
2192 */
2193static int resolve_lbr_callchain_sample(struct thread *thread,
2194                                        struct callchain_cursor *cursor,
2195                                        struct perf_sample *sample,
2196                                        struct symbol **parent,
2197                                        struct addr_location *root_al,
2198                                        int max_stack)
2199{
2200        struct ip_callchain *chain = sample->callchain;
2201        int chain_nr = min(max_stack, (int)chain->nr), i;
2202        u8 cpumode = PERF_RECORD_MISC_USER;
2203        u64 ip, branch_from = 0;
2204
2205        for (i = 0; i < chain_nr; i++) {
2206                if (chain->ips[i] == PERF_CONTEXT_USER)
2207                        break;
2208        }
2209
2210        /* LBR only affects the user callchain */
2211        if (i != chain_nr) {
2212                struct branch_stack *lbr_stack = sample->branch_stack;
2213                int lbr_nr = lbr_stack->nr, j, k;
2214                bool branch;
2215                struct branch_flags *flags;
2216                /*
2217                 * LBR callstack can only get user call chain.
2218                 * The mix_chain_nr is kernel call chain
2219                 * number plus LBR user call chain number.
2220                 * i is kernel call chain number,
2221                 * 1 is PERF_CONTEXT_USER,
2222                 * lbr_nr + 1 is the user call chain number.
2223                 * For details, please refer to the comments
2224                 * in callchain__printf
2225                 */
2226                int mix_chain_nr = i + 1 + lbr_nr + 1;
2227
2228                for (j = 0; j < mix_chain_nr; j++) {
2229                        int err;
2230                        branch = false;
2231                        flags = NULL;
2232
2233                        if (callchain_param.order == ORDER_CALLEE) {
2234                                if (j < i + 1)
2235                                        ip = chain->ips[j];
2236                                else if (j > i + 1) {
2237                                        k = j - i - 2;
2238                                        ip = lbr_stack->entries[k].from;
2239                                        branch = true;
2240                                        flags = &lbr_stack->entries[k].flags;
2241                                } else {
2242                                        ip = lbr_stack->entries[0].to;
2243                                        branch = true;
2244                                        flags = &lbr_stack->entries[0].flags;
2245                                        branch_from =
2246                                                lbr_stack->entries[0].from;
2247                                }
2248                        } else {
2249                                if (j < lbr_nr) {
2250                                        k = lbr_nr - j - 1;
2251                                        ip = lbr_stack->entries[k].from;
2252                                        branch = true;
2253                                        flags = &lbr_stack->entries[k].flags;
2254                                }
2255                                else if (j > lbr_nr)
2256                                        ip = chain->ips[i + 1 - (j - lbr_nr)];
2257                                else {
2258                                        ip = lbr_stack->entries[0].to;
2259                                        branch = true;
2260                                        flags = &lbr_stack->entries[0].flags;
2261                                        branch_from =
2262                                                lbr_stack->entries[0].from;
2263                                }
2264                        }
2265
2266                        err = add_callchain_ip(thread, cursor, parent,
2267                                               root_al, &cpumode, ip,
2268                                               branch, flags, NULL,
2269                                               branch_from);
2270                        if (err)
2271                                return (err < 0) ? err : 0;
2272                }
2273                return 1;
2274        }
2275
2276        return 0;
2277}
2278
2279static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2280                             struct callchain_cursor *cursor,
2281                             struct symbol **parent,
2282                             struct addr_location *root_al,
2283                             u8 *cpumode, int ent)
2284{
2285        int err = 0;
2286
2287        while (--ent >= 0) {
2288                u64 ip = chain->ips[ent];
2289
2290                if (ip >= PERF_CONTEXT_MAX) {
2291                        err = add_callchain_ip(thread, cursor, parent,
2292                                               root_al, cpumode, ip,
2293                                               false, NULL, NULL, 0);
2294                        break;
2295                }
2296        }
2297        return err;
2298}
2299
2300static int thread__resolve_callchain_sample(struct thread *thread,
2301                                            struct callchain_cursor *cursor,
2302                                            struct evsel *evsel,
2303                                            struct perf_sample *sample,
2304                                            struct symbol **parent,
2305                                            struct addr_location *root_al,
2306                                            int max_stack)
2307{
2308        struct branch_stack *branch = sample->branch_stack;
2309        struct ip_callchain *chain = sample->callchain;
2310        int chain_nr = 0;
2311        u8 cpumode = PERF_RECORD_MISC_USER;
2312        int i, j, err, nr_entries;
2313        int skip_idx = -1;
2314        int first_call = 0;
2315
2316        if (chain)
2317                chain_nr = chain->nr;
2318
2319        if (perf_evsel__has_branch_callstack(evsel)) {
2320                err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2321                                                   root_al, max_stack);
2322                if (err)
2323                        return (err < 0) ? err : 0;
2324        }
2325
2326        /*
2327         * Based on DWARF debug information, some architectures skip
2328         * a callchain entry saved by the kernel.
2329         */
2330        skip_idx = arch_skip_callchain_idx(thread, chain);
2331
2332        /*
2333         * Add branches to call stack for easier browsing. This gives
2334         * more context for a sample than just the callers.
2335         *
2336         * This uses individual histograms of paths compared to the
2337         * aggregated histograms the normal LBR mode uses.
2338         *
2339         * Limitations for now:
2340         * - No extra filters
2341         * - No annotations (should annotate somehow)
2342         */
2343
2344        if (branch && callchain_param.branch_callstack) {
2345                int nr = min(max_stack, (int)branch->nr);
2346                struct branch_entry be[nr];
2347                struct iterations iter[nr];
2348
2349                if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2350                        pr_warning("corrupted branch chain. skipping...\n");
2351                        goto check_calls;
2352                }
2353
2354                for (i = 0; i < nr; i++) {
2355                        if (callchain_param.order == ORDER_CALLEE) {
2356                                be[i] = branch->entries[i];
2357
2358                                if (chain == NULL)
2359                                        continue;
2360
2361                                /*
2362                                 * Check for overlap into the callchain.
2363                                 * The return address is one off compared to
2364                                 * the branch entry. To adjust for this
2365                                 * assume the calling instruction is not longer
2366                                 * than 8 bytes.
2367                                 */
2368                                if (i == skip_idx ||
2369                                    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2370                                        first_call++;
2371                                else if (be[i].from < chain->ips[first_call] &&
2372                                    be[i].from >= chain->ips[first_call] - 8)
2373                                        first_call++;
2374                        } else
2375                                be[i] = branch->entries[branch->nr - i - 1];
2376                }
2377
2378                memset(iter, 0, sizeof(struct iterations) * nr);
2379                nr = remove_loops(be, nr, iter);
2380
2381                for (i = 0; i < nr; i++) {
2382                        err = add_callchain_ip(thread, cursor, parent,
2383                                               root_al,
2384                                               NULL, be[i].to,
2385                                               true, &be[i].flags,
2386                                               NULL, be[i].from);
2387
2388                        if (!err)
2389                                err = add_callchain_ip(thread, cursor, parent, root_al,
2390                                                       NULL, be[i].from,
2391                                                       true, &be[i].flags,
2392                                                       &iter[i], 0);
2393                        if (err == -EINVAL)
2394                                break;
2395                        if (err)
2396                                return err;
2397                }
2398
2399                if (chain_nr == 0)
2400                        return 0;
2401
2402                chain_nr -= nr;
2403        }
2404
2405check_calls:
2406        if (callchain_param.order != ORDER_CALLEE) {
2407                err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2408                                        &cpumode, chain->nr - first_call);
2409                if (err)
2410                        return (err < 0) ? err : 0;
2411        }
2412        for (i = first_call, nr_entries = 0;
2413             i < chain_nr && nr_entries < max_stack; i++) {
2414                u64 ip;
2415
2416                if (callchain_param.order == ORDER_CALLEE)
2417                        j = i;
2418                else
2419                        j = chain->nr - i - 1;
2420
2421#ifdef HAVE_SKIP_CALLCHAIN_IDX
2422                if (j == skip_idx)
2423                        continue;
2424#endif
2425                ip = chain->ips[j];
2426                if (ip < PERF_CONTEXT_MAX)
2427                       ++nr_entries;
2428                else if (callchain_param.order != ORDER_CALLEE) {
2429                        err = find_prev_cpumode(chain, thread, cursor, parent,
2430                                                root_al, &cpumode, j);
2431                        if (err)
2432                                return (err < 0) ? err : 0;
2433                        continue;
2434                }
2435
2436                err = add_callchain_ip(thread, cursor, parent,
2437                                       root_al, &cpumode, ip,
2438                                       false, NULL, NULL, 0);
2439
2440                if (err)
2441                        return (err < 0) ? err : 0;
2442        }
2443
2444        return 0;
2445}
2446
2447static int append_inlines(struct callchain_cursor *cursor,
2448                          struct map *map, struct symbol *sym, u64 ip)
2449{
2450        struct inline_node *inline_node;
2451        struct inline_list *ilist;
2452        u64 addr;
2453        int ret = 1;
2454
2455        if (!symbol_conf.inline_name || !map || !sym)
2456                return ret;
2457
2458        addr = map__map_ip(map, ip);
2459        addr = map__rip_2objdump(map, addr);
2460
2461        inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2462        if (!inline_node) {
2463                inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2464                if (!inline_node)
2465                        return ret;
2466                inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2467        }
2468
2469        list_for_each_entry(ilist, &inline_node->val, list) {
2470                ret = callchain_cursor_append(cursor, ip, map,
2471                                              ilist->symbol, false,
2472                                              NULL, 0, 0, 0, ilist->srcline);
2473
2474                if (ret != 0)
2475                        return ret;
2476        }
2477
2478        return ret;
2479}
2480
2481static int unwind_entry(struct unwind_entry *entry, void *arg)
2482{
2483        struct callchain_cursor *cursor = arg;
2484        const char *srcline = NULL;
2485        u64 addr = entry->ip;
2486
2487        if (symbol_conf.hide_unresolved && entry->sym == NULL)
2488                return 0;
2489
2490        if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2491                return 0;
2492
2493        /*
2494         * Convert entry->ip from a virtual address to an offset in
2495         * its corresponding binary.
2496         */
2497        if (entry->map)
2498                addr = map__map_ip(entry->map, entry->ip);
2499
2500        srcline = callchain_srcline(entry->map, entry->sym, addr);
2501        return callchain_cursor_append(cursor, entry->ip,
2502                                       entry->map, entry->sym,
2503                                       false, NULL, 0, 0, 0, srcline);
2504}
2505
2506static int thread__resolve_callchain_unwind(struct thread *thread,
2507                                            struct callchain_cursor *cursor,
2508                                            struct evsel *evsel,
2509                                            struct perf_sample *sample,
2510                                            int max_stack)
2511{
2512        /* Can we do dwarf post unwind? */
2513        if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2514              (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2515                return 0;
2516
2517        /* Bail out if nothing was captured. */
2518        if ((!sample->user_regs.regs) ||
2519            (!sample->user_stack.size))
2520                return 0;
2521
2522        return unwind__get_entries(unwind_entry, cursor,
2523                                   thread, sample, max_stack);
2524}
2525
2526int thread__resolve_callchain(struct thread *thread,
2527                              struct callchain_cursor *cursor,
2528                              struct evsel *evsel,
2529                              struct perf_sample *sample,
2530                              struct symbol **parent,
2531                              struct addr_location *root_al,
2532                              int max_stack)
2533{
2534        int ret = 0;
2535
2536        callchain_cursor_reset(cursor);
2537
2538        if (callchain_param.order == ORDER_CALLEE) {
2539                ret = thread__resolve_callchain_sample(thread, cursor,
2540                                                       evsel, sample,
2541                                                       parent, root_al,
2542                                                       max_stack);
2543                if (ret)
2544                        return ret;
2545                ret = thread__resolve_callchain_unwind(thread, cursor,
2546                                                       evsel, sample,
2547                                                       max_stack);
2548        } else {
2549                ret = thread__resolve_callchain_unwind(thread, cursor,
2550                                                       evsel, sample,
2551                                                       max_stack);
2552                if (ret)
2553                        return ret;
2554                ret = thread__resolve_callchain_sample(thread, cursor,
2555                                                       evsel, sample,
2556                                                       parent, root_al,
2557                                                       max_stack);
2558        }
2559
2560        return ret;
2561}
2562
2563int machine__for_each_thread(struct machine *machine,
2564                             int (*fn)(struct thread *thread, void *p),
2565                             void *priv)
2566{
2567        struct threads *threads;
2568        struct rb_node *nd;
2569        struct thread *thread;
2570        int rc = 0;
2571        int i;
2572
2573        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2574                threads = &machine->threads[i];
2575                for (nd = rb_first_cached(&threads->entries); nd;
2576                     nd = rb_next(nd)) {
2577                        thread = rb_entry(nd, struct thread, rb_node);
2578                        rc = fn(thread, priv);
2579                        if (rc != 0)
2580                                return rc;
2581                }
2582
2583                list_for_each_entry(thread, &threads->dead, node) {
2584                        rc = fn(thread, priv);
2585                        if (rc != 0)
2586                                return rc;
2587                }
2588        }
2589        return rc;
2590}
2591
2592int machines__for_each_thread(struct machines *machines,
2593                              int (*fn)(struct thread *thread, void *p),
2594                              void *priv)
2595{
2596        struct rb_node *nd;
2597        int rc = 0;
2598
2599        rc = machine__for_each_thread(&machines->host, fn, priv);
2600        if (rc != 0)
2601                return rc;
2602
2603        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2604                struct machine *machine = rb_entry(nd, struct machine, rb_node);
2605
2606                rc = machine__for_each_thread(machine, fn, priv);
2607                if (rc != 0)
2608                        return rc;
2609        }
2610        return rc;
2611}
2612
2613pid_t machine__get_current_tid(struct machine *machine, int cpu)
2614{
2615        int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2616
2617        if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2618                return -1;
2619
2620        return machine->current_tid[cpu];
2621}
2622
2623int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2624                             pid_t tid)
2625{
2626        struct thread *thread;
2627        int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2628
2629        if (cpu < 0)
2630                return -EINVAL;
2631
2632        if (!machine->current_tid) {
2633                int i;
2634
2635                machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
2636                if (!machine->current_tid)
2637                        return -ENOMEM;
2638                for (i = 0; i < nr_cpus; i++)
2639                        machine->current_tid[i] = -1;
2640        }
2641
2642        if (cpu >= nr_cpus) {
2643                pr_err("Requested CPU %d too large. ", cpu);
2644                pr_err("Consider raising MAX_NR_CPUS\n");
2645                return -EINVAL;
2646        }
2647
2648        machine->current_tid[cpu] = tid;
2649
2650        thread = machine__findnew_thread(machine, pid, tid);
2651        if (!thread)
2652                return -ENOMEM;
2653
2654        thread->cpu = cpu;
2655        thread__put(thread);
2656
2657        return 0;
2658}
2659
2660/*
2661 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2662 * normalized arch is needed.
2663 */
2664bool machine__is(struct machine *machine, const char *arch)
2665{
2666        return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2667}
2668
2669int machine__nr_cpus_avail(struct machine *machine)
2670{
2671        return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2672}
2673
2674int machine__get_kernel_start(struct machine *machine)
2675{
2676        struct map *map = machine__kernel_map(machine);
2677        int err = 0;
2678
2679        /*
2680         * The only addresses above 2^63 are kernel addresses of a 64-bit
2681         * kernel.  Note that addresses are unsigned so that on a 32-bit system
2682         * all addresses including kernel addresses are less than 2^32.  In
2683         * that case (32-bit system), if the kernel mapping is unknown, all
2684         * addresses will be assumed to be in user space - see
2685         * machine__kernel_ip().
2686         */
2687        machine->kernel_start = 1ULL << 63;
2688        if (map) {
2689                err = map__load(map);
2690                /*
2691                 * On x86_64, PTI entry trampolines are less than the
2692                 * start of kernel text, but still above 2^63. So leave
2693                 * kernel_start = 1ULL << 63 for x86_64.
2694                 */
2695                if (!err && !machine__is(machine, "x86_64"))
2696                        machine->kernel_start = map->start;
2697        }
2698        return err;
2699}
2700
2701u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
2702{
2703        u8 addr_cpumode = cpumode;
2704        bool kernel_ip;
2705
2706        if (!machine->single_address_space)
2707                goto out;
2708
2709        kernel_ip = machine__kernel_ip(machine, addr);
2710        switch (cpumode) {
2711        case PERF_RECORD_MISC_KERNEL:
2712        case PERF_RECORD_MISC_USER:
2713                addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
2714                                           PERF_RECORD_MISC_USER;
2715                break;
2716        case PERF_RECORD_MISC_GUEST_KERNEL:
2717        case PERF_RECORD_MISC_GUEST_USER:
2718                addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
2719                                           PERF_RECORD_MISC_GUEST_USER;
2720                break;
2721        default:
2722                break;
2723        }
2724out:
2725        return addr_cpumode;
2726}
2727
2728struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2729{
2730        return dsos__findnew(&machine->dsos, filename);
2731}
2732
2733char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2734{
2735        struct machine *machine = vmachine;
2736        struct map *map;
2737        struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2738
2739        if (sym == NULL)
2740                return NULL;
2741
2742        *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2743        *addrp = map->unmap_ip(map, sym->start);
2744        return sym->name;
2745}
2746