linux/tools/testing/selftests/kvm/lib/x86_64/processor.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * tools/testing/selftests/kvm/lib/x86_64/processor.c
   4 *
   5 * Copyright (C) 2018, Google LLC.
   6 */
   7
   8#include "test_util.h"
   9#include "kvm_util.h"
  10#include "../kvm_util_internal.h"
  11#include "processor.h"
  12
  13#ifndef NUM_INTERRUPTS
  14#define NUM_INTERRUPTS 256
  15#endif
  16
  17#define DEFAULT_CODE_SELECTOR 0x8
  18#define DEFAULT_DATA_SELECTOR 0x10
  19
  20vm_vaddr_t exception_handlers;
  21
  22/* Virtual translation table structure declarations */
  23struct pageUpperEntry {
  24        uint64_t present:1;
  25        uint64_t writable:1;
  26        uint64_t user:1;
  27        uint64_t write_through:1;
  28        uint64_t cache_disable:1;
  29        uint64_t accessed:1;
  30        uint64_t ignored_06:1;
  31        uint64_t page_size:1;
  32        uint64_t ignored_11_08:4;
  33        uint64_t pfn:40;
  34        uint64_t ignored_62_52:11;
  35        uint64_t execute_disable:1;
  36};
  37
  38struct pageTableEntry {
  39        uint64_t present:1;
  40        uint64_t writable:1;
  41        uint64_t user:1;
  42        uint64_t write_through:1;
  43        uint64_t cache_disable:1;
  44        uint64_t accessed:1;
  45        uint64_t dirty:1;
  46        uint64_t reserved_07:1;
  47        uint64_t global:1;
  48        uint64_t ignored_11_09:3;
  49        uint64_t pfn:40;
  50        uint64_t ignored_62_52:11;
  51        uint64_t execute_disable:1;
  52};
  53
  54void regs_dump(FILE *stream, struct kvm_regs *regs,
  55               uint8_t indent)
  56{
  57        fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx "
  58                "rcx: 0x%.16llx rdx: 0x%.16llx\n",
  59                indent, "",
  60                regs->rax, regs->rbx, regs->rcx, regs->rdx);
  61        fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx "
  62                "rsp: 0x%.16llx rbp: 0x%.16llx\n",
  63                indent, "",
  64                regs->rsi, regs->rdi, regs->rsp, regs->rbp);
  65        fprintf(stream, "%*sr8:  0x%.16llx r9:  0x%.16llx "
  66                "r10: 0x%.16llx r11: 0x%.16llx\n",
  67                indent, "",
  68                regs->r8, regs->r9, regs->r10, regs->r11);
  69        fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx "
  70                "r14: 0x%.16llx r15: 0x%.16llx\n",
  71                indent, "",
  72                regs->r12, regs->r13, regs->r14, regs->r15);
  73        fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n",
  74                indent, "",
  75                regs->rip, regs->rflags);
  76}
  77
  78/*
  79 * Segment Dump
  80 *
  81 * Input Args:
  82 *   stream  - Output FILE stream
  83 *   segment - KVM segment
  84 *   indent  - Left margin indent amount
  85 *
  86 * Output Args: None
  87 *
  88 * Return: None
  89 *
  90 * Dumps the state of the KVM segment given by @segment, to the FILE stream
  91 * given by @stream.
  92 */
  93static void segment_dump(FILE *stream, struct kvm_segment *segment,
  94                         uint8_t indent)
  95{
  96        fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x "
  97                "selector: 0x%.4x type: 0x%.2x\n",
  98                indent, "", segment->base, segment->limit,
  99                segment->selector, segment->type);
 100        fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x "
 101                "db: 0x%.2x s: 0x%.2x l: 0x%.2x\n",
 102                indent, "", segment->present, segment->dpl,
 103                segment->db, segment->s, segment->l);
 104        fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x "
 105                "unusable: 0x%.2x padding: 0x%.2x\n",
 106                indent, "", segment->g, segment->avl,
 107                segment->unusable, segment->padding);
 108}
 109
 110/*
 111 * dtable Dump
 112 *
 113 * Input Args:
 114 *   stream - Output FILE stream
 115 *   dtable - KVM dtable
 116 *   indent - Left margin indent amount
 117 *
 118 * Output Args: None
 119 *
 120 * Return: None
 121 *
 122 * Dumps the state of the KVM dtable given by @dtable, to the FILE stream
 123 * given by @stream.
 124 */
 125static void dtable_dump(FILE *stream, struct kvm_dtable *dtable,
 126                        uint8_t indent)
 127{
 128        fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x "
 129                "padding: 0x%.4x 0x%.4x 0x%.4x\n",
 130                indent, "", dtable->base, dtable->limit,
 131                dtable->padding[0], dtable->padding[1], dtable->padding[2]);
 132}
 133
 134void sregs_dump(FILE *stream, struct kvm_sregs *sregs,
 135                uint8_t indent)
 136{
 137        unsigned int i;
 138
 139        fprintf(stream, "%*scs:\n", indent, "");
 140        segment_dump(stream, &sregs->cs, indent + 2);
 141        fprintf(stream, "%*sds:\n", indent, "");
 142        segment_dump(stream, &sregs->ds, indent + 2);
 143        fprintf(stream, "%*ses:\n", indent, "");
 144        segment_dump(stream, &sregs->es, indent + 2);
 145        fprintf(stream, "%*sfs:\n", indent, "");
 146        segment_dump(stream, &sregs->fs, indent + 2);
 147        fprintf(stream, "%*sgs:\n", indent, "");
 148        segment_dump(stream, &sregs->gs, indent + 2);
 149        fprintf(stream, "%*sss:\n", indent, "");
 150        segment_dump(stream, &sregs->ss, indent + 2);
 151        fprintf(stream, "%*str:\n", indent, "");
 152        segment_dump(stream, &sregs->tr, indent + 2);
 153        fprintf(stream, "%*sldt:\n", indent, "");
 154        segment_dump(stream, &sregs->ldt, indent + 2);
 155
 156        fprintf(stream, "%*sgdt:\n", indent, "");
 157        dtable_dump(stream, &sregs->gdt, indent + 2);
 158        fprintf(stream, "%*sidt:\n", indent, "");
 159        dtable_dump(stream, &sregs->idt, indent + 2);
 160
 161        fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx "
 162                "cr3: 0x%.16llx cr4: 0x%.16llx\n",
 163                indent, "",
 164                sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4);
 165        fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx "
 166                "apic_base: 0x%.16llx\n",
 167                indent, "",
 168                sregs->cr8, sregs->efer, sregs->apic_base);
 169
 170        fprintf(stream, "%*sinterrupt_bitmap:\n", indent, "");
 171        for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) {
 172                fprintf(stream, "%*s%.16llx\n", indent + 2, "",
 173                        sregs->interrupt_bitmap[i]);
 174        }
 175}
 176
 177void virt_pgd_alloc(struct kvm_vm *vm)
 178{
 179        TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
 180                "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
 181
 182        /* If needed, create page map l4 table. */
 183        if (!vm->pgd_created) {
 184                vm->pgd = vm_alloc_page_table(vm);
 185                vm->pgd_created = true;
 186        }
 187}
 188
 189static void *virt_get_pte(struct kvm_vm *vm, uint64_t pt_pfn, uint64_t vaddr,
 190                          int level)
 191{
 192        uint64_t *page_table = addr_gpa2hva(vm, pt_pfn << vm->page_shift);
 193        int index = vaddr >> (vm->page_shift + level * 9) & 0x1ffu;
 194
 195        return &page_table[index];
 196}
 197
 198static struct pageUpperEntry *virt_create_upper_pte(struct kvm_vm *vm,
 199                                                    uint64_t pt_pfn,
 200                                                    uint64_t vaddr,
 201                                                    uint64_t paddr,
 202                                                    int level,
 203                                                    enum x86_page_size page_size)
 204{
 205        struct pageUpperEntry *pte = virt_get_pte(vm, pt_pfn, vaddr, level);
 206
 207        if (!pte->present) {
 208                pte->writable = true;
 209                pte->present = true;
 210                pte->page_size = (level == page_size);
 211                if (pte->page_size)
 212                        pte->pfn = paddr >> vm->page_shift;
 213                else
 214                        pte->pfn = vm_alloc_page_table(vm) >> vm->page_shift;
 215        } else {
 216                /*
 217                 * Entry already present.  Assert that the caller doesn't want
 218                 * a hugepage at this level, and that there isn't a hugepage at
 219                 * this level.
 220                 */
 221                TEST_ASSERT(level != page_size,
 222                            "Cannot create hugepage at level: %u, vaddr: 0x%lx\n",
 223                            page_size, vaddr);
 224                TEST_ASSERT(!pte->page_size,
 225                            "Cannot create page table at level: %u, vaddr: 0x%lx\n",
 226                            level, vaddr);
 227        }
 228        return pte;
 229}
 230
 231void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
 232                   enum x86_page_size page_size)
 233{
 234        const uint64_t pg_size = 1ull << ((page_size * 9) + 12);
 235        struct pageUpperEntry *pml4e, *pdpe, *pde;
 236        struct pageTableEntry *pte;
 237
 238        TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K,
 239                    "Unknown or unsupported guest mode, mode: 0x%x", vm->mode);
 240
 241        TEST_ASSERT((vaddr % pg_size) == 0,
 242                    "Virtual address not aligned,\n"
 243                    "vaddr: 0x%lx page size: 0x%lx", vaddr, pg_size);
 244        TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)),
 245                    "Invalid virtual address, vaddr: 0x%lx", vaddr);
 246        TEST_ASSERT((paddr % pg_size) == 0,
 247                    "Physical address not aligned,\n"
 248                    "  paddr: 0x%lx page size: 0x%lx", paddr, pg_size);
 249        TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
 250                    "Physical address beyond maximum supported,\n"
 251                    "  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
 252                    paddr, vm->max_gfn, vm->page_size);
 253
 254        /*
 255         * Allocate upper level page tables, if not already present.  Return
 256         * early if a hugepage was created.
 257         */
 258        pml4e = virt_create_upper_pte(vm, vm->pgd >> vm->page_shift,
 259                                      vaddr, paddr, 3, page_size);
 260        if (pml4e->page_size)
 261                return;
 262
 263        pdpe = virt_create_upper_pte(vm, pml4e->pfn, vaddr, paddr, 2, page_size);
 264        if (pdpe->page_size)
 265                return;
 266
 267        pde = virt_create_upper_pte(vm, pdpe->pfn, vaddr, paddr, 1, page_size);
 268        if (pde->page_size)
 269                return;
 270
 271        /* Fill in page table entry. */
 272        pte = virt_get_pte(vm, pde->pfn, vaddr, 0);
 273        TEST_ASSERT(!pte->present,
 274                    "PTE already present for 4k page at vaddr: 0x%lx\n", vaddr);
 275        pte->pfn = paddr >> vm->page_shift;
 276        pte->writable = true;
 277        pte->present = 1;
 278}
 279
 280void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
 281{
 282        __virt_pg_map(vm, vaddr, paddr, X86_PAGE_SIZE_4K);
 283}
 284
 285static struct pageTableEntry *_vm_get_page_table_entry(struct kvm_vm *vm, int vcpuid,
 286                                                       uint64_t vaddr)
 287{
 288        uint16_t index[4];
 289        struct pageUpperEntry *pml4e, *pdpe, *pde;
 290        struct pageTableEntry *pte;
 291        struct kvm_cpuid_entry2 *entry;
 292        struct kvm_sregs sregs;
 293        int max_phy_addr;
 294        /* Set the bottom 52 bits. */
 295        uint64_t rsvd_mask = 0x000fffffffffffff;
 296
 297        entry = kvm_get_supported_cpuid_index(0x80000008, 0);
 298        max_phy_addr = entry->eax & 0x000000ff;
 299        /* Clear the bottom bits of the reserved mask. */
 300        rsvd_mask = (rsvd_mask >> max_phy_addr) << max_phy_addr;
 301
 302        /*
 303         * SDM vol 3, fig 4-11 "Formats of CR3 and Paging-Structure Entries
 304         * with 4-Level Paging and 5-Level Paging".
 305         * If IA32_EFER.NXE = 0 and the P flag of a paging-structure entry is 1,
 306         * the XD flag (bit 63) is reserved.
 307         */
 308        vcpu_sregs_get(vm, vcpuid, &sregs);
 309        if ((sregs.efer & EFER_NX) == 0) {
 310                rsvd_mask |= (1ull << 63);
 311        }
 312
 313        TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
 314                "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
 315        TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
 316                (vaddr >> vm->page_shift)),
 317                "Invalid virtual address, vaddr: 0x%lx",
 318                vaddr);
 319        /*
 320         * Based on the mode check above there are 48 bits in the vaddr, so
 321         * shift 16 to sign extend the last bit (bit-47),
 322         */
 323        TEST_ASSERT(vaddr == (((int64_t)vaddr << 16) >> 16),
 324                "Canonical check failed.  The virtual address is invalid.");
 325
 326        index[0] = (vaddr >> 12) & 0x1ffu;
 327        index[1] = (vaddr >> 21) & 0x1ffu;
 328        index[2] = (vaddr >> 30) & 0x1ffu;
 329        index[3] = (vaddr >> 39) & 0x1ffu;
 330
 331        pml4e = addr_gpa2hva(vm, vm->pgd);
 332        TEST_ASSERT(pml4e[index[3]].present,
 333                "Expected pml4e to be present for gva: 0x%08lx", vaddr);
 334        TEST_ASSERT((*(uint64_t*)(&pml4e[index[3]]) &
 335                (rsvd_mask | (1ull << 7))) == 0,
 336                "Unexpected reserved bits set.");
 337
 338        pdpe = addr_gpa2hva(vm, pml4e[index[3]].pfn * vm->page_size);
 339        TEST_ASSERT(pdpe[index[2]].present,
 340                "Expected pdpe to be present for gva: 0x%08lx", vaddr);
 341        TEST_ASSERT(pdpe[index[2]].page_size == 0,
 342                "Expected pdpe to map a pde not a 1-GByte page.");
 343        TEST_ASSERT((*(uint64_t*)(&pdpe[index[2]]) & rsvd_mask) == 0,
 344                "Unexpected reserved bits set.");
 345
 346        pde = addr_gpa2hva(vm, pdpe[index[2]].pfn * vm->page_size);
 347        TEST_ASSERT(pde[index[1]].present,
 348                "Expected pde to be present for gva: 0x%08lx", vaddr);
 349        TEST_ASSERT(pde[index[1]].page_size == 0,
 350                "Expected pde to map a pte not a 2-MByte page.");
 351        TEST_ASSERT((*(uint64_t*)(&pde[index[1]]) & rsvd_mask) == 0,
 352                "Unexpected reserved bits set.");
 353
 354        pte = addr_gpa2hva(vm, pde[index[1]].pfn * vm->page_size);
 355        TEST_ASSERT(pte[index[0]].present,
 356                "Expected pte to be present for gva: 0x%08lx", vaddr);
 357
 358        return &pte[index[0]];
 359}
 360
 361uint64_t vm_get_page_table_entry(struct kvm_vm *vm, int vcpuid, uint64_t vaddr)
 362{
 363        struct pageTableEntry *pte = _vm_get_page_table_entry(vm, vcpuid, vaddr);
 364
 365        return *(uint64_t *)pte;
 366}
 367
 368void vm_set_page_table_entry(struct kvm_vm *vm, int vcpuid, uint64_t vaddr,
 369                             uint64_t pte)
 370{
 371        struct pageTableEntry *new_pte = _vm_get_page_table_entry(vm, vcpuid,
 372                                                                  vaddr);
 373
 374        *(uint64_t *)new_pte = pte;
 375}
 376
 377void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
 378{
 379        struct pageUpperEntry *pml4e, *pml4e_start;
 380        struct pageUpperEntry *pdpe, *pdpe_start;
 381        struct pageUpperEntry *pde, *pde_start;
 382        struct pageTableEntry *pte, *pte_start;
 383
 384        if (!vm->pgd_created)
 385                return;
 386
 387        fprintf(stream, "%*s                                          "
 388                "                no\n", indent, "");
 389        fprintf(stream, "%*s      index hvaddr         gpaddr         "
 390                "addr         w exec dirty\n",
 391                indent, "");
 392        pml4e_start = (struct pageUpperEntry *) addr_gpa2hva(vm, vm->pgd);
 393        for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) {
 394                pml4e = &pml4e_start[n1];
 395                if (!pml4e->present)
 396                        continue;
 397                fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10lx %u "
 398                        " %u\n",
 399                        indent, "",
 400                        pml4e - pml4e_start, pml4e,
 401                        addr_hva2gpa(vm, pml4e), (uint64_t) pml4e->pfn,
 402                        pml4e->writable, pml4e->execute_disable);
 403
 404                pdpe_start = addr_gpa2hva(vm, pml4e->pfn * vm->page_size);
 405                for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) {
 406                        pdpe = &pdpe_start[n2];
 407                        if (!pdpe->present)
 408                                continue;
 409                        fprintf(stream, "%*spdpe  0x%-3zx %p 0x%-12lx 0x%-10lx "
 410                                "%u  %u\n",
 411                                indent, "",
 412                                pdpe - pdpe_start, pdpe,
 413                                addr_hva2gpa(vm, pdpe),
 414                                (uint64_t) pdpe->pfn, pdpe->writable,
 415                                pdpe->execute_disable);
 416
 417                        pde_start = addr_gpa2hva(vm, pdpe->pfn * vm->page_size);
 418                        for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) {
 419                                pde = &pde_start[n3];
 420                                if (!pde->present)
 421                                        continue;
 422                                fprintf(stream, "%*spde   0x%-3zx %p "
 423                                        "0x%-12lx 0x%-10lx %u  %u\n",
 424                                        indent, "", pde - pde_start, pde,
 425                                        addr_hva2gpa(vm, pde),
 426                                        (uint64_t) pde->pfn, pde->writable,
 427                                        pde->execute_disable);
 428
 429                                pte_start = addr_gpa2hva(vm, pde->pfn * vm->page_size);
 430                                for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) {
 431                                        pte = &pte_start[n4];
 432                                        if (!pte->present)
 433                                                continue;
 434                                        fprintf(stream, "%*spte   0x%-3zx %p "
 435                                                "0x%-12lx 0x%-10lx %u  %u "
 436                                                "    %u    0x%-10lx\n",
 437                                                indent, "",
 438                                                pte - pte_start, pte,
 439                                                addr_hva2gpa(vm, pte),
 440                                                (uint64_t) pte->pfn,
 441                                                pte->writable,
 442                                                pte->execute_disable,
 443                                                pte->dirty,
 444                                                ((uint64_t) n1 << 27)
 445                                                        | ((uint64_t) n2 << 18)
 446                                                        | ((uint64_t) n3 << 9)
 447                                                        | ((uint64_t) n4));
 448                                }
 449                        }
 450                }
 451        }
 452}
 453
 454/*
 455 * Set Unusable Segment
 456 *
 457 * Input Args: None
 458 *
 459 * Output Args:
 460 *   segp - Pointer to segment register
 461 *
 462 * Return: None
 463 *
 464 * Sets the segment register pointed to by @segp to an unusable state.
 465 */
 466static void kvm_seg_set_unusable(struct kvm_segment *segp)
 467{
 468        memset(segp, 0, sizeof(*segp));
 469        segp->unusable = true;
 470}
 471
 472static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp)
 473{
 474        void *gdt = addr_gva2hva(vm, vm->gdt);
 475        struct desc64 *desc = gdt + (segp->selector >> 3) * 8;
 476
 477        desc->limit0 = segp->limit & 0xFFFF;
 478        desc->base0 = segp->base & 0xFFFF;
 479        desc->base1 = segp->base >> 16;
 480        desc->type = segp->type;
 481        desc->s = segp->s;
 482        desc->dpl = segp->dpl;
 483        desc->p = segp->present;
 484        desc->limit1 = segp->limit >> 16;
 485        desc->avl = segp->avl;
 486        desc->l = segp->l;
 487        desc->db = segp->db;
 488        desc->g = segp->g;
 489        desc->base2 = segp->base >> 24;
 490        if (!segp->s)
 491                desc->base3 = segp->base >> 32;
 492}
 493
 494
 495/*
 496 * Set Long Mode Flat Kernel Code Segment
 497 *
 498 * Input Args:
 499 *   vm - VM whose GDT is being filled, or NULL to only write segp
 500 *   selector - selector value
 501 *
 502 * Output Args:
 503 *   segp - Pointer to KVM segment
 504 *
 505 * Return: None
 506 *
 507 * Sets up the KVM segment pointed to by @segp, to be a code segment
 508 * with the selector value given by @selector.
 509 */
 510static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector,
 511        struct kvm_segment *segp)
 512{
 513        memset(segp, 0, sizeof(*segp));
 514        segp->selector = selector;
 515        segp->limit = 0xFFFFFFFFu;
 516        segp->s = 0x1; /* kTypeCodeData */
 517        segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed
 518                                          * | kFlagCodeReadable
 519                                          */
 520        segp->g = true;
 521        segp->l = true;
 522        segp->present = 1;
 523        if (vm)
 524                kvm_seg_fill_gdt_64bit(vm, segp);
 525}
 526
 527/*
 528 * Set Long Mode Flat Kernel Data Segment
 529 *
 530 * Input Args:
 531 *   vm - VM whose GDT is being filled, or NULL to only write segp
 532 *   selector - selector value
 533 *
 534 * Output Args:
 535 *   segp - Pointer to KVM segment
 536 *
 537 * Return: None
 538 *
 539 * Sets up the KVM segment pointed to by @segp, to be a data segment
 540 * with the selector value given by @selector.
 541 */
 542static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector,
 543        struct kvm_segment *segp)
 544{
 545        memset(segp, 0, sizeof(*segp));
 546        segp->selector = selector;
 547        segp->limit = 0xFFFFFFFFu;
 548        segp->s = 0x1; /* kTypeCodeData */
 549        segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed
 550                                          * | kFlagDataWritable
 551                                          */
 552        segp->g = true;
 553        segp->present = true;
 554        if (vm)
 555                kvm_seg_fill_gdt_64bit(vm, segp);
 556}
 557
 558vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
 559{
 560        uint16_t index[4];
 561        struct pageUpperEntry *pml4e, *pdpe, *pde;
 562        struct pageTableEntry *pte;
 563
 564        TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
 565                "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
 566
 567        index[0] = (gva >> 12) & 0x1ffu;
 568        index[1] = (gva >> 21) & 0x1ffu;
 569        index[2] = (gva >> 30) & 0x1ffu;
 570        index[3] = (gva >> 39) & 0x1ffu;
 571
 572        if (!vm->pgd_created)
 573                goto unmapped_gva;
 574        pml4e = addr_gpa2hva(vm, vm->pgd);
 575        if (!pml4e[index[3]].present)
 576                goto unmapped_gva;
 577
 578        pdpe = addr_gpa2hva(vm, pml4e[index[3]].pfn * vm->page_size);
 579        if (!pdpe[index[2]].present)
 580                goto unmapped_gva;
 581
 582        pde = addr_gpa2hva(vm, pdpe[index[2]].pfn * vm->page_size);
 583        if (!pde[index[1]].present)
 584                goto unmapped_gva;
 585
 586        pte = addr_gpa2hva(vm, pde[index[1]].pfn * vm->page_size);
 587        if (!pte[index[0]].present)
 588                goto unmapped_gva;
 589
 590        return (pte[index[0]].pfn * vm->page_size) + (gva & 0xfffu);
 591
 592unmapped_gva:
 593        TEST_FAIL("No mapping for vm virtual address, gva: 0x%lx", gva);
 594        exit(EXIT_FAILURE);
 595}
 596
 597static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt)
 598{
 599        if (!vm->gdt)
 600                vm->gdt = vm_vaddr_alloc_page(vm);
 601
 602        dt->base = vm->gdt;
 603        dt->limit = getpagesize();
 604}
 605
 606static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp,
 607                                int selector)
 608{
 609        if (!vm->tss)
 610                vm->tss = vm_vaddr_alloc_page(vm);
 611
 612        memset(segp, 0, sizeof(*segp));
 613        segp->base = vm->tss;
 614        segp->limit = 0x67;
 615        segp->selector = selector;
 616        segp->type = 0xb;
 617        segp->present = 1;
 618        kvm_seg_fill_gdt_64bit(vm, segp);
 619}
 620
 621static void vcpu_setup(struct kvm_vm *vm, int vcpuid)
 622{
 623        struct kvm_sregs sregs;
 624
 625        /* Set mode specific system register values. */
 626        vcpu_sregs_get(vm, vcpuid, &sregs);
 627
 628        sregs.idt.limit = 0;
 629
 630        kvm_setup_gdt(vm, &sregs.gdt);
 631
 632        switch (vm->mode) {
 633        case VM_MODE_PXXV48_4K:
 634                sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG;
 635                sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR;
 636                sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX);
 637
 638                kvm_seg_set_unusable(&sregs.ldt);
 639                kvm_seg_set_kernel_code_64bit(vm, DEFAULT_CODE_SELECTOR, &sregs.cs);
 640                kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.ds);
 641                kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.es);
 642                kvm_setup_tss_64bit(vm, &sregs.tr, 0x18);
 643                break;
 644
 645        default:
 646                TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
 647        }
 648
 649        sregs.cr3 = vm->pgd;
 650        vcpu_sregs_set(vm, vcpuid, &sregs);
 651}
 652
 653void vm_vcpu_add_default(struct kvm_vm *vm, uint32_t vcpuid, void *guest_code)
 654{
 655        struct kvm_mp_state mp_state;
 656        struct kvm_regs regs;
 657        vm_vaddr_t stack_vaddr;
 658        stack_vaddr = vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(),
 659                                     DEFAULT_GUEST_STACK_VADDR_MIN);
 660
 661        /* Create VCPU */
 662        vm_vcpu_add(vm, vcpuid);
 663        vcpu_setup(vm, vcpuid);
 664
 665        /* Setup guest general purpose registers */
 666        vcpu_regs_get(vm, vcpuid, &regs);
 667        regs.rflags = regs.rflags | 0x2;
 668        regs.rsp = stack_vaddr + (DEFAULT_STACK_PGS * getpagesize());
 669        regs.rip = (unsigned long) guest_code;
 670        vcpu_regs_set(vm, vcpuid, &regs);
 671
 672        /* Setup the MP state */
 673        mp_state.mp_state = 0;
 674        vcpu_set_mp_state(vm, vcpuid, &mp_state);
 675
 676        /* Setup supported CPUIDs */
 677        vcpu_set_cpuid(vm, vcpuid, kvm_get_supported_cpuid());
 678}
 679
 680/*
 681 * Allocate an instance of struct kvm_cpuid2
 682 *
 683 * Input Args: None
 684 *
 685 * Output Args: None
 686 *
 687 * Return: A pointer to the allocated struct. The caller is responsible
 688 * for freeing this struct.
 689 *
 690 * Since kvm_cpuid2 uses a 0-length array to allow a the size of the
 691 * array to be decided at allocation time, allocation is slightly
 692 * complicated. This function uses a reasonable default length for
 693 * the array and performs the appropriate allocation.
 694 */
 695static struct kvm_cpuid2 *allocate_kvm_cpuid2(void)
 696{
 697        struct kvm_cpuid2 *cpuid;
 698        int nent = 100;
 699        size_t size;
 700
 701        size = sizeof(*cpuid);
 702        size += nent * sizeof(struct kvm_cpuid_entry2);
 703        cpuid = malloc(size);
 704        if (!cpuid) {
 705                perror("malloc");
 706                abort();
 707        }
 708
 709        cpuid->nent = nent;
 710
 711        return cpuid;
 712}
 713
 714/*
 715 * KVM Supported CPUID Get
 716 *
 717 * Input Args: None
 718 *
 719 * Output Args:
 720 *
 721 * Return: The supported KVM CPUID
 722 *
 723 * Get the guest CPUID supported by KVM.
 724 */
 725struct kvm_cpuid2 *kvm_get_supported_cpuid(void)
 726{
 727        static struct kvm_cpuid2 *cpuid;
 728        int ret;
 729        int kvm_fd;
 730
 731        if (cpuid)
 732                return cpuid;
 733
 734        cpuid = allocate_kvm_cpuid2();
 735        kvm_fd = open_kvm_dev_path_or_exit();
 736
 737        ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID, cpuid);
 738        TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_CPUID failed %d %d\n",
 739                    ret, errno);
 740
 741        close(kvm_fd);
 742        return cpuid;
 743}
 744
 745/*
 746 * KVM Get MSR
 747 *
 748 * Input Args:
 749 *   msr_index - Index of MSR
 750 *
 751 * Output Args: None
 752 *
 753 * Return: On success, value of the MSR. On failure a TEST_ASSERT is produced.
 754 *
 755 * Get value of MSR for VCPU.
 756 */
 757uint64_t kvm_get_feature_msr(uint64_t msr_index)
 758{
 759        struct {
 760                struct kvm_msrs header;
 761                struct kvm_msr_entry entry;
 762        } buffer = {};
 763        int r, kvm_fd;
 764
 765        buffer.header.nmsrs = 1;
 766        buffer.entry.index = msr_index;
 767        kvm_fd = open_kvm_dev_path_or_exit();
 768
 769        r = ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header);
 770        TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n"
 771                "  rc: %i errno: %i", r, errno);
 772
 773        close(kvm_fd);
 774        return buffer.entry.data;
 775}
 776
 777/*
 778 * VM VCPU CPUID Set
 779 *
 780 * Input Args:
 781 *   vm - Virtual Machine
 782 *   vcpuid - VCPU id
 783 *
 784 * Output Args: None
 785 *
 786 * Return: KVM CPUID (KVM_GET_CPUID2)
 787 *
 788 * Set the VCPU's CPUID.
 789 */
 790struct kvm_cpuid2 *vcpu_get_cpuid(struct kvm_vm *vm, uint32_t vcpuid)
 791{
 792        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
 793        struct kvm_cpuid2 *cpuid;
 794        int max_ent;
 795        int rc = -1;
 796
 797        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
 798
 799        cpuid = allocate_kvm_cpuid2();
 800        max_ent = cpuid->nent;
 801
 802        for (cpuid->nent = 1; cpuid->nent <= max_ent; cpuid->nent++) {
 803                rc = ioctl(vcpu->fd, KVM_GET_CPUID2, cpuid);
 804                if (!rc)
 805                        break;
 806
 807                TEST_ASSERT(rc == -1 && errno == E2BIG,
 808                            "KVM_GET_CPUID2 should either succeed or give E2BIG: %d %d",
 809                            rc, errno);
 810        }
 811
 812        TEST_ASSERT(rc == 0, "KVM_GET_CPUID2 failed, rc: %i errno: %i",
 813                    rc, errno);
 814
 815        return cpuid;
 816}
 817
 818
 819
 820/*
 821 * Locate a cpuid entry.
 822 *
 823 * Input Args:
 824 *   function: The function of the cpuid entry to find.
 825 *   index: The index of the cpuid entry.
 826 *
 827 * Output Args: None
 828 *
 829 * Return: A pointer to the cpuid entry. Never returns NULL.
 830 */
 831struct kvm_cpuid_entry2 *
 832kvm_get_supported_cpuid_index(uint32_t function, uint32_t index)
 833{
 834        struct kvm_cpuid2 *cpuid;
 835        struct kvm_cpuid_entry2 *entry = NULL;
 836        int i;
 837
 838        cpuid = kvm_get_supported_cpuid();
 839        for (i = 0; i < cpuid->nent; i++) {
 840                if (cpuid->entries[i].function == function &&
 841                    cpuid->entries[i].index == index) {
 842                        entry = &cpuid->entries[i];
 843                        break;
 844                }
 845        }
 846
 847        TEST_ASSERT(entry, "Guest CPUID entry not found: (EAX=%x, ECX=%x).",
 848                    function, index);
 849        return entry;
 850}
 851
 852/*
 853 * VM VCPU CPUID Set
 854 *
 855 * Input Args:
 856 *   vm - Virtual Machine
 857 *   vcpuid - VCPU id
 858 *   cpuid - The CPUID values to set.
 859 *
 860 * Output Args: None
 861 *
 862 * Return: void
 863 *
 864 * Set the VCPU's CPUID.
 865 */
 866void vcpu_set_cpuid(struct kvm_vm *vm,
 867                uint32_t vcpuid, struct kvm_cpuid2 *cpuid)
 868{
 869        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
 870        int rc;
 871
 872        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
 873
 874        rc = ioctl(vcpu->fd, KVM_SET_CPUID2, cpuid);
 875        TEST_ASSERT(rc == 0, "KVM_SET_CPUID2 failed, rc: %i errno: %i",
 876                    rc, errno);
 877
 878}
 879
 880/*
 881 * VCPU Get MSR
 882 *
 883 * Input Args:
 884 *   vm - Virtual Machine
 885 *   vcpuid - VCPU ID
 886 *   msr_index - Index of MSR
 887 *
 888 * Output Args: None
 889 *
 890 * Return: On success, value of the MSR. On failure a TEST_ASSERT is produced.
 891 *
 892 * Get value of MSR for VCPU.
 893 */
 894uint64_t vcpu_get_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index)
 895{
 896        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
 897        struct {
 898                struct kvm_msrs header;
 899                struct kvm_msr_entry entry;
 900        } buffer = {};
 901        int r;
 902
 903        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
 904        buffer.header.nmsrs = 1;
 905        buffer.entry.index = msr_index;
 906        r = ioctl(vcpu->fd, KVM_GET_MSRS, &buffer.header);
 907        TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n"
 908                "  rc: %i errno: %i", r, errno);
 909
 910        return buffer.entry.data;
 911}
 912
 913/*
 914 * _VCPU Set MSR
 915 *
 916 * Input Args:
 917 *   vm - Virtual Machine
 918 *   vcpuid - VCPU ID
 919 *   msr_index - Index of MSR
 920 *   msr_value - New value of MSR
 921 *
 922 * Output Args: None
 923 *
 924 * Return: The result of KVM_SET_MSRS.
 925 *
 926 * Sets the value of an MSR for the given VCPU.
 927 */
 928int _vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index,
 929                  uint64_t msr_value)
 930{
 931        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
 932        struct {
 933                struct kvm_msrs header;
 934                struct kvm_msr_entry entry;
 935        } buffer = {};
 936        int r;
 937
 938        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
 939        memset(&buffer, 0, sizeof(buffer));
 940        buffer.header.nmsrs = 1;
 941        buffer.entry.index = msr_index;
 942        buffer.entry.data = msr_value;
 943        r = ioctl(vcpu->fd, KVM_SET_MSRS, &buffer.header);
 944        return r;
 945}
 946
 947/*
 948 * VCPU Set MSR
 949 *
 950 * Input Args:
 951 *   vm - Virtual Machine
 952 *   vcpuid - VCPU ID
 953 *   msr_index - Index of MSR
 954 *   msr_value - New value of MSR
 955 *
 956 * Output Args: None
 957 *
 958 * Return: On success, nothing. On failure a TEST_ASSERT is produced.
 959 *
 960 * Set value of MSR for VCPU.
 961 */
 962void vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index,
 963        uint64_t msr_value)
 964{
 965        int r;
 966
 967        r = _vcpu_set_msr(vm, vcpuid, msr_index, msr_value);
 968        TEST_ASSERT(r == 1, "KVM_SET_MSRS IOCTL failed,\n"
 969                "  rc: %i errno: %i", r, errno);
 970}
 971
 972void vcpu_args_set(struct kvm_vm *vm, uint32_t vcpuid, unsigned int num, ...)
 973{
 974        va_list ap;
 975        struct kvm_regs regs;
 976
 977        TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n"
 978                    "  num: %u\n",
 979                    num);
 980
 981        va_start(ap, num);
 982        vcpu_regs_get(vm, vcpuid, &regs);
 983
 984        if (num >= 1)
 985                regs.rdi = va_arg(ap, uint64_t);
 986
 987        if (num >= 2)
 988                regs.rsi = va_arg(ap, uint64_t);
 989
 990        if (num >= 3)
 991                regs.rdx = va_arg(ap, uint64_t);
 992
 993        if (num >= 4)
 994                regs.rcx = va_arg(ap, uint64_t);
 995
 996        if (num >= 5)
 997                regs.r8 = va_arg(ap, uint64_t);
 998
 999        if (num >= 6)
1000                regs.r9 = va_arg(ap, uint64_t);
1001
1002        vcpu_regs_set(vm, vcpuid, &regs);
1003        va_end(ap);
1004}
1005
1006void vcpu_dump(FILE *stream, struct kvm_vm *vm, uint32_t vcpuid, uint8_t indent)
1007{
1008        struct kvm_regs regs;
1009        struct kvm_sregs sregs;
1010
1011        fprintf(stream, "%*scpuid: %u\n", indent, "", vcpuid);
1012
1013        fprintf(stream, "%*sregs:\n", indent + 2, "");
1014        vcpu_regs_get(vm, vcpuid, &regs);
1015        regs_dump(stream, &regs, indent + 4);
1016
1017        fprintf(stream, "%*ssregs:\n", indent + 2, "");
1018        vcpu_sregs_get(vm, vcpuid, &sregs);
1019        sregs_dump(stream, &sregs, indent + 4);
1020}
1021
1022struct kvm_x86_state {
1023        struct kvm_vcpu_events events;
1024        struct kvm_mp_state mp_state;
1025        struct kvm_regs regs;
1026        struct kvm_xsave xsave;
1027        struct kvm_xcrs xcrs;
1028        struct kvm_sregs sregs;
1029        struct kvm_debugregs debugregs;
1030        union {
1031                struct kvm_nested_state nested;
1032                char nested_[16384];
1033        };
1034        struct kvm_msrs msrs;
1035};
1036
1037static int kvm_get_num_msrs_fd(int kvm_fd)
1038{
1039        struct kvm_msr_list nmsrs;
1040        int r;
1041
1042        nmsrs.nmsrs = 0;
1043        r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs);
1044        TEST_ASSERT(r == -1 && errno == E2BIG, "Unexpected result from KVM_GET_MSR_INDEX_LIST probe, r: %i",
1045                r);
1046
1047        return nmsrs.nmsrs;
1048}
1049
1050static int kvm_get_num_msrs(struct kvm_vm *vm)
1051{
1052        return kvm_get_num_msrs_fd(vm->kvm_fd);
1053}
1054
1055struct kvm_msr_list *kvm_get_msr_index_list(void)
1056{
1057        struct kvm_msr_list *list;
1058        int nmsrs, r, kvm_fd;
1059
1060        kvm_fd = open_kvm_dev_path_or_exit();
1061
1062        nmsrs = kvm_get_num_msrs_fd(kvm_fd);
1063        list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0]));
1064        list->nmsrs = nmsrs;
1065        r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
1066        close(kvm_fd);
1067
1068        TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i",
1069                r);
1070
1071        return list;
1072}
1073
1074struct kvm_x86_state *vcpu_save_state(struct kvm_vm *vm, uint32_t vcpuid)
1075{
1076        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1077        struct kvm_msr_list *list;
1078        struct kvm_x86_state *state;
1079        int nmsrs, r, i;
1080        static int nested_size = -1;
1081
1082        if (nested_size == -1) {
1083                nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE);
1084                TEST_ASSERT(nested_size <= sizeof(state->nested_),
1085                            "Nested state size too big, %i > %zi",
1086                            nested_size, sizeof(state->nested_));
1087        }
1088
1089        /*
1090         * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees
1091         * guest state is consistent only after userspace re-enters the
1092         * kernel with KVM_RUN.  Complete IO prior to migrating state
1093         * to a new VM.
1094         */
1095        vcpu_run_complete_io(vm, vcpuid);
1096
1097        nmsrs = kvm_get_num_msrs(vm);
1098        list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0]));
1099        list->nmsrs = nmsrs;
1100        r = ioctl(vm->kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
1101        TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i",
1102                r);
1103
1104        state = malloc(sizeof(*state) + nmsrs * sizeof(state->msrs.entries[0]));
1105        r = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, &state->events);
1106        TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_VCPU_EVENTS, r: %i",
1107                r);
1108
1109        r = ioctl(vcpu->fd, KVM_GET_MP_STATE, &state->mp_state);
1110        TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MP_STATE, r: %i",
1111                r);
1112
1113        r = ioctl(vcpu->fd, KVM_GET_REGS, &state->regs);
1114        TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_REGS, r: %i",
1115                r);
1116
1117        r = ioctl(vcpu->fd, KVM_GET_XSAVE, &state->xsave);
1118        TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XSAVE, r: %i",
1119                r);
1120
1121        if (kvm_check_cap(KVM_CAP_XCRS)) {
1122                r = ioctl(vcpu->fd, KVM_GET_XCRS, &state->xcrs);
1123                TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XCRS, r: %i",
1124                            r);
1125        }
1126
1127        r = ioctl(vcpu->fd, KVM_GET_SREGS, &state->sregs);
1128        TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_SREGS, r: %i",
1129                r);
1130
1131        if (nested_size) {
1132                state->nested.size = sizeof(state->nested_);
1133                r = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, &state->nested);
1134                TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_NESTED_STATE, r: %i",
1135                        r);
1136                TEST_ASSERT(state->nested.size <= nested_size,
1137                        "Nested state size too big, %i (KVM_CHECK_CAP gave %i)",
1138                        state->nested.size, nested_size);
1139        } else
1140                state->nested.size = 0;
1141
1142        state->msrs.nmsrs = nmsrs;
1143        for (i = 0; i < nmsrs; i++)
1144                state->msrs.entries[i].index = list->indices[i];
1145        r = ioctl(vcpu->fd, KVM_GET_MSRS, &state->msrs);
1146        TEST_ASSERT(r == nmsrs, "Unexpected result from KVM_GET_MSRS, r: %i (failed MSR was 0x%x)",
1147                r, r == nmsrs ? -1 : list->indices[r]);
1148
1149        r = ioctl(vcpu->fd, KVM_GET_DEBUGREGS, &state->debugregs);
1150        TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_DEBUGREGS, r: %i",
1151                r);
1152
1153        free(list);
1154        return state;
1155}
1156
1157void vcpu_load_state(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_x86_state *state)
1158{
1159        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1160        int r;
1161
1162        r = ioctl(vcpu->fd, KVM_SET_XSAVE, &state->xsave);
1163        TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XSAVE, r: %i",
1164                r);
1165
1166        if (kvm_check_cap(KVM_CAP_XCRS)) {
1167                r = ioctl(vcpu->fd, KVM_SET_XCRS, &state->xcrs);
1168                TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XCRS, r: %i",
1169                            r);
1170        }
1171
1172        r = ioctl(vcpu->fd, KVM_SET_SREGS, &state->sregs);
1173        TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_SREGS, r: %i",
1174                r);
1175
1176        r = ioctl(vcpu->fd, KVM_SET_MSRS, &state->msrs);
1177        TEST_ASSERT(r == state->msrs.nmsrs, "Unexpected result from KVM_SET_MSRS, r: %i (failed at %x)",
1178                r, r == state->msrs.nmsrs ? -1 : state->msrs.entries[r].index);
1179
1180        r = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, &state->events);
1181        TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_VCPU_EVENTS, r: %i",
1182                r);
1183
1184        r = ioctl(vcpu->fd, KVM_SET_MP_STATE, &state->mp_state);
1185        TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_MP_STATE, r: %i",
1186                r);
1187
1188        r = ioctl(vcpu->fd, KVM_SET_DEBUGREGS, &state->debugregs);
1189        TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_DEBUGREGS, r: %i",
1190                r);
1191
1192        r = ioctl(vcpu->fd, KVM_SET_REGS, &state->regs);
1193        TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_REGS, r: %i",
1194                r);
1195
1196        if (state->nested.size) {
1197                r = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, &state->nested);
1198                TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_NESTED_STATE, r: %i",
1199                        r);
1200        }
1201}
1202
1203bool is_intel_cpu(void)
1204{
1205        int eax, ebx, ecx, edx;
1206        const uint32_t *chunk;
1207        const int leaf = 0;
1208
1209        __asm__ __volatile__(
1210                "cpuid"
1211                : /* output */ "=a"(eax), "=b"(ebx),
1212                  "=c"(ecx), "=d"(edx)
1213                : /* input */ "0"(leaf), "2"(0));
1214
1215        chunk = (const uint32_t *)("GenuineIntel");
1216        return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
1217}
1218
1219uint32_t kvm_get_cpuid_max_basic(void)
1220{
1221        return kvm_get_supported_cpuid_entry(0)->eax;
1222}
1223
1224uint32_t kvm_get_cpuid_max_extended(void)
1225{
1226        return kvm_get_supported_cpuid_entry(0x80000000)->eax;
1227}
1228
1229void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits)
1230{
1231        struct kvm_cpuid_entry2 *entry;
1232        bool pae;
1233
1234        /* SDM 4.1.4 */
1235        if (kvm_get_cpuid_max_extended() < 0x80000008) {
1236                pae = kvm_get_supported_cpuid_entry(1)->edx & (1 << 6);
1237                *pa_bits = pae ? 36 : 32;
1238                *va_bits = 32;
1239        } else {
1240                entry = kvm_get_supported_cpuid_entry(0x80000008);
1241                *pa_bits = entry->eax & 0xff;
1242                *va_bits = (entry->eax >> 8) & 0xff;
1243        }
1244}
1245
1246struct idt_entry {
1247        uint16_t offset0;
1248        uint16_t selector;
1249        uint16_t ist : 3;
1250        uint16_t : 5;
1251        uint16_t type : 4;
1252        uint16_t : 1;
1253        uint16_t dpl : 2;
1254        uint16_t p : 1;
1255        uint16_t offset1;
1256        uint32_t offset2; uint32_t reserved;
1257};
1258
1259static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr,
1260                          int dpl, unsigned short selector)
1261{
1262        struct idt_entry *base =
1263                (struct idt_entry *)addr_gva2hva(vm, vm->idt);
1264        struct idt_entry *e = &base[vector];
1265
1266        memset(e, 0, sizeof(*e));
1267        e->offset0 = addr;
1268        e->selector = selector;
1269        e->ist = 0;
1270        e->type = 14;
1271        e->dpl = dpl;
1272        e->p = 1;
1273        e->offset1 = addr >> 16;
1274        e->offset2 = addr >> 32;
1275}
1276
1277void kvm_exit_unexpected_vector(uint32_t value)
1278{
1279        ucall(UCALL_UNHANDLED, 1, value);
1280}
1281
1282void route_exception(struct ex_regs *regs)
1283{
1284        typedef void(*handler)(struct ex_regs *);
1285        handler *handlers = (handler *)exception_handlers;
1286
1287        if (handlers && handlers[regs->vector]) {
1288                handlers[regs->vector](regs);
1289                return;
1290        }
1291
1292        kvm_exit_unexpected_vector(regs->vector);
1293}
1294
1295void vm_init_descriptor_tables(struct kvm_vm *vm)
1296{
1297        extern void *idt_handlers;
1298        int i;
1299
1300        vm->idt = vm_vaddr_alloc_page(vm);
1301        vm->handlers = vm_vaddr_alloc_page(vm);
1302        /* Handlers have the same address in both address spaces.*/
1303        for (i = 0; i < NUM_INTERRUPTS; i++)
1304                set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0,
1305                        DEFAULT_CODE_SELECTOR);
1306}
1307
1308void vcpu_init_descriptor_tables(struct kvm_vm *vm, uint32_t vcpuid)
1309{
1310        struct kvm_sregs sregs;
1311
1312        vcpu_sregs_get(vm, vcpuid, &sregs);
1313        sregs.idt.base = vm->idt;
1314        sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1;
1315        sregs.gdt.base = vm->gdt;
1316        sregs.gdt.limit = getpagesize() - 1;
1317        kvm_seg_set_kernel_data_64bit(NULL, DEFAULT_DATA_SELECTOR, &sregs.gs);
1318        vcpu_sregs_set(vm, vcpuid, &sregs);
1319        *(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
1320}
1321
1322void vm_install_exception_handler(struct kvm_vm *vm, int vector,
1323                               void (*handler)(struct ex_regs *))
1324{
1325        vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers);
1326
1327        handlers[vector] = (vm_vaddr_t)handler;
1328}
1329
1330void assert_on_unhandled_exception(struct kvm_vm *vm, uint32_t vcpuid)
1331{
1332        struct ucall uc;
1333
1334        if (get_ucall(vm, vcpuid, &uc) == UCALL_UNHANDLED) {
1335                uint64_t vector = uc.args[0];
1336
1337                TEST_FAIL("Unexpected vectored event in guest (vector:0x%lx)",
1338                          vector);
1339        }
1340}
1341
1342bool set_cpuid(struct kvm_cpuid2 *cpuid,
1343               struct kvm_cpuid_entry2 *ent)
1344{
1345        int i;
1346
1347        for (i = 0; i < cpuid->nent; i++) {
1348                struct kvm_cpuid_entry2 *cur = &cpuid->entries[i];
1349
1350                if (cur->function != ent->function || cur->index != ent->index)
1351                        continue;
1352
1353                memcpy(cur, ent, sizeof(struct kvm_cpuid_entry2));
1354                return true;
1355        }
1356
1357        return false;
1358}
1359
1360uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1361                       uint64_t a3)
1362{
1363        uint64_t r;
1364
1365        asm volatile("vmcall"
1366                     : "=a"(r)
1367                     : "b"(a0), "c"(a1), "d"(a2), "S"(a3));
1368        return r;
1369}
1370
1371struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void)
1372{
1373        static struct kvm_cpuid2 *cpuid;
1374        int ret;
1375        int kvm_fd;
1376
1377        if (cpuid)
1378                return cpuid;
1379
1380        cpuid = allocate_kvm_cpuid2();
1381        kvm_fd = open_kvm_dev_path_or_exit();
1382
1383        ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1384        TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_HV_CPUID failed %d %d\n",
1385                    ret, errno);
1386
1387        close(kvm_fd);
1388        return cpuid;
1389}
1390
1391void vcpu_set_hv_cpuid(struct kvm_vm *vm, uint32_t vcpuid)
1392{
1393        static struct kvm_cpuid2 *cpuid_full;
1394        struct kvm_cpuid2 *cpuid_sys, *cpuid_hv;
1395        int i, nent = 0;
1396
1397        if (!cpuid_full) {
1398                cpuid_sys = kvm_get_supported_cpuid();
1399                cpuid_hv = kvm_get_supported_hv_cpuid();
1400
1401                cpuid_full = malloc(sizeof(*cpuid_full) +
1402                                    (cpuid_sys->nent + cpuid_hv->nent) *
1403                                    sizeof(struct kvm_cpuid_entry2));
1404                if (!cpuid_full) {
1405                        perror("malloc");
1406                        abort();
1407                }
1408
1409                /* Need to skip KVM CPUID leaves 0x400000xx */
1410                for (i = 0; i < cpuid_sys->nent; i++) {
1411                        if (cpuid_sys->entries[i].function >= 0x40000000 &&
1412                            cpuid_sys->entries[i].function < 0x40000100)
1413                                continue;
1414                        cpuid_full->entries[nent] = cpuid_sys->entries[i];
1415                        nent++;
1416                }
1417
1418                memcpy(&cpuid_full->entries[nent], cpuid_hv->entries,
1419                       cpuid_hv->nent * sizeof(struct kvm_cpuid_entry2));
1420                cpuid_full->nent = nent + cpuid_hv->nent;
1421        }
1422
1423        vcpu_set_cpuid(vm, vcpuid, cpuid_full);
1424}
1425
1426struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vm *vm, uint32_t vcpuid)
1427{
1428        static struct kvm_cpuid2 *cpuid;
1429
1430        cpuid = allocate_kvm_cpuid2();
1431
1432        vcpu_ioctl(vm, vcpuid, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1433
1434        return cpuid;
1435}
1436