linux/tools/testing/selftests/powerpc/mm/tlbie_test.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2
   3/*
   4 * Copyright 2019, Nick Piggin, Gautham R. Shenoy, Aneesh Kumar K.V, IBM Corp.
   5 */
   6
   7/*
   8 *
   9 * Test tlbie/mtpidr race. We have 4 threads doing flush/load/compare/store
  10 * sequence in a loop. The same threads also rung a context switch task
  11 * that does sched_yield() in loop.
  12 *
  13 * The snapshot thread mark the mmap area PROT_READ in between, make a copy
  14 * and copy it back to the original area. This helps us to detect if any
  15 * store continued to happen after we marked the memory PROT_READ.
  16 */
  17
  18#define _GNU_SOURCE
  19#include <stdio.h>
  20#include <sys/mman.h>
  21#include <sys/types.h>
  22#include <sys/wait.h>
  23#include <sys/ipc.h>
  24#include <sys/shm.h>
  25#include <sys/stat.h>
  26#include <sys/time.h>
  27#include <linux/futex.h>
  28#include <unistd.h>
  29#include <asm/unistd.h>
  30#include <string.h>
  31#include <stdlib.h>
  32#include <fcntl.h>
  33#include <sched.h>
  34#include <time.h>
  35#include <stdarg.h>
  36#include <pthread.h>
  37#include <signal.h>
  38#include <sys/prctl.h>
  39
  40static inline void dcbf(volatile unsigned int *addr)
  41{
  42        __asm__ __volatile__ ("dcbf %y0; sync" : : "Z"(*(unsigned char *)addr) : "memory");
  43}
  44
  45static void err_msg(char *msg)
  46{
  47
  48        time_t now;
  49        time(&now);
  50        printf("=================================\n");
  51        printf("    Error: %s\n", msg);
  52        printf("    %s", ctime(&now));
  53        printf("=================================\n");
  54        exit(1);
  55}
  56
  57static char *map1;
  58static char *map2;
  59static pid_t rim_process_pid;
  60
  61/*
  62 * A "rim-sequence" is defined to be the sequence of the following
  63 * operations performed on a memory word:
  64 *      1) FLUSH the contents of that word.
  65 *      2) LOAD the contents of that word.
  66 *      3) COMPARE the contents of that word with the content that was
  67 *                 previously stored at that word
  68 *      4) STORE new content into that word.
  69 *
  70 * The threads in this test that perform the rim-sequence are termed
  71 * as rim_threads.
  72 */
  73
  74/*
  75 * A "corruption" is defined to be the failed COMPARE operation in a
  76 * rim-sequence.
  77 *
  78 * A rim_thread that detects a corruption informs about it to all the
  79 * other rim_threads, and the mem_snapshot thread.
  80 */
  81static volatile unsigned int corruption_found;
  82
  83/*
  84 * This defines the maximum number of rim_threads in this test.
  85 *
  86 * The THREAD_ID_BITS denote the number of bits required
  87 * to represent the thread_ids [0..MAX_THREADS - 1].
  88 * We are being a bit paranoid here and set it to 8 bits,
  89 * though 6 bits suffice.
  90 *
  91 */
  92#define MAX_THREADS             64
  93#define THREAD_ID_BITS          8
  94#define THREAD_ID_MASK          ((1 << THREAD_ID_BITS) - 1)
  95static unsigned int rim_thread_ids[MAX_THREADS];
  96static pthread_t rim_threads[MAX_THREADS];
  97
  98
  99/*
 100 * Each rim_thread works on an exclusive "chunk" of size
 101 * RIM_CHUNK_SIZE.
 102 *
 103 * The ith rim_thread works on the ith chunk.
 104 *
 105 * The ith chunk begins at
 106 * map1 + (i * RIM_CHUNK_SIZE)
 107 */
 108#define RIM_CHUNK_SIZE          1024
 109#define BITS_PER_BYTE           8
 110#define WORD_SIZE               (sizeof(unsigned int))
 111#define WORD_BITS               (WORD_SIZE * BITS_PER_BYTE)
 112#define WORDS_PER_CHUNK         (RIM_CHUNK_SIZE/WORD_SIZE)
 113
 114static inline char *compute_chunk_start_addr(unsigned int thread_id)
 115{
 116        char *chunk_start;
 117
 118        chunk_start = (char *)((unsigned long)map1 +
 119                               (thread_id * RIM_CHUNK_SIZE));
 120
 121        return chunk_start;
 122}
 123
 124/*
 125 * The "word-offset" of a word-aligned address inside a chunk, is
 126 * defined to be the number of words that precede the address in that
 127 * chunk.
 128 *
 129 * WORD_OFFSET_BITS denote the number of bits required to represent
 130 * the word-offsets of all the word-aligned addresses of a chunk.
 131 */
 132#define WORD_OFFSET_BITS        (__builtin_ctz(WORDS_PER_CHUNK))
 133#define WORD_OFFSET_MASK        ((1 << WORD_OFFSET_BITS) - 1)
 134
 135static inline unsigned int compute_word_offset(char *start, unsigned int *addr)
 136{
 137        unsigned int delta_bytes, ret;
 138        delta_bytes = (unsigned long)addr - (unsigned long)start;
 139
 140        ret = delta_bytes/WORD_SIZE;
 141
 142        return ret;
 143}
 144
 145/*
 146 * A "sweep" is defined to be the sequential execution of the
 147 * rim-sequence by a rim_thread on its chunk one word at a time,
 148 * starting from the first word of its chunk and ending with the last
 149 * word of its chunk.
 150 *
 151 * Each sweep of a rim_thread is uniquely identified by a sweep_id.
 152 * SWEEP_ID_BITS denote the number of bits required to represent
 153 * the sweep_ids of rim_threads.
 154 *
 155 * As to why SWEEP_ID_BITS are computed as a function of THREAD_ID_BITS,
 156 * WORD_OFFSET_BITS, and WORD_BITS, see the "store-pattern" below.
 157 */
 158#define SWEEP_ID_BITS           (WORD_BITS - (THREAD_ID_BITS + WORD_OFFSET_BITS))
 159#define SWEEP_ID_MASK           ((1 << SWEEP_ID_BITS) - 1)
 160
 161/*
 162 * A "store-pattern" is the word-pattern that is stored into a word
 163 * location in the 4)STORE step of the rim-sequence.
 164 *
 165 * In the store-pattern, we shall encode:
 166 *
 167 *      - The thread-id of the rim_thread performing the store
 168 *        (The most significant THREAD_ID_BITS)
 169 *
 170 *      - The word-offset of the address into which the store is being
 171 *        performed (The next WORD_OFFSET_BITS)
 172 *
 173 *      - The sweep_id of the current sweep in which the store is
 174 *        being performed. (The lower SWEEP_ID_BITS)
 175 *
 176 * Store Pattern: 32 bits
 177 * |------------------|--------------------|---------------------------------|
 178 * |    Thread id     |  Word offset       |         sweep_id                |
 179 * |------------------|--------------------|---------------------------------|
 180 *    THREAD_ID_BITS     WORD_OFFSET_BITS          SWEEP_ID_BITS
 181 *
 182 * In the store pattern, the (Thread-id + Word-offset) uniquely identify the
 183 * address to which the store is being performed i.e,
 184 *    address == map1 +
 185 *              (Thread-id * RIM_CHUNK_SIZE) + (Word-offset * WORD_SIZE)
 186 *
 187 * And the sweep_id in the store pattern identifies the time when the
 188 * store was performed by the rim_thread.
 189 *
 190 * We shall use this property in the 3)COMPARE step of the
 191 * rim-sequence.
 192 */
 193#define SWEEP_ID_SHIFT  0
 194#define WORD_OFFSET_SHIFT       (SWEEP_ID_BITS)
 195#define THREAD_ID_SHIFT         (WORD_OFFSET_BITS + SWEEP_ID_BITS)
 196
 197/*
 198 * Compute the store pattern for a given thread with id @tid, at
 199 * location @addr in the sweep identified by @sweep_id
 200 */
 201static inline unsigned int compute_store_pattern(unsigned int tid,
 202                                                 unsigned int *addr,
 203                                                 unsigned int sweep_id)
 204{
 205        unsigned int ret = 0;
 206        char *start = compute_chunk_start_addr(tid);
 207        unsigned int word_offset = compute_word_offset(start, addr);
 208
 209        ret += (tid & THREAD_ID_MASK) << THREAD_ID_SHIFT;
 210        ret += (word_offset & WORD_OFFSET_MASK) << WORD_OFFSET_SHIFT;
 211        ret += (sweep_id & SWEEP_ID_MASK) << SWEEP_ID_SHIFT;
 212        return ret;
 213}
 214
 215/* Extract the thread-id from the given store-pattern */
 216static inline unsigned int extract_tid(unsigned int pattern)
 217{
 218        unsigned int ret;
 219
 220        ret = (pattern >> THREAD_ID_SHIFT) & THREAD_ID_MASK;
 221        return ret;
 222}
 223
 224/* Extract the word-offset from the given store-pattern */
 225static inline unsigned int extract_word_offset(unsigned int pattern)
 226{
 227        unsigned int ret;
 228
 229        ret = (pattern >> WORD_OFFSET_SHIFT) & WORD_OFFSET_MASK;
 230
 231        return ret;
 232}
 233
 234/* Extract the sweep-id from the given store-pattern */
 235static inline unsigned int extract_sweep_id(unsigned int pattern)
 236
 237{
 238        unsigned int ret;
 239
 240        ret = (pattern >> SWEEP_ID_SHIFT) & SWEEP_ID_MASK;
 241
 242        return ret;
 243}
 244
 245/************************************************************
 246 *                                                          *
 247 *          Logging the output of the verification          *
 248 *                                                          *
 249 ************************************************************/
 250#define LOGDIR_NAME_SIZE 100
 251static char logdir[LOGDIR_NAME_SIZE];
 252
 253static FILE *fp[MAX_THREADS];
 254static const char logfilename[] ="Thread-%02d-Chunk";
 255
 256static inline void start_verification_log(unsigned int tid,
 257                                          unsigned int *addr,
 258                                          unsigned int cur_sweep_id,
 259                                          unsigned int prev_sweep_id)
 260{
 261        FILE *f;
 262        char logfile[30];
 263        char path[LOGDIR_NAME_SIZE + 30];
 264        char separator[2] = "/";
 265        char *chunk_start = compute_chunk_start_addr(tid);
 266        unsigned int size = RIM_CHUNK_SIZE;
 267
 268        sprintf(logfile, logfilename, tid);
 269        strcpy(path, logdir);
 270        strcat(path, separator);
 271        strcat(path, logfile);
 272        f = fopen(path, "w");
 273
 274        if (!f) {
 275                err_msg("Unable to create logfile\n");
 276        }
 277
 278        fp[tid] = f;
 279
 280        fprintf(f, "----------------------------------------------------------\n");
 281        fprintf(f, "PID                = %d\n", rim_process_pid);
 282        fprintf(f, "Thread id          = %02d\n", tid);
 283        fprintf(f, "Chunk Start Addr   = 0x%016lx\n", (unsigned long)chunk_start);
 284        fprintf(f, "Chunk Size         = %d\n", size);
 285        fprintf(f, "Next Store Addr    = 0x%016lx\n", (unsigned long)addr);
 286        fprintf(f, "Current sweep-id   = 0x%08x\n", cur_sweep_id);
 287        fprintf(f, "Previous sweep-id  = 0x%08x\n", prev_sweep_id);
 288        fprintf(f, "----------------------------------------------------------\n");
 289}
 290
 291static inline void log_anamoly(unsigned int tid, unsigned int *addr,
 292                               unsigned int expected, unsigned int observed)
 293{
 294        FILE *f = fp[tid];
 295
 296        fprintf(f, "Thread %02d: Addr 0x%lx: Expected 0x%x, Observed 0x%x\n",
 297                tid, (unsigned long)addr, expected, observed);
 298        fprintf(f, "Thread %02d: Expected Thread id   = %02d\n", tid, extract_tid(expected));
 299        fprintf(f, "Thread %02d: Observed Thread id   = %02d\n", tid, extract_tid(observed));
 300        fprintf(f, "Thread %02d: Expected Word offset = %03d\n", tid, extract_word_offset(expected));
 301        fprintf(f, "Thread %02d: Observed Word offset = %03d\n", tid, extract_word_offset(observed));
 302        fprintf(f, "Thread %02d: Expected sweep-id    = 0x%x\n", tid, extract_sweep_id(expected));
 303        fprintf(f, "Thread %02d: Observed sweep-id    = 0x%x\n", tid, extract_sweep_id(observed));
 304        fprintf(f, "----------------------------------------------------------\n");
 305}
 306
 307static inline void end_verification_log(unsigned int tid, unsigned nr_anamolies)
 308{
 309        FILE *f = fp[tid];
 310        char logfile[30];
 311        char path[LOGDIR_NAME_SIZE + 30];
 312        char separator[] = "/";
 313
 314        fclose(f);
 315
 316        if (nr_anamolies == 0) {
 317                remove(path);
 318                return;
 319        }
 320
 321        sprintf(logfile, logfilename, tid);
 322        strcpy(path, logdir);
 323        strcat(path, separator);
 324        strcat(path, logfile);
 325
 326        printf("Thread %02d chunk has %d corrupted words. For details check %s\n",
 327                tid, nr_anamolies, path);
 328}
 329
 330/*
 331 * When a COMPARE step of a rim-sequence fails, the rim_thread informs
 332 * everyone else via the shared_memory pointed to by
 333 * corruption_found variable. On seeing this, every thread verifies the
 334 * content of its chunk as follows.
 335 *
 336 * Suppose a thread identified with @tid was about to store (but not
 337 * yet stored) to @next_store_addr in its current sweep identified
 338 * @cur_sweep_id. Let @prev_sweep_id indicate the previous sweep_id.
 339 *
 340 * This implies that for all the addresses @addr < @next_store_addr,
 341 * Thread @tid has already performed a store as part of its current
 342 * sweep. Hence we expect the content of such @addr to be:
 343 *    |-------------------------------------------------|
 344 *    | tid   | word_offset(addr) |    cur_sweep_id     |
 345 *    |-------------------------------------------------|
 346 *
 347 * Since Thread @tid is yet to perform stores on address
 348 * @next_store_addr and above, we expect the content of such an
 349 * address @addr to be:
 350 *    |-------------------------------------------------|
 351 *    | tid   | word_offset(addr) |    prev_sweep_id    |
 352 *    |-------------------------------------------------|
 353 *
 354 * The verifier function @verify_chunk does this verification and logs
 355 * any anamolies that it finds.
 356 */
 357static void verify_chunk(unsigned int tid, unsigned int *next_store_addr,
 358                  unsigned int cur_sweep_id,
 359                  unsigned int prev_sweep_id)
 360{
 361        unsigned int *iter_ptr;
 362        unsigned int size = RIM_CHUNK_SIZE;
 363        unsigned int expected;
 364        unsigned int observed;
 365        char *chunk_start = compute_chunk_start_addr(tid);
 366
 367        int nr_anamolies = 0;
 368
 369        start_verification_log(tid, next_store_addr,
 370                               cur_sweep_id, prev_sweep_id);
 371
 372        for (iter_ptr = (unsigned int *)chunk_start;
 373             (unsigned long)iter_ptr < (unsigned long)chunk_start + size;
 374             iter_ptr++) {
 375                unsigned int expected_sweep_id;
 376
 377                if (iter_ptr < next_store_addr) {
 378                        expected_sweep_id = cur_sweep_id;
 379                } else {
 380                        expected_sweep_id = prev_sweep_id;
 381                }
 382
 383                expected = compute_store_pattern(tid, iter_ptr, expected_sweep_id);
 384
 385                dcbf((volatile unsigned int*)iter_ptr); //Flush before reading
 386                observed = *iter_ptr;
 387
 388                if (observed != expected) {
 389                        nr_anamolies++;
 390                        log_anamoly(tid, iter_ptr, expected, observed);
 391                }
 392        }
 393
 394        end_verification_log(tid, nr_anamolies);
 395}
 396
 397static void set_pthread_cpu(pthread_t th, int cpu)
 398{
 399        cpu_set_t run_cpu_mask;
 400        struct sched_param param;
 401
 402        CPU_ZERO(&run_cpu_mask);
 403        CPU_SET(cpu, &run_cpu_mask);
 404        pthread_setaffinity_np(th, sizeof(cpu_set_t), &run_cpu_mask);
 405
 406        param.sched_priority = 1;
 407        if (0 && sched_setscheduler(0, SCHED_FIFO, &param) == -1) {
 408                /* haven't reproduced with this setting, it kills random preemption which may be a factor */
 409                fprintf(stderr, "could not set SCHED_FIFO, run as root?\n");
 410        }
 411}
 412
 413static void set_mycpu(int cpu)
 414{
 415        cpu_set_t run_cpu_mask;
 416        struct sched_param param;
 417
 418        CPU_ZERO(&run_cpu_mask);
 419        CPU_SET(cpu, &run_cpu_mask);
 420        sched_setaffinity(0, sizeof(cpu_set_t), &run_cpu_mask);
 421
 422        param.sched_priority = 1;
 423        if (0 && sched_setscheduler(0, SCHED_FIFO, &param) == -1) {
 424                fprintf(stderr, "could not set SCHED_FIFO, run as root?\n");
 425        }
 426}
 427
 428static volatile int segv_wait;
 429
 430static void segv_handler(int signo, siginfo_t *info, void *extra)
 431{
 432        while (segv_wait) {
 433                sched_yield();
 434        }
 435
 436}
 437
 438static void set_segv_handler(void)
 439{
 440        struct sigaction sa;
 441
 442        sa.sa_flags = SA_SIGINFO;
 443        sa.sa_sigaction = segv_handler;
 444
 445        if (sigaction(SIGSEGV, &sa, NULL) == -1) {
 446                perror("sigaction");
 447                exit(EXIT_FAILURE);
 448        }
 449}
 450
 451int timeout = 0;
 452/*
 453 * This function is executed by every rim_thread.
 454 *
 455 * This function performs sweeps over the exclusive chunks of the
 456 * rim_threads executing the rim-sequence one word at a time.
 457 */
 458static void *rim_fn(void *arg)
 459{
 460        unsigned int tid = *((unsigned int *)arg);
 461
 462        int size = RIM_CHUNK_SIZE;
 463        char *chunk_start = compute_chunk_start_addr(tid);
 464
 465        unsigned int prev_sweep_id;
 466        unsigned int cur_sweep_id = 0;
 467
 468        /* word access */
 469        unsigned int pattern = cur_sweep_id;
 470        unsigned int *pattern_ptr = &pattern;
 471        unsigned int *w_ptr, read_data;
 472
 473        set_segv_handler();
 474
 475        /*
 476         * Let us initialize the chunk:
 477         *
 478         * Each word-aligned address addr in the chunk,
 479         * is initialized to :
 480         *    |-------------------------------------------------|
 481         *    | tid   | word_offset(addr) |         0           |
 482         *    |-------------------------------------------------|
 483         */
 484        for (w_ptr = (unsigned int *)chunk_start;
 485             (unsigned long)w_ptr < (unsigned long)(chunk_start) + size;
 486             w_ptr++) {
 487
 488                *pattern_ptr = compute_store_pattern(tid, w_ptr, cur_sweep_id);
 489                *w_ptr = *pattern_ptr;
 490        }
 491
 492        while (!corruption_found && !timeout) {
 493                prev_sweep_id = cur_sweep_id;
 494                cur_sweep_id = cur_sweep_id + 1;
 495
 496                for (w_ptr = (unsigned int *)chunk_start;
 497                     (unsigned long)w_ptr < (unsigned long)(chunk_start) + size;
 498                     w_ptr++)  {
 499                        unsigned int old_pattern;
 500
 501                        /*
 502                         * Compute the pattern that we would have
 503                         * stored at this location in the previous
 504                         * sweep.
 505                         */
 506                        old_pattern = compute_store_pattern(tid, w_ptr, prev_sweep_id);
 507
 508                        /*
 509                         * FLUSH:Ensure that we flush the contents of
 510                         *       the cache before loading
 511                         */
 512                        dcbf((volatile unsigned int*)w_ptr); //Flush
 513
 514                        /* LOAD: Read the value */
 515                        read_data = *w_ptr; //Load
 516
 517                        /*
 518                         * COMPARE: Is it the same as what we had stored
 519                         *          in the previous sweep ? It better be!
 520                         */
 521                        if (read_data != old_pattern) {
 522                                /* No it isn't! Tell everyone */
 523                                corruption_found = 1;
 524                        }
 525
 526                        /*
 527                         * Before performing a store, let us check if
 528                         * any rim_thread has found a corruption.
 529                         */
 530                        if (corruption_found || timeout) {
 531                                /*
 532                                 * Yes. Someone (including us!) has found
 533                                 * a corruption :(
 534                                 *
 535                                 * Let us verify that our chunk is
 536                                 * correct.
 537                                 */
 538                                /* But first, let us allow the dust to settle down! */
 539                                verify_chunk(tid, w_ptr, cur_sweep_id, prev_sweep_id);
 540
 541                                return 0;
 542                        }
 543
 544                        /*
 545                         * Compute the new pattern that we are going
 546                         * to write to this location
 547                         */
 548                        *pattern_ptr = compute_store_pattern(tid, w_ptr, cur_sweep_id);
 549
 550                        /*
 551                         * STORE: Now let us write this pattern into
 552                         *        the location
 553                         */
 554                        *w_ptr = *pattern_ptr;
 555                }
 556        }
 557
 558        return NULL;
 559}
 560
 561
 562static unsigned long start_cpu = 0;
 563static unsigned long nrthreads = 4;
 564
 565static pthread_t mem_snapshot_thread;
 566
 567static void *mem_snapshot_fn(void *arg)
 568{
 569        int page_size = getpagesize();
 570        size_t size = page_size;
 571        void *tmp = malloc(size);
 572
 573        while (!corruption_found && !timeout) {
 574                /* Stop memory migration once corruption is found */
 575                segv_wait = 1;
 576
 577                mprotect(map1, size, PROT_READ);
 578
 579                /*
 580                 * Load from the working alias (map1). Loading from map2
 581                 * also fails.
 582                 */
 583                memcpy(tmp, map1, size);
 584
 585                /*
 586                 * Stores must go via map2 which has write permissions, but
 587                 * the corrupted data tends to be seen in the snapshot buffer,
 588                 * so corruption does not appear to be introduced at the
 589                 * copy-back via map2 alias here.
 590                 */
 591                memcpy(map2, tmp, size);
 592                /*
 593                 * Before releasing other threads, must ensure the copy
 594                 * back to
 595                 */
 596                asm volatile("sync" ::: "memory");
 597                mprotect(map1, size, PROT_READ|PROT_WRITE);
 598                asm volatile("sync" ::: "memory");
 599                segv_wait = 0;
 600
 601                usleep(1); /* This value makes a big difference */
 602        }
 603
 604        return 0;
 605}
 606
 607void alrm_sighandler(int sig)
 608{
 609        timeout = 1;
 610}
 611
 612int main(int argc, char *argv[])
 613{
 614        int c;
 615        int page_size = getpagesize();
 616        time_t now;
 617        int i, dir_error;
 618        pthread_attr_t attr;
 619        key_t shm_key = (key_t) getpid();
 620        int shmid, run_time = 20 * 60;
 621        struct sigaction sa_alrm;
 622
 623        snprintf(logdir, LOGDIR_NAME_SIZE,
 624                 "/tmp/logdir-%u", (unsigned int)getpid());
 625        while ((c = getopt(argc, argv, "r:hn:l:t:")) != -1) {
 626                switch(c) {
 627                case 'r':
 628                        start_cpu = strtoul(optarg, NULL, 10);
 629                        break;
 630                case 'h':
 631                        printf("%s [-r <start_cpu>] [-n <nrthreads>] [-l <logdir>] [-t <timeout>]\n", argv[0]);
 632                        exit(0);
 633                        break;
 634                case 'n':
 635                        nrthreads = strtoul(optarg, NULL, 10);
 636                        break;
 637                case 'l':
 638                        strncpy(logdir, optarg, LOGDIR_NAME_SIZE - 1);
 639                        break;
 640                case 't':
 641                        run_time = strtoul(optarg, NULL, 10);
 642                        break;
 643                default:
 644                        printf("invalid option\n");
 645                        exit(0);
 646                        break;
 647                }
 648        }
 649
 650        if (nrthreads > MAX_THREADS)
 651                nrthreads = MAX_THREADS;
 652
 653        shmid = shmget(shm_key, page_size, IPC_CREAT|0666);
 654        if (shmid < 0) {
 655                err_msg("Failed shmget\n");
 656        }
 657
 658        map1 = shmat(shmid, NULL, 0);
 659        if (map1 == (void *) -1) {
 660                err_msg("Failed shmat");
 661        }
 662
 663        map2 = shmat(shmid, NULL, 0);
 664        if (map2 == (void *) -1) {
 665                err_msg("Failed shmat");
 666        }
 667
 668        dir_error = mkdir(logdir, 0755);
 669
 670        if (dir_error) {
 671                err_msg("Failed mkdir");
 672        }
 673
 674        printf("start_cpu list:%lu\n", start_cpu);
 675        printf("number of worker threads:%lu + 1 snapshot thread\n", nrthreads);
 676        printf("Allocated address:0x%016lx + secondary map:0x%016lx\n", (unsigned long)map1, (unsigned long)map2);
 677        printf("logdir at : %s\n", logdir);
 678        printf("Timeout: %d seconds\n", run_time);
 679
 680        time(&now);
 681        printf("=================================\n");
 682        printf("     Starting Test\n");
 683        printf("     %s", ctime(&now));
 684        printf("=================================\n");
 685
 686        for (i = 0; i < nrthreads; i++) {
 687                if (1 && !fork()) {
 688                        prctl(PR_SET_PDEATHSIG, SIGKILL);
 689                        set_mycpu(start_cpu + i);
 690                        for (;;)
 691                                sched_yield();
 692                        exit(0);
 693                }
 694        }
 695
 696
 697        sa_alrm.sa_handler = &alrm_sighandler;
 698        sigemptyset(&sa_alrm.sa_mask);
 699        sa_alrm.sa_flags = 0;
 700
 701        if (sigaction(SIGALRM, &sa_alrm, 0) == -1) {
 702                err_msg("Failed signal handler registration\n");
 703        }
 704
 705        alarm(run_time);
 706
 707        pthread_attr_init(&attr);
 708        for (i = 0; i < nrthreads; i++) {
 709                rim_thread_ids[i] = i;
 710                pthread_create(&rim_threads[i], &attr, rim_fn, &rim_thread_ids[i]);
 711                set_pthread_cpu(rim_threads[i], start_cpu + i);
 712        }
 713
 714        pthread_create(&mem_snapshot_thread, &attr, mem_snapshot_fn, map1);
 715        set_pthread_cpu(mem_snapshot_thread, start_cpu + i);
 716
 717
 718        pthread_join(mem_snapshot_thread, NULL);
 719        for (i = 0; i < nrthreads; i++) {
 720                pthread_join(rim_threads[i], NULL);
 721        }
 722
 723        if (!timeout) {
 724                time(&now);
 725                printf("=================================\n");
 726                printf("      Data Corruption Detected\n");
 727                printf("      %s", ctime(&now));
 728                printf("      See logfiles in %s\n", logdir);
 729                printf("=================================\n");
 730                return 1;
 731        }
 732        return 0;
 733}
 734