linux/tools/testing/selftests/vm/protection_keys.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Tests Memory Protection Keys (see Documentation/core-api/protection-keys.rst)
   4 *
   5 * There are examples in here of:
   6 *  * how to set protection keys on memory
   7 *  * how to set/clear bits in pkey registers (the rights register)
   8 *  * how to handle SEGV_PKUERR signals and extract pkey-relevant
   9 *    information from the siginfo
  10 *
  11 * Things to add:
  12 *      make sure KSM and KSM COW breaking works
  13 *      prefault pages in at malloc, or not
  14 *      protect MPX bounds tables with protection keys?
  15 *      make sure VMA splitting/merging is working correctly
  16 *      OOMs can destroy mm->mmap (see exit_mmap()), so make sure it is immune to pkeys
  17 *      look for pkey "leaks" where it is still set on a VMA but "freed" back to the kernel
  18 *      do a plain mprotect() to a mprotect_pkey() area and make sure the pkey sticks
  19 *
  20 * Compile like this:
  21 *      gcc      -o protection_keys    -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm
  22 *      gcc -m32 -o protection_keys_32 -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm
  23 */
  24#define _GNU_SOURCE
  25#define __SANE_USERSPACE_TYPES__
  26#include <errno.h>
  27#include <linux/futex.h>
  28#include <time.h>
  29#include <sys/time.h>
  30#include <sys/syscall.h>
  31#include <string.h>
  32#include <stdio.h>
  33#include <stdint.h>
  34#include <stdbool.h>
  35#include <signal.h>
  36#include <assert.h>
  37#include <stdlib.h>
  38#include <ucontext.h>
  39#include <sys/mman.h>
  40#include <sys/types.h>
  41#include <sys/wait.h>
  42#include <sys/stat.h>
  43#include <fcntl.h>
  44#include <unistd.h>
  45#include <sys/ptrace.h>
  46#include <setjmp.h>
  47
  48#include "pkey-helpers.h"
  49
  50int iteration_nr = 1;
  51int test_nr;
  52
  53u64 shadow_pkey_reg;
  54int dprint_in_signal;
  55char dprint_in_signal_buffer[DPRINT_IN_SIGNAL_BUF_SIZE];
  56
  57void cat_into_file(char *str, char *file)
  58{
  59        int fd = open(file, O_RDWR);
  60        int ret;
  61
  62        dprintf2("%s(): writing '%s' to '%s'\n", __func__, str, file);
  63        /*
  64         * these need to be raw because they are called under
  65         * pkey_assert()
  66         */
  67        if (fd < 0) {
  68                fprintf(stderr, "error opening '%s'\n", str);
  69                perror("error: ");
  70                exit(__LINE__);
  71        }
  72
  73        ret = write(fd, str, strlen(str));
  74        if (ret != strlen(str)) {
  75                perror("write to file failed");
  76                fprintf(stderr, "filename: '%s' str: '%s'\n", file, str);
  77                exit(__LINE__);
  78        }
  79        close(fd);
  80}
  81
  82#if CONTROL_TRACING > 0
  83static int warned_tracing;
  84int tracing_root_ok(void)
  85{
  86        if (geteuid() != 0) {
  87                if (!warned_tracing)
  88                        fprintf(stderr, "WARNING: not run as root, "
  89                                        "can not do tracing control\n");
  90                warned_tracing = 1;
  91                return 0;
  92        }
  93        return 1;
  94}
  95#endif
  96
  97void tracing_on(void)
  98{
  99#if CONTROL_TRACING > 0
 100#define TRACEDIR "/sys/kernel/debug/tracing"
 101        char pidstr[32];
 102
 103        if (!tracing_root_ok())
 104                return;
 105
 106        sprintf(pidstr, "%d", getpid());
 107        cat_into_file("0", TRACEDIR "/tracing_on");
 108        cat_into_file("\n", TRACEDIR "/trace");
 109        if (1) {
 110                cat_into_file("function_graph", TRACEDIR "/current_tracer");
 111                cat_into_file("1", TRACEDIR "/options/funcgraph-proc");
 112        } else {
 113                cat_into_file("nop", TRACEDIR "/current_tracer");
 114        }
 115        cat_into_file(pidstr, TRACEDIR "/set_ftrace_pid");
 116        cat_into_file("1", TRACEDIR "/tracing_on");
 117        dprintf1("enabled tracing\n");
 118#endif
 119}
 120
 121void tracing_off(void)
 122{
 123#if CONTROL_TRACING > 0
 124        if (!tracing_root_ok())
 125                return;
 126        cat_into_file("0", "/sys/kernel/debug/tracing/tracing_on");
 127#endif
 128}
 129
 130void abort_hooks(void)
 131{
 132        fprintf(stderr, "running %s()...\n", __func__);
 133        tracing_off();
 134#ifdef SLEEP_ON_ABORT
 135        sleep(SLEEP_ON_ABORT);
 136#endif
 137}
 138
 139/*
 140 * This attempts to have roughly a page of instructions followed by a few
 141 * instructions that do a write, and another page of instructions.  That
 142 * way, we are pretty sure that the write is in the second page of
 143 * instructions and has at least a page of padding behind it.
 144 *
 145 * *That* lets us be sure to madvise() away the write instruction, which
 146 * will then fault, which makes sure that the fault code handles
 147 * execute-only memory properly.
 148 */
 149#ifdef __powerpc64__
 150/* This way, both 4K and 64K alignment are maintained */
 151__attribute__((__aligned__(65536)))
 152#else
 153__attribute__((__aligned__(PAGE_SIZE)))
 154#endif
 155void lots_o_noops_around_write(int *write_to_me)
 156{
 157        dprintf3("running %s()\n", __func__);
 158        __page_o_noops();
 159        /* Assume this happens in the second page of instructions: */
 160        *write_to_me = __LINE__;
 161        /* pad out by another page: */
 162        __page_o_noops();
 163        dprintf3("%s() done\n", __func__);
 164}
 165
 166void dump_mem(void *dumpme, int len_bytes)
 167{
 168        char *c = (void *)dumpme;
 169        int i;
 170
 171        for (i = 0; i < len_bytes; i += sizeof(u64)) {
 172                u64 *ptr = (u64 *)(c + i);
 173                dprintf1("dump[%03d][@%p]: %016llx\n", i, ptr, *ptr);
 174        }
 175}
 176
 177static u32 hw_pkey_get(int pkey, unsigned long flags)
 178{
 179        u64 pkey_reg = __read_pkey_reg();
 180
 181        dprintf1("%s(pkey=%d, flags=%lx) = %x / %d\n",
 182                        __func__, pkey, flags, 0, 0);
 183        dprintf2("%s() raw pkey_reg: %016llx\n", __func__, pkey_reg);
 184
 185        return (u32) get_pkey_bits(pkey_reg, pkey);
 186}
 187
 188static int hw_pkey_set(int pkey, unsigned long rights, unsigned long flags)
 189{
 190        u32 mask = (PKEY_DISABLE_ACCESS|PKEY_DISABLE_WRITE);
 191        u64 old_pkey_reg = __read_pkey_reg();
 192        u64 new_pkey_reg;
 193
 194        /* make sure that 'rights' only contains the bits we expect: */
 195        assert(!(rights & ~mask));
 196
 197        /* modify bits accordingly in old pkey_reg and assign it */
 198        new_pkey_reg = set_pkey_bits(old_pkey_reg, pkey, rights);
 199
 200        __write_pkey_reg(new_pkey_reg);
 201
 202        dprintf3("%s(pkey=%d, rights=%lx, flags=%lx) = %x"
 203                " pkey_reg now: %016llx old_pkey_reg: %016llx\n",
 204                __func__, pkey, rights, flags, 0, __read_pkey_reg(),
 205                old_pkey_reg);
 206        return 0;
 207}
 208
 209void pkey_disable_set(int pkey, int flags)
 210{
 211        unsigned long syscall_flags = 0;
 212        int ret;
 213        int pkey_rights;
 214        u64 orig_pkey_reg = read_pkey_reg();
 215
 216        dprintf1("START->%s(%d, 0x%x)\n", __func__,
 217                pkey, flags);
 218        pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
 219
 220        pkey_rights = hw_pkey_get(pkey, syscall_flags);
 221
 222        dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
 223                        pkey, pkey, pkey_rights);
 224
 225        pkey_assert(pkey_rights >= 0);
 226
 227        pkey_rights |= flags;
 228
 229        ret = hw_pkey_set(pkey, pkey_rights, syscall_flags);
 230        assert(!ret);
 231        /* pkey_reg and flags have the same format */
 232        shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, pkey, pkey_rights);
 233        dprintf1("%s(%d) shadow: 0x%016llx\n",
 234                __func__, pkey, shadow_pkey_reg);
 235
 236        pkey_assert(ret >= 0);
 237
 238        pkey_rights = hw_pkey_get(pkey, syscall_flags);
 239        dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
 240                        pkey, pkey, pkey_rights);
 241
 242        dprintf1("%s(%d) pkey_reg: 0x%016llx\n",
 243                __func__, pkey, read_pkey_reg());
 244        if (flags)
 245                pkey_assert(read_pkey_reg() >= orig_pkey_reg);
 246        dprintf1("END<---%s(%d, 0x%x)\n", __func__,
 247                pkey, flags);
 248}
 249
 250void pkey_disable_clear(int pkey, int flags)
 251{
 252        unsigned long syscall_flags = 0;
 253        int ret;
 254        int pkey_rights = hw_pkey_get(pkey, syscall_flags);
 255        u64 orig_pkey_reg = read_pkey_reg();
 256
 257        pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
 258
 259        dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
 260                        pkey, pkey, pkey_rights);
 261        pkey_assert(pkey_rights >= 0);
 262
 263        pkey_rights &= ~flags;
 264
 265        ret = hw_pkey_set(pkey, pkey_rights, 0);
 266        shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, pkey, pkey_rights);
 267        pkey_assert(ret >= 0);
 268
 269        pkey_rights = hw_pkey_get(pkey, syscall_flags);
 270        dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
 271                        pkey, pkey, pkey_rights);
 272
 273        dprintf1("%s(%d) pkey_reg: 0x%016llx\n", __func__,
 274                        pkey, read_pkey_reg());
 275        if (flags)
 276                assert(read_pkey_reg() <= orig_pkey_reg);
 277}
 278
 279void pkey_write_allow(int pkey)
 280{
 281        pkey_disable_clear(pkey, PKEY_DISABLE_WRITE);
 282}
 283void pkey_write_deny(int pkey)
 284{
 285        pkey_disable_set(pkey, PKEY_DISABLE_WRITE);
 286}
 287void pkey_access_allow(int pkey)
 288{
 289        pkey_disable_clear(pkey, PKEY_DISABLE_ACCESS);
 290}
 291void pkey_access_deny(int pkey)
 292{
 293        pkey_disable_set(pkey, PKEY_DISABLE_ACCESS);
 294}
 295
 296/* Failed address bound checks: */
 297#ifndef SEGV_BNDERR
 298# define SEGV_BNDERR            3
 299#endif
 300
 301#ifndef SEGV_PKUERR
 302# define SEGV_PKUERR            4
 303#endif
 304
 305static char *si_code_str(int si_code)
 306{
 307        if (si_code == SEGV_MAPERR)
 308                return "SEGV_MAPERR";
 309        if (si_code == SEGV_ACCERR)
 310                return "SEGV_ACCERR";
 311        if (si_code == SEGV_BNDERR)
 312                return "SEGV_BNDERR";
 313        if (si_code == SEGV_PKUERR)
 314                return "SEGV_PKUERR";
 315        return "UNKNOWN";
 316}
 317
 318int pkey_faults;
 319int last_si_pkey = -1;
 320void signal_handler(int signum, siginfo_t *si, void *vucontext)
 321{
 322        ucontext_t *uctxt = vucontext;
 323        int trapno;
 324        unsigned long ip;
 325        char *fpregs;
 326#if defined(__i386__) || defined(__x86_64__) /* arch */
 327        u32 *pkey_reg_ptr;
 328        int pkey_reg_offset;
 329#endif /* arch */
 330        u64 siginfo_pkey;
 331        u32 *si_pkey_ptr;
 332
 333        dprint_in_signal = 1;
 334        dprintf1(">>>>===============SIGSEGV============================\n");
 335        dprintf1("%s()::%d, pkey_reg: 0x%016llx shadow: %016llx\n",
 336                        __func__, __LINE__,
 337                        __read_pkey_reg(), shadow_pkey_reg);
 338
 339        trapno = uctxt->uc_mcontext.gregs[REG_TRAPNO];
 340        ip = uctxt->uc_mcontext.gregs[REG_IP_IDX];
 341        fpregs = (char *) uctxt->uc_mcontext.fpregs;
 342
 343        dprintf2("%s() trapno: %d ip: 0x%016lx info->si_code: %s/%d\n",
 344                        __func__, trapno, ip, si_code_str(si->si_code),
 345                        si->si_code);
 346
 347#if defined(__i386__) || defined(__x86_64__) /* arch */
 348#ifdef __i386__
 349        /*
 350         * 32-bit has some extra padding so that userspace can tell whether
 351         * the XSTATE header is present in addition to the "legacy" FPU
 352         * state.  We just assume that it is here.
 353         */
 354        fpregs += 0x70;
 355#endif /* i386 */
 356        pkey_reg_offset = pkey_reg_xstate_offset();
 357        pkey_reg_ptr = (void *)(&fpregs[pkey_reg_offset]);
 358
 359        /*
 360         * If we got a PKEY fault, we *HAVE* to have at least one bit set in
 361         * here.
 362         */
 363        dprintf1("pkey_reg_xstate_offset: %d\n", pkey_reg_xstate_offset());
 364        if (DEBUG_LEVEL > 4)
 365                dump_mem(pkey_reg_ptr - 128, 256);
 366        pkey_assert(*pkey_reg_ptr);
 367#endif /* arch */
 368
 369        dprintf1("siginfo: %p\n", si);
 370        dprintf1(" fpregs: %p\n", fpregs);
 371
 372        if ((si->si_code == SEGV_MAPERR) ||
 373            (si->si_code == SEGV_ACCERR) ||
 374            (si->si_code == SEGV_BNDERR)) {
 375                printf("non-PK si_code, exiting...\n");
 376                exit(4);
 377        }
 378
 379        si_pkey_ptr = siginfo_get_pkey_ptr(si);
 380        dprintf1("si_pkey_ptr: %p\n", si_pkey_ptr);
 381        dump_mem((u8 *)si_pkey_ptr - 8, 24);
 382        siginfo_pkey = *si_pkey_ptr;
 383        pkey_assert(siginfo_pkey < NR_PKEYS);
 384        last_si_pkey = siginfo_pkey;
 385
 386        /*
 387         * need __read_pkey_reg() version so we do not do shadow_pkey_reg
 388         * checking
 389         */
 390        dprintf1("signal pkey_reg from  pkey_reg: %016llx\n",
 391                        __read_pkey_reg());
 392        dprintf1("pkey from siginfo: %016llx\n", siginfo_pkey);
 393#if defined(__i386__) || defined(__x86_64__) /* arch */
 394        dprintf1("signal pkey_reg from xsave: %08x\n", *pkey_reg_ptr);
 395        *(u64 *)pkey_reg_ptr = 0x00000000;
 396        dprintf1("WARNING: set PKEY_REG=0 to allow faulting instruction to continue\n");
 397#elif defined(__powerpc64__) /* arch */
 398        /* restore access and let the faulting instruction continue */
 399        pkey_access_allow(siginfo_pkey);
 400#endif /* arch */
 401        pkey_faults++;
 402        dprintf1("<<<<==================================================\n");
 403        dprint_in_signal = 0;
 404}
 405
 406int wait_all_children(void)
 407{
 408        int status;
 409        return waitpid(-1, &status, 0);
 410}
 411
 412void sig_chld(int x)
 413{
 414        dprint_in_signal = 1;
 415        dprintf2("[%d] SIGCHLD: %d\n", getpid(), x);
 416        dprint_in_signal = 0;
 417}
 418
 419void setup_sigsegv_handler(void)
 420{
 421        int r, rs;
 422        struct sigaction newact;
 423        struct sigaction oldact;
 424
 425        /* #PF is mapped to sigsegv */
 426        int signum  = SIGSEGV;
 427
 428        newact.sa_handler = 0;
 429        newact.sa_sigaction = signal_handler;
 430
 431        /*sigset_t - signals to block while in the handler */
 432        /* get the old signal mask. */
 433        rs = sigprocmask(SIG_SETMASK, 0, &newact.sa_mask);
 434        pkey_assert(rs == 0);
 435
 436        /* call sa_sigaction, not sa_handler*/
 437        newact.sa_flags = SA_SIGINFO;
 438
 439        newact.sa_restorer = 0;  /* void(*)(), obsolete */
 440        r = sigaction(signum, &newact, &oldact);
 441        r = sigaction(SIGALRM, &newact, &oldact);
 442        pkey_assert(r == 0);
 443}
 444
 445void setup_handlers(void)
 446{
 447        signal(SIGCHLD, &sig_chld);
 448        setup_sigsegv_handler();
 449}
 450
 451pid_t fork_lazy_child(void)
 452{
 453        pid_t forkret;
 454
 455        forkret = fork();
 456        pkey_assert(forkret >= 0);
 457        dprintf3("[%d] fork() ret: %d\n", getpid(), forkret);
 458
 459        if (!forkret) {
 460                /* in the child */
 461                while (1) {
 462                        dprintf1("child sleeping...\n");
 463                        sleep(30);
 464                }
 465        }
 466        return forkret;
 467}
 468
 469int sys_mprotect_pkey(void *ptr, size_t size, unsigned long orig_prot,
 470                unsigned long pkey)
 471{
 472        int sret;
 473
 474        dprintf2("%s(0x%p, %zx, prot=%lx, pkey=%lx)\n", __func__,
 475                        ptr, size, orig_prot, pkey);
 476
 477        errno = 0;
 478        sret = syscall(SYS_mprotect_key, ptr, size, orig_prot, pkey);
 479        if (errno) {
 480                dprintf2("SYS_mprotect_key sret: %d\n", sret);
 481                dprintf2("SYS_mprotect_key prot: 0x%lx\n", orig_prot);
 482                dprintf2("SYS_mprotect_key failed, errno: %d\n", errno);
 483                if (DEBUG_LEVEL >= 2)
 484                        perror("SYS_mprotect_pkey");
 485        }
 486        return sret;
 487}
 488
 489int sys_pkey_alloc(unsigned long flags, unsigned long init_val)
 490{
 491        int ret = syscall(SYS_pkey_alloc, flags, init_val);
 492        dprintf1("%s(flags=%lx, init_val=%lx) syscall ret: %d errno: %d\n",
 493                        __func__, flags, init_val, ret, errno);
 494        return ret;
 495}
 496
 497int alloc_pkey(void)
 498{
 499        int ret;
 500        unsigned long init_val = 0x0;
 501
 502        dprintf1("%s()::%d, pkey_reg: 0x%016llx shadow: %016llx\n",
 503                        __func__, __LINE__, __read_pkey_reg(), shadow_pkey_reg);
 504        ret = sys_pkey_alloc(0, init_val);
 505        /*
 506         * pkey_alloc() sets PKEY register, so we need to reflect it in
 507         * shadow_pkey_reg:
 508         */
 509        dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
 510                        " shadow: 0x%016llx\n",
 511                        __func__, __LINE__, ret, __read_pkey_reg(),
 512                        shadow_pkey_reg);
 513        if (ret > 0) {
 514                /* clear both the bits: */
 515                shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, ret,
 516                                                ~PKEY_MASK);
 517                dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
 518                                " shadow: 0x%016llx\n",
 519                                __func__,
 520                                __LINE__, ret, __read_pkey_reg(),
 521                                shadow_pkey_reg);
 522                /*
 523                 * move the new state in from init_val
 524                 * (remember, we cheated and init_val == pkey_reg format)
 525                 */
 526                shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, ret,
 527                                                init_val);
 528        }
 529        dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
 530                        " shadow: 0x%016llx\n",
 531                        __func__, __LINE__, ret, __read_pkey_reg(),
 532                        shadow_pkey_reg);
 533        dprintf1("%s()::%d errno: %d\n", __func__, __LINE__, errno);
 534        /* for shadow checking: */
 535        read_pkey_reg();
 536        dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
 537                 " shadow: 0x%016llx\n",
 538                __func__, __LINE__, ret, __read_pkey_reg(),
 539                shadow_pkey_reg);
 540        return ret;
 541}
 542
 543int sys_pkey_free(unsigned long pkey)
 544{
 545        int ret = syscall(SYS_pkey_free, pkey);
 546        dprintf1("%s(pkey=%ld) syscall ret: %d\n", __func__, pkey, ret);
 547        return ret;
 548}
 549
 550/*
 551 * I had a bug where pkey bits could be set by mprotect() but
 552 * not cleared.  This ensures we get lots of random bit sets
 553 * and clears on the vma and pte pkey bits.
 554 */
 555int alloc_random_pkey(void)
 556{
 557        int max_nr_pkey_allocs;
 558        int ret;
 559        int i;
 560        int alloced_pkeys[NR_PKEYS];
 561        int nr_alloced = 0;
 562        int random_index;
 563        memset(alloced_pkeys, 0, sizeof(alloced_pkeys));
 564
 565        /* allocate every possible key and make a note of which ones we got */
 566        max_nr_pkey_allocs = NR_PKEYS;
 567        for (i = 0; i < max_nr_pkey_allocs; i++) {
 568                int new_pkey = alloc_pkey();
 569                if (new_pkey < 0)
 570                        break;
 571                alloced_pkeys[nr_alloced++] = new_pkey;
 572        }
 573
 574        pkey_assert(nr_alloced > 0);
 575        /* select a random one out of the allocated ones */
 576        random_index = rand() % nr_alloced;
 577        ret = alloced_pkeys[random_index];
 578        /* now zero it out so we don't free it next */
 579        alloced_pkeys[random_index] = 0;
 580
 581        /* go through the allocated ones that we did not want and free them */
 582        for (i = 0; i < nr_alloced; i++) {
 583                int free_ret;
 584                if (!alloced_pkeys[i])
 585                        continue;
 586                free_ret = sys_pkey_free(alloced_pkeys[i]);
 587                pkey_assert(!free_ret);
 588        }
 589        dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
 590                         " shadow: 0x%016llx\n", __func__,
 591                        __LINE__, ret, __read_pkey_reg(), shadow_pkey_reg);
 592        return ret;
 593}
 594
 595int mprotect_pkey(void *ptr, size_t size, unsigned long orig_prot,
 596                unsigned long pkey)
 597{
 598        int nr_iterations = random() % 100;
 599        int ret;
 600
 601        while (0) {
 602                int rpkey = alloc_random_pkey();
 603                ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey);
 604                dprintf1("sys_mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n",
 605                                ptr, size, orig_prot, pkey, ret);
 606                if (nr_iterations-- < 0)
 607                        break;
 608
 609                dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
 610                        " shadow: 0x%016llx\n",
 611                        __func__, __LINE__, ret, __read_pkey_reg(),
 612                        shadow_pkey_reg);
 613                sys_pkey_free(rpkey);
 614                dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
 615                        " shadow: 0x%016llx\n",
 616                        __func__, __LINE__, ret, __read_pkey_reg(),
 617                        shadow_pkey_reg);
 618        }
 619        pkey_assert(pkey < NR_PKEYS);
 620
 621        ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey);
 622        dprintf1("mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n",
 623                        ptr, size, orig_prot, pkey, ret);
 624        pkey_assert(!ret);
 625        dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
 626                        " shadow: 0x%016llx\n", __func__,
 627                        __LINE__, ret, __read_pkey_reg(), shadow_pkey_reg);
 628        return ret;
 629}
 630
 631struct pkey_malloc_record {
 632        void *ptr;
 633        long size;
 634        int prot;
 635};
 636struct pkey_malloc_record *pkey_malloc_records;
 637struct pkey_malloc_record *pkey_last_malloc_record;
 638long nr_pkey_malloc_records;
 639void record_pkey_malloc(void *ptr, long size, int prot)
 640{
 641        long i;
 642        struct pkey_malloc_record *rec = NULL;
 643
 644        for (i = 0; i < nr_pkey_malloc_records; i++) {
 645                rec = &pkey_malloc_records[i];
 646                /* find a free record */
 647                if (rec)
 648                        break;
 649        }
 650        if (!rec) {
 651                /* every record is full */
 652                size_t old_nr_records = nr_pkey_malloc_records;
 653                size_t new_nr_records = (nr_pkey_malloc_records * 2 + 1);
 654                size_t new_size = new_nr_records * sizeof(struct pkey_malloc_record);
 655                dprintf2("new_nr_records: %zd\n", new_nr_records);
 656                dprintf2("new_size: %zd\n", new_size);
 657                pkey_malloc_records = realloc(pkey_malloc_records, new_size);
 658                pkey_assert(pkey_malloc_records != NULL);
 659                rec = &pkey_malloc_records[nr_pkey_malloc_records];
 660                /*
 661                 * realloc() does not initialize memory, so zero it from
 662                 * the first new record all the way to the end.
 663                 */
 664                for (i = 0; i < new_nr_records - old_nr_records; i++)
 665                        memset(rec + i, 0, sizeof(*rec));
 666        }
 667        dprintf3("filling malloc record[%d/%p]: {%p, %ld}\n",
 668                (int)(rec - pkey_malloc_records), rec, ptr, size);
 669        rec->ptr = ptr;
 670        rec->size = size;
 671        rec->prot = prot;
 672        pkey_last_malloc_record = rec;
 673        nr_pkey_malloc_records++;
 674}
 675
 676void free_pkey_malloc(void *ptr)
 677{
 678        long i;
 679        int ret;
 680        dprintf3("%s(%p)\n", __func__, ptr);
 681        for (i = 0; i < nr_pkey_malloc_records; i++) {
 682                struct pkey_malloc_record *rec = &pkey_malloc_records[i];
 683                dprintf4("looking for ptr %p at record[%ld/%p]: {%p, %ld}\n",
 684                                ptr, i, rec, rec->ptr, rec->size);
 685                if ((ptr <  rec->ptr) ||
 686                    (ptr >= rec->ptr + rec->size))
 687                        continue;
 688
 689                dprintf3("found ptr %p at record[%ld/%p]: {%p, %ld}\n",
 690                                ptr, i, rec, rec->ptr, rec->size);
 691                nr_pkey_malloc_records--;
 692                ret = munmap(rec->ptr, rec->size);
 693                dprintf3("munmap ret: %d\n", ret);
 694                pkey_assert(!ret);
 695                dprintf3("clearing rec->ptr, rec: %p\n", rec);
 696                rec->ptr = NULL;
 697                dprintf3("done clearing rec->ptr, rec: %p\n", rec);
 698                return;
 699        }
 700        pkey_assert(false);
 701}
 702
 703
 704void *malloc_pkey_with_mprotect(long size, int prot, u16 pkey)
 705{
 706        void *ptr;
 707        int ret;
 708
 709        read_pkey_reg();
 710        dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
 711                        size, prot, pkey);
 712        pkey_assert(pkey < NR_PKEYS);
 713        ptr = mmap(NULL, size, prot, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
 714        pkey_assert(ptr != (void *)-1);
 715        ret = mprotect_pkey((void *)ptr, PAGE_SIZE, prot, pkey);
 716        pkey_assert(!ret);
 717        record_pkey_malloc(ptr, size, prot);
 718        read_pkey_reg();
 719
 720        dprintf1("%s() for pkey %d @ %p\n", __func__, pkey, ptr);
 721        return ptr;
 722}
 723
 724void *malloc_pkey_anon_huge(long size, int prot, u16 pkey)
 725{
 726        int ret;
 727        void *ptr;
 728
 729        dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
 730                        size, prot, pkey);
 731        /*
 732         * Guarantee we can fit at least one huge page in the resulting
 733         * allocation by allocating space for 2:
 734         */
 735        size = ALIGN_UP(size, HPAGE_SIZE * 2);
 736        ptr = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
 737        pkey_assert(ptr != (void *)-1);
 738        record_pkey_malloc(ptr, size, prot);
 739        mprotect_pkey(ptr, size, prot, pkey);
 740
 741        dprintf1("unaligned ptr: %p\n", ptr);
 742        ptr = ALIGN_PTR_UP(ptr, HPAGE_SIZE);
 743        dprintf1("  aligned ptr: %p\n", ptr);
 744        ret = madvise(ptr, HPAGE_SIZE, MADV_HUGEPAGE);
 745        dprintf1("MADV_HUGEPAGE ret: %d\n", ret);
 746        ret = madvise(ptr, HPAGE_SIZE, MADV_WILLNEED);
 747        dprintf1("MADV_WILLNEED ret: %d\n", ret);
 748        memset(ptr, 0, HPAGE_SIZE);
 749
 750        dprintf1("mmap()'d thp for pkey %d @ %p\n", pkey, ptr);
 751        return ptr;
 752}
 753
 754int hugetlb_setup_ok;
 755#define SYSFS_FMT_NR_HUGE_PAGES "/sys/kernel/mm/hugepages/hugepages-%ldkB/nr_hugepages"
 756#define GET_NR_HUGE_PAGES 10
 757void setup_hugetlbfs(void)
 758{
 759        int err;
 760        int fd;
 761        char buf[256];
 762        long hpagesz_kb;
 763        long hpagesz_mb;
 764
 765        if (geteuid() != 0) {
 766                fprintf(stderr, "WARNING: not run as root, can not do hugetlb test\n");
 767                return;
 768        }
 769
 770        cat_into_file(__stringify(GET_NR_HUGE_PAGES), "/proc/sys/vm/nr_hugepages");
 771
 772        /*
 773         * Now go make sure that we got the pages and that they
 774         * are PMD-level pages. Someone might have made PUD-level
 775         * pages the default.
 776         */
 777        hpagesz_kb = HPAGE_SIZE / 1024;
 778        hpagesz_mb = hpagesz_kb / 1024;
 779        sprintf(buf, SYSFS_FMT_NR_HUGE_PAGES, hpagesz_kb);
 780        fd = open(buf, O_RDONLY);
 781        if (fd < 0) {
 782                fprintf(stderr, "opening sysfs %ldM hugetlb config: %s\n",
 783                        hpagesz_mb, strerror(errno));
 784                return;
 785        }
 786
 787        /* -1 to guarantee leaving the trailing \0 */
 788        err = read(fd, buf, sizeof(buf)-1);
 789        close(fd);
 790        if (err <= 0) {
 791                fprintf(stderr, "reading sysfs %ldM hugetlb config: %s\n",
 792                        hpagesz_mb, strerror(errno));
 793                return;
 794        }
 795
 796        if (atoi(buf) != GET_NR_HUGE_PAGES) {
 797                fprintf(stderr, "could not confirm %ldM pages, got: '%s' expected %d\n",
 798                        hpagesz_mb, buf, GET_NR_HUGE_PAGES);
 799                return;
 800        }
 801
 802        hugetlb_setup_ok = 1;
 803}
 804
 805void *malloc_pkey_hugetlb(long size, int prot, u16 pkey)
 806{
 807        void *ptr;
 808        int flags = MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB;
 809
 810        if (!hugetlb_setup_ok)
 811                return PTR_ERR_ENOTSUP;
 812
 813        dprintf1("doing %s(%ld, %x, %x)\n", __func__, size, prot, pkey);
 814        size = ALIGN_UP(size, HPAGE_SIZE * 2);
 815        pkey_assert(pkey < NR_PKEYS);
 816        ptr = mmap(NULL, size, PROT_NONE, flags, -1, 0);
 817        pkey_assert(ptr != (void *)-1);
 818        mprotect_pkey(ptr, size, prot, pkey);
 819
 820        record_pkey_malloc(ptr, size, prot);
 821
 822        dprintf1("mmap()'d hugetlbfs for pkey %d @ %p\n", pkey, ptr);
 823        return ptr;
 824}
 825
 826void *malloc_pkey_mmap_dax(long size, int prot, u16 pkey)
 827{
 828        void *ptr;
 829        int fd;
 830
 831        dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
 832                        size, prot, pkey);
 833        pkey_assert(pkey < NR_PKEYS);
 834        fd = open("/dax/foo", O_RDWR);
 835        pkey_assert(fd >= 0);
 836
 837        ptr = mmap(0, size, prot, MAP_SHARED, fd, 0);
 838        pkey_assert(ptr != (void *)-1);
 839
 840        mprotect_pkey(ptr, size, prot, pkey);
 841
 842        record_pkey_malloc(ptr, size, prot);
 843
 844        dprintf1("mmap()'d for pkey %d @ %p\n", pkey, ptr);
 845        close(fd);
 846        return ptr;
 847}
 848
 849void *(*pkey_malloc[])(long size, int prot, u16 pkey) = {
 850
 851        malloc_pkey_with_mprotect,
 852        malloc_pkey_with_mprotect_subpage,
 853        malloc_pkey_anon_huge,
 854        malloc_pkey_hugetlb
 855/* can not do direct with the pkey_mprotect() API:
 856        malloc_pkey_mmap_direct,
 857        malloc_pkey_mmap_dax,
 858*/
 859};
 860
 861void *malloc_pkey(long size, int prot, u16 pkey)
 862{
 863        void *ret;
 864        static int malloc_type;
 865        int nr_malloc_types = ARRAY_SIZE(pkey_malloc);
 866
 867        pkey_assert(pkey < NR_PKEYS);
 868
 869        while (1) {
 870                pkey_assert(malloc_type < nr_malloc_types);
 871
 872                ret = pkey_malloc[malloc_type](size, prot, pkey);
 873                pkey_assert(ret != (void *)-1);
 874
 875                malloc_type++;
 876                if (malloc_type >= nr_malloc_types)
 877                        malloc_type = (random()%nr_malloc_types);
 878
 879                /* try again if the malloc_type we tried is unsupported */
 880                if (ret == PTR_ERR_ENOTSUP)
 881                        continue;
 882
 883                break;
 884        }
 885
 886        dprintf3("%s(%ld, prot=%x, pkey=%x) returning: %p\n", __func__,
 887                        size, prot, pkey, ret);
 888        return ret;
 889}
 890
 891int last_pkey_faults;
 892#define UNKNOWN_PKEY -2
 893void expected_pkey_fault(int pkey)
 894{
 895        dprintf2("%s(): last_pkey_faults: %d pkey_faults: %d\n",
 896                        __func__, last_pkey_faults, pkey_faults);
 897        dprintf2("%s(%d): last_si_pkey: %d\n", __func__, pkey, last_si_pkey);
 898        pkey_assert(last_pkey_faults + 1 == pkey_faults);
 899
 900       /*
 901        * For exec-only memory, we do not know the pkey in
 902        * advance, so skip this check.
 903        */
 904        if (pkey != UNKNOWN_PKEY)
 905                pkey_assert(last_si_pkey == pkey);
 906
 907#if defined(__i386__) || defined(__x86_64__) /* arch */
 908        /*
 909         * The signal handler shold have cleared out PKEY register to let the
 910         * test program continue.  We now have to restore it.
 911         */
 912        if (__read_pkey_reg() != 0)
 913#else /* arch */
 914        if (__read_pkey_reg() != shadow_pkey_reg)
 915#endif /* arch */
 916                pkey_assert(0);
 917
 918        __write_pkey_reg(shadow_pkey_reg);
 919        dprintf1("%s() set pkey_reg=%016llx to restore state after signal "
 920                       "nuked it\n", __func__, shadow_pkey_reg);
 921        last_pkey_faults = pkey_faults;
 922        last_si_pkey = -1;
 923}
 924
 925#define do_not_expect_pkey_fault(msg)   do {                    \
 926        if (last_pkey_faults != pkey_faults)                    \
 927                dprintf0("unexpected PKey fault: %s\n", msg);   \
 928        pkey_assert(last_pkey_faults == pkey_faults);           \
 929} while (0)
 930
 931int test_fds[10] = { -1 };
 932int nr_test_fds;
 933void __save_test_fd(int fd)
 934{
 935        pkey_assert(fd >= 0);
 936        pkey_assert(nr_test_fds < ARRAY_SIZE(test_fds));
 937        test_fds[nr_test_fds] = fd;
 938        nr_test_fds++;
 939}
 940
 941int get_test_read_fd(void)
 942{
 943        int test_fd = open("/etc/passwd", O_RDONLY);
 944        __save_test_fd(test_fd);
 945        return test_fd;
 946}
 947
 948void close_test_fds(void)
 949{
 950        int i;
 951
 952        for (i = 0; i < nr_test_fds; i++) {
 953                if (test_fds[i] < 0)
 954                        continue;
 955                close(test_fds[i]);
 956                test_fds[i] = -1;
 957        }
 958        nr_test_fds = 0;
 959}
 960
 961#define barrier() __asm__ __volatile__("": : :"memory")
 962__attribute__((noinline)) int read_ptr(int *ptr)
 963{
 964        /*
 965         * Keep GCC from optimizing this away somehow
 966         */
 967        barrier();
 968        return *ptr;
 969}
 970
 971void test_pkey_alloc_free_attach_pkey0(int *ptr, u16 pkey)
 972{
 973        int i, err;
 974        int max_nr_pkey_allocs;
 975        int alloced_pkeys[NR_PKEYS];
 976        int nr_alloced = 0;
 977        long size;
 978
 979        pkey_assert(pkey_last_malloc_record);
 980        size = pkey_last_malloc_record->size;
 981        /*
 982         * This is a bit of a hack.  But mprotect() requires
 983         * huge-page-aligned sizes when operating on hugetlbfs.
 984         * So, make sure that we use something that's a multiple
 985         * of a huge page when we can.
 986         */
 987        if (size >= HPAGE_SIZE)
 988                size = HPAGE_SIZE;
 989
 990        /* allocate every possible key and make sure key-0 never got allocated */
 991        max_nr_pkey_allocs = NR_PKEYS;
 992        for (i = 0; i < max_nr_pkey_allocs; i++) {
 993                int new_pkey = alloc_pkey();
 994                pkey_assert(new_pkey != 0);
 995
 996                if (new_pkey < 0)
 997                        break;
 998                alloced_pkeys[nr_alloced++] = new_pkey;
 999        }
1000        /* free all the allocated keys */
1001        for (i = 0; i < nr_alloced; i++) {
1002                int free_ret;
1003
1004                if (!alloced_pkeys[i])
1005                        continue;
1006                free_ret = sys_pkey_free(alloced_pkeys[i]);
1007                pkey_assert(!free_ret);
1008        }
1009
1010        /* attach key-0 in various modes */
1011        err = sys_mprotect_pkey(ptr, size, PROT_READ, 0);
1012        pkey_assert(!err);
1013        err = sys_mprotect_pkey(ptr, size, PROT_WRITE, 0);
1014        pkey_assert(!err);
1015        err = sys_mprotect_pkey(ptr, size, PROT_EXEC, 0);
1016        pkey_assert(!err);
1017        err = sys_mprotect_pkey(ptr, size, PROT_READ|PROT_WRITE, 0);
1018        pkey_assert(!err);
1019        err = sys_mprotect_pkey(ptr, size, PROT_READ|PROT_WRITE|PROT_EXEC, 0);
1020        pkey_assert(!err);
1021}
1022
1023void test_read_of_write_disabled_region(int *ptr, u16 pkey)
1024{
1025        int ptr_contents;
1026
1027        dprintf1("disabling write access to PKEY[1], doing read\n");
1028        pkey_write_deny(pkey);
1029        ptr_contents = read_ptr(ptr);
1030        dprintf1("*ptr: %d\n", ptr_contents);
1031        dprintf1("\n");
1032}
1033void test_read_of_access_disabled_region(int *ptr, u16 pkey)
1034{
1035        int ptr_contents;
1036
1037        dprintf1("disabling access to PKEY[%02d], doing read @ %p\n", pkey, ptr);
1038        read_pkey_reg();
1039        pkey_access_deny(pkey);
1040        ptr_contents = read_ptr(ptr);
1041        dprintf1("*ptr: %d\n", ptr_contents);
1042        expected_pkey_fault(pkey);
1043}
1044
1045void test_read_of_access_disabled_region_with_page_already_mapped(int *ptr,
1046                u16 pkey)
1047{
1048        int ptr_contents;
1049
1050        dprintf1("disabling access to PKEY[%02d], doing read @ %p\n",
1051                                pkey, ptr);
1052        ptr_contents = read_ptr(ptr);
1053        dprintf1("reading ptr before disabling the read : %d\n",
1054                        ptr_contents);
1055        read_pkey_reg();
1056        pkey_access_deny(pkey);
1057        ptr_contents = read_ptr(ptr);
1058        dprintf1("*ptr: %d\n", ptr_contents);
1059        expected_pkey_fault(pkey);
1060}
1061
1062void test_write_of_write_disabled_region_with_page_already_mapped(int *ptr,
1063                u16 pkey)
1064{
1065        *ptr = __LINE__;
1066        dprintf1("disabling write access; after accessing the page, "
1067                "to PKEY[%02d], doing write\n", pkey);
1068        pkey_write_deny(pkey);
1069        *ptr = __LINE__;
1070        expected_pkey_fault(pkey);
1071}
1072
1073void test_write_of_write_disabled_region(int *ptr, u16 pkey)
1074{
1075        dprintf1("disabling write access to PKEY[%02d], doing write\n", pkey);
1076        pkey_write_deny(pkey);
1077        *ptr = __LINE__;
1078        expected_pkey_fault(pkey);
1079}
1080void test_write_of_access_disabled_region(int *ptr, u16 pkey)
1081{
1082        dprintf1("disabling access to PKEY[%02d], doing write\n", pkey);
1083        pkey_access_deny(pkey);
1084        *ptr = __LINE__;
1085        expected_pkey_fault(pkey);
1086}
1087
1088void test_write_of_access_disabled_region_with_page_already_mapped(int *ptr,
1089                        u16 pkey)
1090{
1091        *ptr = __LINE__;
1092        dprintf1("disabling access; after accessing the page, "
1093                " to PKEY[%02d], doing write\n", pkey);
1094        pkey_access_deny(pkey);
1095        *ptr = __LINE__;
1096        expected_pkey_fault(pkey);
1097}
1098
1099void test_kernel_write_of_access_disabled_region(int *ptr, u16 pkey)
1100{
1101        int ret;
1102        int test_fd = get_test_read_fd();
1103
1104        dprintf1("disabling access to PKEY[%02d], "
1105                 "having kernel read() to buffer\n", pkey);
1106        pkey_access_deny(pkey);
1107        ret = read(test_fd, ptr, 1);
1108        dprintf1("read ret: %d\n", ret);
1109        pkey_assert(ret);
1110}
1111void test_kernel_write_of_write_disabled_region(int *ptr, u16 pkey)
1112{
1113        int ret;
1114        int test_fd = get_test_read_fd();
1115
1116        pkey_write_deny(pkey);
1117        ret = read(test_fd, ptr, 100);
1118        dprintf1("read ret: %d\n", ret);
1119        if (ret < 0 && (DEBUG_LEVEL > 0))
1120                perror("verbose read result (OK for this to be bad)");
1121        pkey_assert(ret);
1122}
1123
1124void test_kernel_gup_of_access_disabled_region(int *ptr, u16 pkey)
1125{
1126        int pipe_ret, vmsplice_ret;
1127        struct iovec iov;
1128        int pipe_fds[2];
1129
1130        pipe_ret = pipe(pipe_fds);
1131
1132        pkey_assert(pipe_ret == 0);
1133        dprintf1("disabling access to PKEY[%02d], "
1134                 "having kernel vmsplice from buffer\n", pkey);
1135        pkey_access_deny(pkey);
1136        iov.iov_base = ptr;
1137        iov.iov_len = PAGE_SIZE;
1138        vmsplice_ret = vmsplice(pipe_fds[1], &iov, 1, SPLICE_F_GIFT);
1139        dprintf1("vmsplice() ret: %d\n", vmsplice_ret);
1140        pkey_assert(vmsplice_ret == -1);
1141
1142        close(pipe_fds[0]);
1143        close(pipe_fds[1]);
1144}
1145
1146void test_kernel_gup_write_to_write_disabled_region(int *ptr, u16 pkey)
1147{
1148        int ignored = 0xdada;
1149        int futex_ret;
1150        int some_int = __LINE__;
1151
1152        dprintf1("disabling write to PKEY[%02d], "
1153                 "doing futex gunk in buffer\n", pkey);
1154        *ptr = some_int;
1155        pkey_write_deny(pkey);
1156        futex_ret = syscall(SYS_futex, ptr, FUTEX_WAIT, some_int-1, NULL,
1157                        &ignored, ignored);
1158        if (DEBUG_LEVEL > 0)
1159                perror("futex");
1160        dprintf1("futex() ret: %d\n", futex_ret);
1161}
1162
1163/* Assumes that all pkeys other than 'pkey' are unallocated */
1164void test_pkey_syscalls_on_non_allocated_pkey(int *ptr, u16 pkey)
1165{
1166        int err;
1167        int i;
1168
1169        /* Note: 0 is the default pkey, so don't mess with it */
1170        for (i = 1; i < NR_PKEYS; i++) {
1171                if (pkey == i)
1172                        continue;
1173
1174                dprintf1("trying get/set/free to non-allocated pkey: %2d\n", i);
1175                err = sys_pkey_free(i);
1176                pkey_assert(err);
1177
1178                err = sys_pkey_free(i);
1179                pkey_assert(err);
1180
1181                err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, i);
1182                pkey_assert(err);
1183        }
1184}
1185
1186/* Assumes that all pkeys other than 'pkey' are unallocated */
1187void test_pkey_syscalls_bad_args(int *ptr, u16 pkey)
1188{
1189        int err;
1190        int bad_pkey = NR_PKEYS+99;
1191
1192        /* pass a known-invalid pkey in: */
1193        err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, bad_pkey);
1194        pkey_assert(err);
1195}
1196
1197void become_child(void)
1198{
1199        pid_t forkret;
1200
1201        forkret = fork();
1202        pkey_assert(forkret >= 0);
1203        dprintf3("[%d] fork() ret: %d\n", getpid(), forkret);
1204
1205        if (!forkret) {
1206                /* in the child */
1207                return;
1208        }
1209        exit(0);
1210}
1211
1212/* Assumes that all pkeys other than 'pkey' are unallocated */
1213void test_pkey_alloc_exhaust(int *ptr, u16 pkey)
1214{
1215        int err;
1216        int allocated_pkeys[NR_PKEYS] = {0};
1217        int nr_allocated_pkeys = 0;
1218        int i;
1219
1220        for (i = 0; i < NR_PKEYS*3; i++) {
1221                int new_pkey;
1222                dprintf1("%s() alloc loop: %d\n", __func__, i);
1223                new_pkey = alloc_pkey();
1224                dprintf4("%s()::%d, err: %d pkey_reg: 0x%016llx"
1225                                " shadow: 0x%016llx\n",
1226                                __func__, __LINE__, err, __read_pkey_reg(),
1227                                shadow_pkey_reg);
1228                read_pkey_reg(); /* for shadow checking */
1229                dprintf2("%s() errno: %d ENOSPC: %d\n", __func__, errno, ENOSPC);
1230                if ((new_pkey == -1) && (errno == ENOSPC)) {
1231                        dprintf2("%s() failed to allocate pkey after %d tries\n",
1232                                __func__, nr_allocated_pkeys);
1233                } else {
1234                        /*
1235                         * Ensure the number of successes never
1236                         * exceeds the number of keys supported
1237                         * in the hardware.
1238                         */
1239                        pkey_assert(nr_allocated_pkeys < NR_PKEYS);
1240                        allocated_pkeys[nr_allocated_pkeys++] = new_pkey;
1241                }
1242
1243                /*
1244                 * Make sure that allocation state is properly
1245                 * preserved across fork().
1246                 */
1247                if (i == NR_PKEYS*2)
1248                        become_child();
1249        }
1250
1251        dprintf3("%s()::%d\n", __func__, __LINE__);
1252
1253        /*
1254         * On x86:
1255         * There are 16 pkeys supported in hardware.  Three are
1256         * allocated by the time we get here:
1257         *   1. The default key (0)
1258         *   2. One possibly consumed by an execute-only mapping.
1259         *   3. One allocated by the test code and passed in via
1260         *      'pkey' to this function.
1261         * Ensure that we can allocate at least another 13 (16-3).
1262         *
1263         * On powerpc:
1264         * There are either 5, 28, 29 or 32 pkeys supported in
1265         * hardware depending on the page size (4K or 64K) and
1266         * platform (powernv or powervm). Four are allocated by
1267         * the time we get here. These include pkey-0, pkey-1,
1268         * exec-only pkey and the one allocated by the test code.
1269         * Ensure that we can allocate the remaining.
1270         */
1271        pkey_assert(i >= (NR_PKEYS - get_arch_reserved_keys() - 1));
1272
1273        for (i = 0; i < nr_allocated_pkeys; i++) {
1274                err = sys_pkey_free(allocated_pkeys[i]);
1275                pkey_assert(!err);
1276                read_pkey_reg(); /* for shadow checking */
1277        }
1278}
1279
1280void arch_force_pkey_reg_init(void)
1281{
1282#if defined(__i386__) || defined(__x86_64__) /* arch */
1283        u64 *buf;
1284
1285        /*
1286         * All keys should be allocated and set to allow reads and
1287         * writes, so the register should be all 0.  If not, just
1288         * skip the test.
1289         */
1290        if (read_pkey_reg())
1291                return;
1292
1293        /*
1294         * Just allocate an absurd about of memory rather than
1295         * doing the XSAVE size enumeration dance.
1296         */
1297        buf = mmap(NULL, 1*MB, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1298
1299        /* These __builtins require compiling with -mxsave */
1300
1301        /* XSAVE to build a valid buffer: */
1302        __builtin_ia32_xsave(buf, XSTATE_PKEY);
1303        /* Clear XSTATE_BV[PKRU]: */
1304        buf[XSTATE_BV_OFFSET/sizeof(u64)] &= ~XSTATE_PKEY;
1305        /* XRSTOR will likely get PKRU back to the init state: */
1306        __builtin_ia32_xrstor(buf, XSTATE_PKEY);
1307
1308        munmap(buf, 1*MB);
1309#endif
1310}
1311
1312
1313/*
1314 * This is mostly useless on ppc for now.  But it will not
1315 * hurt anything and should give some better coverage as
1316 * a long-running test that continually checks the pkey
1317 * register.
1318 */
1319void test_pkey_init_state(int *ptr, u16 pkey)
1320{
1321        int err;
1322        int allocated_pkeys[NR_PKEYS] = {0};
1323        int nr_allocated_pkeys = 0;
1324        int i;
1325
1326        for (i = 0; i < NR_PKEYS; i++) {
1327                int new_pkey = alloc_pkey();
1328
1329                if (new_pkey < 0)
1330                        continue;
1331                allocated_pkeys[nr_allocated_pkeys++] = new_pkey;
1332        }
1333
1334        dprintf3("%s()::%d\n", __func__, __LINE__);
1335
1336        arch_force_pkey_reg_init();
1337
1338        /*
1339         * Loop for a bit, hoping to get exercise the kernel
1340         * context switch code.
1341         */
1342        for (i = 0; i < 1000000; i++)
1343                read_pkey_reg();
1344
1345        for (i = 0; i < nr_allocated_pkeys; i++) {
1346                err = sys_pkey_free(allocated_pkeys[i]);
1347                pkey_assert(!err);
1348                read_pkey_reg(); /* for shadow checking */
1349        }
1350}
1351
1352/*
1353 * pkey 0 is special.  It is allocated by default, so you do not
1354 * have to call pkey_alloc() to use it first.  Make sure that it
1355 * is usable.
1356 */
1357void test_mprotect_with_pkey_0(int *ptr, u16 pkey)
1358{
1359        long size;
1360        int prot;
1361
1362        assert(pkey_last_malloc_record);
1363        size = pkey_last_malloc_record->size;
1364        /*
1365         * This is a bit of a hack.  But mprotect() requires
1366         * huge-page-aligned sizes when operating on hugetlbfs.
1367         * So, make sure that we use something that's a multiple
1368         * of a huge page when we can.
1369         */
1370        if (size >= HPAGE_SIZE)
1371                size = HPAGE_SIZE;
1372        prot = pkey_last_malloc_record->prot;
1373
1374        /* Use pkey 0 */
1375        mprotect_pkey(ptr, size, prot, 0);
1376
1377        /* Make sure that we can set it back to the original pkey. */
1378        mprotect_pkey(ptr, size, prot, pkey);
1379}
1380
1381void test_ptrace_of_child(int *ptr, u16 pkey)
1382{
1383        __attribute__((__unused__)) int peek_result;
1384        pid_t child_pid;
1385        void *ignored = 0;
1386        long ret;
1387        int status;
1388        /*
1389         * This is the "control" for our little expermient.  Make sure
1390         * we can always access it when ptracing.
1391         */
1392        int *plain_ptr_unaligned = malloc(HPAGE_SIZE);
1393        int *plain_ptr = ALIGN_PTR_UP(plain_ptr_unaligned, PAGE_SIZE);
1394
1395        /*
1396         * Fork a child which is an exact copy of this process, of course.
1397         * That means we can do all of our tests via ptrace() and then plain
1398         * memory access and ensure they work differently.
1399         */
1400        child_pid = fork_lazy_child();
1401        dprintf1("[%d] child pid: %d\n", getpid(), child_pid);
1402
1403        ret = ptrace(PTRACE_ATTACH, child_pid, ignored, ignored);
1404        if (ret)
1405                perror("attach");
1406        dprintf1("[%d] attach ret: %ld %d\n", getpid(), ret, __LINE__);
1407        pkey_assert(ret != -1);
1408        ret = waitpid(child_pid, &status, WUNTRACED);
1409        if ((ret != child_pid) || !(WIFSTOPPED(status))) {
1410                fprintf(stderr, "weird waitpid result %ld stat %x\n",
1411                                ret, status);
1412                pkey_assert(0);
1413        }
1414        dprintf2("waitpid ret: %ld\n", ret);
1415        dprintf2("waitpid status: %d\n", status);
1416
1417        pkey_access_deny(pkey);
1418        pkey_write_deny(pkey);
1419
1420        /* Write access, untested for now:
1421        ret = ptrace(PTRACE_POKEDATA, child_pid, peek_at, data);
1422        pkey_assert(ret != -1);
1423        dprintf1("poke at %p: %ld\n", peek_at, ret);
1424        */
1425
1426        /*
1427         * Try to access the pkey-protected "ptr" via ptrace:
1428         */
1429        ret = ptrace(PTRACE_PEEKDATA, child_pid, ptr, ignored);
1430        /* expect it to work, without an error: */
1431        pkey_assert(ret != -1);
1432        /* Now access from the current task, and expect an exception: */
1433        peek_result = read_ptr(ptr);
1434        expected_pkey_fault(pkey);
1435
1436        /*
1437         * Try to access the NON-pkey-protected "plain_ptr" via ptrace:
1438         */
1439        ret = ptrace(PTRACE_PEEKDATA, child_pid, plain_ptr, ignored);
1440        /* expect it to work, without an error: */
1441        pkey_assert(ret != -1);
1442        /* Now access from the current task, and expect NO exception: */
1443        peek_result = read_ptr(plain_ptr);
1444        do_not_expect_pkey_fault("read plain pointer after ptrace");
1445
1446        ret = ptrace(PTRACE_DETACH, child_pid, ignored, 0);
1447        pkey_assert(ret != -1);
1448
1449        ret = kill(child_pid, SIGKILL);
1450        pkey_assert(ret != -1);
1451
1452        wait(&status);
1453
1454        free(plain_ptr_unaligned);
1455}
1456
1457void *get_pointer_to_instructions(void)
1458{
1459        void *p1;
1460
1461        p1 = ALIGN_PTR_UP(&lots_o_noops_around_write, PAGE_SIZE);
1462        dprintf3("&lots_o_noops: %p\n", &lots_o_noops_around_write);
1463        /* lots_o_noops_around_write should be page-aligned already */
1464        assert(p1 == &lots_o_noops_around_write);
1465
1466        /* Point 'p1' at the *second* page of the function: */
1467        p1 += PAGE_SIZE;
1468
1469        /*
1470         * Try to ensure we fault this in on next touch to ensure
1471         * we get an instruction fault as opposed to a data one
1472         */
1473        madvise(p1, PAGE_SIZE, MADV_DONTNEED);
1474
1475        return p1;
1476}
1477
1478void test_executing_on_unreadable_memory(int *ptr, u16 pkey)
1479{
1480        void *p1;
1481        int scratch;
1482        int ptr_contents;
1483        int ret;
1484
1485        p1 = get_pointer_to_instructions();
1486        lots_o_noops_around_write(&scratch);
1487        ptr_contents = read_ptr(p1);
1488        dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents);
1489
1490        ret = mprotect_pkey(p1, PAGE_SIZE, PROT_EXEC, (u64)pkey);
1491        pkey_assert(!ret);
1492        pkey_access_deny(pkey);
1493
1494        dprintf2("pkey_reg: %016llx\n", read_pkey_reg());
1495
1496        /*
1497         * Make sure this is an *instruction* fault
1498         */
1499        madvise(p1, PAGE_SIZE, MADV_DONTNEED);
1500        lots_o_noops_around_write(&scratch);
1501        do_not_expect_pkey_fault("executing on PROT_EXEC memory");
1502        expect_fault_on_read_execonly_key(p1, pkey);
1503}
1504
1505void test_implicit_mprotect_exec_only_memory(int *ptr, u16 pkey)
1506{
1507        void *p1;
1508        int scratch;
1509        int ptr_contents;
1510        int ret;
1511
1512        dprintf1("%s() start\n", __func__);
1513
1514        p1 = get_pointer_to_instructions();
1515        lots_o_noops_around_write(&scratch);
1516        ptr_contents = read_ptr(p1);
1517        dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents);
1518
1519        /* Use a *normal* mprotect(), not mprotect_pkey(): */
1520        ret = mprotect(p1, PAGE_SIZE, PROT_EXEC);
1521        pkey_assert(!ret);
1522
1523        /*
1524         * Reset the shadow, assuming that the above mprotect()
1525         * correctly changed PKRU, but to an unknown value since
1526         * the actual alllocated pkey is unknown.
1527         */
1528        shadow_pkey_reg = __read_pkey_reg();
1529
1530        dprintf2("pkey_reg: %016llx\n", read_pkey_reg());
1531
1532        /* Make sure this is an *instruction* fault */
1533        madvise(p1, PAGE_SIZE, MADV_DONTNEED);
1534        lots_o_noops_around_write(&scratch);
1535        do_not_expect_pkey_fault("executing on PROT_EXEC memory");
1536        expect_fault_on_read_execonly_key(p1, UNKNOWN_PKEY);
1537
1538        /*
1539         * Put the memory back to non-PROT_EXEC.  Should clear the
1540         * exec-only pkey off the VMA and allow it to be readable
1541         * again.  Go to PROT_NONE first to check for a kernel bug
1542         * that did not clear the pkey when doing PROT_NONE.
1543         */
1544        ret = mprotect(p1, PAGE_SIZE, PROT_NONE);
1545        pkey_assert(!ret);
1546
1547        ret = mprotect(p1, PAGE_SIZE, PROT_READ|PROT_EXEC);
1548        pkey_assert(!ret);
1549        ptr_contents = read_ptr(p1);
1550        do_not_expect_pkey_fault("plain read on recently PROT_EXEC area");
1551}
1552
1553void test_mprotect_pkey_on_unsupported_cpu(int *ptr, u16 pkey)
1554{
1555        int size = PAGE_SIZE;
1556        int sret;
1557
1558        if (cpu_has_pkeys()) {
1559                dprintf1("SKIP: %s: no CPU support\n", __func__);
1560                return;
1561        }
1562
1563        sret = syscall(SYS_mprotect_key, ptr, size, PROT_READ, pkey);
1564        pkey_assert(sret < 0);
1565}
1566
1567void (*pkey_tests[])(int *ptr, u16 pkey) = {
1568        test_read_of_write_disabled_region,
1569        test_read_of_access_disabled_region,
1570        test_read_of_access_disabled_region_with_page_already_mapped,
1571        test_write_of_write_disabled_region,
1572        test_write_of_write_disabled_region_with_page_already_mapped,
1573        test_write_of_access_disabled_region,
1574        test_write_of_access_disabled_region_with_page_already_mapped,
1575        test_kernel_write_of_access_disabled_region,
1576        test_kernel_write_of_write_disabled_region,
1577        test_kernel_gup_of_access_disabled_region,
1578        test_kernel_gup_write_to_write_disabled_region,
1579        test_executing_on_unreadable_memory,
1580        test_implicit_mprotect_exec_only_memory,
1581        test_mprotect_with_pkey_0,
1582        test_ptrace_of_child,
1583        test_pkey_init_state,
1584        test_pkey_syscalls_on_non_allocated_pkey,
1585        test_pkey_syscalls_bad_args,
1586        test_pkey_alloc_exhaust,
1587        test_pkey_alloc_free_attach_pkey0,
1588};
1589
1590void run_tests_once(void)
1591{
1592        int *ptr;
1593        int prot = PROT_READ|PROT_WRITE;
1594
1595        for (test_nr = 0; test_nr < ARRAY_SIZE(pkey_tests); test_nr++) {
1596                int pkey;
1597                int orig_pkey_faults = pkey_faults;
1598
1599                dprintf1("======================\n");
1600                dprintf1("test %d preparing...\n", test_nr);
1601
1602                tracing_on();
1603                pkey = alloc_random_pkey();
1604                dprintf1("test %d starting with pkey: %d\n", test_nr, pkey);
1605                ptr = malloc_pkey(PAGE_SIZE, prot, pkey);
1606                dprintf1("test %d starting...\n", test_nr);
1607                pkey_tests[test_nr](ptr, pkey);
1608                dprintf1("freeing test memory: %p\n", ptr);
1609                free_pkey_malloc(ptr);
1610                sys_pkey_free(pkey);
1611
1612                dprintf1("pkey_faults: %d\n", pkey_faults);
1613                dprintf1("orig_pkey_faults: %d\n", orig_pkey_faults);
1614
1615                tracing_off();
1616                close_test_fds();
1617
1618                printf("test %2d PASSED (iteration %d)\n", test_nr, iteration_nr);
1619                dprintf1("======================\n\n");
1620        }
1621        iteration_nr++;
1622}
1623
1624void pkey_setup_shadow(void)
1625{
1626        shadow_pkey_reg = __read_pkey_reg();
1627}
1628
1629int main(void)
1630{
1631        int nr_iterations = 22;
1632        int pkeys_supported = is_pkeys_supported();
1633
1634        srand((unsigned int)time(NULL));
1635
1636        setup_handlers();
1637
1638        printf("has pkeys: %d\n", pkeys_supported);
1639
1640        if (!pkeys_supported) {
1641                int size = PAGE_SIZE;
1642                int *ptr;
1643
1644                printf("running PKEY tests for unsupported CPU/OS\n");
1645
1646                ptr  = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1647                assert(ptr != (void *)-1);
1648                test_mprotect_pkey_on_unsupported_cpu(ptr, 1);
1649                exit(0);
1650        }
1651
1652        pkey_setup_shadow();
1653        printf("startup pkey_reg: %016llx\n", read_pkey_reg());
1654        setup_hugetlbfs();
1655
1656        while (nr_iterations-- > 0)
1657                run_tests_once();
1658
1659        printf("done (all tests OK)\n");
1660        return 0;
1661}
1662