qemu/hw/mcf_fec.c
<<
>>
Prefs
   1/*
   2 * ColdFire Fast Ethernet Controller emulation.
   3 *
   4 * Copyright (c) 2007 CodeSourcery.
   5 *
   6 * This code is licenced under the GPL
   7 */
   8#include "hw.h"
   9#include "net.h"
  10#include "mcf.h"
  11/* For crc32 */
  12#include <zlib.h>
  13
  14//#define DEBUG_FEC 1
  15
  16#ifdef DEBUG_FEC
  17#define DPRINTF(fmt, args...) \
  18do { printf("mcf_fec: " fmt , ##args); } while (0)
  19#else
  20#define DPRINTF(fmt, args...) do {} while(0)
  21#endif
  22
  23#define FEC_MAX_FRAME_SIZE 2032
  24
  25typedef struct {
  26    qemu_irq *irq;
  27    VLANClientState *vc;
  28    uint32_t irq_state;
  29    uint32_t eir;
  30    uint32_t eimr;
  31    int rx_enabled;
  32    uint32_t rx_descriptor;
  33    uint32_t tx_descriptor;
  34    uint32_t ecr;
  35    uint32_t mmfr;
  36    uint32_t mscr;
  37    uint32_t rcr;
  38    uint32_t tcr;
  39    uint32_t tfwr;
  40    uint32_t rfsr;
  41    uint32_t erdsr;
  42    uint32_t etdsr;
  43    uint32_t emrbr;
  44    uint8_t macaddr[6];
  45} mcf_fec_state;
  46
  47#define FEC_INT_HB   0x80000000
  48#define FEC_INT_BABR 0x40000000
  49#define FEC_INT_BABT 0x20000000
  50#define FEC_INT_GRA  0x10000000
  51#define FEC_INT_TXF  0x08000000
  52#define FEC_INT_TXB  0x04000000
  53#define FEC_INT_RXF  0x02000000
  54#define FEC_INT_RXB  0x01000000
  55#define FEC_INT_MII  0x00800000
  56#define FEC_INT_EB   0x00400000
  57#define FEC_INT_LC   0x00200000
  58#define FEC_INT_RL   0x00100000
  59#define FEC_INT_UN   0x00080000
  60
  61#define FEC_EN      2
  62#define FEC_RESET   1
  63
  64/* Map interrupt flags onto IRQ lines.  */
  65#define FEC_NUM_IRQ 13
  66static const uint32_t mcf_fec_irq_map[FEC_NUM_IRQ] = {
  67    FEC_INT_TXF,
  68    FEC_INT_TXB,
  69    FEC_INT_UN,
  70    FEC_INT_RL,
  71    FEC_INT_RXF,
  72    FEC_INT_RXB,
  73    FEC_INT_MII,
  74    FEC_INT_LC,
  75    FEC_INT_HB,
  76    FEC_INT_GRA,
  77    FEC_INT_EB,
  78    FEC_INT_BABT,
  79    FEC_INT_BABR
  80};
  81
  82/* Buffer Descriptor.  */
  83typedef struct {
  84    uint16_t flags;
  85    uint16_t length;
  86    uint32_t data;
  87} mcf_fec_bd;
  88
  89#define FEC_BD_R    0x8000
  90#define FEC_BD_E    0x8000
  91#define FEC_BD_O1   0x4000
  92#define FEC_BD_W    0x2000
  93#define FEC_BD_O2   0x1000
  94#define FEC_BD_L    0x0800
  95#define FEC_BD_TC   0x0400
  96#define FEC_BD_ABC  0x0200
  97#define FEC_BD_M    0x0100
  98#define FEC_BD_BC   0x0080
  99#define FEC_BD_MC   0x0040
 100#define FEC_BD_LG   0x0020
 101#define FEC_BD_NO   0x0010
 102#define FEC_BD_CR   0x0004
 103#define FEC_BD_OV   0x0002
 104#define FEC_BD_TR   0x0001
 105
 106static void mcf_fec_read_bd(mcf_fec_bd *bd, uint32_t addr)
 107{
 108    cpu_physical_memory_read(addr, (uint8_t *)bd, sizeof(*bd));
 109    be16_to_cpus(&bd->flags);
 110    be16_to_cpus(&bd->length);
 111    be32_to_cpus(&bd->data);
 112}
 113
 114static void mcf_fec_write_bd(mcf_fec_bd *bd, uint32_t addr)
 115{
 116    mcf_fec_bd tmp;
 117    tmp.flags = cpu_to_be16(bd->flags);
 118    tmp.length = cpu_to_be16(bd->length);
 119    tmp.data = cpu_to_be32(bd->data);
 120    cpu_physical_memory_write(addr, (uint8_t *)&tmp, sizeof(tmp));
 121}
 122
 123static void mcf_fec_update(mcf_fec_state *s)
 124{
 125    uint32_t active;
 126    uint32_t changed;
 127    uint32_t mask;
 128    int i;
 129
 130    active = s->eir & s->eimr;
 131    changed = active ^s->irq_state;
 132    for (i = 0; i < FEC_NUM_IRQ; i++) {
 133        mask = mcf_fec_irq_map[i];
 134        if (changed & mask) {
 135            DPRINTF("IRQ %d = %d\n", i, (active & mask) != 0);
 136            qemu_set_irq(s->irq[i], (active & mask) != 0);
 137        }
 138    }
 139    s->irq_state = active;
 140}
 141
 142static void mcf_fec_do_tx(mcf_fec_state *s)
 143{
 144    uint32_t addr;
 145    mcf_fec_bd bd;
 146    int frame_size;
 147    int len;
 148    uint8_t frame[FEC_MAX_FRAME_SIZE];
 149    uint8_t *ptr;
 150
 151    DPRINTF("do_tx\n");
 152    ptr = frame;
 153    frame_size = 0;
 154    addr = s->tx_descriptor;
 155    while (1) {
 156        mcf_fec_read_bd(&bd, addr);
 157        DPRINTF("tx_bd %x flags %04x len %d data %08x\n",
 158                addr, bd.flags, bd.length, bd.data);
 159        if ((bd.flags & FEC_BD_R) == 0) {
 160            /* Run out of descriptors to transmit.  */
 161            break;
 162        }
 163        len = bd.length;
 164        if (frame_size + len > FEC_MAX_FRAME_SIZE) {
 165            len = FEC_MAX_FRAME_SIZE - frame_size;
 166            s->eir |= FEC_INT_BABT;
 167        }
 168        cpu_physical_memory_read(bd.data, ptr, len);
 169        ptr += len;
 170        frame_size += len;
 171        if (bd.flags & FEC_BD_L) {
 172            /* Last buffer in frame.  */
 173            DPRINTF("Sending packet\n");
 174            qemu_send_packet(s->vc, frame, len);
 175            ptr = frame;
 176            frame_size = 0;
 177            s->eir |= FEC_INT_TXF;
 178        }
 179        s->eir |= FEC_INT_TXB;
 180        bd.flags &= ~FEC_BD_R;
 181        /* Write back the modified descriptor.  */
 182        mcf_fec_write_bd(&bd, addr);
 183        /* Advance to the next descriptor.  */
 184        if ((bd.flags & FEC_BD_W) != 0) {
 185            addr = s->etdsr;
 186        } else {
 187            addr += 8;
 188        }
 189    }
 190    s->tx_descriptor = addr;
 191}
 192
 193static void mcf_fec_enable_rx(mcf_fec_state *s)
 194{
 195    mcf_fec_bd bd;
 196
 197    mcf_fec_read_bd(&bd, s->rx_descriptor);
 198    s->rx_enabled = ((bd.flags & FEC_BD_E) != 0);
 199    if (!s->rx_enabled)
 200        DPRINTF("RX buffer full\n");
 201}
 202
 203static void mcf_fec_reset(mcf_fec_state *s)
 204{
 205    s->eir = 0;
 206    s->eimr = 0;
 207    s->rx_enabled = 0;
 208    s->ecr = 0;
 209    s->mscr = 0;
 210    s->rcr = 0x05ee0001;
 211    s->tcr = 0;
 212    s->tfwr = 0;
 213    s->rfsr = 0x500;
 214}
 215
 216static uint32_t mcf_fec_read(void *opaque, target_phys_addr_t addr)
 217{
 218    mcf_fec_state *s = (mcf_fec_state *)opaque;
 219    switch (addr & 0x3ff) {
 220    case 0x004: return s->eir;
 221    case 0x008: return s->eimr;
 222    case 0x010: return s->rx_enabled ? (1 << 24) : 0; /* RDAR */
 223    case 0x014: return 0; /* TDAR */
 224    case 0x024: return s->ecr;
 225    case 0x040: return s->mmfr;
 226    case 0x044: return s->mscr;
 227    case 0x064: return 0; /* MIBC */
 228    case 0x084: return s->rcr;
 229    case 0x0c4: return s->tcr;
 230    case 0x0e4: /* PALR */
 231        return (s->macaddr[0] << 24) | (s->macaddr[1] << 16)
 232              | (s->macaddr[2] << 8) | s->macaddr[3];
 233        break;
 234    case 0x0e8: /* PAUR */
 235        return (s->macaddr[4] << 24) | (s->macaddr[5] << 16) | 0x8808;
 236    case 0x0ec: return 0x10000; /* OPD */
 237    case 0x118: return 0;
 238    case 0x11c: return 0;
 239    case 0x120: return 0;
 240    case 0x124: return 0;
 241    case 0x144: return s->tfwr;
 242    case 0x14c: return 0x600;
 243    case 0x150: return s->rfsr;
 244    case 0x180: return s->erdsr;
 245    case 0x184: return s->etdsr;
 246    case 0x188: return s->emrbr;
 247    default:
 248        cpu_abort(cpu_single_env, "mcf_fec_read: Bad address 0x%x\n",
 249                  (int)addr);
 250        return 0;
 251    }
 252}
 253
 254static void mcf_fec_write(void *opaque, target_phys_addr_t addr, uint32_t value)
 255{
 256    mcf_fec_state *s = (mcf_fec_state *)opaque;
 257    switch (addr & 0x3ff) {
 258    case 0x004:
 259        s->eir &= ~value;
 260        break;
 261    case 0x008:
 262        s->eimr = value;
 263        break;
 264    case 0x010: /* RDAR */
 265        if ((s->ecr & FEC_EN) && !s->rx_enabled) {
 266            DPRINTF("RX enable\n");
 267            mcf_fec_enable_rx(s);
 268        }
 269        break;
 270    case 0x014: /* TDAR */
 271        if (s->ecr & FEC_EN) {
 272            mcf_fec_do_tx(s);
 273        }
 274        break;
 275    case 0x024:
 276        s->ecr = value;
 277        if (value & FEC_RESET) {
 278            DPRINTF("Reset\n");
 279            mcf_fec_reset(s);
 280        }
 281        if ((s->ecr & FEC_EN) == 0) {
 282            s->rx_enabled = 0;
 283        }
 284        break;
 285    case 0x040:
 286        /* TODO: Implement MII.  */
 287        s->mmfr = value;
 288        break;
 289    case 0x044:
 290        s->mscr = value & 0xfe;
 291        break;
 292    case 0x064:
 293        /* TODO: Implement MIB.  */
 294        break;
 295    case 0x084:
 296        s->rcr = value & 0x07ff003f;
 297        /* TODO: Implement LOOP mode.  */
 298        break;
 299    case 0x0c4: /* TCR */
 300        /* We transmit immediately, so raise GRA immediately.  */
 301        s->tcr = value;
 302        if (value & 1)
 303            s->eir |= FEC_INT_GRA;
 304        break;
 305    case 0x0e4: /* PALR */
 306        s->macaddr[0] = value >> 24;
 307        s->macaddr[1] = value >> 16;
 308        s->macaddr[2] = value >> 8;
 309        s->macaddr[3] = value;
 310        break;
 311    case 0x0e8: /* PAUR */
 312        s->macaddr[4] = value >> 24;
 313        s->macaddr[5] = value >> 16;
 314        break;
 315    case 0x0ec:
 316        /* OPD */
 317        break;
 318    case 0x118:
 319    case 0x11c:
 320    case 0x120:
 321    case 0x124:
 322        /* TODO: implement MAC hash filtering.  */
 323        break;
 324    case 0x144:
 325        s->tfwr = value & 3;
 326        break;
 327    case 0x14c:
 328        /* FRBR writes ignored.  */
 329        break;
 330    case 0x150:
 331        s->rfsr = (value & 0x3fc) | 0x400;
 332        break;
 333    case 0x180:
 334        s->erdsr = value & ~3;
 335        s->rx_descriptor = s->erdsr;
 336        break;
 337    case 0x184:
 338        s->etdsr = value & ~3;
 339        s->tx_descriptor = s->etdsr;
 340        break;
 341    case 0x188:
 342        s->emrbr = value & 0x7f0;
 343        break;
 344    default:
 345        cpu_abort(cpu_single_env, "mcf_fec_write Bad address 0x%x\n",
 346                  (int)addr);
 347    }
 348    mcf_fec_update(s);
 349}
 350
 351static int mcf_fec_can_receive(void *opaque)
 352{
 353    mcf_fec_state *s = (mcf_fec_state *)opaque;
 354    return s->rx_enabled;
 355}
 356
 357static void mcf_fec_receive(void *opaque, const uint8_t *buf, int size)
 358{
 359    mcf_fec_state *s = (mcf_fec_state *)opaque;
 360    mcf_fec_bd bd;
 361    uint32_t flags = 0;
 362    uint32_t addr;
 363    uint32_t crc;
 364    uint32_t buf_addr;
 365    uint8_t *crc_ptr;
 366    unsigned int buf_len;
 367
 368    DPRINTF("do_rx len %d\n", size);
 369    if (!s->rx_enabled) {
 370        fprintf(stderr, "mcf_fec_receive: Unexpected packet\n");
 371    }
 372    /* 4 bytes for the CRC.  */
 373    size += 4;
 374    crc = cpu_to_be32(crc32(~0, buf, size));
 375    crc_ptr = (uint8_t *)&crc;
 376    /* Huge frames are truncted.  */
 377    if (size > FEC_MAX_FRAME_SIZE) {
 378        size = FEC_MAX_FRAME_SIZE;
 379        flags |= FEC_BD_TR | FEC_BD_LG;
 380    }
 381    /* Frames larger than the user limit just set error flags.  */
 382    if (size > (s->rcr >> 16)) {
 383        flags |= FEC_BD_LG;
 384    }
 385    addr = s->rx_descriptor;
 386    while (size > 0) {
 387        mcf_fec_read_bd(&bd, addr);
 388        if ((bd.flags & FEC_BD_E) == 0) {
 389            /* No descriptors available.  Bail out.  */
 390            /* FIXME: This is wrong.  We should probably either save the
 391               remainder for when more RX buffers are available, or
 392               flag an error.  */
 393            fprintf(stderr, "mcf_fec: Lost end of frame\n");
 394            break;
 395        }
 396        buf_len = (size <= s->emrbr) ? size: s->emrbr;
 397        bd.length = buf_len;
 398        size -= buf_len;
 399        DPRINTF("rx_bd %x length %d\n", addr, bd.length);
 400        /* The last 4 bytes are the CRC.  */
 401        if (size < 4)
 402            buf_len += size - 4;
 403        buf_addr = bd.data;
 404        cpu_physical_memory_write(buf_addr, buf, buf_len);
 405        buf += buf_len;
 406        if (size < 4) {
 407            cpu_physical_memory_write(buf_addr + buf_len, crc_ptr, 4 - size);
 408            crc_ptr += 4 - size;
 409        }
 410        bd.flags &= ~FEC_BD_E;
 411        if (size == 0) {
 412            /* Last buffer in frame.  */
 413            bd.flags |= flags | FEC_BD_L;
 414            DPRINTF("rx frame flags %04x\n", bd.flags);
 415            s->eir |= FEC_INT_RXF;
 416        } else {
 417            s->eir |= FEC_INT_RXB;
 418        }
 419        mcf_fec_write_bd(&bd, addr);
 420        /* Advance to the next descriptor.  */
 421        if ((bd.flags & FEC_BD_W) != 0) {
 422            addr = s->erdsr;
 423        } else {
 424            addr += 8;
 425        }
 426    }
 427    s->rx_descriptor = addr;
 428    mcf_fec_enable_rx(s);
 429    mcf_fec_update(s);
 430}
 431
 432static CPUReadMemoryFunc *mcf_fec_readfn[] = {
 433   mcf_fec_read,
 434   mcf_fec_read,
 435   mcf_fec_read
 436};
 437
 438static CPUWriteMemoryFunc *mcf_fec_writefn[] = {
 439   mcf_fec_write,
 440   mcf_fec_write,
 441   mcf_fec_write
 442};
 443
 444void mcf_fec_init(NICInfo *nd, target_phys_addr_t base, qemu_irq *irq)
 445{
 446    mcf_fec_state *s;
 447    int iomemtype;
 448
 449    qemu_check_nic_model(nd, "mcf_fec");
 450
 451    s = (mcf_fec_state *)qemu_mallocz(sizeof(mcf_fec_state));
 452    s->irq = irq;
 453    iomemtype = cpu_register_io_memory(0, mcf_fec_readfn,
 454                                       mcf_fec_writefn, s);
 455    cpu_register_physical_memory(base, 0x400, iomemtype);
 456
 457    s->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
 458                                 mcf_fec_receive, mcf_fec_can_receive, s);
 459    memcpy(s->macaddr, nd->macaddr, 6);
 460    qemu_format_nic_info_str(s->vc, s->macaddr);
 461}
 462