qemu/target-arm/helper.c
<<
>>
Prefs
   1#include <stdio.h>
   2#include <stdlib.h>
   3#include <string.h>
   4
   5#include "cpu.h"
   6#include "exec-all.h"
   7#include "gdbstub.h"
   8#include "helpers.h"
   9#include "qemu-common.h"
  10
  11static uint32_t cortexa8_cp15_c0_c1[8] =
  12{ 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
  13
  14static uint32_t cortexa8_cp15_c0_c2[8] =
  15{ 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
  16
  17static uint32_t mpcore_cp15_c0_c1[8] =
  18{ 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
  19
  20static uint32_t mpcore_cp15_c0_c2[8] =
  21{ 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
  22
  23static uint32_t arm1136_cp15_c0_c1[8] =
  24{ 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
  25
  26static uint32_t arm1136_cp15_c0_c2[8] =
  27{ 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
  28
  29static uint32_t cpu_arm_find_by_name(const char *name);
  30
  31static inline void set_feature(CPUARMState *env, int feature)
  32{
  33    env->features |= 1u << feature;
  34}
  35
  36static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
  37{
  38    env->cp15.c0_cpuid = id;
  39    switch (id) {
  40    case ARM_CPUID_ARM926:
  41        set_feature(env, ARM_FEATURE_VFP);
  42        env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
  43        env->cp15.c0_cachetype = 0x1dd20d2;
  44        env->cp15.c1_sys = 0x00090078;
  45        break;
  46    case ARM_CPUID_ARM946:
  47        set_feature(env, ARM_FEATURE_MPU);
  48        env->cp15.c0_cachetype = 0x0f004006;
  49        env->cp15.c1_sys = 0x00000078;
  50        break;
  51    case ARM_CPUID_ARM1026:
  52        set_feature(env, ARM_FEATURE_VFP);
  53        set_feature(env, ARM_FEATURE_AUXCR);
  54        env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
  55        env->cp15.c0_cachetype = 0x1dd20d2;
  56        env->cp15.c1_sys = 0x00090078;
  57        break;
  58    case ARM_CPUID_ARM1136_R2:
  59    case ARM_CPUID_ARM1136:
  60        set_feature(env, ARM_FEATURE_V6);
  61        set_feature(env, ARM_FEATURE_VFP);
  62        set_feature(env, ARM_FEATURE_AUXCR);
  63        env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
  64        env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
  65        env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
  66        memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
  67        memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
  68        env->cp15.c0_cachetype = 0x1dd20d2;
  69        break;
  70    case ARM_CPUID_ARM11MPCORE:
  71        set_feature(env, ARM_FEATURE_V6);
  72        set_feature(env, ARM_FEATURE_V6K);
  73        set_feature(env, ARM_FEATURE_VFP);
  74        set_feature(env, ARM_FEATURE_AUXCR);
  75        env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
  76        env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
  77        env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
  78        memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
  79        memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
  80        env->cp15.c0_cachetype = 0x1dd20d2;
  81        break;
  82    case ARM_CPUID_CORTEXA8:
  83        set_feature(env, ARM_FEATURE_V6);
  84        set_feature(env, ARM_FEATURE_V6K);
  85        set_feature(env, ARM_FEATURE_V7);
  86        set_feature(env, ARM_FEATURE_AUXCR);
  87        set_feature(env, ARM_FEATURE_THUMB2);
  88        set_feature(env, ARM_FEATURE_VFP);
  89        set_feature(env, ARM_FEATURE_VFP3);
  90        set_feature(env, ARM_FEATURE_NEON);
  91        set_feature(env, ARM_FEATURE_THUMB2EE);
  92        env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
  93        env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
  94        env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
  95        memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
  96        memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
  97        env->cp15.c0_cachetype = 0x82048004;
  98        env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3;
  99        env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
 100        env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
 101        env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */
 102        break;
 103    case ARM_CPUID_CORTEXM3:
 104        set_feature(env, ARM_FEATURE_V6);
 105        set_feature(env, ARM_FEATURE_THUMB2);
 106        set_feature(env, ARM_FEATURE_V7);
 107        set_feature(env, ARM_FEATURE_M);
 108        set_feature(env, ARM_FEATURE_DIV);
 109        break;
 110    case ARM_CPUID_ANY: /* For userspace emulation.  */
 111        set_feature(env, ARM_FEATURE_V6);
 112        set_feature(env, ARM_FEATURE_V6K);
 113        set_feature(env, ARM_FEATURE_V7);
 114        set_feature(env, ARM_FEATURE_THUMB2);
 115        set_feature(env, ARM_FEATURE_VFP);
 116        set_feature(env, ARM_FEATURE_VFP3);
 117        set_feature(env, ARM_FEATURE_NEON);
 118        set_feature(env, ARM_FEATURE_THUMB2EE);
 119        set_feature(env, ARM_FEATURE_DIV);
 120        break;
 121    case ARM_CPUID_TI915T:
 122    case ARM_CPUID_TI925T:
 123        set_feature(env, ARM_FEATURE_OMAPCP);
 124        env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring.  */
 125        env->cp15.c0_cachetype = 0x5109149;
 126        env->cp15.c1_sys = 0x00000070;
 127        env->cp15.c15_i_max = 0x000;
 128        env->cp15.c15_i_min = 0xff0;
 129        break;
 130    case ARM_CPUID_PXA250:
 131    case ARM_CPUID_PXA255:
 132    case ARM_CPUID_PXA260:
 133    case ARM_CPUID_PXA261:
 134    case ARM_CPUID_PXA262:
 135        set_feature(env, ARM_FEATURE_XSCALE);
 136        /* JTAG_ID is ((id << 28) | 0x09265013) */
 137        env->cp15.c0_cachetype = 0xd172172;
 138        env->cp15.c1_sys = 0x00000078;
 139        break;
 140    case ARM_CPUID_PXA270_A0:
 141    case ARM_CPUID_PXA270_A1:
 142    case ARM_CPUID_PXA270_B0:
 143    case ARM_CPUID_PXA270_B1:
 144    case ARM_CPUID_PXA270_C0:
 145    case ARM_CPUID_PXA270_C5:
 146        set_feature(env, ARM_FEATURE_XSCALE);
 147        /* JTAG_ID is ((id << 28) | 0x09265013) */
 148        set_feature(env, ARM_FEATURE_IWMMXT);
 149        env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
 150        env->cp15.c0_cachetype = 0xd172172;
 151        env->cp15.c1_sys = 0x00000078;
 152        break;
 153    default:
 154        cpu_abort(env, "Bad CPU ID: %x\n", id);
 155        break;
 156    }
 157}
 158
 159void cpu_reset(CPUARMState *env)
 160{
 161    uint32_t id;
 162
 163    if (qemu_loglevel_mask(CPU_LOG_RESET)) {
 164        qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
 165        log_cpu_state(env, 0);
 166    }
 167
 168    id = env->cp15.c0_cpuid;
 169    memset(env, 0, offsetof(CPUARMState, breakpoints));
 170    if (id)
 171        cpu_reset_model_id(env, id);
 172#if defined (CONFIG_USER_ONLY)
 173    env->uncached_cpsr = ARM_CPU_MODE_USR;
 174    env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
 175#else
 176    /* SVC mode with interrupts disabled.  */
 177    env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
 178    /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
 179       clear at reset.  */
 180    if (IS_M(env))
 181        env->uncached_cpsr &= ~CPSR_I;
 182    env->vfp.xregs[ARM_VFP_FPEXC] = 0;
 183    env->cp15.c2_base_mask = 0xffffc000u;
 184#endif
 185    env->regs[15] = 0;
 186    tlb_flush(env, 1);
 187}
 188
 189static int vfp_gdb_get_reg(CPUState *env, uint8_t *buf, int reg)
 190{
 191    int nregs;
 192
 193    /* VFP data registers are always little-endian.  */
 194    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
 195    if (reg < nregs) {
 196        stfq_le_p(buf, env->vfp.regs[reg]);
 197        return 8;
 198    }
 199    if (arm_feature(env, ARM_FEATURE_NEON)) {
 200        /* Aliases for Q regs.  */
 201        nregs += 16;
 202        if (reg < nregs) {
 203            stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
 204            stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
 205            return 16;
 206        }
 207    }
 208    switch (reg - nregs) {
 209    case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
 210    case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
 211    case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
 212    }
 213    return 0;
 214}
 215
 216static int vfp_gdb_set_reg(CPUState *env, uint8_t *buf, int reg)
 217{
 218    int nregs;
 219
 220    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
 221    if (reg < nregs) {
 222        env->vfp.regs[reg] = ldfq_le_p(buf);
 223        return 8;
 224    }
 225    if (arm_feature(env, ARM_FEATURE_NEON)) {
 226        nregs += 16;
 227        if (reg < nregs) {
 228            env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
 229            env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
 230            return 16;
 231        }
 232    }
 233    switch (reg - nregs) {
 234    case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
 235    case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
 236    case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf); return 4;
 237    }
 238    return 0;
 239}
 240
 241CPUARMState *cpu_arm_init(const char *cpu_model)
 242{
 243    CPUARMState *env;
 244    uint32_t id;
 245    static int inited = 0;
 246
 247    id = cpu_arm_find_by_name(cpu_model);
 248    if (id == 0)
 249        return NULL;
 250    env = qemu_mallocz(sizeof(CPUARMState));
 251    cpu_exec_init(env);
 252    if (!inited) {
 253        inited = 1;
 254        arm_translate_init();
 255    }
 256
 257    env->cpu_model_str = cpu_model;
 258    env->cp15.c0_cpuid = id;
 259    cpu_reset(env);
 260    if (arm_feature(env, ARM_FEATURE_NEON)) {
 261        gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
 262                                 51, "arm-neon.xml", 0);
 263    } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
 264        gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
 265                                 35, "arm-vfp3.xml", 0);
 266    } else if (arm_feature(env, ARM_FEATURE_VFP)) {
 267        gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
 268                                 19, "arm-vfp.xml", 0);
 269    }
 270    return env;
 271}
 272
 273struct arm_cpu_t {
 274    uint32_t id;
 275    const char *name;
 276};
 277
 278static const struct arm_cpu_t arm_cpu_names[] = {
 279    { ARM_CPUID_ARM926, "arm926"},
 280    { ARM_CPUID_ARM946, "arm946"},
 281    { ARM_CPUID_ARM1026, "arm1026"},
 282    { ARM_CPUID_ARM1136, "arm1136"},
 283    { ARM_CPUID_ARM1136_R2, "arm1136-r2"},
 284    { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
 285    { ARM_CPUID_CORTEXM3, "cortex-m3"},
 286    { ARM_CPUID_CORTEXA8, "cortex-a8"},
 287    { ARM_CPUID_TI925T, "ti925t" },
 288    { ARM_CPUID_PXA250, "pxa250" },
 289    { ARM_CPUID_PXA255, "pxa255" },
 290    { ARM_CPUID_PXA260, "pxa260" },
 291    { ARM_CPUID_PXA261, "pxa261" },
 292    { ARM_CPUID_PXA262, "pxa262" },
 293    { ARM_CPUID_PXA270, "pxa270" },
 294    { ARM_CPUID_PXA270_A0, "pxa270-a0" },
 295    { ARM_CPUID_PXA270_A1, "pxa270-a1" },
 296    { ARM_CPUID_PXA270_B0, "pxa270-b0" },
 297    { ARM_CPUID_PXA270_B1, "pxa270-b1" },
 298    { ARM_CPUID_PXA270_C0, "pxa270-c0" },
 299    { ARM_CPUID_PXA270_C5, "pxa270-c5" },
 300    { ARM_CPUID_ANY, "any"},
 301    { 0, NULL}
 302};
 303
 304void arm_cpu_list(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
 305{
 306    int i;
 307
 308    (*cpu_fprintf)(f, "Available CPUs:\n");
 309    for (i = 0; arm_cpu_names[i].name; i++) {
 310        (*cpu_fprintf)(f, "  %s\n", arm_cpu_names[i].name);
 311    }
 312}
 313
 314/* return 0 if not found */
 315static uint32_t cpu_arm_find_by_name(const char *name)
 316{
 317    int i;
 318    uint32_t id;
 319
 320    id = 0;
 321    for (i = 0; arm_cpu_names[i].name; i++) {
 322        if (strcmp(name, arm_cpu_names[i].name) == 0) {
 323            id = arm_cpu_names[i].id;
 324            break;
 325        }
 326    }
 327    return id;
 328}
 329
 330void cpu_arm_close(CPUARMState *env)
 331{
 332    free(env);
 333}
 334
 335uint32_t cpsr_read(CPUARMState *env)
 336{
 337    int ZF;
 338    ZF = (env->ZF == 0);
 339    return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
 340        (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
 341        | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
 342        | ((env->condexec_bits & 0xfc) << 8)
 343        | (env->GE << 16);
 344}
 345
 346void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
 347{
 348    if (mask & CPSR_NZCV) {
 349        env->ZF = (~val) & CPSR_Z;
 350        env->NF = val;
 351        env->CF = (val >> 29) & 1;
 352        env->VF = (val << 3) & 0x80000000;
 353    }
 354    if (mask & CPSR_Q)
 355        env->QF = ((val & CPSR_Q) != 0);
 356    if (mask & CPSR_T)
 357        env->thumb = ((val & CPSR_T) != 0);
 358    if (mask & CPSR_IT_0_1) {
 359        env->condexec_bits &= ~3;
 360        env->condexec_bits |= (val >> 25) & 3;
 361    }
 362    if (mask & CPSR_IT_2_7) {
 363        env->condexec_bits &= 3;
 364        env->condexec_bits |= (val >> 8) & 0xfc;
 365    }
 366    if (mask & CPSR_GE) {
 367        env->GE = (val >> 16) & 0xf;
 368    }
 369
 370    if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
 371        switch_mode(env, val & CPSR_M);
 372    }
 373    mask &= ~CACHED_CPSR_BITS;
 374    env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
 375}
 376
 377/* Sign/zero extend */
 378uint32_t HELPER(sxtb16)(uint32_t x)
 379{
 380    uint32_t res;
 381    res = (uint16_t)(int8_t)x;
 382    res |= (uint32_t)(int8_t)(x >> 16) << 16;
 383    return res;
 384}
 385
 386uint32_t HELPER(uxtb16)(uint32_t x)
 387{
 388    uint32_t res;
 389    res = (uint16_t)(uint8_t)x;
 390    res |= (uint32_t)(uint8_t)(x >> 16) << 16;
 391    return res;
 392}
 393
 394uint32_t HELPER(clz)(uint32_t x)
 395{
 396    int count;
 397    for (count = 32; x; count--)
 398        x >>= 1;
 399    return count;
 400}
 401
 402int32_t HELPER(sdiv)(int32_t num, int32_t den)
 403{
 404    if (den == 0)
 405      return 0;
 406    return num / den;
 407}
 408
 409uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
 410{
 411    if (den == 0)
 412      return 0;
 413    return num / den;
 414}
 415
 416uint32_t HELPER(rbit)(uint32_t x)
 417{
 418    x =  ((x & 0xff000000) >> 24)
 419       | ((x & 0x00ff0000) >> 8)
 420       | ((x & 0x0000ff00) << 8)
 421       | ((x & 0x000000ff) << 24);
 422    x =  ((x & 0xf0f0f0f0) >> 4)
 423       | ((x & 0x0f0f0f0f) << 4);
 424    x =  ((x & 0x88888888) >> 3)
 425       | ((x & 0x44444444) >> 1)
 426       | ((x & 0x22222222) << 1)
 427       | ((x & 0x11111111) << 3);
 428    return x;
 429}
 430
 431uint32_t HELPER(abs)(uint32_t x)
 432{
 433    return ((int32_t)x < 0) ? -x : x;
 434}
 435
 436#if defined(CONFIG_USER_ONLY)
 437
 438void do_interrupt (CPUState *env)
 439{
 440    env->exception_index = -1;
 441}
 442
 443/* Structure used to record exclusive memory locations.  */
 444typedef struct mmon_state {
 445    struct mmon_state *next;
 446    CPUARMState *cpu_env;
 447    uint32_t addr;
 448} mmon_state;
 449
 450/* Chain of current locks.  */
 451static mmon_state* mmon_head = NULL;
 452
 453int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
 454                              int mmu_idx, int is_softmmu)
 455{
 456    if (rw == 2) {
 457        env->exception_index = EXCP_PREFETCH_ABORT;
 458        env->cp15.c6_insn = address;
 459    } else {
 460        env->exception_index = EXCP_DATA_ABORT;
 461        env->cp15.c6_data = address;
 462    }
 463    return 1;
 464}
 465
 466static void allocate_mmon_state(CPUState *env)
 467{
 468    env->mmon_entry = malloc(sizeof (mmon_state));
 469    memset (env->mmon_entry, 0, sizeof (mmon_state));
 470    env->mmon_entry->cpu_env = env;
 471    mmon_head = env->mmon_entry;
 472}
 473
 474/* Flush any monitor locks for the specified address.  */
 475static void flush_mmon(uint32_t addr)
 476{
 477    mmon_state *mon;
 478
 479    for (mon = mmon_head; mon; mon = mon->next)
 480      {
 481        if (mon->addr != addr)
 482          continue;
 483
 484        mon->addr = 0;
 485        break;
 486      }
 487}
 488
 489/* Mark an address for exclusive access.  */
 490void HELPER(mark_exclusive)(CPUState *env, uint32_t addr)
 491{
 492    if (!env->mmon_entry)
 493        allocate_mmon_state(env);
 494    /* Clear any previous locks.  */
 495    flush_mmon(addr);
 496    env->mmon_entry->addr = addr;
 497}
 498
 499/* Test if an exclusive address is still exclusive.  Returns zero
 500   if the address is still exclusive.   */
 501uint32_t HELPER(test_exclusive)(CPUState *env, uint32_t addr)
 502{
 503    int res;
 504
 505    if (!env->mmon_entry)
 506        return 1;
 507    if (env->mmon_entry->addr == addr)
 508        res = 0;
 509    else
 510        res = 1;
 511    flush_mmon(addr);
 512    return res;
 513}
 514
 515void HELPER(clrex)(CPUState *env)
 516{
 517    if (!(env->mmon_entry && env->mmon_entry->addr))
 518        return;
 519    flush_mmon(env->mmon_entry->addr);
 520}
 521
 522target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
 523{
 524    return addr;
 525}
 526
 527/* These should probably raise undefined insn exceptions.  */
 528void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
 529{
 530    int op1 = (insn >> 8) & 0xf;
 531    cpu_abort(env, "cp%i insn %08x\n", op1, insn);
 532    return;
 533}
 534
 535uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
 536{
 537    int op1 = (insn >> 8) & 0xf;
 538    cpu_abort(env, "cp%i insn %08x\n", op1, insn);
 539    return 0;
 540}
 541
 542void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
 543{
 544    cpu_abort(env, "cp15 insn %08x\n", insn);
 545}
 546
 547uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
 548{
 549    cpu_abort(env, "cp15 insn %08x\n", insn);
 550    return 0;
 551}
 552
 553/* These should probably raise undefined insn exceptions.  */
 554void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
 555{
 556    cpu_abort(env, "v7m_mrs %d\n", reg);
 557}
 558
 559uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
 560{
 561    cpu_abort(env, "v7m_mrs %d\n", reg);
 562    return 0;
 563}
 564
 565void switch_mode(CPUState *env, int mode)
 566{
 567    if (mode != ARM_CPU_MODE_USR)
 568        cpu_abort(env, "Tried to switch out of user mode\n");
 569}
 570
 571void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
 572{
 573    cpu_abort(env, "banked r13 write\n");
 574}
 575
 576uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
 577{
 578    cpu_abort(env, "banked r13 read\n");
 579    return 0;
 580}
 581
 582#else
 583
 584extern int semihosting_enabled;
 585
 586/* Map CPU modes onto saved register banks.  */
 587static inline int bank_number (int mode)
 588{
 589    switch (mode) {
 590    case ARM_CPU_MODE_USR:
 591    case ARM_CPU_MODE_SYS:
 592        return 0;
 593    case ARM_CPU_MODE_SVC:
 594        return 1;
 595    case ARM_CPU_MODE_ABT:
 596        return 2;
 597    case ARM_CPU_MODE_UND:
 598        return 3;
 599    case ARM_CPU_MODE_IRQ:
 600        return 4;
 601    case ARM_CPU_MODE_FIQ:
 602        return 5;
 603    }
 604    cpu_abort(cpu_single_env, "Bad mode %x\n", mode);
 605    return -1;
 606}
 607
 608void switch_mode(CPUState *env, int mode)
 609{
 610    int old_mode;
 611    int i;
 612
 613    old_mode = env->uncached_cpsr & CPSR_M;
 614    if (mode == old_mode)
 615        return;
 616
 617    if (old_mode == ARM_CPU_MODE_FIQ) {
 618        memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
 619        memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
 620    } else if (mode == ARM_CPU_MODE_FIQ) {
 621        memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
 622        memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
 623    }
 624
 625    i = bank_number(old_mode);
 626    env->banked_r13[i] = env->regs[13];
 627    env->banked_r14[i] = env->regs[14];
 628    env->banked_spsr[i] = env->spsr;
 629
 630    i = bank_number(mode);
 631    env->regs[13] = env->banked_r13[i];
 632    env->regs[14] = env->banked_r14[i];
 633    env->spsr = env->banked_spsr[i];
 634}
 635
 636static void v7m_push(CPUARMState *env, uint32_t val)
 637{
 638    env->regs[13] -= 4;
 639    stl_phys(env->regs[13], val);
 640}
 641
 642static uint32_t v7m_pop(CPUARMState *env)
 643{
 644    uint32_t val;
 645    val = ldl_phys(env->regs[13]);
 646    env->regs[13] += 4;
 647    return val;
 648}
 649
 650/* Switch to V7M main or process stack pointer.  */
 651static void switch_v7m_sp(CPUARMState *env, int process)
 652{
 653    uint32_t tmp;
 654    if (env->v7m.current_sp != process) {
 655        tmp = env->v7m.other_sp;
 656        env->v7m.other_sp = env->regs[13];
 657        env->regs[13] = tmp;
 658        env->v7m.current_sp = process;
 659    }
 660}
 661
 662static void do_v7m_exception_exit(CPUARMState *env)
 663{
 664    uint32_t type;
 665    uint32_t xpsr;
 666
 667    type = env->regs[15];
 668    if (env->v7m.exception != 0)
 669        armv7m_nvic_complete_irq(env->v7m.nvic, env->v7m.exception);
 670
 671    /* Switch to the target stack.  */
 672    switch_v7m_sp(env, (type & 4) != 0);
 673    /* Pop registers.  */
 674    env->regs[0] = v7m_pop(env);
 675    env->regs[1] = v7m_pop(env);
 676    env->regs[2] = v7m_pop(env);
 677    env->regs[3] = v7m_pop(env);
 678    env->regs[12] = v7m_pop(env);
 679    env->regs[14] = v7m_pop(env);
 680    env->regs[15] = v7m_pop(env);
 681    xpsr = v7m_pop(env);
 682    xpsr_write(env, xpsr, 0xfffffdff);
 683    /* Undo stack alignment.  */
 684    if (xpsr & 0x200)
 685        env->regs[13] |= 4;
 686    /* ??? The exception return type specifies Thread/Handler mode.  However
 687       this is also implied by the xPSR value. Not sure what to do
 688       if there is a mismatch.  */
 689    /* ??? Likewise for mismatches between the CONTROL register and the stack
 690       pointer.  */
 691}
 692
 693void do_interrupt_v7m(CPUARMState *env)
 694{
 695    uint32_t xpsr = xpsr_read(env);
 696    uint32_t lr;
 697    uint32_t addr;
 698
 699    lr = 0xfffffff1;
 700    if (env->v7m.current_sp)
 701        lr |= 4;
 702    if (env->v7m.exception == 0)
 703        lr |= 8;
 704
 705    /* For exceptions we just mark as pending on the NVIC, and let that
 706       handle it.  */
 707    /* TODO: Need to escalate if the current priority is higher than the
 708       one we're raising.  */
 709    switch (env->exception_index) {
 710    case EXCP_UDEF:
 711        armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_USAGE);
 712        return;
 713    case EXCP_SWI:
 714        env->regs[15] += 2;
 715        armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_SVC);
 716        return;
 717    case EXCP_PREFETCH_ABORT:
 718    case EXCP_DATA_ABORT:
 719        armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_MEM);
 720        return;
 721    case EXCP_BKPT:
 722        if (semihosting_enabled) {
 723            int nr;
 724            nr = lduw_code(env->regs[15]) & 0xff;
 725            if (nr == 0xab) {
 726                env->regs[15] += 2;
 727                env->regs[0] = do_arm_semihosting(env);
 728                return;
 729            }
 730        }
 731        armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_DEBUG);
 732        return;
 733    case EXCP_IRQ:
 734        env->v7m.exception = armv7m_nvic_acknowledge_irq(env->v7m.nvic);
 735        break;
 736    case EXCP_EXCEPTION_EXIT:
 737        do_v7m_exception_exit(env);
 738        return;
 739    default:
 740        cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
 741        return; /* Never happens.  Keep compiler happy.  */
 742    }
 743
 744    /* Align stack pointer.  */
 745    /* ??? Should only do this if Configuration Control Register
 746       STACKALIGN bit is set.  */
 747    if (env->regs[13] & 4) {
 748        env->regs[13] -= 4;
 749        xpsr |= 0x200;
 750    }
 751    /* Switch to the handler mode.  */
 752    v7m_push(env, xpsr);
 753    v7m_push(env, env->regs[15]);
 754    v7m_push(env, env->regs[14]);
 755    v7m_push(env, env->regs[12]);
 756    v7m_push(env, env->regs[3]);
 757    v7m_push(env, env->regs[2]);
 758    v7m_push(env, env->regs[1]);
 759    v7m_push(env, env->regs[0]);
 760    switch_v7m_sp(env, 0);
 761    env->uncached_cpsr &= ~CPSR_IT;
 762    env->regs[14] = lr;
 763    addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
 764    env->regs[15] = addr & 0xfffffffe;
 765    env->thumb = addr & 1;
 766}
 767
 768/* Handle a CPU exception.  */
 769void do_interrupt(CPUARMState *env)
 770{
 771    uint32_t addr;
 772    uint32_t mask;
 773    int new_mode;
 774    uint32_t offset;
 775
 776    if (IS_M(env)) {
 777        do_interrupt_v7m(env);
 778        return;
 779    }
 780    /* TODO: Vectored interrupt controller.  */
 781    switch (env->exception_index) {
 782    case EXCP_UDEF:
 783        new_mode = ARM_CPU_MODE_UND;
 784        addr = 0x04;
 785        mask = CPSR_I;
 786        if (env->thumb)
 787            offset = 2;
 788        else
 789            offset = 4;
 790        break;
 791    case EXCP_SWI:
 792        if (semihosting_enabled) {
 793            /* Check for semihosting interrupt.  */
 794            if (env->thumb) {
 795                mask = lduw_code(env->regs[15] - 2) & 0xff;
 796            } else {
 797                mask = ldl_code(env->regs[15] - 4) & 0xffffff;
 798            }
 799            /* Only intercept calls from privileged modes, to provide some
 800               semblance of security.  */
 801            if (((mask == 0x123456 && !env->thumb)
 802                    || (mask == 0xab && env->thumb))
 803                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
 804                env->regs[0] = do_arm_semihosting(env);
 805                return;
 806            }
 807        }
 808        new_mode = ARM_CPU_MODE_SVC;
 809        addr = 0x08;
 810        mask = CPSR_I;
 811        /* The PC already points to the next instruction.  */
 812        offset = 0;
 813        break;
 814    case EXCP_BKPT:
 815        /* See if this is a semihosting syscall.  */
 816        if (env->thumb && semihosting_enabled) {
 817            mask = lduw_code(env->regs[15]) & 0xff;
 818            if (mask == 0xab
 819                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
 820                env->regs[15] += 2;
 821                env->regs[0] = do_arm_semihosting(env);
 822                return;
 823            }
 824        }
 825        /* Fall through to prefetch abort.  */
 826    case EXCP_PREFETCH_ABORT:
 827        new_mode = ARM_CPU_MODE_ABT;
 828        addr = 0x0c;
 829        mask = CPSR_A | CPSR_I;
 830        offset = 4;
 831        break;
 832    case EXCP_DATA_ABORT:
 833        new_mode = ARM_CPU_MODE_ABT;
 834        addr = 0x10;
 835        mask = CPSR_A | CPSR_I;
 836        offset = 8;
 837        break;
 838    case EXCP_IRQ:
 839        new_mode = ARM_CPU_MODE_IRQ;
 840        addr = 0x18;
 841        /* Disable IRQ and imprecise data aborts.  */
 842        mask = CPSR_A | CPSR_I;
 843        offset = 4;
 844        break;
 845    case EXCP_FIQ:
 846        new_mode = ARM_CPU_MODE_FIQ;
 847        addr = 0x1c;
 848        /* Disable FIQ, IRQ and imprecise data aborts.  */
 849        mask = CPSR_A | CPSR_I | CPSR_F;
 850        offset = 4;
 851        break;
 852    default:
 853        cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
 854        return; /* Never happens.  Keep compiler happy.  */
 855    }
 856    /* High vectors.  */
 857    if (env->cp15.c1_sys & (1 << 13)) {
 858        addr += 0xffff0000;
 859    }
 860    switch_mode (env, new_mode);
 861    env->spsr = cpsr_read(env);
 862    /* Clear IT bits.  */
 863    env->condexec_bits = 0;
 864    /* Switch to the new mode, and switch to Arm mode.  */
 865    /* ??? Thumb interrupt handlers not implemented.  */
 866    env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
 867    env->uncached_cpsr |= mask;
 868    env->thumb = 0;
 869    env->regs[14] = env->regs[15] + offset;
 870    env->regs[15] = addr;
 871    env->interrupt_request |= CPU_INTERRUPT_EXITTB;
 872}
 873
 874/* Check section/page access permissions.
 875   Returns the page protection flags, or zero if the access is not
 876   permitted.  */
 877static inline int check_ap(CPUState *env, int ap, int domain, int access_type,
 878                           int is_user)
 879{
 880  int prot_ro;
 881
 882  if (domain == 3)
 883    return PAGE_READ | PAGE_WRITE;
 884
 885  if (access_type == 1)
 886      prot_ro = 0;
 887  else
 888      prot_ro = PAGE_READ;
 889
 890  switch (ap) {
 891  case 0:
 892      if (access_type == 1)
 893          return 0;
 894      switch ((env->cp15.c1_sys >> 8) & 3) {
 895      case 1:
 896          return is_user ? 0 : PAGE_READ;
 897      case 2:
 898          return PAGE_READ;
 899      default:
 900          return 0;
 901      }
 902  case 1:
 903      return is_user ? 0 : PAGE_READ | PAGE_WRITE;
 904  case 2:
 905      if (is_user)
 906          return prot_ro;
 907      else
 908          return PAGE_READ | PAGE_WRITE;
 909  case 3:
 910      return PAGE_READ | PAGE_WRITE;
 911  case 4: /* Reserved.  */
 912      return 0;
 913  case 5:
 914      return is_user ? 0 : prot_ro;
 915  case 6:
 916      return prot_ro;
 917  case 7:
 918      if (!arm_feature (env, ARM_FEATURE_V7))
 919          return 0;
 920      return prot_ro;
 921  default:
 922      abort();
 923  }
 924}
 925
 926static uint32_t get_level1_table_address(CPUState *env, uint32_t address)
 927{
 928    uint32_t table;
 929
 930    if (address & env->cp15.c2_mask)
 931        table = env->cp15.c2_base1 & 0xffffc000;
 932    else
 933        table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
 934
 935    table |= (address >> 18) & 0x3ffc;
 936    return table;
 937}
 938
 939static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type,
 940                            int is_user, uint32_t *phys_ptr, int *prot)
 941{
 942    int code;
 943    uint32_t table;
 944    uint32_t desc;
 945    int type;
 946    int ap;
 947    int domain;
 948    uint32_t phys_addr;
 949
 950    /* Pagetable walk.  */
 951    /* Lookup l1 descriptor.  */
 952    table = get_level1_table_address(env, address);
 953    desc = ldl_phys(table);
 954    type = (desc & 3);
 955    domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3;
 956    if (type == 0) {
 957        /* Section translation fault.  */
 958        code = 5;
 959        goto do_fault;
 960    }
 961    if (domain == 0 || domain == 2) {
 962        if (type == 2)
 963            code = 9; /* Section domain fault.  */
 964        else
 965            code = 11; /* Page domain fault.  */
 966        goto do_fault;
 967    }
 968    if (type == 2) {
 969        /* 1Mb section.  */
 970        phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
 971        ap = (desc >> 10) & 3;
 972        code = 13;
 973    } else {
 974        /* Lookup l2 entry.  */
 975        if (type == 1) {
 976            /* Coarse pagetable.  */
 977            table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
 978        } else {
 979            /* Fine pagetable.  */
 980            table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
 981        }
 982        desc = ldl_phys(table);
 983        switch (desc & 3) {
 984        case 0: /* Page translation fault.  */
 985            code = 7;
 986            goto do_fault;
 987        case 1: /* 64k page.  */
 988            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
 989            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
 990            break;
 991        case 2: /* 4k page.  */
 992            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
 993            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
 994            break;
 995        case 3: /* 1k page.  */
 996            if (type == 1) {
 997                if (arm_feature(env, ARM_FEATURE_XSCALE)) {
 998                    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
 999                } else {
1000                    /* Page translation fault.  */
1001                    code = 7;
1002                    goto do_fault;
1003                }
1004            } else {
1005                phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1006            }
1007            ap = (desc >> 4) & 3;
1008            break;
1009        default:
1010            /* Never happens, but compiler isn't smart enough to tell.  */
1011            abort();
1012        }
1013        code = 15;
1014    }
1015    *prot = check_ap(env, ap, domain, access_type, is_user);
1016    if (!*prot) {
1017        /* Access permission fault.  */
1018        goto do_fault;
1019    }
1020    *phys_ptr = phys_addr;
1021    return 0;
1022do_fault:
1023    return code | (domain << 4);
1024}
1025
1026static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type,
1027                            int is_user, uint32_t *phys_ptr, int *prot)
1028{
1029    int code;
1030    uint32_t table;
1031    uint32_t desc;
1032    uint32_t xn;
1033    int type;
1034    int ap;
1035    int domain;
1036    uint32_t phys_addr;
1037
1038    /* Pagetable walk.  */
1039    /* Lookup l1 descriptor.  */
1040    table = get_level1_table_address(env, address);
1041    desc = ldl_phys(table);
1042    type = (desc & 3);
1043    if (type == 0) {
1044        /* Section translation fault.  */
1045        code = 5;
1046        domain = 0;
1047        goto do_fault;
1048    } else if (type == 2 && (desc & (1 << 18))) {
1049        /* Supersection.  */
1050        domain = 0;
1051    } else {
1052        /* Section or page.  */
1053        domain = (desc >> 4) & 0x1e;
1054    }
1055    domain = (env->cp15.c3 >> domain) & 3;
1056    if (domain == 0 || domain == 2) {
1057        if (type == 2)
1058            code = 9; /* Section domain fault.  */
1059        else
1060            code = 11; /* Page domain fault.  */
1061        goto do_fault;
1062    }
1063    if (type == 2) {
1064        if (desc & (1 << 18)) {
1065            /* Supersection.  */
1066            phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1067        } else {
1068            /* Section.  */
1069            phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1070        }
1071        ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1072        xn = desc & (1 << 4);
1073        code = 13;
1074    } else {
1075        /* Lookup l2 entry.  */
1076        table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1077        desc = ldl_phys(table);
1078        ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1079        switch (desc & 3) {
1080        case 0: /* Page translation fault.  */
1081            code = 7;
1082            goto do_fault;
1083        case 1: /* 64k page.  */
1084            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1085            xn = desc & (1 << 15);
1086            break;
1087        case 2: case 3: /* 4k page.  */
1088            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1089            xn = desc & 1;
1090            break;
1091        default:
1092            /* Never happens, but compiler isn't smart enough to tell.  */
1093            abort();
1094        }
1095        code = 15;
1096    }
1097    if (xn && access_type == 2)
1098        goto do_fault;
1099
1100    /* The simplified model uses AP[0] as an access control bit.  */
1101    if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
1102        /* Access flag fault.  */
1103        code = (code == 15) ? 6 : 3;
1104        goto do_fault;
1105    }
1106    *prot = check_ap(env, ap, domain, access_type, is_user);
1107    if (!*prot) {
1108        /* Access permission fault.  */
1109        goto do_fault;
1110    }
1111    *phys_ptr = phys_addr;
1112    return 0;
1113do_fault:
1114    return code | (domain << 4);
1115}
1116
1117static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type,
1118                             int is_user, uint32_t *phys_ptr, int *prot)
1119{
1120    int n;
1121    uint32_t mask;
1122    uint32_t base;
1123
1124    *phys_ptr = address;
1125    for (n = 7; n >= 0; n--) {
1126        base = env->cp15.c6_region[n];
1127        if ((base & 1) == 0)
1128            continue;
1129        mask = 1 << ((base >> 1) & 0x1f);
1130        /* Keep this shift separate from the above to avoid an
1131           (undefined) << 32.  */
1132        mask = (mask << 1) - 1;
1133        if (((base ^ address) & ~mask) == 0)
1134            break;
1135    }
1136    if (n < 0)
1137        return 2;
1138
1139    if (access_type == 2) {
1140        mask = env->cp15.c5_insn;
1141    } else {
1142        mask = env->cp15.c5_data;
1143    }
1144    mask = (mask >> (n * 4)) & 0xf;
1145    switch (mask) {
1146    case 0:
1147        return 1;
1148    case 1:
1149        if (is_user)
1150          return 1;
1151        *prot = PAGE_READ | PAGE_WRITE;
1152        break;
1153    case 2:
1154        *prot = PAGE_READ;
1155        if (!is_user)
1156            *prot |= PAGE_WRITE;
1157        break;
1158    case 3:
1159        *prot = PAGE_READ | PAGE_WRITE;
1160        break;
1161    case 5:
1162        if (is_user)
1163            return 1;
1164        *prot = PAGE_READ;
1165        break;
1166    case 6:
1167        *prot = PAGE_READ;
1168        break;
1169    default:
1170        /* Bad permission.  */
1171        return 1;
1172    }
1173    return 0;
1174}
1175
1176static inline int get_phys_addr(CPUState *env, uint32_t address,
1177                                int access_type, int is_user,
1178                                uint32_t *phys_ptr, int *prot)
1179{
1180    /* Fast Context Switch Extension.  */
1181    if (address < 0x02000000)
1182        address += env->cp15.c13_fcse;
1183
1184    if ((env->cp15.c1_sys & 1) == 0) {
1185        /* MMU/MPU disabled.  */
1186        *phys_ptr = address;
1187        *prot = PAGE_READ | PAGE_WRITE;
1188        return 0;
1189    } else if (arm_feature(env, ARM_FEATURE_MPU)) {
1190        return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1191                                 prot);
1192    } else if (env->cp15.c1_sys & (1 << 23)) {
1193        return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
1194                                prot);
1195    } else {
1196        return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
1197                                prot);
1198    }
1199}
1200
1201int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address,
1202                              int access_type, int mmu_idx, int is_softmmu)
1203{
1204    uint32_t phys_addr;
1205    int prot;
1206    int ret, is_user;
1207
1208    is_user = mmu_idx == MMU_USER_IDX;
1209    ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot);
1210    if (ret == 0) {
1211        /* Map a single [sub]page.  */
1212        phys_addr &= ~(uint32_t)0x3ff;
1213        address &= ~(uint32_t)0x3ff;
1214        return tlb_set_page (env, address, phys_addr, prot, mmu_idx,
1215                             is_softmmu);
1216    }
1217
1218    if (access_type == 2) {
1219        env->cp15.c5_insn = ret;
1220        env->cp15.c6_insn = address;
1221        env->exception_index = EXCP_PREFETCH_ABORT;
1222    } else {
1223        env->cp15.c5_data = ret;
1224        if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1225            env->cp15.c5_data |= (1 << 11);
1226        env->cp15.c6_data = address;
1227        env->exception_index = EXCP_DATA_ABORT;
1228    }
1229    return 1;
1230}
1231
1232target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
1233{
1234    uint32_t phys_addr;
1235    int prot;
1236    int ret;
1237
1238    ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot);
1239
1240    if (ret != 0)
1241        return -1;
1242
1243    return phys_addr;
1244}
1245
1246/* Not really implemented.  Need to figure out a sane way of doing this.
1247   Maybe add generic watchpoint support and use that.  */
1248
1249void HELPER(mark_exclusive)(CPUState *env, uint32_t addr)
1250{
1251    env->mmon_addr = addr;
1252}
1253
1254uint32_t HELPER(test_exclusive)(CPUState *env, uint32_t addr)
1255{
1256    return (env->mmon_addr != addr);
1257}
1258
1259void HELPER(clrex)(CPUState *env)
1260{
1261    env->mmon_addr = -1;
1262}
1263
1264void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
1265{
1266    int cp_num = (insn >> 8) & 0xf;
1267    int cp_info = (insn >> 5) & 7;
1268    int src = (insn >> 16) & 0xf;
1269    int operand = insn & 0xf;
1270
1271    if (env->cp[cp_num].cp_write)
1272        env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
1273                                 cp_info, src, operand, val);
1274}
1275
1276uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
1277{
1278    int cp_num = (insn >> 8) & 0xf;
1279    int cp_info = (insn >> 5) & 7;
1280    int dest = (insn >> 16) & 0xf;
1281    int operand = insn & 0xf;
1282
1283    if (env->cp[cp_num].cp_read)
1284        return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
1285                                       cp_info, dest, operand);
1286    return 0;
1287}
1288
1289/* Return basic MPU access permission bits.  */
1290static uint32_t simple_mpu_ap_bits(uint32_t val)
1291{
1292    uint32_t ret;
1293    uint32_t mask;
1294    int i;
1295    ret = 0;
1296    mask = 3;
1297    for (i = 0; i < 16; i += 2) {
1298        ret |= (val >> i) & mask;
1299        mask <<= 2;
1300    }
1301    return ret;
1302}
1303
1304/* Pad basic MPU access permission bits to extended format.  */
1305static uint32_t extended_mpu_ap_bits(uint32_t val)
1306{
1307    uint32_t ret;
1308    uint32_t mask;
1309    int i;
1310    ret = 0;
1311    mask = 3;
1312    for (i = 0; i < 16; i += 2) {
1313        ret |= (val & mask) << i;
1314        mask <<= 2;
1315    }
1316    return ret;
1317}
1318
1319void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
1320{
1321    int op1;
1322    int op2;
1323    int crm;
1324
1325    op1 = (insn >> 21) & 7;
1326    op2 = (insn >> 5) & 7;
1327    crm = insn & 0xf;
1328    switch ((insn >> 16) & 0xf) {
1329    case 0:
1330        /* ID codes.  */
1331        if (arm_feature(env, ARM_FEATURE_XSCALE))
1332            break;
1333        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1334            break;
1335        if (arm_feature(env, ARM_FEATURE_V7)
1336                && op1 == 2 && crm == 0 && op2 == 0) {
1337            env->cp15.c0_cssel = val & 0xf;
1338            break;
1339        }
1340        goto bad_reg;
1341    case 1: /* System configuration.  */
1342        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1343            op2 = 0;
1344        switch (op2) {
1345        case 0:
1346            if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
1347                env->cp15.c1_sys = val;
1348            /* ??? Lots of these bits are not implemented.  */
1349            /* This may enable/disable the MMU, so do a TLB flush.  */
1350            tlb_flush(env, 1);
1351            break;
1352        case 1: /* Auxiliary cotrol register.  */
1353            if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1354                env->cp15.c1_xscaleauxcr = val;
1355                break;
1356            }
1357            /* Not implemented.  */
1358            break;
1359        case 2:
1360            if (arm_feature(env, ARM_FEATURE_XSCALE))
1361                goto bad_reg;
1362            if (env->cp15.c1_coproc != val) {
1363                env->cp15.c1_coproc = val;
1364                /* ??? Is this safe when called from within a TB?  */
1365                tb_flush(env);
1366            }
1367            break;
1368        default:
1369            goto bad_reg;
1370        }
1371        break;
1372    case 2: /* MMU Page table control / MPU cache control.  */
1373        if (arm_feature(env, ARM_FEATURE_MPU)) {
1374            switch (op2) {
1375            case 0:
1376                env->cp15.c2_data = val;
1377                break;
1378            case 1:
1379                env->cp15.c2_insn = val;
1380                break;
1381            default:
1382                goto bad_reg;
1383            }
1384        } else {
1385            switch (op2) {
1386            case 0:
1387                env->cp15.c2_base0 = val;
1388                break;
1389            case 1:
1390                env->cp15.c2_base1 = val;
1391                break;
1392            case 2:
1393                val &= 7;
1394                env->cp15.c2_control = val;
1395                env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
1396                env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
1397                break;
1398            default:
1399                goto bad_reg;
1400            }
1401        }
1402        break;
1403    case 3: /* MMU Domain access control / MPU write buffer control.  */
1404        env->cp15.c3 = val;
1405        tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
1406        break;
1407    case 4: /* Reserved.  */
1408        goto bad_reg;
1409    case 5: /* MMU Fault status / MPU access permission.  */
1410        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1411            op2 = 0;
1412        switch (op2) {
1413        case 0:
1414            if (arm_feature(env, ARM_FEATURE_MPU))
1415                val = extended_mpu_ap_bits(val);
1416            env->cp15.c5_data = val;
1417            break;
1418        case 1:
1419            if (arm_feature(env, ARM_FEATURE_MPU))
1420                val = extended_mpu_ap_bits(val);
1421            env->cp15.c5_insn = val;
1422            break;
1423        case 2:
1424            if (!arm_feature(env, ARM_FEATURE_MPU))
1425                goto bad_reg;
1426            env->cp15.c5_data = val;
1427            break;
1428        case 3:
1429            if (!arm_feature(env, ARM_FEATURE_MPU))
1430                goto bad_reg;
1431            env->cp15.c5_insn = val;
1432            break;
1433        default:
1434            goto bad_reg;
1435        }
1436        break;
1437    case 6: /* MMU Fault address / MPU base/size.  */
1438        if (arm_feature(env, ARM_FEATURE_MPU)) {
1439            if (crm >= 8)
1440                goto bad_reg;
1441            env->cp15.c6_region[crm] = val;
1442        } else {
1443            if (arm_feature(env, ARM_FEATURE_OMAPCP))
1444                op2 = 0;
1445            switch (op2) {
1446            case 0:
1447                env->cp15.c6_data = val;
1448                break;
1449            case 1: /* ??? This is WFAR on armv6 */
1450            case 2:
1451                env->cp15.c6_insn = val;
1452                break;
1453            default:
1454                goto bad_reg;
1455            }
1456        }
1457        break;
1458    case 7: /* Cache control.  */
1459        env->cp15.c15_i_max = 0x000;
1460        env->cp15.c15_i_min = 0xff0;
1461        /* No cache, so nothing to do.  */
1462        /* ??? MPCore has VA to PA translation functions.  */
1463        break;
1464    case 8: /* MMU TLB control.  */
1465        switch (op2) {
1466        case 0: /* Invalidate all.  */
1467            tlb_flush(env, 0);
1468            break;
1469        case 1: /* Invalidate single TLB entry.  */
1470#if 0
1471            /* ??? This is wrong for large pages and sections.  */
1472            /* As an ugly hack to make linux work we always flush a 4K
1473               pages.  */
1474            val &= 0xfffff000;
1475            tlb_flush_page(env, val);
1476            tlb_flush_page(env, val + 0x400);
1477            tlb_flush_page(env, val + 0x800);
1478            tlb_flush_page(env, val + 0xc00);
1479#else
1480            tlb_flush(env, 1);
1481#endif
1482            break;
1483        case 2: /* Invalidate on ASID.  */
1484            tlb_flush(env, val == 0);
1485            break;
1486        case 3: /* Invalidate single entry on MVA.  */
1487            /* ??? This is like case 1, but ignores ASID.  */
1488            tlb_flush(env, 1);
1489            break;
1490        default:
1491            goto bad_reg;
1492        }
1493        break;
1494    case 9:
1495        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1496            break;
1497        switch (crm) {
1498        case 0: /* Cache lockdown.  */
1499            switch (op1) {
1500            case 0: /* L1 cache.  */
1501                switch (op2) {
1502                case 0:
1503                    env->cp15.c9_data = val;
1504                    break;
1505                case 1:
1506                    env->cp15.c9_insn = val;
1507                    break;
1508                default:
1509                    goto bad_reg;
1510                }
1511                break;
1512            case 1: /* L2 cache.  */
1513                /* Ignore writes to L2 lockdown/auxiliary registers.  */
1514                break;
1515            default:
1516                goto bad_reg;
1517            }
1518            break;
1519        case 1: /* TCM memory region registers.  */
1520            /* Not implemented.  */
1521            goto bad_reg;
1522        default:
1523            goto bad_reg;
1524        }
1525        break;
1526    case 10: /* MMU TLB lockdown.  */
1527        /* ??? TLB lockdown not implemented.  */
1528        break;
1529    case 12: /* Reserved.  */
1530        goto bad_reg;
1531    case 13: /* Process ID.  */
1532        switch (op2) {
1533        case 0:
1534            /* Unlike real hardware the qemu TLB uses virtual addresses,
1535               not modified virtual addresses, so this causes a TLB flush.
1536             */
1537            if (env->cp15.c13_fcse != val)
1538              tlb_flush(env, 1);
1539            env->cp15.c13_fcse = val;
1540            break;
1541        case 1:
1542            /* This changes the ASID, so do a TLB flush.  */
1543            if (env->cp15.c13_context != val
1544                && !arm_feature(env, ARM_FEATURE_MPU))
1545              tlb_flush(env, 0);
1546            env->cp15.c13_context = val;
1547            break;
1548        case 2:
1549            env->cp15.c13_tls1 = val;
1550            break;
1551        case 3:
1552            env->cp15.c13_tls2 = val;
1553            break;
1554        case 4:
1555            env->cp15.c13_tls3 = val;
1556            break;
1557        default:
1558            goto bad_reg;
1559        }
1560        break;
1561    case 14: /* Reserved.  */
1562        goto bad_reg;
1563    case 15: /* Implementation specific.  */
1564        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1565            if (op2 == 0 && crm == 1) {
1566                if (env->cp15.c15_cpar != (val & 0x3fff)) {
1567                    /* Changes cp0 to cp13 behavior, so needs a TB flush.  */
1568                    tb_flush(env);
1569                    env->cp15.c15_cpar = val & 0x3fff;
1570                }
1571                break;
1572            }
1573            goto bad_reg;
1574        }
1575        if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1576            switch (crm) {
1577            case 0:
1578                break;
1579            case 1: /* Set TI925T configuration.  */
1580                env->cp15.c15_ticonfig = val & 0xe7;
1581                env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1582                        ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1583                break;
1584            case 2: /* Set I_max.  */
1585                env->cp15.c15_i_max = val;
1586                break;
1587            case 3: /* Set I_min.  */
1588                env->cp15.c15_i_min = val;
1589                break;
1590            case 4: /* Set thread-ID.  */
1591                env->cp15.c15_threadid = val & 0xffff;
1592                break;
1593            case 8: /* Wait-for-interrupt (deprecated).  */
1594                cpu_interrupt(env, CPU_INTERRUPT_HALT);
1595                break;
1596            default:
1597                goto bad_reg;
1598            }
1599        }
1600        break;
1601    }
1602    return;
1603bad_reg:
1604    /* ??? For debugging only.  Should raise illegal instruction exception.  */
1605    cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1606              (insn >> 16) & 0xf, crm, op1, op2);
1607}
1608
1609uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
1610{
1611    int op1;
1612    int op2;
1613    int crm;
1614
1615    op1 = (insn >> 21) & 7;
1616    op2 = (insn >> 5) & 7;
1617    crm = insn & 0xf;
1618    switch ((insn >> 16) & 0xf) {
1619    case 0: /* ID codes.  */
1620        switch (op1) {
1621        case 0:
1622            switch (crm) {
1623            case 0:
1624                switch (op2) {
1625                case 0: /* Device ID.  */
1626                    return env->cp15.c0_cpuid;
1627                case 1: /* Cache Type.  */
1628                    return env->cp15.c0_cachetype;
1629                case 2: /* TCM status.  */
1630                    return 0;
1631                case 3: /* TLB type register.  */
1632                    return 0; /* No lockable TLB entries.  */
1633                case 5: /* CPU ID */
1634                    return env->cpu_index;
1635                default:
1636                    goto bad_reg;
1637                }
1638            case 1:
1639                if (!arm_feature(env, ARM_FEATURE_V6))
1640                    goto bad_reg;
1641                return env->cp15.c0_c1[op2];
1642            case 2:
1643                if (!arm_feature(env, ARM_FEATURE_V6))
1644                    goto bad_reg;
1645                return env->cp15.c0_c2[op2];
1646            case 3: case 4: case 5: case 6: case 7:
1647                return 0;
1648            default:
1649                goto bad_reg;
1650            }
1651        case 1:
1652            /* These registers aren't documented on arm11 cores.  However
1653               Linux looks at them anyway.  */
1654            if (!arm_feature(env, ARM_FEATURE_V6))
1655                goto bad_reg;
1656            if (crm != 0)
1657                goto bad_reg;
1658            if (!arm_feature(env, ARM_FEATURE_V7))
1659                return 0;
1660
1661            switch (op2) {
1662            case 0:
1663                return env->cp15.c0_ccsid[env->cp15.c0_cssel];
1664            case 1:
1665                return env->cp15.c0_clid;
1666            case 7:
1667                return 0;
1668            }
1669            goto bad_reg;
1670        case 2:
1671            if (op2 != 0 || crm != 0)
1672                goto bad_reg;
1673            return env->cp15.c0_cssel;
1674        default:
1675            goto bad_reg;
1676        }
1677    case 1: /* System configuration.  */
1678        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1679            op2 = 0;
1680        switch (op2) {
1681        case 0: /* Control register.  */
1682            return env->cp15.c1_sys;
1683        case 1: /* Auxiliary control register.  */
1684            if (arm_feature(env, ARM_FEATURE_XSCALE))
1685                return env->cp15.c1_xscaleauxcr;
1686            if (!arm_feature(env, ARM_FEATURE_AUXCR))
1687                goto bad_reg;
1688            switch (ARM_CPUID(env)) {
1689            case ARM_CPUID_ARM1026:
1690                return 1;
1691            case ARM_CPUID_ARM1136:
1692            case ARM_CPUID_ARM1136_R2:
1693                return 7;
1694            case ARM_CPUID_ARM11MPCORE:
1695                return 1;
1696            case ARM_CPUID_CORTEXA8:
1697                return 0;
1698            default:
1699                goto bad_reg;
1700            }
1701        case 2: /* Coprocessor access register.  */
1702            if (arm_feature(env, ARM_FEATURE_XSCALE))
1703                goto bad_reg;
1704            return env->cp15.c1_coproc;
1705        default:
1706            goto bad_reg;
1707        }
1708    case 2: /* MMU Page table control / MPU cache control.  */
1709        if (arm_feature(env, ARM_FEATURE_MPU)) {
1710            switch (op2) {
1711            case 0:
1712                return env->cp15.c2_data;
1713                break;
1714            case 1:
1715                return env->cp15.c2_insn;
1716                break;
1717            default:
1718                goto bad_reg;
1719            }
1720        } else {
1721            switch (op2) {
1722            case 0:
1723                return env->cp15.c2_base0;
1724            case 1:
1725                return env->cp15.c2_base1;
1726            case 2:
1727                return env->cp15.c2_control;
1728            default:
1729                goto bad_reg;
1730            }
1731        }
1732    case 3: /* MMU Domain access control / MPU write buffer control.  */
1733        return env->cp15.c3;
1734    case 4: /* Reserved.  */
1735        goto bad_reg;
1736    case 5: /* MMU Fault status / MPU access permission.  */
1737        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1738            op2 = 0;
1739        switch (op2) {
1740        case 0:
1741            if (arm_feature(env, ARM_FEATURE_MPU))
1742                return simple_mpu_ap_bits(env->cp15.c5_data);
1743            return env->cp15.c5_data;
1744        case 1:
1745            if (arm_feature(env, ARM_FEATURE_MPU))
1746                return simple_mpu_ap_bits(env->cp15.c5_data);
1747            return env->cp15.c5_insn;
1748        case 2:
1749            if (!arm_feature(env, ARM_FEATURE_MPU))
1750                goto bad_reg;
1751            return env->cp15.c5_data;
1752        case 3:
1753            if (!arm_feature(env, ARM_FEATURE_MPU))
1754                goto bad_reg;
1755            return env->cp15.c5_insn;
1756        default:
1757            goto bad_reg;
1758        }
1759    case 6: /* MMU Fault address.  */
1760        if (arm_feature(env, ARM_FEATURE_MPU)) {
1761            if (crm >= 8)
1762                goto bad_reg;
1763            return env->cp15.c6_region[crm];
1764        } else {
1765            if (arm_feature(env, ARM_FEATURE_OMAPCP))
1766                op2 = 0;
1767            switch (op2) {
1768            case 0:
1769                return env->cp15.c6_data;
1770            case 1:
1771                if (arm_feature(env, ARM_FEATURE_V6)) {
1772                    /* Watchpoint Fault Adrress.  */
1773                    return 0; /* Not implemented.  */
1774                } else {
1775                    /* Instruction Fault Adrress.  */
1776                    /* Arm9 doesn't have an IFAR, but implementing it anyway
1777                       shouldn't do any harm.  */
1778                    return env->cp15.c6_insn;
1779                }
1780            case 2:
1781                if (arm_feature(env, ARM_FEATURE_V6)) {
1782                    /* Instruction Fault Adrress.  */
1783                    return env->cp15.c6_insn;
1784                } else {
1785                    goto bad_reg;
1786                }
1787            default:
1788                goto bad_reg;
1789            }
1790        }
1791    case 7: /* Cache control.  */
1792        /* FIXME: Should only clear Z flag if destination is r15.  */
1793        env->ZF = 0;
1794        return 0;
1795    case 8: /* MMU TLB control.  */
1796        goto bad_reg;
1797    case 9: /* Cache lockdown.  */
1798        switch (op1) {
1799        case 0: /* L1 cache.  */
1800            if (arm_feature(env, ARM_FEATURE_OMAPCP))
1801                return 0;
1802            switch (op2) {
1803            case 0:
1804                return env->cp15.c9_data;
1805            case 1:
1806                return env->cp15.c9_insn;
1807            default:
1808                goto bad_reg;
1809            }
1810        case 1: /* L2 cache */
1811            if (crm != 0)
1812                goto bad_reg;
1813            /* L2 Lockdown and Auxiliary control.  */
1814            return 0;
1815        default:
1816            goto bad_reg;
1817        }
1818    case 10: /* MMU TLB lockdown.  */
1819        /* ??? TLB lockdown not implemented.  */
1820        return 0;
1821    case 11: /* TCM DMA control.  */
1822    case 12: /* Reserved.  */
1823        goto bad_reg;
1824    case 13: /* Process ID.  */
1825        switch (op2) {
1826        case 0:
1827            return env->cp15.c13_fcse;
1828        case 1:
1829            return env->cp15.c13_context;
1830        case 2:
1831            return env->cp15.c13_tls1;
1832        case 3:
1833            return env->cp15.c13_tls2;
1834        case 4:
1835            return env->cp15.c13_tls3;
1836        default:
1837            goto bad_reg;
1838        }
1839    case 14: /* Reserved.  */
1840        goto bad_reg;
1841    case 15: /* Implementation specific.  */
1842        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1843            if (op2 == 0 && crm == 1)
1844                return env->cp15.c15_cpar;
1845
1846            goto bad_reg;
1847        }
1848        if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1849            switch (crm) {
1850            case 0:
1851                return 0;
1852            case 1: /* Read TI925T configuration.  */
1853                return env->cp15.c15_ticonfig;
1854            case 2: /* Read I_max.  */
1855                return env->cp15.c15_i_max;
1856            case 3: /* Read I_min.  */
1857                return env->cp15.c15_i_min;
1858            case 4: /* Read thread-ID.  */
1859                return env->cp15.c15_threadid;
1860            case 8: /* TI925T_status */
1861                return 0;
1862            }
1863            /* TODO: Peripheral port remap register:
1864             * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
1865             * controller base address at $rn & ~0xfff and map size of
1866             * 0x200 << ($rn & 0xfff), when MMU is off.  */
1867            goto bad_reg;
1868        }
1869        return 0;
1870    }
1871bad_reg:
1872    /* ??? For debugging only.  Should raise illegal instruction exception.  */
1873    cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
1874              (insn >> 16) & 0xf, crm, op1, op2);
1875    return 0;
1876}
1877
1878void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
1879{
1880    env->banked_r13[bank_number(mode)] = val;
1881}
1882
1883uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
1884{
1885    return env->banked_r13[bank_number(mode)];
1886}
1887
1888uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
1889{
1890    switch (reg) {
1891    case 0: /* APSR */
1892        return xpsr_read(env) & 0xf8000000;
1893    case 1: /* IAPSR */
1894        return xpsr_read(env) & 0xf80001ff;
1895    case 2: /* EAPSR */
1896        return xpsr_read(env) & 0xff00fc00;
1897    case 3: /* xPSR */
1898        return xpsr_read(env) & 0xff00fdff;
1899    case 5: /* IPSR */
1900        return xpsr_read(env) & 0x000001ff;
1901    case 6: /* EPSR */
1902        return xpsr_read(env) & 0x0700fc00;
1903    case 7: /* IEPSR */
1904        return xpsr_read(env) & 0x0700edff;
1905    case 8: /* MSP */
1906        return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
1907    case 9: /* PSP */
1908        return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
1909    case 16: /* PRIMASK */
1910        return (env->uncached_cpsr & CPSR_I) != 0;
1911    case 17: /* FAULTMASK */
1912        return (env->uncached_cpsr & CPSR_F) != 0;
1913    case 18: /* BASEPRI */
1914    case 19: /* BASEPRI_MAX */
1915        return env->v7m.basepri;
1916    case 20: /* CONTROL */
1917        return env->v7m.control;
1918    default:
1919        /* ??? For debugging only.  */
1920        cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
1921        return 0;
1922    }
1923}
1924
1925void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
1926{
1927    switch (reg) {
1928    case 0: /* APSR */
1929        xpsr_write(env, val, 0xf8000000);
1930        break;
1931    case 1: /* IAPSR */
1932        xpsr_write(env, val, 0xf8000000);
1933        break;
1934    case 2: /* EAPSR */
1935        xpsr_write(env, val, 0xfe00fc00);
1936        break;
1937    case 3: /* xPSR */
1938        xpsr_write(env, val, 0xfe00fc00);
1939        break;
1940    case 5: /* IPSR */
1941        /* IPSR bits are readonly.  */
1942        break;
1943    case 6: /* EPSR */
1944        xpsr_write(env, val, 0x0600fc00);
1945        break;
1946    case 7: /* IEPSR */
1947        xpsr_write(env, val, 0x0600fc00);
1948        break;
1949    case 8: /* MSP */
1950        if (env->v7m.current_sp)
1951            env->v7m.other_sp = val;
1952        else
1953            env->regs[13] = val;
1954        break;
1955    case 9: /* PSP */
1956        if (env->v7m.current_sp)
1957            env->regs[13] = val;
1958        else
1959            env->v7m.other_sp = val;
1960        break;
1961    case 16: /* PRIMASK */
1962        if (val & 1)
1963            env->uncached_cpsr |= CPSR_I;
1964        else
1965            env->uncached_cpsr &= ~CPSR_I;
1966        break;
1967    case 17: /* FAULTMASK */
1968        if (val & 1)
1969            env->uncached_cpsr |= CPSR_F;
1970        else
1971            env->uncached_cpsr &= ~CPSR_F;
1972        break;
1973    case 18: /* BASEPRI */
1974        env->v7m.basepri = val & 0xff;
1975        break;
1976    case 19: /* BASEPRI_MAX */
1977        val &= 0xff;
1978        if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
1979            env->v7m.basepri = val;
1980        break;
1981    case 20: /* CONTROL */
1982        env->v7m.control = val & 3;
1983        switch_v7m_sp(env, (val & 2) != 0);
1984        break;
1985    default:
1986        /* ??? For debugging only.  */
1987        cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
1988        return;
1989    }
1990}
1991
1992void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
1993                ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
1994                void *opaque)
1995{
1996    if (cpnum < 0 || cpnum > 14) {
1997        cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
1998        return;
1999    }
2000
2001    env->cp[cpnum].cp_read = cp_read;
2002    env->cp[cpnum].cp_write = cp_write;
2003    env->cp[cpnum].opaque = opaque;
2004}
2005
2006#endif
2007
2008/* Note that signed overflow is undefined in C.  The following routines are
2009   careful to use unsigned types where modulo arithmetic is required.
2010   Failure to do so _will_ break on newer gcc.  */
2011
2012/* Signed saturating arithmetic.  */
2013
2014/* Perform 16-bit signed saturating addition.  */
2015static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2016{
2017    uint16_t res;
2018
2019    res = a + b;
2020    if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2021        if (a & 0x8000)
2022            res = 0x8000;
2023        else
2024            res = 0x7fff;
2025    }
2026    return res;
2027}
2028
2029/* Perform 8-bit signed saturating addition.  */
2030static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2031{
2032    uint8_t res;
2033
2034    res = a + b;
2035    if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2036        if (a & 0x80)
2037            res = 0x80;
2038        else
2039            res = 0x7f;
2040    }
2041    return res;
2042}
2043
2044/* Perform 16-bit signed saturating subtraction.  */
2045static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2046{
2047    uint16_t res;
2048
2049    res = a - b;
2050    if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2051        if (a & 0x8000)
2052            res = 0x8000;
2053        else
2054            res = 0x7fff;
2055    }
2056    return res;
2057}
2058
2059/* Perform 8-bit signed saturating subtraction.  */
2060static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2061{
2062    uint8_t res;
2063
2064    res = a - b;
2065    if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2066        if (a & 0x80)
2067            res = 0x80;
2068        else
2069            res = 0x7f;
2070    }
2071    return res;
2072}
2073
2074#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2075#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2076#define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
2077#define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
2078#define PFX q
2079
2080#include "op_addsub.h"
2081
2082/* Unsigned saturating arithmetic.  */
2083static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2084{
2085    uint16_t res;
2086    res = a + b;
2087    if (res < a)
2088        res = 0xffff;
2089    return res;
2090}
2091
2092static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2093{
2094    if (a < b)
2095        return a - b;
2096    else
2097        return 0;
2098}
2099
2100static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2101{
2102    uint8_t res;
2103    res = a + b;
2104    if (res < a)
2105        res = 0xff;
2106    return res;
2107}
2108
2109static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2110{
2111    if (a < b)
2112        return a - b;
2113    else
2114        return 0;
2115}
2116
2117#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2118#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2119#define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
2120#define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
2121#define PFX uq
2122
2123#include "op_addsub.h"
2124
2125/* Signed modulo arithmetic.  */
2126#define SARITH16(a, b, n, op) do { \
2127    int32_t sum; \
2128    sum = (int16_t)((uint16_t)(a) op (uint16_t)(b)); \
2129    RESULT(sum, n, 16); \
2130    if (sum >= 0) \
2131        ge |= 3 << (n * 2); \
2132    } while(0)
2133
2134#define SARITH8(a, b, n, op) do { \
2135    int32_t sum; \
2136    sum = (int8_t)((uint8_t)(a) op (uint8_t)(b)); \
2137    RESULT(sum, n, 8); \
2138    if (sum >= 0) \
2139        ge |= 1 << n; \
2140    } while(0)
2141
2142
2143#define ADD16(a, b, n) SARITH16(a, b, n, +)
2144#define SUB16(a, b, n) SARITH16(a, b, n, -)
2145#define ADD8(a, b, n)  SARITH8(a, b, n, +)
2146#define SUB8(a, b, n)  SARITH8(a, b, n, -)
2147#define PFX s
2148#define ARITH_GE
2149
2150#include "op_addsub.h"
2151
2152/* Unsigned modulo arithmetic.  */
2153#define ADD16(a, b, n) do { \
2154    uint32_t sum; \
2155    sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2156    RESULT(sum, n, 16); \
2157    if ((sum >> 16) == 1) \
2158        ge |= 3 << (n * 2); \
2159    } while(0)
2160
2161#define ADD8(a, b, n) do { \
2162    uint32_t sum; \
2163    sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2164    RESULT(sum, n, 8); \
2165    if ((sum >> 8) == 1) \
2166        ge |= 1 << n; \
2167    } while(0)
2168
2169#define SUB16(a, b, n) do { \
2170    uint32_t sum; \
2171    sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2172    RESULT(sum, n, 16); \
2173    if ((sum >> 16) == 0) \
2174        ge |= 3 << (n * 2); \
2175    } while(0)
2176
2177#define SUB8(a, b, n) do { \
2178    uint32_t sum; \
2179    sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2180    RESULT(sum, n, 8); \
2181    if ((sum >> 8) == 0) \
2182        ge |= 1 << n; \
2183    } while(0)
2184
2185#define PFX u
2186#define ARITH_GE
2187
2188#include "op_addsub.h"
2189
2190/* Halved signed arithmetic.  */
2191#define ADD16(a, b, n) \
2192  RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2193#define SUB16(a, b, n) \
2194  RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2195#define ADD8(a, b, n) \
2196  RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2197#define SUB8(a, b, n) \
2198  RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2199#define PFX sh
2200
2201#include "op_addsub.h"
2202
2203/* Halved unsigned arithmetic.  */
2204#define ADD16(a, b, n) \
2205  RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2206#define SUB16(a, b, n) \
2207  RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2208#define ADD8(a, b, n) \
2209  RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2210#define SUB8(a, b, n) \
2211  RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2212#define PFX uh
2213
2214#include "op_addsub.h"
2215
2216static inline uint8_t do_usad(uint8_t a, uint8_t b)
2217{
2218    if (a > b)
2219        return a - b;
2220    else
2221        return b - a;
2222}
2223
2224/* Unsigned sum of absolute byte differences.  */
2225uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2226{
2227    uint32_t sum;
2228    sum = do_usad(a, b);
2229    sum += do_usad(a >> 8, b >> 8);
2230    sum += do_usad(a >> 16, b >>16);
2231    sum += do_usad(a >> 24, b >> 24);
2232    return sum;
2233}
2234
2235/* For ARMv6 SEL instruction.  */
2236uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2237{
2238    uint32_t mask;
2239
2240    mask = 0;
2241    if (flags & 1)
2242        mask |= 0xff;
2243    if (flags & 2)
2244        mask |= 0xff00;
2245    if (flags & 4)
2246        mask |= 0xff0000;
2247    if (flags & 8)
2248        mask |= 0xff000000;
2249    return (a & mask) | (b & ~mask);
2250}
2251
2252uint32_t HELPER(logicq_cc)(uint64_t val)
2253{
2254    return (val >> 32) | (val != 0);
2255}
2256
2257/* VFP support.  We follow the convention used for VFP instrunctions:
2258   Single precition routines have a "s" suffix, double precision a
2259   "d" suffix.  */
2260
2261/* Convert host exception flags to vfp form.  */
2262static inline int vfp_exceptbits_from_host(int host_bits)
2263{
2264    int target_bits = 0;
2265
2266    if (host_bits & float_flag_invalid)
2267        target_bits |= 1;
2268    if (host_bits & float_flag_divbyzero)
2269        target_bits |= 2;
2270    if (host_bits & float_flag_overflow)
2271        target_bits |= 4;
2272    if (host_bits & float_flag_underflow)
2273        target_bits |= 8;
2274    if (host_bits & float_flag_inexact)
2275        target_bits |= 0x10;
2276    return target_bits;
2277}
2278
2279uint32_t HELPER(vfp_get_fpscr)(CPUState *env)
2280{
2281    int i;
2282    uint32_t fpscr;
2283
2284    fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2285            | (env->vfp.vec_len << 16)
2286            | (env->vfp.vec_stride << 20);
2287    i = get_float_exception_flags(&env->vfp.fp_status);
2288    fpscr |= vfp_exceptbits_from_host(i);
2289    return fpscr;
2290}
2291
2292/* Convert vfp exception flags to target form.  */
2293static inline int vfp_exceptbits_to_host(int target_bits)
2294{
2295    int host_bits = 0;
2296
2297    if (target_bits & 1)
2298        host_bits |= float_flag_invalid;
2299    if (target_bits & 2)
2300        host_bits |= float_flag_divbyzero;
2301    if (target_bits & 4)
2302        host_bits |= float_flag_overflow;
2303    if (target_bits & 8)
2304        host_bits |= float_flag_underflow;
2305    if (target_bits & 0x10)
2306        host_bits |= float_flag_inexact;
2307    return host_bits;
2308}
2309
2310void HELPER(vfp_set_fpscr)(CPUState *env, uint32_t val)
2311{
2312    int i;
2313    uint32_t changed;
2314
2315    changed = env->vfp.xregs[ARM_VFP_FPSCR];
2316    env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2317    env->vfp.vec_len = (val >> 16) & 7;
2318    env->vfp.vec_stride = (val >> 20) & 3;
2319
2320    changed ^= val;
2321    if (changed & (3 << 22)) {
2322        i = (val >> 22) & 3;
2323        switch (i) {
2324        case 0:
2325            i = float_round_nearest_even;
2326            break;
2327        case 1:
2328            i = float_round_up;
2329            break;
2330        case 2:
2331            i = float_round_down;
2332            break;
2333        case 3:
2334            i = float_round_to_zero;
2335            break;
2336        }
2337        set_float_rounding_mode(i, &env->vfp.fp_status);
2338    }
2339    if (changed & (1 << 24))
2340        set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2341    if (changed & (1 << 25))
2342        set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2343
2344    i = vfp_exceptbits_to_host((val >> 8) & 0x1f);
2345    set_float_exception_flags(i, &env->vfp.fp_status);
2346}
2347
2348#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2349
2350#define VFP_BINOP(name) \
2351float32 VFP_HELPER(name, s)(float32 a, float32 b, CPUState *env) \
2352{ \
2353    return float32_ ## name (a, b, &env->vfp.fp_status); \
2354} \
2355float64 VFP_HELPER(name, d)(float64 a, float64 b, CPUState *env) \
2356{ \
2357    return float64_ ## name (a, b, &env->vfp.fp_status); \
2358}
2359VFP_BINOP(add)
2360VFP_BINOP(sub)
2361VFP_BINOP(mul)
2362VFP_BINOP(div)
2363#undef VFP_BINOP
2364
2365float32 VFP_HELPER(neg, s)(float32 a)
2366{
2367    return float32_chs(a);
2368}
2369
2370float64 VFP_HELPER(neg, d)(float64 a)
2371{
2372    return float64_chs(a);
2373}
2374
2375float32 VFP_HELPER(abs, s)(float32 a)
2376{
2377    return float32_abs(a);
2378}
2379
2380float64 VFP_HELPER(abs, d)(float64 a)
2381{
2382    return float64_abs(a);
2383}
2384
2385float32 VFP_HELPER(sqrt, s)(float32 a, CPUState *env)
2386{
2387    return float32_sqrt(a, &env->vfp.fp_status);
2388}
2389
2390float64 VFP_HELPER(sqrt, d)(float64 a, CPUState *env)
2391{
2392    return float64_sqrt(a, &env->vfp.fp_status);
2393}
2394
2395/* XXX: check quiet/signaling case */
2396#define DO_VFP_cmp(p, type) \
2397void VFP_HELPER(cmp, p)(type a, type b, CPUState *env)  \
2398{ \
2399    uint32_t flags; \
2400    switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2401    case 0: flags = 0x6; break; \
2402    case -1: flags = 0x8; break; \
2403    case 1: flags = 0x2; break; \
2404    default: case 2: flags = 0x3; break; \
2405    } \
2406    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2407        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2408} \
2409void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
2410{ \
2411    uint32_t flags; \
2412    switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2413    case 0: flags = 0x6; break; \
2414    case -1: flags = 0x8; break; \
2415    case 1: flags = 0x2; break; \
2416    default: case 2: flags = 0x3; break; \
2417    } \
2418    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2419        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2420}
2421DO_VFP_cmp(s, float32)
2422DO_VFP_cmp(d, float64)
2423#undef DO_VFP_cmp
2424
2425/* Helper routines to perform bitwise copies between float and int.  */
2426static inline float32 vfp_itos(uint32_t i)
2427{
2428    union {
2429        uint32_t i;
2430        float32 s;
2431    } v;
2432
2433    v.i = i;
2434    return v.s;
2435}
2436
2437static inline uint32_t vfp_stoi(float32 s)
2438{
2439    union {
2440        uint32_t i;
2441        float32 s;
2442    } v;
2443
2444    v.s = s;
2445    return v.i;
2446}
2447
2448static inline float64 vfp_itod(uint64_t i)
2449{
2450    union {
2451        uint64_t i;
2452        float64 d;
2453    } v;
2454
2455    v.i = i;
2456    return v.d;
2457}
2458
2459static inline uint64_t vfp_dtoi(float64 d)
2460{
2461    union {
2462        uint64_t i;
2463        float64 d;
2464    } v;
2465
2466    v.d = d;
2467    return v.i;
2468}
2469
2470/* Integer to float conversion.  */
2471float32 VFP_HELPER(uito, s)(float32 x, CPUState *env)
2472{
2473    return uint32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2474}
2475
2476float64 VFP_HELPER(uito, d)(float32 x, CPUState *env)
2477{
2478    return uint32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2479}
2480
2481float32 VFP_HELPER(sito, s)(float32 x, CPUState *env)
2482{
2483    return int32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2484}
2485
2486float64 VFP_HELPER(sito, d)(float32 x, CPUState *env)
2487{
2488    return int32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2489}
2490
2491/* Float to integer conversion.  */
2492float32 VFP_HELPER(toui, s)(float32 x, CPUState *env)
2493{
2494    return vfp_itos(float32_to_uint32(x, &env->vfp.fp_status));
2495}
2496
2497float32 VFP_HELPER(toui, d)(float64 x, CPUState *env)
2498{
2499    return vfp_itos(float64_to_uint32(x, &env->vfp.fp_status));
2500}
2501
2502float32 VFP_HELPER(tosi, s)(float32 x, CPUState *env)
2503{
2504    return vfp_itos(float32_to_int32(x, &env->vfp.fp_status));
2505}
2506
2507float32 VFP_HELPER(tosi, d)(float64 x, CPUState *env)
2508{
2509    return vfp_itos(float64_to_int32(x, &env->vfp.fp_status));
2510}
2511
2512float32 VFP_HELPER(touiz, s)(float32 x, CPUState *env)
2513{
2514    return vfp_itos(float32_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2515}
2516
2517float32 VFP_HELPER(touiz, d)(float64 x, CPUState *env)
2518{
2519    return vfp_itos(float64_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2520}
2521
2522float32 VFP_HELPER(tosiz, s)(float32 x, CPUState *env)
2523{
2524    return vfp_itos(float32_to_int32_round_to_zero(x, &env->vfp.fp_status));
2525}
2526
2527float32 VFP_HELPER(tosiz, d)(float64 x, CPUState *env)
2528{
2529    return vfp_itos(float64_to_int32_round_to_zero(x, &env->vfp.fp_status));
2530}
2531
2532/* floating point conversion */
2533float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env)
2534{
2535    return float32_to_float64(x, &env->vfp.fp_status);
2536}
2537
2538float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env)
2539{
2540    return float64_to_float32(x, &env->vfp.fp_status);
2541}
2542
2543/* VFP3 fixed point conversion.  */
2544#define VFP_CONV_FIX(name, p, ftype, itype, sign) \
2545ftype VFP_HELPER(name##to, p)(ftype x, uint32_t shift, CPUState *env) \
2546{ \
2547    ftype tmp; \
2548    tmp = sign##int32_to_##ftype ((itype)vfp_##p##toi(x), \
2549                                  &env->vfp.fp_status); \
2550    return ftype##_scalbn(tmp, -(int)shift, &env->vfp.fp_status); \
2551} \
2552ftype VFP_HELPER(to##name, p)(ftype x, uint32_t shift, CPUState *env) \
2553{ \
2554    ftype tmp; \
2555    tmp = ftype##_scalbn(x, shift, &env->vfp.fp_status); \
2556    return vfp_ito##p((itype)ftype##_to_##sign##int32_round_to_zero(tmp, \
2557        &env->vfp.fp_status)); \
2558}
2559
2560VFP_CONV_FIX(sh, d, float64, int16, )
2561VFP_CONV_FIX(sl, d, float64, int32, )
2562VFP_CONV_FIX(uh, d, float64, uint16, u)
2563VFP_CONV_FIX(ul, d, float64, uint32, u)
2564VFP_CONV_FIX(sh, s, float32, int16, )
2565VFP_CONV_FIX(sl, s, float32, int32, )
2566VFP_CONV_FIX(uh, s, float32, uint16, u)
2567VFP_CONV_FIX(ul, s, float32, uint32, u)
2568#undef VFP_CONV_FIX
2569
2570float32 HELPER(recps_f32)(float32 a, float32 b, CPUState *env)
2571{
2572    float_status *s = &env->vfp.fp_status;
2573    float32 two = int32_to_float32(2, s);
2574    return float32_sub(two, float32_mul(a, b, s), s);
2575}
2576
2577float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUState *env)
2578{
2579    float_status *s = &env->vfp.fp_status;
2580    float32 three = int32_to_float32(3, s);
2581    return float32_sub(three, float32_mul(a, b, s), s);
2582}
2583
2584/* NEON helpers.  */
2585
2586/* TODO: The architecture specifies the value that the estimate functions
2587   should return.  We return the exact reciprocal/root instead.  */
2588float32 HELPER(recpe_f32)(float32 a, CPUState *env)
2589{
2590    float_status *s = &env->vfp.fp_status;
2591    float32 one = int32_to_float32(1, s);
2592    return float32_div(one, a, s);
2593}
2594
2595float32 HELPER(rsqrte_f32)(float32 a, CPUState *env)
2596{
2597    float_status *s = &env->vfp.fp_status;
2598    float32 one = int32_to_float32(1, s);
2599    return float32_div(one, float32_sqrt(a, s), s);
2600}
2601
2602uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env)
2603{
2604    float_status *s = &env->vfp.fp_status;
2605    float32 tmp;
2606    tmp = int32_to_float32(a, s);
2607    tmp = float32_scalbn(tmp, -32, s);
2608    tmp = helper_recpe_f32(tmp, env);
2609    tmp = float32_scalbn(tmp, 31, s);
2610    return float32_to_int32(tmp, s);
2611}
2612
2613uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env)
2614{
2615    float_status *s = &env->vfp.fp_status;
2616    float32 tmp;
2617    tmp = int32_to_float32(a, s);
2618    tmp = float32_scalbn(tmp, -32, s);
2619    tmp = helper_rsqrte_f32(tmp, env);
2620    tmp = float32_scalbn(tmp, 31, s);
2621    return float32_to_int32(tmp, s);
2622}
2623
2624void HELPER(set_teecr)(CPUState *env, uint32_t val)
2625{
2626    val &= 1;
2627    if (env->teecr != val) {
2628        env->teecr = val;
2629        tb_flush(env);
2630    }
2631}
2632