qemu/target-i386/kvm.c
<<
>>
Prefs
   1/*
   2 * QEMU KVM support
   3 *
   4 * Copyright (C) 2006-2008 Qumranet Technologies
   5 * Copyright IBM, Corp. 2008
   6 *
   7 * Authors:
   8 *  Anthony Liguori   <aliguori@us.ibm.com>
   9 *
  10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  11 * See the COPYING file in the top-level directory.
  12 *
  13 */
  14
  15#include <sys/types.h>
  16#include <sys/ioctl.h>
  17#include <sys/mman.h>
  18
  19#include <linux/kvm.h>
  20
  21#include "qemu-common.h"
  22#include "sysemu.h"
  23#include "kvm.h"
  24#include "cpu.h"
  25
  26//#define DEBUG_KVM
  27
  28#ifdef DEBUG_KVM
  29#define dprintf(fmt, ...) \
  30    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
  31#else
  32#define dprintf(fmt, ...) \
  33    do { } while (0)
  34#endif
  35
  36int kvm_arch_init_vcpu(CPUState *env)
  37{
  38    struct {
  39        struct kvm_cpuid2 cpuid;
  40        struct kvm_cpuid_entry2 entries[100];
  41    } __attribute__((packed)) cpuid_data;
  42    uint32_t limit, i, j, cpuid_i;
  43    uint32_t eax, ebx, ecx, edx;
  44
  45    cpuid_i = 0;
  46
  47    cpu_x86_cpuid(env, 0, 0, &eax, &ebx, &ecx, &edx);
  48    limit = eax;
  49
  50    for (i = 0; i <= limit; i++) {
  51        struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
  52
  53        switch (i) {
  54        case 2: {
  55            /* Keep reading function 2 till all the input is received */
  56            int times;
  57
  58            cpu_x86_cpuid(env, i, 0, &eax, &ebx, &ecx, &edx);
  59            times = eax & 0xff;
  60
  61            c->function = i;
  62            c->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  63            c->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  64            c->eax = eax;
  65            c->ebx = ebx;
  66            c->ecx = ecx;
  67            c->edx = edx;
  68
  69            for (j = 1; j < times; ++j) {
  70                cpu_x86_cpuid(env, i, 0, &eax, &ebx, &ecx, &edx);
  71                c->function = i;
  72                c->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  73                c->eax = eax;
  74                c->ebx = ebx;
  75                c->ecx = ecx;
  76                c->edx = edx;
  77                c = &cpuid_data.entries[++cpuid_i];
  78            }
  79            break;
  80        }
  81        case 4:
  82        case 0xb:
  83        case 0xd:
  84            for (j = 0; ; j++) {
  85                cpu_x86_cpuid(env, i, j, &eax, &ebx, &ecx, &edx);
  86                c->function = i;
  87                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  88                c->index = j;
  89                c->eax = eax;
  90                c->ebx = ebx;
  91                c->ecx = ecx;
  92                c->edx = edx;
  93                c = &cpuid_data.entries[++cpuid_i];
  94
  95                if (i == 4 && eax == 0)
  96                    break;
  97                if (i == 0xb && !(ecx & 0xff00))
  98                    break;
  99                if (i == 0xd && eax == 0)
 100                    break;
 101            }
 102            break;
 103        default:
 104            cpu_x86_cpuid(env, i, 0, &eax, &ebx, &ecx, &edx);
 105            c->function = i;
 106            c->eax = eax;
 107            c->ebx = ebx;
 108            c->ecx = ecx;
 109            c->edx = edx;
 110            break;
 111        }
 112    }
 113    cpu_x86_cpuid(env, 0x80000000, 0, &eax, &ebx, &ecx, &edx);
 114    limit = eax;
 115
 116    for (i = 0x80000000; i <= limit; i++) {
 117        struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
 118
 119        cpu_x86_cpuid(env, i, 0, &eax, &ebx, &ecx, &edx);
 120        c->function = i;
 121        c->eax = eax;
 122        c->ebx = ebx;
 123        c->ecx = ecx;
 124        c->edx = edx;
 125    }
 126
 127    cpuid_data.cpuid.nent = cpuid_i;
 128
 129    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
 130}
 131
 132static int kvm_has_msr_star(CPUState *env)
 133{
 134    static int has_msr_star;
 135    int ret;
 136
 137    /* first time */
 138    if (has_msr_star == 0) {        
 139        struct kvm_msr_list msr_list, *kvm_msr_list;
 140
 141        has_msr_star = -1;
 142
 143        /* Obtain MSR list from KVM.  These are the MSRs that we must
 144         * save/restore */
 145        msr_list.nmsrs = 0;
 146        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
 147        if (ret < 0)
 148            return 0;
 149
 150        kvm_msr_list = qemu_mallocz(sizeof(msr_list) +
 151                                    msr_list.nmsrs * sizeof(msr_list.indices[0]));
 152
 153        kvm_msr_list->nmsrs = msr_list.nmsrs;
 154        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
 155        if (ret >= 0) {
 156            int i;
 157
 158            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
 159                if (kvm_msr_list->indices[i] == MSR_STAR) {
 160                    has_msr_star = 1;
 161                    break;
 162                }
 163            }
 164        }
 165
 166        free(kvm_msr_list);
 167    }
 168
 169    if (has_msr_star == 1)
 170        return 1;
 171    return 0;
 172}
 173
 174int kvm_arch_init(KVMState *s, int smp_cpus)
 175{
 176    int ret;
 177
 178    /* create vm86 tss.  KVM uses vm86 mode to emulate 16-bit code
 179     * directly.  In order to use vm86 mode, a TSS is needed.  Since this
 180     * must be part of guest physical memory, we need to allocate it.  Older
 181     * versions of KVM just assumed that it would be at the end of physical
 182     * memory but that doesn't work with more than 4GB of memory.  We simply
 183     * refuse to work with those older versions of KVM. */
 184    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
 185    if (ret <= 0) {
 186        fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
 187        return ret;
 188    }
 189
 190    /* this address is 3 pages before the bios, and the bios should present
 191     * as unavaible memory.  FIXME, need to ensure the e820 map deals with
 192     * this?
 193     */
 194    return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
 195}
 196                    
 197static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
 198{
 199    lhs->selector = rhs->selector;
 200    lhs->base = rhs->base;
 201    lhs->limit = rhs->limit;
 202    lhs->type = 3;
 203    lhs->present = 1;
 204    lhs->dpl = 3;
 205    lhs->db = 0;
 206    lhs->s = 1;
 207    lhs->l = 0;
 208    lhs->g = 0;
 209    lhs->avl = 0;
 210    lhs->unusable = 0;
 211}
 212
 213static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
 214{
 215    unsigned flags = rhs->flags;
 216    lhs->selector = rhs->selector;
 217    lhs->base = rhs->base;
 218    lhs->limit = rhs->limit;
 219    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
 220    lhs->present = (flags & DESC_P_MASK) != 0;
 221    lhs->dpl = rhs->selector & 3;
 222    lhs->db = (flags >> DESC_B_SHIFT) & 1;
 223    lhs->s = (flags & DESC_S_MASK) != 0;
 224    lhs->l = (flags >> DESC_L_SHIFT) & 1;
 225    lhs->g = (flags & DESC_G_MASK) != 0;
 226    lhs->avl = (flags & DESC_AVL_MASK) != 0;
 227    lhs->unusable = 0;
 228}
 229
 230static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
 231{
 232    lhs->selector = rhs->selector;
 233    lhs->base = rhs->base;
 234    lhs->limit = rhs->limit;
 235    lhs->flags =
 236        (rhs->type << DESC_TYPE_SHIFT)
 237        | (rhs->present * DESC_P_MASK)
 238        | (rhs->dpl << DESC_DPL_SHIFT)
 239        | (rhs->db << DESC_B_SHIFT)
 240        | (rhs->s * DESC_S_MASK)
 241        | (rhs->l << DESC_L_SHIFT)
 242        | (rhs->g * DESC_G_MASK)
 243        | (rhs->avl * DESC_AVL_MASK);
 244}
 245
 246static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
 247{
 248    if (set)
 249        *kvm_reg = *qemu_reg;
 250    else
 251        *qemu_reg = *kvm_reg;
 252}
 253
 254static int kvm_getput_regs(CPUState *env, int set)
 255{
 256    struct kvm_regs regs;
 257    int ret = 0;
 258
 259    if (!set) {
 260        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
 261        if (ret < 0)
 262            return ret;
 263    }
 264
 265    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
 266    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
 267    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
 268    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
 269    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
 270    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
 271    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
 272    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
 273#ifdef TARGET_X86_64
 274    kvm_getput_reg(&regs.r8, &env->regs[8], set);
 275    kvm_getput_reg(&regs.r9, &env->regs[9], set);
 276    kvm_getput_reg(&regs.r10, &env->regs[10], set);
 277    kvm_getput_reg(&regs.r11, &env->regs[11], set);
 278    kvm_getput_reg(&regs.r12, &env->regs[12], set);
 279    kvm_getput_reg(&regs.r13, &env->regs[13], set);
 280    kvm_getput_reg(&regs.r14, &env->regs[14], set);
 281    kvm_getput_reg(&regs.r15, &env->regs[15], set);
 282#endif
 283
 284    kvm_getput_reg(&regs.rflags, &env->eflags, set);
 285    kvm_getput_reg(&regs.rip, &env->eip, set);
 286
 287    if (set)
 288        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
 289
 290    return ret;
 291}
 292
 293static int kvm_put_fpu(CPUState *env)
 294{
 295    struct kvm_fpu fpu;
 296    int i;
 297
 298    memset(&fpu, 0, sizeof fpu);
 299    fpu.fsw = env->fpus & ~(7 << 11);
 300    fpu.fsw |= (env->fpstt & 7) << 11;
 301    fpu.fcw = env->fpuc;
 302    for (i = 0; i < 8; ++i)
 303        fpu.ftwx |= (!env->fptags[i]) << i;
 304    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
 305    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
 306    fpu.mxcsr = env->mxcsr;
 307
 308    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
 309}
 310
 311static int kvm_put_sregs(CPUState *env)
 312{
 313    struct kvm_sregs sregs;
 314
 315    memcpy(sregs.interrupt_bitmap,
 316           env->interrupt_bitmap,
 317           sizeof(sregs.interrupt_bitmap));
 318
 319    if ((env->eflags & VM_MASK)) {
 320            set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
 321            set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
 322            set_v8086_seg(&sregs.es, &env->segs[R_ES]);
 323            set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
 324            set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
 325            set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
 326    } else {
 327            set_seg(&sregs.cs, &env->segs[R_CS]);
 328            set_seg(&sregs.ds, &env->segs[R_DS]);
 329            set_seg(&sregs.es, &env->segs[R_ES]);
 330            set_seg(&sregs.fs, &env->segs[R_FS]);
 331            set_seg(&sregs.gs, &env->segs[R_GS]);
 332            set_seg(&sregs.ss, &env->segs[R_SS]);
 333
 334            if (env->cr[0] & CR0_PE_MASK) {
 335                /* force ss cpl to cs cpl */
 336                sregs.ss.selector = (sregs.ss.selector & ~3) |
 337                        (sregs.cs.selector & 3);
 338                sregs.ss.dpl = sregs.ss.selector & 3;
 339            }
 340    }
 341
 342    set_seg(&sregs.tr, &env->tr);
 343    set_seg(&sregs.ldt, &env->ldt);
 344
 345    sregs.idt.limit = env->idt.limit;
 346    sregs.idt.base = env->idt.base;
 347    sregs.gdt.limit = env->gdt.limit;
 348    sregs.gdt.base = env->gdt.base;
 349
 350    sregs.cr0 = env->cr[0];
 351    sregs.cr2 = env->cr[2];
 352    sregs.cr3 = env->cr[3];
 353    sregs.cr4 = env->cr[4];
 354
 355    sregs.cr8 = cpu_get_apic_tpr(env);
 356    sregs.apic_base = cpu_get_apic_base(env);
 357
 358    sregs.efer = env->efer;
 359
 360    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
 361}
 362
 363static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
 364                              uint32_t index, uint64_t value)
 365{
 366    entry->index = index;
 367    entry->data = value;
 368}
 369
 370static int kvm_put_msrs(CPUState *env)
 371{
 372    struct {
 373        struct kvm_msrs info;
 374        struct kvm_msr_entry entries[100];
 375    } msr_data;
 376    struct kvm_msr_entry *msrs = msr_data.entries;
 377    int n = 0;
 378
 379    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
 380    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
 381    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
 382    if (kvm_has_msr_star(env))
 383        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
 384    kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
 385#ifdef TARGET_X86_64
 386    /* FIXME if lm capable */
 387    kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
 388    kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
 389    kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
 390    kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
 391#endif
 392    msr_data.info.nmsrs = n;
 393
 394    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
 395
 396}
 397
 398
 399static int kvm_get_fpu(CPUState *env)
 400{
 401    struct kvm_fpu fpu;
 402    int i, ret;
 403
 404    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
 405    if (ret < 0)
 406        return ret;
 407
 408    env->fpstt = (fpu.fsw >> 11) & 7;
 409    env->fpus = fpu.fsw;
 410    env->fpuc = fpu.fcw;
 411    for (i = 0; i < 8; ++i)
 412        env->fptags[i] = !((fpu.ftwx >> i) & 1);
 413    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
 414    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
 415    env->mxcsr = fpu.mxcsr;
 416
 417    return 0;
 418}
 419
 420static int kvm_get_sregs(CPUState *env)
 421{
 422    struct kvm_sregs sregs;
 423    uint32_t hflags;
 424    int ret;
 425
 426    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
 427    if (ret < 0)
 428        return ret;
 429
 430    memcpy(env->interrupt_bitmap, 
 431           sregs.interrupt_bitmap,
 432           sizeof(sregs.interrupt_bitmap));
 433
 434    get_seg(&env->segs[R_CS], &sregs.cs);
 435    get_seg(&env->segs[R_DS], &sregs.ds);
 436    get_seg(&env->segs[R_ES], &sregs.es);
 437    get_seg(&env->segs[R_FS], &sregs.fs);
 438    get_seg(&env->segs[R_GS], &sregs.gs);
 439    get_seg(&env->segs[R_SS], &sregs.ss);
 440
 441    get_seg(&env->tr, &sregs.tr);
 442    get_seg(&env->ldt, &sregs.ldt);
 443
 444    env->idt.limit = sregs.idt.limit;
 445    env->idt.base = sregs.idt.base;
 446    env->gdt.limit = sregs.gdt.limit;
 447    env->gdt.base = sregs.gdt.base;
 448
 449    env->cr[0] = sregs.cr0;
 450    env->cr[2] = sregs.cr2;
 451    env->cr[3] = sregs.cr3;
 452    env->cr[4] = sregs.cr4;
 453
 454    cpu_set_apic_base(env, sregs.apic_base);
 455
 456    env->efer = sregs.efer;
 457    //cpu_set_apic_tpr(env, sregs.cr8);
 458
 459#define HFLAG_COPY_MASK ~( \
 460                        HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
 461                        HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
 462                        HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
 463                        HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
 464
 465
 466
 467    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
 468    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
 469    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
 470            (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
 471    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
 472    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
 473            (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
 474
 475    if (env->efer & MSR_EFER_LMA) {
 476        hflags |= HF_LMA_MASK;
 477    }
 478
 479    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
 480        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
 481    } else {
 482        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
 483                (DESC_B_SHIFT - HF_CS32_SHIFT);
 484        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
 485                (DESC_B_SHIFT - HF_SS32_SHIFT);
 486        if (!(env->cr[0] & CR0_PE_MASK) ||
 487                   (env->eflags & VM_MASK) ||
 488                   !(hflags & HF_CS32_MASK)) {
 489                hflags |= HF_ADDSEG_MASK;
 490            } else {
 491                hflags |= ((env->segs[R_DS].base |
 492                                env->segs[R_ES].base |
 493                                env->segs[R_SS].base) != 0) <<
 494                    HF_ADDSEG_SHIFT;
 495            }
 496    }
 497    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
 498
 499    return 0;
 500}
 501
 502static int kvm_get_msrs(CPUState *env)
 503{
 504    struct {
 505        struct kvm_msrs info;
 506        struct kvm_msr_entry entries[100];
 507    } msr_data;
 508    struct kvm_msr_entry *msrs = msr_data.entries;
 509    int ret, i, n;
 510
 511    n = 0;
 512    msrs[n++].index = MSR_IA32_SYSENTER_CS;
 513    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
 514    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
 515    if (kvm_has_msr_star(env))
 516        msrs[n++].index = MSR_STAR;
 517    msrs[n++].index = MSR_IA32_TSC;
 518#ifdef TARGET_X86_64
 519    /* FIXME lm_capable_kernel */
 520    msrs[n++].index = MSR_CSTAR;
 521    msrs[n++].index = MSR_KERNELGSBASE;
 522    msrs[n++].index = MSR_FMASK;
 523    msrs[n++].index = MSR_LSTAR;
 524#endif
 525    msr_data.info.nmsrs = n;
 526    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
 527    if (ret < 0)
 528        return ret;
 529
 530    for (i = 0; i < ret; i++) {
 531        switch (msrs[i].index) {
 532        case MSR_IA32_SYSENTER_CS:
 533            env->sysenter_cs = msrs[i].data;
 534            break;
 535        case MSR_IA32_SYSENTER_ESP:
 536            env->sysenter_esp = msrs[i].data;
 537            break;
 538        case MSR_IA32_SYSENTER_EIP:
 539            env->sysenter_eip = msrs[i].data;
 540            break;
 541        case MSR_STAR:
 542            env->star = msrs[i].data;
 543            break;
 544#ifdef TARGET_X86_64
 545        case MSR_CSTAR:
 546            env->cstar = msrs[i].data;
 547            break;
 548        case MSR_KERNELGSBASE:
 549            env->kernelgsbase = msrs[i].data;
 550            break;
 551        case MSR_FMASK:
 552            env->fmask = msrs[i].data;
 553            break;
 554        case MSR_LSTAR:
 555            env->lstar = msrs[i].data;
 556            break;
 557#endif
 558        case MSR_IA32_TSC:
 559            env->tsc = msrs[i].data;
 560            break;
 561        }
 562    }
 563
 564    return 0;
 565}
 566
 567int kvm_arch_put_registers(CPUState *env)
 568{
 569    int ret;
 570
 571    ret = kvm_getput_regs(env, 1);
 572    if (ret < 0)
 573        return ret;
 574
 575    ret = kvm_put_fpu(env);
 576    if (ret < 0)
 577        return ret;
 578
 579    ret = kvm_put_sregs(env);
 580    if (ret < 0)
 581        return ret;
 582
 583    ret = kvm_put_msrs(env);
 584    if (ret < 0)
 585        return ret;
 586
 587    return 0;
 588}
 589
 590int kvm_arch_get_registers(CPUState *env)
 591{
 592    int ret;
 593
 594    ret = kvm_getput_regs(env, 0);
 595    if (ret < 0)
 596        return ret;
 597
 598    ret = kvm_get_fpu(env);
 599    if (ret < 0)
 600        return ret;
 601
 602    ret = kvm_get_sregs(env);
 603    if (ret < 0)
 604        return ret;
 605
 606    ret = kvm_get_msrs(env);
 607    if (ret < 0)
 608        return ret;
 609
 610    return 0;
 611}
 612
 613int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
 614{
 615    /* Try to inject an interrupt if the guest can accept it */
 616    if (run->ready_for_interrupt_injection &&
 617        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
 618        (env->eflags & IF_MASK)) {
 619        int irq;
 620
 621        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
 622        irq = cpu_get_pic_interrupt(env);
 623        if (irq >= 0) {
 624            struct kvm_interrupt intr;
 625            intr.irq = irq;
 626            /* FIXME: errors */
 627            dprintf("injected interrupt %d\n", irq);
 628            kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
 629        }
 630    }
 631
 632    /* If we have an interrupt but the guest is not ready to receive an
 633     * interrupt, request an interrupt window exit.  This will
 634     * cause a return to userspace as soon as the guest is ready to
 635     * receive interrupts. */
 636    if ((env->interrupt_request & CPU_INTERRUPT_HARD))
 637        run->request_interrupt_window = 1;
 638    else
 639        run->request_interrupt_window = 0;
 640
 641    dprintf("setting tpr\n");
 642    run->cr8 = cpu_get_apic_tpr(env);
 643
 644    return 0;
 645}
 646
 647int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
 648{
 649    if (run->if_flag)
 650        env->eflags |= IF_MASK;
 651    else
 652        env->eflags &= ~IF_MASK;
 653    
 654    cpu_set_apic_tpr(env, run->cr8);
 655    cpu_set_apic_base(env, run->apic_base);
 656
 657    return 0;
 658}
 659
 660static int kvm_handle_halt(CPUState *env)
 661{
 662    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
 663          (env->eflags & IF_MASK)) &&
 664        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
 665        env->halted = 1;
 666        env->exception_index = EXCP_HLT;
 667        return 0;
 668    }
 669
 670    return 1;
 671}
 672
 673int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
 674{
 675    int ret = 0;
 676
 677    switch (run->exit_reason) {
 678    case KVM_EXIT_HLT:
 679        dprintf("handle_hlt\n");
 680        ret = kvm_handle_halt(env);
 681        break;
 682    }
 683
 684    return ret;
 685}
 686