qemu/fpu/softfloat.h
<<
>>
Prefs
   1/*============================================================================
   2
   3This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
   4Package, Release 2b.
   5
   6Written by John R. Hauser.  This work was made possible in part by the
   7International Computer Science Institute, located at Suite 600, 1947 Center
   8Street, Berkeley, California 94704.  Funding was partially provided by the
   9National Science Foundation under grant MIP-9311980.  The original version
  10of this code was written as part of a project to build a fixed-point vector
  11processor in collaboration with the University of California at Berkeley,
  12overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
  13is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
  14arithmetic/SoftFloat.html'.
  15
  16THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
  17been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
  18RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
  19AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
  20COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
  21EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
  22INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
  23OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
  24
  25Derivative works are acceptable, even for commercial purposes, so long as
  26(1) the source code for the derivative work includes prominent notice that
  27the work is derivative, and (2) the source code includes prominent notice with
  28these four paragraphs for those parts of this code that are retained.
  29
  30=============================================================================*/
  31
  32#ifndef SOFTFLOAT_H
  33#define SOFTFLOAT_H
  34
  35#if defined(HOST_SOLARIS) && defined(NEEDS_LIBSUNMATH)
  36#include <sunmath.h>
  37#endif
  38
  39#include <inttypes.h>
  40#include "config.h"
  41
  42/*----------------------------------------------------------------------------
  43| Each of the following `typedef's defines the most convenient type that holds
  44| integers of at least as many bits as specified.  For example, `uint8' should
  45| be the most convenient type that can hold unsigned integers of as many as
  46| 8 bits.  The `flag' type must be able to hold either a 0 or 1.  For most
  47| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
  48| to the same as `int'.
  49*----------------------------------------------------------------------------*/
  50typedef uint8_t flag;
  51typedef uint8_t uint8;
  52typedef int8_t int8;
  53#ifndef _AIX
  54typedef int uint16;
  55typedef int int16;
  56#endif
  57typedef unsigned int uint32;
  58typedef signed int int32;
  59typedef uint64_t uint64;
  60typedef int64_t int64;
  61
  62/*----------------------------------------------------------------------------
  63| Each of the following `typedef's defines a type that holds integers
  64| of _exactly_ the number of bits specified.  For instance, for most
  65| implementation of C, `bits16' and `sbits16' should be `typedef'ed to
  66| `unsigned short int' and `signed short int' (or `short int'), respectively.
  67*----------------------------------------------------------------------------*/
  68typedef uint8_t bits8;
  69typedef int8_t sbits8;
  70typedef uint16_t bits16;
  71typedef int16_t sbits16;
  72typedef uint32_t bits32;
  73typedef int32_t sbits32;
  74typedef uint64_t bits64;
  75typedef int64_t sbits64;
  76
  77#define LIT64( a ) a##LL
  78#define INLINE static inline
  79
  80/*----------------------------------------------------------------------------
  81| The macro `FLOATX80' must be defined to enable the extended double-precision
  82| floating-point format `floatx80'.  If this macro is not defined, the
  83| `floatx80' type will not be defined, and none of the functions that either
  84| input or output the `floatx80' type will be defined.  The same applies to
  85| the `FLOAT128' macro and the quadruple-precision format `float128'.
  86*----------------------------------------------------------------------------*/
  87#ifdef CONFIG_SOFTFLOAT
  88/* bit exact soft float support */
  89#define FLOATX80
  90#define FLOAT128
  91#else
  92/* native float support */
  93#if (defined(__i386__) || defined(__x86_64__)) && !defined(HOST_BSD)
  94#define FLOATX80
  95#endif
  96#endif /* !CONFIG_SOFTFLOAT */
  97
  98#define STATUS_PARAM , float_status *status
  99#define STATUS(field) status->field
 100#define STATUS_VAR , status
 101
 102/*----------------------------------------------------------------------------
 103| Software IEC/IEEE floating-point ordering relations
 104*----------------------------------------------------------------------------*/
 105enum {
 106    float_relation_less      = -1,
 107    float_relation_equal     =  0,
 108    float_relation_greater   =  1,
 109    float_relation_unordered =  2
 110};
 111
 112#ifdef CONFIG_SOFTFLOAT
 113/*----------------------------------------------------------------------------
 114| Software IEC/IEEE floating-point types.
 115*----------------------------------------------------------------------------*/
 116/* Use structures for soft-float types.  This prevents accidentally mixing
 117   them with native int/float types.  A sufficiently clever compiler and
 118   sane ABI should be able to see though these structs.  However
 119   x86/gcc 3.x seems to struggle a bit, so leave them disabled by default.  */
 120//#define USE_SOFTFLOAT_STRUCT_TYPES
 121#ifdef USE_SOFTFLOAT_STRUCT_TYPES
 122typedef struct {
 123    uint32_t v;
 124} float32;
 125/* The cast ensures an error if the wrong type is passed.  */
 126#define float32_val(x) (((float32)(x)).v)
 127#define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
 128typedef struct {
 129    uint64_t v;
 130} float64;
 131#define float64_val(x) (((float64)(x)).v)
 132#define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
 133#else
 134typedef uint32_t float32;
 135typedef uint64_t float64;
 136#define float32_val(x) (x)
 137#define float64_val(x) (x)
 138#define make_float32(x) (x)
 139#define make_float64(x) (x)
 140#endif
 141#ifdef FLOATX80
 142typedef struct {
 143    uint64_t low;
 144    uint16_t high;
 145} floatx80;
 146#endif
 147#ifdef FLOAT128
 148typedef struct {
 149#ifdef WORDS_BIGENDIAN
 150    uint64_t high, low;
 151#else
 152    uint64_t low, high;
 153#endif
 154} float128;
 155#endif
 156
 157/*----------------------------------------------------------------------------
 158| Software IEC/IEEE floating-point underflow tininess-detection mode.
 159*----------------------------------------------------------------------------*/
 160enum {
 161    float_tininess_after_rounding  = 0,
 162    float_tininess_before_rounding = 1
 163};
 164
 165/*----------------------------------------------------------------------------
 166| Software IEC/IEEE floating-point rounding mode.
 167*----------------------------------------------------------------------------*/
 168enum {
 169    float_round_nearest_even = 0,
 170    float_round_down         = 1,
 171    float_round_up           = 2,
 172    float_round_to_zero      = 3
 173};
 174
 175/*----------------------------------------------------------------------------
 176| Software IEC/IEEE floating-point exception flags.
 177*----------------------------------------------------------------------------*/
 178enum {
 179    float_flag_invalid   =  1,
 180    float_flag_divbyzero =  4,
 181    float_flag_overflow  =  8,
 182    float_flag_underflow = 16,
 183    float_flag_inexact   = 32
 184};
 185
 186typedef struct float_status {
 187    signed char float_detect_tininess;
 188    signed char float_rounding_mode;
 189    signed char float_exception_flags;
 190#ifdef FLOATX80
 191    signed char floatx80_rounding_precision;
 192#endif
 193    flag flush_to_zero;
 194    flag default_nan_mode;
 195} float_status;
 196
 197void set_float_rounding_mode(int val STATUS_PARAM);
 198void set_float_exception_flags(int val STATUS_PARAM);
 199INLINE void set_flush_to_zero(flag val STATUS_PARAM)
 200{
 201    STATUS(flush_to_zero) = val;
 202}
 203INLINE void set_default_nan_mode(flag val STATUS_PARAM)
 204{
 205    STATUS(default_nan_mode) = val;
 206}
 207INLINE int get_float_exception_flags(float_status *status)
 208{
 209    return STATUS(float_exception_flags);
 210}
 211#ifdef FLOATX80
 212void set_floatx80_rounding_precision(int val STATUS_PARAM);
 213#endif
 214
 215/*----------------------------------------------------------------------------
 216| Routine to raise any or all of the software IEC/IEEE floating-point
 217| exception flags.
 218*----------------------------------------------------------------------------*/
 219void float_raise( int8 flags STATUS_PARAM);
 220
 221/*----------------------------------------------------------------------------
 222| Software IEC/IEEE integer-to-floating-point conversion routines.
 223*----------------------------------------------------------------------------*/
 224float32 int32_to_float32( int STATUS_PARAM );
 225float64 int32_to_float64( int STATUS_PARAM );
 226float32 uint32_to_float32( unsigned int STATUS_PARAM );
 227float64 uint32_to_float64( unsigned int STATUS_PARAM );
 228#ifdef FLOATX80
 229floatx80 int32_to_floatx80( int STATUS_PARAM );
 230#endif
 231#ifdef FLOAT128
 232float128 int32_to_float128( int STATUS_PARAM );
 233#endif
 234float32 int64_to_float32( int64_t STATUS_PARAM );
 235float32 uint64_to_float32( uint64_t STATUS_PARAM );
 236float64 int64_to_float64( int64_t STATUS_PARAM );
 237float64 uint64_to_float64( uint64_t STATUS_PARAM );
 238#ifdef FLOATX80
 239floatx80 int64_to_floatx80( int64_t STATUS_PARAM );
 240#endif
 241#ifdef FLOAT128
 242float128 int64_to_float128( int64_t STATUS_PARAM );
 243#endif
 244
 245/*----------------------------------------------------------------------------
 246| Software IEC/IEEE single-precision conversion routines.
 247*----------------------------------------------------------------------------*/
 248int float32_to_int32( float32 STATUS_PARAM );
 249int float32_to_int32_round_to_zero( float32 STATUS_PARAM );
 250unsigned int float32_to_uint32( float32 STATUS_PARAM );
 251unsigned int float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
 252int64_t float32_to_int64( float32 STATUS_PARAM );
 253int64_t float32_to_int64_round_to_zero( float32 STATUS_PARAM );
 254float64 float32_to_float64( float32 STATUS_PARAM );
 255#ifdef FLOATX80
 256floatx80 float32_to_floatx80( float32 STATUS_PARAM );
 257#endif
 258#ifdef FLOAT128
 259float128 float32_to_float128( float32 STATUS_PARAM );
 260#endif
 261
 262/*----------------------------------------------------------------------------
 263| Software IEC/IEEE single-precision operations.
 264*----------------------------------------------------------------------------*/
 265float32 float32_round_to_int( float32 STATUS_PARAM );
 266float32 float32_add( float32, float32 STATUS_PARAM );
 267float32 float32_sub( float32, float32 STATUS_PARAM );
 268float32 float32_mul( float32, float32 STATUS_PARAM );
 269float32 float32_div( float32, float32 STATUS_PARAM );
 270float32 float32_rem( float32, float32 STATUS_PARAM );
 271float32 float32_sqrt( float32 STATUS_PARAM );
 272float32 float32_log2( float32 STATUS_PARAM );
 273int float32_eq( float32, float32 STATUS_PARAM );
 274int float32_le( float32, float32 STATUS_PARAM );
 275int float32_lt( float32, float32 STATUS_PARAM );
 276int float32_eq_signaling( float32, float32 STATUS_PARAM );
 277int float32_le_quiet( float32, float32 STATUS_PARAM );
 278int float32_lt_quiet( float32, float32 STATUS_PARAM );
 279int float32_compare( float32, float32 STATUS_PARAM );
 280int float32_compare_quiet( float32, float32 STATUS_PARAM );
 281int float32_is_nan( float32 );
 282int float32_is_signaling_nan( float32 );
 283float32 float32_scalbn( float32, int STATUS_PARAM );
 284
 285INLINE float32 float32_abs(float32 a)
 286{
 287    return make_float32(float32_val(a) & 0x7fffffff);
 288}
 289
 290INLINE float32 float32_chs(float32 a)
 291{
 292    return make_float32(float32_val(a) ^ 0x80000000);
 293}
 294
 295INLINE int float32_is_infinity(float32 a)
 296{
 297    return (float32_val(a) & 0x7fffffff) == 0x7f800000;
 298}
 299
 300INLINE int float32_is_neg(float32 a)
 301{
 302    return float32_val(a) >> 31;
 303}
 304
 305INLINE int float32_is_zero(float32 a)
 306{
 307    return (float32_val(a) & 0x7fffffff) == 0;
 308}
 309
 310#define float32_zero make_float32(0)
 311#define float32_one make_float32(0x3f800000)
 312
 313/*----------------------------------------------------------------------------
 314| Software IEC/IEEE double-precision conversion routines.
 315*----------------------------------------------------------------------------*/
 316int float64_to_int32( float64 STATUS_PARAM );
 317int float64_to_int32_round_to_zero( float64 STATUS_PARAM );
 318unsigned int float64_to_uint32( float64 STATUS_PARAM );
 319unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
 320int64_t float64_to_int64( float64 STATUS_PARAM );
 321int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM );
 322uint64_t float64_to_uint64 (float64 a STATUS_PARAM);
 323uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
 324float32 float64_to_float32( float64 STATUS_PARAM );
 325#ifdef FLOATX80
 326floatx80 float64_to_floatx80( float64 STATUS_PARAM );
 327#endif
 328#ifdef FLOAT128
 329float128 float64_to_float128( float64 STATUS_PARAM );
 330#endif
 331
 332/*----------------------------------------------------------------------------
 333| Software IEC/IEEE double-precision operations.
 334*----------------------------------------------------------------------------*/
 335float64 float64_round_to_int( float64 STATUS_PARAM );
 336float64 float64_trunc_to_int( float64 STATUS_PARAM );
 337float64 float64_add( float64, float64 STATUS_PARAM );
 338float64 float64_sub( float64, float64 STATUS_PARAM );
 339float64 float64_mul( float64, float64 STATUS_PARAM );
 340float64 float64_div( float64, float64 STATUS_PARAM );
 341float64 float64_rem( float64, float64 STATUS_PARAM );
 342float64 float64_sqrt( float64 STATUS_PARAM );
 343float64 float64_log2( float64 STATUS_PARAM );
 344int float64_eq( float64, float64 STATUS_PARAM );
 345int float64_le( float64, float64 STATUS_PARAM );
 346int float64_lt( float64, float64 STATUS_PARAM );
 347int float64_eq_signaling( float64, float64 STATUS_PARAM );
 348int float64_le_quiet( float64, float64 STATUS_PARAM );
 349int float64_lt_quiet( float64, float64 STATUS_PARAM );
 350int float64_compare( float64, float64 STATUS_PARAM );
 351int float64_compare_quiet( float64, float64 STATUS_PARAM );
 352int float64_is_nan( float64 a );
 353int float64_is_signaling_nan( float64 );
 354float64 float64_scalbn( float64, int STATUS_PARAM );
 355
 356INLINE float64 float64_abs(float64 a)
 357{
 358    return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
 359}
 360
 361INLINE float64 float64_chs(float64 a)
 362{
 363    return make_float64(float64_val(a) ^ 0x8000000000000000LL);
 364}
 365
 366INLINE int float64_is_infinity(float64 a)
 367{
 368    return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
 369}
 370
 371INLINE int float64_is_neg(float64 a)
 372{
 373    return float64_val(a) >> 63;
 374}
 375
 376INLINE int float64_is_zero(float64 a)
 377{
 378    return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
 379}
 380
 381#define float64_zero make_float64(0)
 382#define float64_one make_float64(0x3ff0000000000000LL)
 383
 384#ifdef FLOATX80
 385
 386/*----------------------------------------------------------------------------
 387| Software IEC/IEEE extended double-precision conversion routines.
 388*----------------------------------------------------------------------------*/
 389int floatx80_to_int32( floatx80 STATUS_PARAM );
 390int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
 391int64_t floatx80_to_int64( floatx80 STATUS_PARAM );
 392int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
 393float32 floatx80_to_float32( floatx80 STATUS_PARAM );
 394float64 floatx80_to_float64( floatx80 STATUS_PARAM );
 395#ifdef FLOAT128
 396float128 floatx80_to_float128( floatx80 STATUS_PARAM );
 397#endif
 398
 399/*----------------------------------------------------------------------------
 400| Software IEC/IEEE extended double-precision operations.
 401*----------------------------------------------------------------------------*/
 402floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
 403floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
 404floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
 405floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
 406floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
 407floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
 408floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
 409int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
 410int floatx80_le( floatx80, floatx80 STATUS_PARAM );
 411int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
 412int floatx80_eq_signaling( floatx80, floatx80 STATUS_PARAM );
 413int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
 414int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
 415int floatx80_is_nan( floatx80 );
 416int floatx80_is_signaling_nan( floatx80 );
 417floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
 418
 419INLINE floatx80 floatx80_abs(floatx80 a)
 420{
 421    a.high &= 0x7fff;
 422    return a;
 423}
 424
 425INLINE floatx80 floatx80_chs(floatx80 a)
 426{
 427    a.high ^= 0x8000;
 428    return a;
 429}
 430
 431INLINE int floatx80_is_infinity(floatx80 a)
 432{
 433    return (a.high & 0x7fff) == 0x7fff && a.low == 0;
 434}
 435
 436INLINE int floatx80_is_neg(floatx80 a)
 437{
 438    return a.high >> 15;
 439}
 440
 441INLINE int floatx80_is_zero(floatx80 a)
 442{
 443    return (a.high & 0x7fff) == 0 && a.low == 0;
 444}
 445
 446#endif
 447
 448#ifdef FLOAT128
 449
 450/*----------------------------------------------------------------------------
 451| Software IEC/IEEE quadruple-precision conversion routines.
 452*----------------------------------------------------------------------------*/
 453int float128_to_int32( float128 STATUS_PARAM );
 454int float128_to_int32_round_to_zero( float128 STATUS_PARAM );
 455int64_t float128_to_int64( float128 STATUS_PARAM );
 456int64_t float128_to_int64_round_to_zero( float128 STATUS_PARAM );
 457float32 float128_to_float32( float128 STATUS_PARAM );
 458float64 float128_to_float64( float128 STATUS_PARAM );
 459#ifdef FLOATX80
 460floatx80 float128_to_floatx80( float128 STATUS_PARAM );
 461#endif
 462
 463/*----------------------------------------------------------------------------
 464| Software IEC/IEEE quadruple-precision operations.
 465*----------------------------------------------------------------------------*/
 466float128 float128_round_to_int( float128 STATUS_PARAM );
 467float128 float128_add( float128, float128 STATUS_PARAM );
 468float128 float128_sub( float128, float128 STATUS_PARAM );
 469float128 float128_mul( float128, float128 STATUS_PARAM );
 470float128 float128_div( float128, float128 STATUS_PARAM );
 471float128 float128_rem( float128, float128 STATUS_PARAM );
 472float128 float128_sqrt( float128 STATUS_PARAM );
 473int float128_eq( float128, float128 STATUS_PARAM );
 474int float128_le( float128, float128 STATUS_PARAM );
 475int float128_lt( float128, float128 STATUS_PARAM );
 476int float128_eq_signaling( float128, float128 STATUS_PARAM );
 477int float128_le_quiet( float128, float128 STATUS_PARAM );
 478int float128_lt_quiet( float128, float128 STATUS_PARAM );
 479int float128_compare( float128, float128 STATUS_PARAM );
 480int float128_compare_quiet( float128, float128 STATUS_PARAM );
 481int float128_is_nan( float128 );
 482int float128_is_signaling_nan( float128 );
 483float128 float128_scalbn( float128, int STATUS_PARAM );
 484
 485INLINE float128 float128_abs(float128 a)
 486{
 487    a.high &= 0x7fffffffffffffffLL;
 488    return a;
 489}
 490
 491INLINE float128 float128_chs(float128 a)
 492{
 493    a.high ^= 0x8000000000000000LL;
 494    return a;
 495}
 496
 497INLINE int float128_is_infinity(float128 a)
 498{
 499    return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
 500}
 501
 502INLINE int float128_is_neg(float128 a)
 503{
 504    return a.high >> 63;
 505}
 506
 507INLINE int float128_is_zero(float128 a)
 508{
 509    return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
 510}
 511
 512#endif
 513
 514#else /* CONFIG_SOFTFLOAT */
 515
 516#include "softfloat-native.h"
 517
 518#endif /* !CONFIG_SOFTFLOAT */
 519
 520#endif /* !SOFTFLOAT_H */
 521