qemu/hw/onenand.c
<<
>>
Prefs
   1/*
   2 * OneNAND flash memories emulation.
   3 *
   4 * Copyright (C) 2008 Nokia Corporation
   5 * Written by Andrzej Zaborowski <andrew@openedhand.com>
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License as
   9 * published by the Free Software Foundation; either version 2 or
  10 * (at your option) version 3 of the License.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License along
  18 * with this program; if not, see <http://www.gnu.org/licenses/>.
  19 */
  20
  21#include "qemu-common.h"
  22#include "flash.h"
  23#include "irq.h"
  24#include "sysemu.h"
  25#include "block.h"
  26
  27/* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
  28#define PAGE_SHIFT      11
  29
  30/* Fixed */
  31#define BLOCK_SHIFT     (PAGE_SHIFT + 6)
  32
  33typedef struct {
  34    uint32_t id;
  35    int shift;
  36    target_phys_addr_t base;
  37    qemu_irq intr;
  38    qemu_irq rdy;
  39    BlockDriverState *bdrv;
  40    BlockDriverState *bdrv_cur;
  41    uint8_t *image;
  42    uint8_t *otp;
  43    uint8_t *current;
  44    ram_addr_t ram;
  45    uint8_t *boot[2];
  46    uint8_t *data[2][2];
  47    int iomemtype;
  48    int cycle;
  49    int otpmode;
  50
  51    uint16_t addr[8];
  52    uint16_t unladdr[8];
  53    int bufaddr;
  54    int count;
  55    uint16_t command;
  56    uint16_t config[2];
  57    uint16_t status;
  58    uint16_t intstatus;
  59    uint16_t wpstatus;
  60
  61    ECCState ecc;
  62
  63    int density_mask;
  64    int secs;
  65    int secs_cur;
  66    int blocks;
  67    uint8_t *blockwp;
  68} OneNANDState;
  69
  70enum {
  71    ONEN_BUF_BLOCK = 0,
  72    ONEN_BUF_BLOCK2 = 1,
  73    ONEN_BUF_DEST_BLOCK = 2,
  74    ONEN_BUF_DEST_PAGE = 3,
  75    ONEN_BUF_PAGE = 7,
  76};
  77
  78enum {
  79    ONEN_ERR_CMD = 1 << 10,
  80    ONEN_ERR_ERASE = 1 << 11,
  81    ONEN_ERR_PROG = 1 << 12,
  82    ONEN_ERR_LOAD = 1 << 13,
  83};
  84
  85enum {
  86    ONEN_INT_RESET = 1 << 4,
  87    ONEN_INT_ERASE = 1 << 5,
  88    ONEN_INT_PROG = 1 << 6,
  89    ONEN_INT_LOAD = 1 << 7,
  90    ONEN_INT = 1 << 15,
  91};
  92
  93enum {
  94    ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
  95    ONEN_LOCK_LOCKED = 1 << 1,
  96    ONEN_LOCK_UNLOCKED = 1 << 2,
  97};
  98
  99void onenand_base_update(void *opaque, target_phys_addr_t new)
 100{
 101    OneNANDState *s = (OneNANDState *) opaque;
 102
 103    s->base = new;
 104
 105    /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
 106     * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
 107     * write boot commands.  Also take note of the BWPS bit.  */
 108    cpu_register_physical_memory(s->base + (0x0000 << s->shift),
 109                    0x0200 << s->shift, s->iomemtype);
 110    cpu_register_physical_memory(s->base + (0x0200 << s->shift),
 111                    0xbe00 << s->shift,
 112                    (s->ram +(0x0200 << s->shift)) | IO_MEM_RAM);
 113    if (s->iomemtype)
 114        cpu_register_physical_memory_offset(s->base + (0xc000 << s->shift),
 115                    0x4000 << s->shift, s->iomemtype, (0xc000 << s->shift));
 116}
 117
 118void onenand_base_unmap(void *opaque)
 119{
 120    OneNANDState *s = (OneNANDState *) opaque;
 121
 122    cpu_register_physical_memory(s->base,
 123                    0x10000 << s->shift, IO_MEM_UNASSIGNED);
 124}
 125
 126static void onenand_intr_update(OneNANDState *s)
 127{
 128    qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
 129}
 130
 131/* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
 132static void onenand_reset(OneNANDState *s, int cold)
 133{
 134    memset(&s->addr, 0, sizeof(s->addr));
 135    s->command = 0;
 136    s->count = 1;
 137    s->bufaddr = 0;
 138    s->config[0] = 0x40c0;
 139    s->config[1] = 0x0000;
 140    onenand_intr_update(s);
 141    qemu_irq_raise(s->rdy);
 142    s->status = 0x0000;
 143    s->intstatus = cold ? 0x8080 : 0x8010;
 144    s->unladdr[0] = 0;
 145    s->unladdr[1] = 0;
 146    s->wpstatus = 0x0002;
 147    s->cycle = 0;
 148    s->otpmode = 0;
 149    s->bdrv_cur = s->bdrv;
 150    s->current = s->image;
 151    s->secs_cur = s->secs;
 152
 153    if (cold) {
 154        /* Lock the whole flash */
 155        memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
 156
 157        if (s->bdrv && bdrv_read(s->bdrv, 0, s->boot[0], 8) < 0)
 158            hw_error("%s: Loading the BootRAM failed.\n", __FUNCTION__);
 159    }
 160}
 161
 162static inline int onenand_load_main(OneNANDState *s, int sec, int secn,
 163                void *dest)
 164{
 165    if (s->bdrv_cur)
 166        return bdrv_read(s->bdrv_cur, sec, dest, secn) < 0;
 167    else if (sec + secn > s->secs_cur)
 168        return 1;
 169
 170    memcpy(dest, s->current + (sec << 9), secn << 9);
 171
 172    return 0;
 173}
 174
 175static inline int onenand_prog_main(OneNANDState *s, int sec, int secn,
 176                void *src)
 177{
 178    if (s->bdrv_cur)
 179        return bdrv_write(s->bdrv_cur, sec, src, secn) < 0;
 180    else if (sec + secn > s->secs_cur)
 181        return 1;
 182
 183    memcpy(s->current + (sec << 9), src, secn << 9);
 184
 185    return 0;
 186}
 187
 188static inline int onenand_load_spare(OneNANDState *s, int sec, int secn,
 189                void *dest)
 190{
 191    uint8_t buf[512];
 192
 193    if (s->bdrv_cur) {
 194        if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
 195            return 1;
 196        memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
 197    } else if (sec + secn > s->secs_cur)
 198        return 1;
 199    else
 200        memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
 201 
 202    return 0;
 203}
 204
 205static inline int onenand_prog_spare(OneNANDState *s, int sec, int secn,
 206                void *src)
 207{
 208    uint8_t buf[512];
 209
 210    if (s->bdrv_cur) {
 211        if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
 212            return 1;
 213        memcpy(buf + ((sec & 31) << 4), src, secn << 4);
 214        return bdrv_write(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0;
 215    } else if (sec + secn > s->secs_cur)
 216        return 1;
 217
 218    memcpy(s->current + (s->secs_cur << 9) + (sec << 4), src, secn << 4);
 219 
 220    return 0;
 221}
 222
 223static inline int onenand_erase(OneNANDState *s, int sec, int num)
 224{
 225    /* TODO: optimise */
 226    uint8_t buf[512];
 227
 228    memset(buf, 0xff, sizeof(buf));
 229    for (; num > 0; num --, sec ++) {
 230        if (onenand_prog_main(s, sec, 1, buf))
 231            return 1;
 232        if (onenand_prog_spare(s, sec, 1, buf))
 233            return 1;
 234    }
 235
 236    return 0;
 237}
 238
 239static void onenand_command(OneNANDState *s, int cmd)
 240{
 241    int b;
 242    int sec;
 243    void *buf;
 244#define SETADDR(block, page)                    \
 245    sec = (s->addr[page] & 3) +                 \
 246            ((((s->addr[page] >> 2) & 0x3f) +   \
 247              (((s->addr[block] & 0xfff) |      \
 248                (s->addr[block] >> 15 ?         \
 249                 s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
 250#define SETBUF_M()                              \
 251    buf = (s->bufaddr & 8) ?                    \
 252            s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0];     \
 253    buf += (s->bufaddr & 3) << 9;
 254#define SETBUF_S()                              \
 255    buf = (s->bufaddr & 8) ?                    \
 256            s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1];     \
 257    buf += (s->bufaddr & 3) << 4;
 258
 259    switch (cmd) {
 260    case 0x00:  /* Load single/multiple sector data unit into buffer */
 261        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
 262
 263        SETBUF_M()
 264        if (onenand_load_main(s, sec, s->count, buf))
 265            s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
 266
 267#if 0
 268        SETBUF_S()
 269        if (onenand_load_spare(s, sec, s->count, buf))
 270            s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
 271#endif
 272
 273        /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
 274         * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
 275         * then we need two split the read/write into two chunks.
 276         */
 277        s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
 278        break;
 279    case 0x13:  /* Load single/multiple spare sector into buffer */
 280        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
 281
 282        SETBUF_S()
 283        if (onenand_load_spare(s, sec, s->count, buf))
 284            s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
 285
 286        /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
 287         * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
 288         * then we need two split the read/write into two chunks.
 289         */
 290        s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
 291        break;
 292    case 0x80:  /* Program single/multiple sector data unit from buffer */
 293        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
 294
 295        SETBUF_M()
 296        if (onenand_prog_main(s, sec, s->count, buf))
 297            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
 298
 299#if 0
 300        SETBUF_S()
 301        if (onenand_prog_spare(s, sec, s->count, buf))
 302            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
 303#endif
 304
 305        /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
 306         * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
 307         * then we need two split the read/write into two chunks.
 308         */
 309        s->intstatus |= ONEN_INT | ONEN_INT_PROG;
 310        break;
 311    case 0x1a:  /* Program single/multiple spare area sector from buffer */
 312        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
 313
 314        SETBUF_S()
 315        if (onenand_prog_spare(s, sec, s->count, buf))
 316            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
 317
 318        /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
 319         * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
 320         * then we need two split the read/write into two chunks.
 321         */
 322        s->intstatus |= ONEN_INT | ONEN_INT_PROG;
 323        break;
 324    case 0x1b:  /* Copy-back program */
 325        SETBUF_S()
 326
 327        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
 328        if (onenand_load_main(s, sec, s->count, buf))
 329            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
 330
 331        SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
 332        if (onenand_prog_main(s, sec, s->count, buf))
 333            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
 334
 335        /* TODO: spare areas */
 336
 337        s->intstatus |= ONEN_INT | ONEN_INT_PROG;
 338        break;
 339
 340    case 0x23:  /* Unlock NAND array block(s) */
 341        s->intstatus |= ONEN_INT;
 342
 343        /* XXX the previous (?) area should be locked automatically */
 344        for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
 345            if (b >= s->blocks) {
 346                s->status |= ONEN_ERR_CMD;
 347                break;
 348            }
 349            if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
 350                break;
 351
 352            s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
 353        }
 354        break;
 355    case 0x27:  /* Unlock All NAND array blocks */
 356        s->intstatus |= ONEN_INT;
 357
 358        for (b = 0; b < s->blocks; b ++) {
 359            if (b >= s->blocks) {
 360                s->status |= ONEN_ERR_CMD;
 361                break;
 362            }
 363            if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
 364                break;
 365
 366            s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
 367        }
 368        break;
 369
 370    case 0x2a:  /* Lock NAND array block(s) */
 371        s->intstatus |= ONEN_INT;
 372
 373        for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
 374            if (b >= s->blocks) {
 375                s->status |= ONEN_ERR_CMD;
 376                break;
 377            }
 378            if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
 379                break;
 380
 381            s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
 382        }
 383        break;
 384    case 0x2c:  /* Lock-tight NAND array block(s) */
 385        s->intstatus |= ONEN_INT;
 386
 387        for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
 388            if (b >= s->blocks) {
 389                s->status |= ONEN_ERR_CMD;
 390                break;
 391            }
 392            if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
 393                continue;
 394
 395            s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
 396        }
 397        break;
 398
 399    case 0x71:  /* Erase-Verify-Read */
 400        s->intstatus |= ONEN_INT;
 401        break;
 402    case 0x95:  /* Multi-block erase */
 403        qemu_irq_pulse(s->intr);
 404        /* Fall through.  */
 405    case 0x94:  /* Block erase */
 406        sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
 407                        (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
 408                << (BLOCK_SHIFT - 9);
 409        if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
 410            s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
 411
 412        s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
 413        break;
 414    case 0xb0:  /* Erase suspend */
 415        break;
 416    case 0x30:  /* Erase resume */
 417        s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
 418        break;
 419
 420    case 0xf0:  /* Reset NAND Flash core */
 421        onenand_reset(s, 0);
 422        break;
 423    case 0xf3:  /* Reset OneNAND */
 424        onenand_reset(s, 0);
 425        break;
 426
 427    case 0x65:  /* OTP Access */
 428        s->intstatus |= ONEN_INT;
 429        s->bdrv_cur = 0;
 430        s->current = s->otp;
 431        s->secs_cur = 1 << (BLOCK_SHIFT - 9);
 432        s->addr[ONEN_BUF_BLOCK] = 0;
 433        s->otpmode = 1;
 434        break;
 435
 436    default:
 437        s->status |= ONEN_ERR_CMD;
 438        s->intstatus |= ONEN_INT;
 439        fprintf(stderr, "%s: unknown OneNAND command %x\n",
 440                        __FUNCTION__, cmd);
 441    }
 442
 443    onenand_intr_update(s);
 444}
 445
 446static uint32_t onenand_read(void *opaque, target_phys_addr_t addr)
 447{
 448    OneNANDState *s = (OneNANDState *) opaque;
 449    int offset = addr >> s->shift;
 450
 451    switch (offset) {
 452    case 0x0000 ... 0xc000:
 453        return lduw_le_p(s->boot[0] + addr);
 454
 455    case 0xf000:        /* Manufacturer ID */
 456        return (s->id >> 16) & 0xff;
 457    case 0xf001:        /* Device ID */
 458        return (s->id >>  8) & 0xff;
 459    /* TODO: get the following values from a real chip!  */
 460    case 0xf002:        /* Version ID */
 461        return (s->id >>  0) & 0xff;
 462    case 0xf003:        /* Data Buffer size */
 463        return 1 << PAGE_SHIFT;
 464    case 0xf004:        /* Boot Buffer size */
 465        return 0x200;
 466    case 0xf005:        /* Amount of buffers */
 467        return 1 | (2 << 8);
 468    case 0xf006:        /* Technology */
 469        return 0;
 470
 471    case 0xf100 ... 0xf107:     /* Start addresses */
 472        return s->addr[offset - 0xf100];
 473
 474    case 0xf200:        /* Start buffer */
 475        return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
 476
 477    case 0xf220:        /* Command */
 478        return s->command;
 479    case 0xf221:        /* System Configuration 1 */
 480        return s->config[0] & 0xffe0;
 481    case 0xf222:        /* System Configuration 2 */
 482        return s->config[1];
 483
 484    case 0xf240:        /* Controller Status */
 485        return s->status;
 486    case 0xf241:        /* Interrupt */
 487        return s->intstatus;
 488    case 0xf24c:        /* Unlock Start Block Address */
 489        return s->unladdr[0];
 490    case 0xf24d:        /* Unlock End Block Address */
 491        return s->unladdr[1];
 492    case 0xf24e:        /* Write Protection Status */
 493        return s->wpstatus;
 494
 495    case 0xff00:        /* ECC Status */
 496        return 0x00;
 497    case 0xff01:        /* ECC Result of main area data */
 498    case 0xff02:        /* ECC Result of spare area data */
 499    case 0xff03:        /* ECC Result of main area data */
 500    case 0xff04:        /* ECC Result of spare area data */
 501        hw_error("%s: imeplement ECC\n", __FUNCTION__);
 502        return 0x0000;
 503    }
 504
 505    fprintf(stderr, "%s: unknown OneNAND register %x\n",
 506                    __FUNCTION__, offset);
 507    return 0;
 508}
 509
 510static void onenand_write(void *opaque, target_phys_addr_t addr,
 511                uint32_t value)
 512{
 513    OneNANDState *s = (OneNANDState *) opaque;
 514    int offset = addr >> s->shift;
 515    int sec;
 516
 517    switch (offset) {
 518    case 0x0000 ... 0x01ff:
 519    case 0x8000 ... 0x800f:
 520        if (s->cycle) {
 521            s->cycle = 0;
 522
 523            if (value == 0x0000) {
 524                SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
 525                onenand_load_main(s, sec,
 526                                1 << (PAGE_SHIFT - 9), s->data[0][0]);
 527                s->addr[ONEN_BUF_PAGE] += 4;
 528                s->addr[ONEN_BUF_PAGE] &= 0xff;
 529            }
 530            break;
 531        }
 532
 533        switch (value) {
 534        case 0x00f0:    /* Reset OneNAND */
 535            onenand_reset(s, 0);
 536            break;
 537
 538        case 0x00e0:    /* Load Data into Buffer */
 539            s->cycle = 1;
 540            break;
 541
 542        case 0x0090:    /* Read Identification Data */
 543            memset(s->boot[0], 0, 3 << s->shift);
 544            s->boot[0][0 << s->shift] = (s->id >> 16) & 0xff;
 545            s->boot[0][1 << s->shift] = (s->id >>  8) & 0xff;
 546            s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
 547            break;
 548
 549        default:
 550            fprintf(stderr, "%s: unknown OneNAND boot command %x\n",
 551                            __FUNCTION__, value);
 552        }
 553        break;
 554
 555    case 0xf100 ... 0xf107:     /* Start addresses */
 556        s->addr[offset - 0xf100] = value;
 557        break;
 558
 559    case 0xf200:        /* Start buffer */
 560        s->bufaddr = (value >> 8) & 0xf;
 561        if (PAGE_SHIFT == 11)
 562            s->count = (value & 3) ?: 4;
 563        else if (PAGE_SHIFT == 10)
 564            s->count = (value & 1) ?: 2;
 565        break;
 566
 567    case 0xf220:        /* Command */
 568        if (s->intstatus & (1 << 15))
 569            break;
 570        s->command = value;
 571        onenand_command(s, s->command);
 572        break;
 573    case 0xf221:        /* System Configuration 1 */
 574        s->config[0] = value;
 575        onenand_intr_update(s);
 576        qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
 577        break;
 578    case 0xf222:        /* System Configuration 2 */
 579        s->config[1] = value;
 580        break;
 581
 582    case 0xf241:        /* Interrupt */
 583        s->intstatus &= value;
 584        if ((1 << 15) & ~s->intstatus)
 585            s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
 586                            ONEN_ERR_PROG | ONEN_ERR_LOAD);
 587        onenand_intr_update(s);
 588        break;
 589    case 0xf24c:        /* Unlock Start Block Address */
 590        s->unladdr[0] = value & (s->blocks - 1);
 591        /* For some reason we have to set the end address to by default
 592         * be same as start because the software forgets to write anything
 593         * in there.  */
 594        s->unladdr[1] = value & (s->blocks - 1);
 595        break;
 596    case 0xf24d:        /* Unlock End Block Address */
 597        s->unladdr[1] = value & (s->blocks - 1);
 598        break;
 599
 600    default:
 601        fprintf(stderr, "%s: unknown OneNAND register %x\n",
 602                        __FUNCTION__, offset);
 603    }
 604}
 605
 606static CPUReadMemoryFunc *onenand_readfn[] = {
 607    onenand_read,       /* TODO */
 608    onenand_read,
 609    onenand_read,
 610};
 611
 612static CPUWriteMemoryFunc *onenand_writefn[] = {
 613    onenand_write,      /* TODO */
 614    onenand_write,
 615    onenand_write,
 616};
 617
 618void *onenand_init(uint32_t id, int regshift, qemu_irq irq)
 619{
 620    OneNANDState *s = (OneNANDState *) qemu_mallocz(sizeof(*s));
 621    int bdrv_index = drive_get_index(IF_MTD, 0, 0);
 622    uint32_t size = 1 << (24 + ((id >> 12) & 7));
 623    void *ram;
 624
 625    s->shift = regshift;
 626    s->intr = irq;
 627    s->rdy = 0;
 628    s->id = id;
 629    s->blocks = size >> BLOCK_SHIFT;
 630    s->secs = size >> 9;
 631    s->blockwp = qemu_malloc(s->blocks);
 632    s->density_mask = (id & (1 << 11)) ? (1 << (6 + ((id >> 12) & 7))) : 0;
 633    s->iomemtype = cpu_register_io_memory(onenand_readfn,
 634                    onenand_writefn, s);
 635    if (bdrv_index == -1)
 636        s->image = memset(qemu_malloc(size + (size >> 5)),
 637                        0xff, size + (size >> 5));
 638    else
 639        s->bdrv = drives_table[bdrv_index].bdrv;
 640    s->otp = memset(qemu_malloc((64 + 2) << PAGE_SHIFT),
 641                    0xff, (64 + 2) << PAGE_SHIFT);
 642    s->ram = qemu_ram_alloc(0xc000 << s->shift);
 643    ram = qemu_get_ram_ptr(s->ram);
 644    s->boot[0] = ram + (0x0000 << s->shift);
 645    s->boot[1] = ram + (0x8000 << s->shift);
 646    s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
 647    s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
 648    s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
 649    s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
 650
 651    onenand_reset(s, 1);
 652
 653    return s;
 654}
 655
 656void *onenand_raw_otp(void *opaque)
 657{
 658    OneNANDState *s = (OneNANDState *) opaque;
 659
 660    return s->otp;
 661}
 662