qemu/hw/ppc.c
<<
>>
Prefs
   1/*
   2 * QEMU generic PowerPC hardware System Emulator
   3 *
   4 * Copyright (c) 2003-2007 Jocelyn Mayer
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24#include "hw.h"
  25#include "ppc.h"
  26#include "qemu-timer.h"
  27#include "sysemu.h"
  28#include "nvram.h"
  29#include "qemu-log.h"
  30
  31//#define PPC_DEBUG_IRQ
  32//#define PPC_DEBUG_TB
  33
  34#ifdef PPC_DEBUG_IRQ
  35#  define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
  36#else
  37#  define LOG_IRQ(...) do { } while (0)
  38#endif
  39
  40
  41#ifdef PPC_DEBUG_TB
  42#  define LOG_TB(...) qemu_log(__VA_ARGS__)
  43#else
  44#  define LOG_TB(...) do { } while (0)
  45#endif
  46
  47static void cpu_ppc_tb_stop (CPUState *env);
  48static void cpu_ppc_tb_start (CPUState *env);
  49
  50static void ppc_set_irq (CPUState *env, int n_IRQ, int level)
  51{
  52    if (level) {
  53        env->pending_interrupts |= 1 << n_IRQ;
  54        cpu_interrupt(env, CPU_INTERRUPT_HARD);
  55    } else {
  56        env->pending_interrupts &= ~(1 << n_IRQ);
  57        if (env->pending_interrupts == 0)
  58            cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
  59    }
  60    LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
  61                "req %08x\n", __func__, env, n_IRQ, level,
  62                env->pending_interrupts, env->interrupt_request);
  63}
  64
  65/* PowerPC 6xx / 7xx internal IRQ controller */
  66static void ppc6xx_set_irq (void *opaque, int pin, int level)
  67{
  68    CPUState *env = opaque;
  69    int cur_level;
  70
  71    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
  72                env, pin, level);
  73    cur_level = (env->irq_input_state >> pin) & 1;
  74    /* Don't generate spurious events */
  75    if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
  76        switch (pin) {
  77        case PPC6xx_INPUT_TBEN:
  78            /* Level sensitive - active high */
  79            LOG_IRQ("%s: %s the time base\n",
  80                        __func__, level ? "start" : "stop");
  81            if (level) {
  82                cpu_ppc_tb_start(env);
  83            } else {
  84                cpu_ppc_tb_stop(env);
  85            }
  86        case PPC6xx_INPUT_INT:
  87            /* Level sensitive - active high */
  88            LOG_IRQ("%s: set the external IRQ state to %d\n",
  89                        __func__, level);
  90            ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
  91            break;
  92        case PPC6xx_INPUT_SMI:
  93            /* Level sensitive - active high */
  94            LOG_IRQ("%s: set the SMI IRQ state to %d\n",
  95                        __func__, level);
  96            ppc_set_irq(env, PPC_INTERRUPT_SMI, level);
  97            break;
  98        case PPC6xx_INPUT_MCP:
  99            /* Negative edge sensitive */
 100            /* XXX: TODO: actual reaction may depends on HID0 status
 101             *            603/604/740/750: check HID0[EMCP]
 102             */
 103            if (cur_level == 1 && level == 0) {
 104                LOG_IRQ("%s: raise machine check state\n",
 105                            __func__);
 106                ppc_set_irq(env, PPC_INTERRUPT_MCK, 1);
 107            }
 108            break;
 109        case PPC6xx_INPUT_CKSTP_IN:
 110            /* Level sensitive - active low */
 111            /* XXX: TODO: relay the signal to CKSTP_OUT pin */
 112            /* XXX: Note that the only way to restart the CPU is to reset it */
 113            if (level) {
 114                LOG_IRQ("%s: stop the CPU\n", __func__);
 115                env->halted = 1;
 116            }
 117            break;
 118        case PPC6xx_INPUT_HRESET:
 119            /* Level sensitive - active low */
 120            if (level) {
 121                LOG_IRQ("%s: reset the CPU\n", __func__);
 122                env->interrupt_request |= CPU_INTERRUPT_EXITTB;
 123                /* XXX: TOFIX */
 124#if 0
 125                cpu_ppc_reset(env);
 126#else
 127                qemu_system_reset_request();
 128#endif
 129            }
 130            break;
 131        case PPC6xx_INPUT_SRESET:
 132            LOG_IRQ("%s: set the RESET IRQ state to %d\n",
 133                        __func__, level);
 134            ppc_set_irq(env, PPC_INTERRUPT_RESET, level);
 135            break;
 136        default:
 137            /* Unknown pin - do nothing */
 138            LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
 139            return;
 140        }
 141        if (level)
 142            env->irq_input_state |= 1 << pin;
 143        else
 144            env->irq_input_state &= ~(1 << pin);
 145    }
 146}
 147
 148void ppc6xx_irq_init (CPUState *env)
 149{
 150    env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, env,
 151                                                  PPC6xx_INPUT_NB);
 152}
 153
 154#if defined(TARGET_PPC64)
 155/* PowerPC 970 internal IRQ controller */
 156static void ppc970_set_irq (void *opaque, int pin, int level)
 157{
 158    CPUState *env = opaque;
 159    int cur_level;
 160
 161    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
 162                env, pin, level);
 163    cur_level = (env->irq_input_state >> pin) & 1;
 164    /* Don't generate spurious events */
 165    if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
 166        switch (pin) {
 167        case PPC970_INPUT_INT:
 168            /* Level sensitive - active high */
 169            LOG_IRQ("%s: set the external IRQ state to %d\n",
 170                        __func__, level);
 171            ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
 172            break;
 173        case PPC970_INPUT_THINT:
 174            /* Level sensitive - active high */
 175            LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
 176                        level);
 177            ppc_set_irq(env, PPC_INTERRUPT_THERM, level);
 178            break;
 179        case PPC970_INPUT_MCP:
 180            /* Negative edge sensitive */
 181            /* XXX: TODO: actual reaction may depends on HID0 status
 182             *            603/604/740/750: check HID0[EMCP]
 183             */
 184            if (cur_level == 1 && level == 0) {
 185                LOG_IRQ("%s: raise machine check state\n",
 186                            __func__);
 187                ppc_set_irq(env, PPC_INTERRUPT_MCK, 1);
 188            }
 189            break;
 190        case PPC970_INPUT_CKSTP:
 191            /* Level sensitive - active low */
 192            /* XXX: TODO: relay the signal to CKSTP_OUT pin */
 193            if (level) {
 194                LOG_IRQ("%s: stop the CPU\n", __func__);
 195                env->halted = 1;
 196            } else {
 197                LOG_IRQ("%s: restart the CPU\n", __func__);
 198                env->halted = 0;
 199            }
 200            break;
 201        case PPC970_INPUT_HRESET:
 202            /* Level sensitive - active low */
 203            if (level) {
 204#if 0 // XXX: TOFIX
 205                LOG_IRQ("%s: reset the CPU\n", __func__);
 206                cpu_reset(env);
 207#endif
 208            }
 209            break;
 210        case PPC970_INPUT_SRESET:
 211            LOG_IRQ("%s: set the RESET IRQ state to %d\n",
 212                        __func__, level);
 213            ppc_set_irq(env, PPC_INTERRUPT_RESET, level);
 214            break;
 215        case PPC970_INPUT_TBEN:
 216            LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
 217                        level);
 218            /* XXX: TODO */
 219            break;
 220        default:
 221            /* Unknown pin - do nothing */
 222            LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
 223            return;
 224        }
 225        if (level)
 226            env->irq_input_state |= 1 << pin;
 227        else
 228            env->irq_input_state &= ~(1 << pin);
 229    }
 230}
 231
 232void ppc970_irq_init (CPUState *env)
 233{
 234    env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, env,
 235                                                  PPC970_INPUT_NB);
 236}
 237#endif /* defined(TARGET_PPC64) */
 238
 239/* PowerPC 40x internal IRQ controller */
 240static void ppc40x_set_irq (void *opaque, int pin, int level)
 241{
 242    CPUState *env = opaque;
 243    int cur_level;
 244
 245    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
 246                env, pin, level);
 247    cur_level = (env->irq_input_state >> pin) & 1;
 248    /* Don't generate spurious events */
 249    if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
 250        switch (pin) {
 251        case PPC40x_INPUT_RESET_SYS:
 252            if (level) {
 253                LOG_IRQ("%s: reset the PowerPC system\n",
 254                            __func__);
 255                ppc40x_system_reset(env);
 256            }
 257            break;
 258        case PPC40x_INPUT_RESET_CHIP:
 259            if (level) {
 260                LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
 261                ppc40x_chip_reset(env);
 262            }
 263            break;
 264        case PPC40x_INPUT_RESET_CORE:
 265            /* XXX: TODO: update DBSR[MRR] */
 266            if (level) {
 267                LOG_IRQ("%s: reset the PowerPC core\n", __func__);
 268                ppc40x_core_reset(env);
 269            }
 270            break;
 271        case PPC40x_INPUT_CINT:
 272            /* Level sensitive - active high */
 273            LOG_IRQ("%s: set the critical IRQ state to %d\n",
 274                        __func__, level);
 275            ppc_set_irq(env, PPC_INTERRUPT_CEXT, level);
 276            break;
 277        case PPC40x_INPUT_INT:
 278            /* Level sensitive - active high */
 279            LOG_IRQ("%s: set the external IRQ state to %d\n",
 280                        __func__, level);
 281            ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
 282            break;
 283        case PPC40x_INPUT_HALT:
 284            /* Level sensitive - active low */
 285            if (level) {
 286                LOG_IRQ("%s: stop the CPU\n", __func__);
 287                env->halted = 1;
 288            } else {
 289                LOG_IRQ("%s: restart the CPU\n", __func__);
 290                env->halted = 0;
 291            }
 292            break;
 293        case PPC40x_INPUT_DEBUG:
 294            /* Level sensitive - active high */
 295            LOG_IRQ("%s: set the debug pin state to %d\n",
 296                        __func__, level);
 297            ppc_set_irq(env, PPC_INTERRUPT_DEBUG, level);
 298            break;
 299        default:
 300            /* Unknown pin - do nothing */
 301            LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
 302            return;
 303        }
 304        if (level)
 305            env->irq_input_state |= 1 << pin;
 306        else
 307            env->irq_input_state &= ~(1 << pin);
 308    }
 309}
 310
 311void ppc40x_irq_init (CPUState *env)
 312{
 313    env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
 314                                                  env, PPC40x_INPUT_NB);
 315}
 316
 317/* PowerPC E500 internal IRQ controller */
 318static void ppce500_set_irq (void *opaque, int pin, int level)
 319{
 320    CPUState *env = opaque;
 321    int cur_level;
 322
 323    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
 324                env, pin, level);
 325    cur_level = (env->irq_input_state >> pin) & 1;
 326    /* Don't generate spurious events */
 327    if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
 328        switch (pin) {
 329        case PPCE500_INPUT_MCK:
 330            if (level) {
 331                LOG_IRQ("%s: reset the PowerPC system\n",
 332                            __func__);
 333                qemu_system_reset_request();
 334            }
 335            break;
 336        case PPCE500_INPUT_RESET_CORE:
 337            if (level) {
 338                LOG_IRQ("%s: reset the PowerPC core\n", __func__);
 339                ppc_set_irq(env, PPC_INTERRUPT_MCK, level);
 340            }
 341            break;
 342        case PPCE500_INPUT_CINT:
 343            /* Level sensitive - active high */
 344            LOG_IRQ("%s: set the critical IRQ state to %d\n",
 345                        __func__, level);
 346            ppc_set_irq(env, PPC_INTERRUPT_CEXT, level);
 347            break;
 348        case PPCE500_INPUT_INT:
 349            /* Level sensitive - active high */
 350            LOG_IRQ("%s: set the core IRQ state to %d\n",
 351                        __func__, level);
 352            ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
 353            break;
 354        case PPCE500_INPUT_DEBUG:
 355            /* Level sensitive - active high */
 356            LOG_IRQ("%s: set the debug pin state to %d\n",
 357                        __func__, level);
 358            ppc_set_irq(env, PPC_INTERRUPT_DEBUG, level);
 359            break;
 360        default:
 361            /* Unknown pin - do nothing */
 362            LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
 363            return;
 364        }
 365        if (level)
 366            env->irq_input_state |= 1 << pin;
 367        else
 368            env->irq_input_state &= ~(1 << pin);
 369    }
 370}
 371
 372void ppce500_irq_init (CPUState *env)
 373{
 374    env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
 375                                        env, PPCE500_INPUT_NB);
 376}
 377/*****************************************************************************/
 378/* PowerPC time base and decrementer emulation */
 379struct ppc_tb_t {
 380    /* Time base management */
 381    int64_t  tb_offset;    /* Compensation                    */
 382    int64_t  atb_offset;   /* Compensation                    */
 383    uint32_t tb_freq;      /* TB frequency                    */
 384    /* Decrementer management */
 385    uint64_t decr_next;    /* Tick for next decr interrupt    */
 386    uint32_t decr_freq;    /* decrementer frequency           */
 387    struct QEMUTimer *decr_timer;
 388    /* Hypervisor decrementer management */
 389    uint64_t hdecr_next;    /* Tick for next hdecr interrupt  */
 390    struct QEMUTimer *hdecr_timer;
 391    uint64_t purr_load;
 392    uint64_t purr_start;
 393    void *opaque;
 394};
 395
 396static always_inline uint64_t cpu_ppc_get_tb (ppc_tb_t *tb_env, uint64_t vmclk,
 397                                              int64_t tb_offset)
 398{
 399    /* TB time in tb periods */
 400    return muldiv64(vmclk, tb_env->tb_freq, ticks_per_sec) + tb_offset;
 401}
 402
 403uint32_t cpu_ppc_load_tbl (CPUState *env)
 404{
 405    ppc_tb_t *tb_env = env->tb_env;
 406    uint64_t tb;
 407
 408    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
 409    LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
 410
 411    return tb & 0xFFFFFFFF;
 412}
 413
 414static always_inline uint32_t _cpu_ppc_load_tbu (CPUState *env)
 415{
 416    ppc_tb_t *tb_env = env->tb_env;
 417    uint64_t tb;
 418
 419    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
 420    LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
 421
 422    return tb >> 32;
 423}
 424
 425uint32_t cpu_ppc_load_tbu (CPUState *env)
 426{
 427    return _cpu_ppc_load_tbu(env);
 428}
 429
 430static always_inline void cpu_ppc_store_tb (ppc_tb_t *tb_env, uint64_t vmclk,
 431                                            int64_t *tb_offsetp,
 432                                            uint64_t value)
 433{
 434    *tb_offsetp = value - muldiv64(vmclk, tb_env->tb_freq, ticks_per_sec);
 435    LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
 436                __func__, value, *tb_offsetp);
 437}
 438
 439void cpu_ppc_store_tbl (CPUState *env, uint32_t value)
 440{
 441    ppc_tb_t *tb_env = env->tb_env;
 442    uint64_t tb;
 443
 444    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
 445    tb &= 0xFFFFFFFF00000000ULL;
 446    cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
 447                     &tb_env->tb_offset, tb | (uint64_t)value);
 448}
 449
 450static always_inline void _cpu_ppc_store_tbu (CPUState *env, uint32_t value)
 451{
 452    ppc_tb_t *tb_env = env->tb_env;
 453    uint64_t tb;
 454
 455    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
 456    tb &= 0x00000000FFFFFFFFULL;
 457    cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
 458                     &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
 459}
 460
 461void cpu_ppc_store_tbu (CPUState *env, uint32_t value)
 462{
 463    _cpu_ppc_store_tbu(env, value);
 464}
 465
 466uint32_t cpu_ppc_load_atbl (CPUState *env)
 467{
 468    ppc_tb_t *tb_env = env->tb_env;
 469    uint64_t tb;
 470
 471    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
 472    LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
 473
 474    return tb & 0xFFFFFFFF;
 475}
 476
 477uint32_t cpu_ppc_load_atbu (CPUState *env)
 478{
 479    ppc_tb_t *tb_env = env->tb_env;
 480    uint64_t tb;
 481
 482    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
 483    LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
 484
 485    return tb >> 32;
 486}
 487
 488void cpu_ppc_store_atbl (CPUState *env, uint32_t value)
 489{
 490    ppc_tb_t *tb_env = env->tb_env;
 491    uint64_t tb;
 492
 493    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
 494    tb &= 0xFFFFFFFF00000000ULL;
 495    cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
 496                     &tb_env->atb_offset, tb | (uint64_t)value);
 497}
 498
 499void cpu_ppc_store_atbu (CPUState *env, uint32_t value)
 500{
 501    ppc_tb_t *tb_env = env->tb_env;
 502    uint64_t tb;
 503
 504    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
 505    tb &= 0x00000000FFFFFFFFULL;
 506    cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
 507                     &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
 508}
 509
 510static void cpu_ppc_tb_stop (CPUState *env)
 511{
 512    ppc_tb_t *tb_env = env->tb_env;
 513    uint64_t tb, atb, vmclk;
 514
 515    /* If the time base is already frozen, do nothing */
 516    if (tb_env->tb_freq != 0) {
 517        vmclk = qemu_get_clock(vm_clock);
 518        /* Get the time base */
 519        tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
 520        /* Get the alternate time base */
 521        atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
 522        /* Store the time base value (ie compute the current offset) */
 523        cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
 524        /* Store the alternate time base value (compute the current offset) */
 525        cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
 526        /* Set the time base frequency to zero */
 527        tb_env->tb_freq = 0;
 528        /* Now, the time bases are frozen to tb_offset / atb_offset value */
 529    }
 530}
 531
 532static void cpu_ppc_tb_start (CPUState *env)
 533{
 534    ppc_tb_t *tb_env = env->tb_env;
 535    uint64_t tb, atb, vmclk;
 536
 537    /* If the time base is not frozen, do nothing */
 538    if (tb_env->tb_freq == 0) {
 539        vmclk = qemu_get_clock(vm_clock);
 540        /* Get the time base from tb_offset */
 541        tb = tb_env->tb_offset;
 542        /* Get the alternate time base from atb_offset */
 543        atb = tb_env->atb_offset;
 544        /* Restore the tb frequency from the decrementer frequency */
 545        tb_env->tb_freq = tb_env->decr_freq;
 546        /* Store the time base value */
 547        cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
 548        /* Store the alternate time base value */
 549        cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
 550    }
 551}
 552
 553static always_inline uint32_t _cpu_ppc_load_decr (CPUState *env,
 554                                                  uint64_t next)
 555{
 556    ppc_tb_t *tb_env = env->tb_env;
 557    uint32_t decr;
 558    int64_t diff;
 559
 560    diff = next - qemu_get_clock(vm_clock);
 561    if (diff >= 0)
 562        decr = muldiv64(diff, tb_env->decr_freq, ticks_per_sec);
 563    else
 564        decr = -muldiv64(-diff, tb_env->decr_freq, ticks_per_sec);
 565    LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
 566
 567    return decr;
 568}
 569
 570uint32_t cpu_ppc_load_decr (CPUState *env)
 571{
 572    ppc_tb_t *tb_env = env->tb_env;
 573
 574    return _cpu_ppc_load_decr(env, tb_env->decr_next);
 575}
 576
 577uint32_t cpu_ppc_load_hdecr (CPUState *env)
 578{
 579    ppc_tb_t *tb_env = env->tb_env;
 580
 581    return _cpu_ppc_load_decr(env, tb_env->hdecr_next);
 582}
 583
 584uint64_t cpu_ppc_load_purr (CPUState *env)
 585{
 586    ppc_tb_t *tb_env = env->tb_env;
 587    uint64_t diff;
 588
 589    diff = qemu_get_clock(vm_clock) - tb_env->purr_start;
 590
 591    return tb_env->purr_load + muldiv64(diff, tb_env->tb_freq, ticks_per_sec);
 592}
 593
 594/* When decrementer expires,
 595 * all we need to do is generate or queue a CPU exception
 596 */
 597static always_inline void cpu_ppc_decr_excp (CPUState *env)
 598{
 599    /* Raise it */
 600    LOG_TB("raise decrementer exception\n");
 601    ppc_set_irq(env, PPC_INTERRUPT_DECR, 1);
 602}
 603
 604static always_inline void cpu_ppc_hdecr_excp (CPUState *env)
 605{
 606    /* Raise it */
 607    LOG_TB("raise decrementer exception\n");
 608    ppc_set_irq(env, PPC_INTERRUPT_HDECR, 1);
 609}
 610
 611static void __cpu_ppc_store_decr (CPUState *env, uint64_t *nextp,
 612                                  struct QEMUTimer *timer,
 613                                  void (*raise_excp)(CPUState *),
 614                                  uint32_t decr, uint32_t value,
 615                                  int is_excp)
 616{
 617    ppc_tb_t *tb_env = env->tb_env;
 618    uint64_t now, next;
 619
 620    LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
 621                decr, value);
 622    now = qemu_get_clock(vm_clock);
 623    next = now + muldiv64(value, ticks_per_sec, tb_env->decr_freq);
 624    if (is_excp)
 625        next += *nextp - now;
 626    if (next == now)
 627        next++;
 628    *nextp = next;
 629    /* Adjust timer */
 630    qemu_mod_timer(timer, next);
 631    /* If we set a negative value and the decrementer was positive,
 632     * raise an exception.
 633     */
 634    if ((value & 0x80000000) && !(decr & 0x80000000))
 635        (*raise_excp)(env);
 636}
 637
 638static always_inline void _cpu_ppc_store_decr (CPUState *env, uint32_t decr,
 639                                               uint32_t value, int is_excp)
 640{
 641    ppc_tb_t *tb_env = env->tb_env;
 642
 643    __cpu_ppc_store_decr(env, &tb_env->decr_next, tb_env->decr_timer,
 644                         &cpu_ppc_decr_excp, decr, value, is_excp);
 645}
 646
 647void cpu_ppc_store_decr (CPUState *env, uint32_t value)
 648{
 649    _cpu_ppc_store_decr(env, cpu_ppc_load_decr(env), value, 0);
 650}
 651
 652static void cpu_ppc_decr_cb (void *opaque)
 653{
 654    _cpu_ppc_store_decr(opaque, 0x00000000, 0xFFFFFFFF, 1);
 655}
 656
 657static always_inline void _cpu_ppc_store_hdecr (CPUState *env, uint32_t hdecr,
 658                                                uint32_t value, int is_excp)
 659{
 660    ppc_tb_t *tb_env = env->tb_env;
 661
 662    if (tb_env->hdecr_timer != NULL) {
 663        __cpu_ppc_store_decr(env, &tb_env->hdecr_next, tb_env->hdecr_timer,
 664                             &cpu_ppc_hdecr_excp, hdecr, value, is_excp);
 665    }
 666}
 667
 668void cpu_ppc_store_hdecr (CPUState *env, uint32_t value)
 669{
 670    _cpu_ppc_store_hdecr(env, cpu_ppc_load_hdecr(env), value, 0);
 671}
 672
 673static void cpu_ppc_hdecr_cb (void *opaque)
 674{
 675    _cpu_ppc_store_hdecr(opaque, 0x00000000, 0xFFFFFFFF, 1);
 676}
 677
 678void cpu_ppc_store_purr (CPUState *env, uint64_t value)
 679{
 680    ppc_tb_t *tb_env = env->tb_env;
 681
 682    tb_env->purr_load = value;
 683    tb_env->purr_start = qemu_get_clock(vm_clock);
 684}
 685
 686static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
 687{
 688    CPUState *env = opaque;
 689    ppc_tb_t *tb_env = env->tb_env;
 690
 691    tb_env->tb_freq = freq;
 692    tb_env->decr_freq = freq;
 693    /* There is a bug in Linux 2.4 kernels:
 694     * if a decrementer exception is pending when it enables msr_ee at startup,
 695     * it's not ready to handle it...
 696     */
 697    _cpu_ppc_store_decr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0);
 698    _cpu_ppc_store_hdecr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0);
 699    cpu_ppc_store_purr(env, 0x0000000000000000ULL);
 700}
 701
 702/* Set up (once) timebase frequency (in Hz) */
 703clk_setup_cb cpu_ppc_tb_init (CPUState *env, uint32_t freq)
 704{
 705    ppc_tb_t *tb_env;
 706
 707    tb_env = qemu_mallocz(sizeof(ppc_tb_t));
 708    env->tb_env = tb_env;
 709    /* Create new timer */
 710    tb_env->decr_timer = qemu_new_timer(vm_clock, &cpu_ppc_decr_cb, env);
 711    if (0) {
 712        /* XXX: find a suitable condition to enable the hypervisor decrementer
 713         */
 714        tb_env->hdecr_timer = qemu_new_timer(vm_clock, &cpu_ppc_hdecr_cb, env);
 715    } else {
 716        tb_env->hdecr_timer = NULL;
 717    }
 718    cpu_ppc_set_tb_clk(env, freq);
 719
 720    return &cpu_ppc_set_tb_clk;
 721}
 722
 723/* Specific helpers for POWER & PowerPC 601 RTC */
 724#if 0
 725static clk_setup_cb cpu_ppc601_rtc_init (CPUState *env)
 726{
 727    return cpu_ppc_tb_init(env, 7812500);
 728}
 729#endif
 730
 731void cpu_ppc601_store_rtcu (CPUState *env, uint32_t value)
 732{
 733    _cpu_ppc_store_tbu(env, value);
 734}
 735
 736uint32_t cpu_ppc601_load_rtcu (CPUState *env)
 737{
 738    return _cpu_ppc_load_tbu(env);
 739}
 740
 741void cpu_ppc601_store_rtcl (CPUState *env, uint32_t value)
 742{
 743    cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
 744}
 745
 746uint32_t cpu_ppc601_load_rtcl (CPUState *env)
 747{
 748    return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
 749}
 750
 751/*****************************************************************************/
 752/* Embedded PowerPC timers */
 753
 754/* PIT, FIT & WDT */
 755typedef struct ppcemb_timer_t ppcemb_timer_t;
 756struct ppcemb_timer_t {
 757    uint64_t pit_reload;  /* PIT auto-reload value        */
 758    uint64_t fit_next;    /* Tick for next FIT interrupt  */
 759    struct QEMUTimer *fit_timer;
 760    uint64_t wdt_next;    /* Tick for next WDT interrupt  */
 761    struct QEMUTimer *wdt_timer;
 762};
 763
 764/* Fixed interval timer */
 765static void cpu_4xx_fit_cb (void *opaque)
 766{
 767    CPUState *env;
 768    ppc_tb_t *tb_env;
 769    ppcemb_timer_t *ppcemb_timer;
 770    uint64_t now, next;
 771
 772    env = opaque;
 773    tb_env = env->tb_env;
 774    ppcemb_timer = tb_env->opaque;
 775    now = qemu_get_clock(vm_clock);
 776    switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
 777    case 0:
 778        next = 1 << 9;
 779        break;
 780    case 1:
 781        next = 1 << 13;
 782        break;
 783    case 2:
 784        next = 1 << 17;
 785        break;
 786    case 3:
 787        next = 1 << 21;
 788        break;
 789    default:
 790        /* Cannot occur, but makes gcc happy */
 791        return;
 792    }
 793    next = now + muldiv64(next, ticks_per_sec, tb_env->tb_freq);
 794    if (next == now)
 795        next++;
 796    qemu_mod_timer(ppcemb_timer->fit_timer, next);
 797    env->spr[SPR_40x_TSR] |= 1 << 26;
 798    if ((env->spr[SPR_40x_TCR] >> 23) & 0x1)
 799        ppc_set_irq(env, PPC_INTERRUPT_FIT, 1);
 800    LOG_TB("%s: ir %d TCR " ADDRX " TSR " ADDRX "\n", __func__,
 801                (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
 802                env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
 803}
 804
 805/* Programmable interval timer */
 806static void start_stop_pit (CPUState *env, ppc_tb_t *tb_env, int is_excp)
 807{
 808    ppcemb_timer_t *ppcemb_timer;
 809    uint64_t now, next;
 810
 811    ppcemb_timer = tb_env->opaque;
 812    if (ppcemb_timer->pit_reload <= 1 ||
 813        !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
 814        (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
 815        /* Stop PIT */
 816        LOG_TB("%s: stop PIT\n", __func__);
 817        qemu_del_timer(tb_env->decr_timer);
 818    } else {
 819        LOG_TB("%s: start PIT %016" PRIx64 "\n",
 820                    __func__, ppcemb_timer->pit_reload);
 821        now = qemu_get_clock(vm_clock);
 822        next = now + muldiv64(ppcemb_timer->pit_reload,
 823                              ticks_per_sec, tb_env->decr_freq);
 824        if (is_excp)
 825            next += tb_env->decr_next - now;
 826        if (next == now)
 827            next++;
 828        qemu_mod_timer(tb_env->decr_timer, next);
 829        tb_env->decr_next = next;
 830    }
 831}
 832
 833static void cpu_4xx_pit_cb (void *opaque)
 834{
 835    CPUState *env;
 836    ppc_tb_t *tb_env;
 837    ppcemb_timer_t *ppcemb_timer;
 838
 839    env = opaque;
 840    tb_env = env->tb_env;
 841    ppcemb_timer = tb_env->opaque;
 842    env->spr[SPR_40x_TSR] |= 1 << 27;
 843    if ((env->spr[SPR_40x_TCR] >> 26) & 0x1)
 844        ppc_set_irq(env, PPC_INTERRUPT_PIT, 1);
 845    start_stop_pit(env, tb_env, 1);
 846    LOG_TB("%s: ar %d ir %d TCR " ADDRX " TSR " ADDRX " "
 847                "%016" PRIx64 "\n", __func__,
 848                (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
 849                (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
 850                env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
 851                ppcemb_timer->pit_reload);
 852}
 853
 854/* Watchdog timer */
 855static void cpu_4xx_wdt_cb (void *opaque)
 856{
 857    CPUState *env;
 858    ppc_tb_t *tb_env;
 859    ppcemb_timer_t *ppcemb_timer;
 860    uint64_t now, next;
 861
 862    env = opaque;
 863    tb_env = env->tb_env;
 864    ppcemb_timer = tb_env->opaque;
 865    now = qemu_get_clock(vm_clock);
 866    switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
 867    case 0:
 868        next = 1 << 17;
 869        break;
 870    case 1:
 871        next = 1 << 21;
 872        break;
 873    case 2:
 874        next = 1 << 25;
 875        break;
 876    case 3:
 877        next = 1 << 29;
 878        break;
 879    default:
 880        /* Cannot occur, but makes gcc happy */
 881        return;
 882    }
 883    next = now + muldiv64(next, ticks_per_sec, tb_env->decr_freq);
 884    if (next == now)
 885        next++;
 886    LOG_TB("%s: TCR " ADDRX " TSR " ADDRX "\n", __func__,
 887                env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
 888    switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
 889    case 0x0:
 890    case 0x1:
 891        qemu_mod_timer(ppcemb_timer->wdt_timer, next);
 892        ppcemb_timer->wdt_next = next;
 893        env->spr[SPR_40x_TSR] |= 1 << 31;
 894        break;
 895    case 0x2:
 896        qemu_mod_timer(ppcemb_timer->wdt_timer, next);
 897        ppcemb_timer->wdt_next = next;
 898        env->spr[SPR_40x_TSR] |= 1 << 30;
 899        if ((env->spr[SPR_40x_TCR] >> 27) & 0x1)
 900            ppc_set_irq(env, PPC_INTERRUPT_WDT, 1);
 901        break;
 902    case 0x3:
 903        env->spr[SPR_40x_TSR] &= ~0x30000000;
 904        env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
 905        switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
 906        case 0x0:
 907            /* No reset */
 908            break;
 909        case 0x1: /* Core reset */
 910            ppc40x_core_reset(env);
 911            break;
 912        case 0x2: /* Chip reset */
 913            ppc40x_chip_reset(env);
 914            break;
 915        case 0x3: /* System reset */
 916            ppc40x_system_reset(env);
 917            break;
 918        }
 919    }
 920}
 921
 922void store_40x_pit (CPUState *env, target_ulong val)
 923{
 924    ppc_tb_t *tb_env;
 925    ppcemb_timer_t *ppcemb_timer;
 926
 927    tb_env = env->tb_env;
 928    ppcemb_timer = tb_env->opaque;
 929    LOG_TB("%s val" ADDRX "\n", __func__, val);
 930    ppcemb_timer->pit_reload = val;
 931    start_stop_pit(env, tb_env, 0);
 932}
 933
 934target_ulong load_40x_pit (CPUState *env)
 935{
 936    return cpu_ppc_load_decr(env);
 937}
 938
 939void store_booke_tsr (CPUState *env, target_ulong val)
 940{
 941    LOG_TB("%s: val " ADDRX "\n", __func__, val);
 942    env->spr[SPR_40x_TSR] &= ~(val & 0xFC000000);
 943    if (val & 0x80000000)
 944        ppc_set_irq(env, PPC_INTERRUPT_PIT, 0);
 945}
 946
 947void store_booke_tcr (CPUState *env, target_ulong val)
 948{
 949    ppc_tb_t *tb_env;
 950
 951    tb_env = env->tb_env;
 952    LOG_TB("%s: val " ADDRX "\n", __func__, val);
 953    env->spr[SPR_40x_TCR] = val & 0xFFC00000;
 954    start_stop_pit(env, tb_env, 1);
 955    cpu_4xx_wdt_cb(env);
 956}
 957
 958static void ppc_emb_set_tb_clk (void *opaque, uint32_t freq)
 959{
 960    CPUState *env = opaque;
 961    ppc_tb_t *tb_env = env->tb_env;
 962
 963    LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
 964                freq);
 965    tb_env->tb_freq = freq;
 966    tb_env->decr_freq = freq;
 967    /* XXX: we should also update all timers */
 968}
 969
 970clk_setup_cb ppc_emb_timers_init (CPUState *env, uint32_t freq)
 971{
 972    ppc_tb_t *tb_env;
 973    ppcemb_timer_t *ppcemb_timer;
 974
 975    tb_env = qemu_mallocz(sizeof(ppc_tb_t));
 976    env->tb_env = tb_env;
 977    ppcemb_timer = qemu_mallocz(sizeof(ppcemb_timer_t));
 978    tb_env->tb_freq = freq;
 979    tb_env->decr_freq = freq;
 980    tb_env->opaque = ppcemb_timer;
 981    LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
 982    if (ppcemb_timer != NULL) {
 983        /* We use decr timer for PIT */
 984        tb_env->decr_timer = qemu_new_timer(vm_clock, &cpu_4xx_pit_cb, env);
 985        ppcemb_timer->fit_timer =
 986            qemu_new_timer(vm_clock, &cpu_4xx_fit_cb, env);
 987        ppcemb_timer->wdt_timer =
 988            qemu_new_timer(vm_clock, &cpu_4xx_wdt_cb, env);
 989    }
 990
 991    return &ppc_emb_set_tb_clk;
 992}
 993
 994/*****************************************************************************/
 995/* Embedded PowerPC Device Control Registers */
 996typedef struct ppc_dcrn_t ppc_dcrn_t;
 997struct ppc_dcrn_t {
 998    dcr_read_cb dcr_read;
 999    dcr_write_cb dcr_write;
1000    void *opaque;
1001};
1002
1003/* XXX: on 460, DCR addresses are 32 bits wide,
1004 *      using DCRIPR to get the 22 upper bits of the DCR address
1005 */
1006#define DCRN_NB 1024
1007struct ppc_dcr_t {
1008    ppc_dcrn_t dcrn[DCRN_NB];
1009    int (*read_error)(int dcrn);
1010    int (*write_error)(int dcrn);
1011};
1012
1013int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, target_ulong *valp)
1014{
1015    ppc_dcrn_t *dcr;
1016
1017    if (dcrn < 0 || dcrn >= DCRN_NB)
1018        goto error;
1019    dcr = &dcr_env->dcrn[dcrn];
1020    if (dcr->dcr_read == NULL)
1021        goto error;
1022    *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1023
1024    return 0;
1025
1026 error:
1027    if (dcr_env->read_error != NULL)
1028        return (*dcr_env->read_error)(dcrn);
1029
1030    return -1;
1031}
1032
1033int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, target_ulong val)
1034{
1035    ppc_dcrn_t *dcr;
1036
1037    if (dcrn < 0 || dcrn >= DCRN_NB)
1038        goto error;
1039    dcr = &dcr_env->dcrn[dcrn];
1040    if (dcr->dcr_write == NULL)
1041        goto error;
1042    (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1043
1044    return 0;
1045
1046 error:
1047    if (dcr_env->write_error != NULL)
1048        return (*dcr_env->write_error)(dcrn);
1049
1050    return -1;
1051}
1052
1053int ppc_dcr_register (CPUState *env, int dcrn, void *opaque,
1054                      dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1055{
1056    ppc_dcr_t *dcr_env;
1057    ppc_dcrn_t *dcr;
1058
1059    dcr_env = env->dcr_env;
1060    if (dcr_env == NULL)
1061        return -1;
1062    if (dcrn < 0 || dcrn >= DCRN_NB)
1063        return -1;
1064    dcr = &dcr_env->dcrn[dcrn];
1065    if (dcr->opaque != NULL ||
1066        dcr->dcr_read != NULL ||
1067        dcr->dcr_write != NULL)
1068        return -1;
1069    dcr->opaque = opaque;
1070    dcr->dcr_read = dcr_read;
1071    dcr->dcr_write = dcr_write;
1072
1073    return 0;
1074}
1075
1076int ppc_dcr_init (CPUState *env, int (*read_error)(int dcrn),
1077                  int (*write_error)(int dcrn))
1078{
1079    ppc_dcr_t *dcr_env;
1080
1081    dcr_env = qemu_mallocz(sizeof(ppc_dcr_t));
1082    dcr_env->read_error = read_error;
1083    dcr_env->write_error = write_error;
1084    env->dcr_env = dcr_env;
1085
1086    return 0;
1087}
1088
1089#if 0
1090/*****************************************************************************/
1091/* Handle system reset (for now, just stop emulation) */
1092void cpu_ppc_reset (CPUState *env)
1093{
1094    printf("Reset asked... Stop emulation\n");
1095    abort();
1096}
1097#endif
1098
1099/*****************************************************************************/
1100/* Debug port */
1101void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1102{
1103    addr &= 0xF;
1104    switch (addr) {
1105    case 0:
1106        printf("%c", val);
1107        break;
1108    case 1:
1109        printf("\n");
1110        fflush(stdout);
1111        break;
1112    case 2:
1113        printf("Set loglevel to %04" PRIx32 "\n", val);
1114        cpu_set_log(val | 0x100);
1115        break;
1116    }
1117}
1118
1119/*****************************************************************************/
1120/* NVRAM helpers */
1121static inline uint32_t nvram_read (nvram_t *nvram, uint32_t addr)
1122{
1123    return (*nvram->read_fn)(nvram->opaque, addr);;
1124}
1125
1126static inline void nvram_write (nvram_t *nvram, uint32_t addr, uint32_t val)
1127{
1128    (*nvram->write_fn)(nvram->opaque, addr, val);
1129}
1130
1131void NVRAM_set_byte (nvram_t *nvram, uint32_t addr, uint8_t value)
1132{
1133    nvram_write(nvram, addr, value);
1134}
1135
1136uint8_t NVRAM_get_byte (nvram_t *nvram, uint32_t addr)
1137{
1138    return nvram_read(nvram, addr);
1139}
1140
1141void NVRAM_set_word (nvram_t *nvram, uint32_t addr, uint16_t value)
1142{
1143    nvram_write(nvram, addr, value >> 8);
1144    nvram_write(nvram, addr + 1, value & 0xFF);
1145}
1146
1147uint16_t NVRAM_get_word (nvram_t *nvram, uint32_t addr)
1148{
1149    uint16_t tmp;
1150
1151    tmp = nvram_read(nvram, addr) << 8;
1152    tmp |= nvram_read(nvram, addr + 1);
1153
1154    return tmp;
1155}
1156
1157void NVRAM_set_lword (nvram_t *nvram, uint32_t addr, uint32_t value)
1158{
1159    nvram_write(nvram, addr, value >> 24);
1160    nvram_write(nvram, addr + 1, (value >> 16) & 0xFF);
1161    nvram_write(nvram, addr + 2, (value >> 8) & 0xFF);
1162    nvram_write(nvram, addr + 3, value & 0xFF);
1163}
1164
1165uint32_t NVRAM_get_lword (nvram_t *nvram, uint32_t addr)
1166{
1167    uint32_t tmp;
1168
1169    tmp = nvram_read(nvram, addr) << 24;
1170    tmp |= nvram_read(nvram, addr + 1) << 16;
1171    tmp |= nvram_read(nvram, addr + 2) << 8;
1172    tmp |= nvram_read(nvram, addr + 3);
1173
1174    return tmp;
1175}
1176
1177void NVRAM_set_string (nvram_t *nvram, uint32_t addr,
1178                       const char *str, uint32_t max)
1179{
1180    int i;
1181
1182    for (i = 0; i < max && str[i] != '\0'; i++) {
1183        nvram_write(nvram, addr + i, str[i]);
1184    }
1185    nvram_write(nvram, addr + i, str[i]);
1186    nvram_write(nvram, addr + max - 1, '\0');
1187}
1188
1189int NVRAM_get_string (nvram_t *nvram, uint8_t *dst, uint16_t addr, int max)
1190{
1191    int i;
1192
1193    memset(dst, 0, max);
1194    for (i = 0; i < max; i++) {
1195        dst[i] = NVRAM_get_byte(nvram, addr + i);
1196        if (dst[i] == '\0')
1197            break;
1198    }
1199
1200    return i;
1201}
1202
1203static uint16_t NVRAM_crc_update (uint16_t prev, uint16_t value)
1204{
1205    uint16_t tmp;
1206    uint16_t pd, pd1, pd2;
1207
1208    tmp = prev >> 8;
1209    pd = prev ^ value;
1210    pd1 = pd & 0x000F;
1211    pd2 = ((pd >> 4) & 0x000F) ^ pd1;
1212    tmp ^= (pd1 << 3) | (pd1 << 8);
1213    tmp ^= pd2 | (pd2 << 7) | (pd2 << 12);
1214
1215    return tmp;
1216}
1217
1218static uint16_t NVRAM_compute_crc (nvram_t *nvram, uint32_t start, uint32_t count)
1219{
1220    uint32_t i;
1221    uint16_t crc = 0xFFFF;
1222    int odd;
1223
1224    odd = count & 1;
1225    count &= ~1;
1226    for (i = 0; i != count; i++) {
1227        crc = NVRAM_crc_update(crc, NVRAM_get_word(nvram, start + i));
1228    }
1229    if (odd) {
1230        crc = NVRAM_crc_update(crc, NVRAM_get_byte(nvram, start + i) << 8);
1231    }
1232
1233    return crc;
1234}
1235
1236#define CMDLINE_ADDR 0x017ff000
1237
1238int PPC_NVRAM_set_params (nvram_t *nvram, uint16_t NVRAM_size,
1239                          const char *arch,
1240                          uint32_t RAM_size, int boot_device,
1241                          uint32_t kernel_image, uint32_t kernel_size,
1242                          const char *cmdline,
1243                          uint32_t initrd_image, uint32_t initrd_size,
1244                          uint32_t NVRAM_image,
1245                          int width, int height, int depth)
1246{
1247    uint16_t crc;
1248
1249    /* Set parameters for Open Hack'Ware BIOS */
1250    NVRAM_set_string(nvram, 0x00, "QEMU_BIOS", 16);
1251    NVRAM_set_lword(nvram,  0x10, 0x00000002); /* structure v2 */
1252    NVRAM_set_word(nvram,   0x14, NVRAM_size);
1253    NVRAM_set_string(nvram, 0x20, arch, 16);
1254    NVRAM_set_lword(nvram,  0x30, RAM_size);
1255    NVRAM_set_byte(nvram,   0x34, boot_device);
1256    NVRAM_set_lword(nvram,  0x38, kernel_image);
1257    NVRAM_set_lword(nvram,  0x3C, kernel_size);
1258    if (cmdline) {
1259        /* XXX: put the cmdline in NVRAM too ? */
1260        pstrcpy_targphys(CMDLINE_ADDR, RAM_size - CMDLINE_ADDR, cmdline);
1261        NVRAM_set_lword(nvram,  0x40, CMDLINE_ADDR);
1262        NVRAM_set_lword(nvram,  0x44, strlen(cmdline));
1263    } else {
1264        NVRAM_set_lword(nvram,  0x40, 0);
1265        NVRAM_set_lword(nvram,  0x44, 0);
1266    }
1267    NVRAM_set_lword(nvram,  0x48, initrd_image);
1268    NVRAM_set_lword(nvram,  0x4C, initrd_size);
1269    NVRAM_set_lword(nvram,  0x50, NVRAM_image);
1270
1271    NVRAM_set_word(nvram,   0x54, width);
1272    NVRAM_set_word(nvram,   0x56, height);
1273    NVRAM_set_word(nvram,   0x58, depth);
1274    crc = NVRAM_compute_crc(nvram, 0x00, 0xF8);
1275    NVRAM_set_word(nvram,   0xFC, crc);
1276
1277    return 0;
1278}
1279