1/* 2 NetWinder Floating Point Emulator 3 (c) Rebel.COM, 1998,1999 4 5 Direct questions, comments to Scott Bambrough <scottb@netwinder.org> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 2 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, write to the Free Software 19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 20*/ 21 22#ifndef __FPOPCODE_H__ 23#define __FPOPCODE_H__ 24 25/* 26ARM Floating Point Instruction Classes 27| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 28|c o n d|1 1 0 P|U|u|W|L| Rn |v| Fd |0|0|0|1| o f f s e t | CPDT 29|c o n d|1 1 0 P|U|w|W|L| Rn |x| Fd |0|0|0|1| o f f s e t | CPDT 30| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 31|c o n d|1 1 1 0|a|b|c|d|e| Fn |j| Fd |0|0|0|1|f|g|h|0|i| Fm | CPDO 32|c o n d|1 1 1 0|a|b|c|L|e| Fn | Rd |0|0|0|1|f|g|h|1|i| Fm | CPRT 33|c o n d|1 1 1 0|a|b|c|1|e| Fn |1|1|1|1|0|0|0|1|f|g|h|1|i| Fm | comparisons 34| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 35 36CPDT data transfer instructions 37 LDF, STF, LFM, SFM 38 39CPDO dyadic arithmetic instructions 40 ADF, MUF, SUF, RSF, DVF, RDF, 41 POW, RPW, RMF, FML, FDV, FRD, POL 42 43CPDO monadic arithmetic instructions 44 MVF, MNF, ABS, RND, SQT, LOG, LGN, EXP, 45 SIN, COS, TAN, ASN, ACS, ATN, URD, NRM 46 47CPRT joint arithmetic/data transfer instructions 48 FIX (arithmetic followed by load/store) 49 FLT (load/store followed by arithmetic) 50 CMF, CNF CMFE, CNFE (comparisons) 51 WFS, RFS (write/read floating point status register) 52 WFC, RFC (write/read floating point control register) 53 54cond condition codes 55P pre/post index bit: 0 = postindex, 1 = preindex 56U up/down bit: 0 = stack grows down, 1 = stack grows up 57W write back bit: 1 = update base register (Rn) 58L load/store bit: 0 = store, 1 = load 59Rn base register 60Rd destination/source register 61Fd floating point destination register 62Fn floating point source register 63Fm floating point source register or floating point constant 64 65uv transfer length (TABLE 1) 66wx register count (TABLE 2) 67abcd arithmetic opcode (TABLES 3 & 4) 68ef destination size (rounding precision) (TABLE 5) 69gh rounding mode (TABLE 6) 70j dyadic/monadic bit: 0 = dyadic, 1 = monadic 71i constant bit: 1 = constant (TABLE 6) 72*/ 73 74/* 75TABLE 1 76+-------------------------+---+---+---------+---------+ 77| Precision | u | v | FPSR.EP | length | 78+-------------------------+---+---+---------+---------+ 79| Single | 0 ü 0 | x | 1 words | 80| Double | 1 ü 1 | x | 2 words | 81| Extended | 1 ü 1 | x | 3 words | 82| Packed decimal | 1 ü 1 | 0 | 3 words | 83| Expanded packed decimal | 1 ü 1 | 1 | 4 words | 84+-------------------------+---+---+---------+---------+ 85Note: x = don't care 86*/ 87 88/* 89TABLE 2 90+---+---+---------------------------------+ 91| w | x | Number of registers to transfer | 92+---+---+---------------------------------+ 93| 0 ü 1 | 1 | 94| 1 ü 0 | 2 | 95| 1 ü 1 | 3 | 96| 0 ü 0 | 4 | 97+---+---+---------------------------------+ 98*/ 99 100/* 101TABLE 3: Dyadic Floating Point Opcodes 102+---+---+---+---+----------+-----------------------+-----------------------+ 103| a | b | c | d | Mnemonic | Description | Operation | 104+---+---+---+---+----------+-----------------------+-----------------------+ 105| 0 | 0 | 0 | 0 | ADF | Add | Fd := Fn + Fm | 106| 0 | 0 | 0 | 1 | MUF | Multiply | Fd := Fn * Fm | 107| 0 | 0 | 1 | 0 | SUF | Subtract | Fd := Fn - Fm | 108| 0 | 0 | 1 | 1 | RSF | Reverse subtract | Fd := Fm - Fn | 109| 0 | 1 | 0 | 0 | DVF | Divide | Fd := Fn / Fm | 110| 0 | 1 | 0 | 1 | RDF | Reverse divide | Fd := Fm / Fn | 111| 0 | 1 | 1 | 0 | POW | Power | Fd := Fn ^ Fm | 112| 0 | 1 | 1 | 1 | RPW | Reverse power | Fd := Fm ^ Fn | 113| 1 | 0 | 0 | 0 | RMF | Remainder | Fd := IEEE rem(Fn/Fm) | 114| 1 | 0 | 0 | 1 | FML | Fast Multiply | Fd := Fn * Fm | 115| 1 | 0 | 1 | 0 | FDV | Fast Divide | Fd := Fn / Fm | 116| 1 | 0 | 1 | 1 | FRD | Fast reverse divide | Fd := Fm / Fn | 117| 1 | 1 | 0 | 0 | POL | Polar angle (ArcTan2) | Fd := arctan2(Fn,Fm) | 118| 1 | 1 | 0 | 1 | | undefined instruction | trap | 119| 1 | 1 | 1 | 0 | | undefined instruction | trap | 120| 1 | 1 | 1 | 1 | | undefined instruction | trap | 121+---+---+---+---+----------+-----------------------+-----------------------+ 122Note: POW, RPW, POL are deprecated, and are available for backwards 123 compatibility only. 124*/ 125 126/* 127TABLE 4: Monadic Floating Point Opcodes 128+---+---+---+---+----------+-----------------------+-----------------------+ 129| a | b | c | d | Mnemonic | Description | Operation | 130+---+---+---+---+----------+-----------------------+-----------------------+ 131| 0 | 0 | 0 | 0 | MVF | Move | Fd := Fm | 132| 0 | 0 | 0 | 1 | MNF | Move negated | Fd := - Fm | 133| 0 | 0 | 1 | 0 | ABS | Absolute value | Fd := abs(Fm) | 134| 0 | 0 | 1 | 1 | RND | Round to integer | Fd := int(Fm) | 135| 0 | 1 | 0 | 0 | SQT | Square root | Fd := sqrt(Fm) | 136| 0 | 1 | 0 | 1 | LOG | Log base 10 | Fd := log10(Fm) | 137| 0 | 1 | 1 | 0 | LGN | Log base e | Fd := ln(Fm) | 138| 0 | 1 | 1 | 1 | EXP | Exponent | Fd := e ^ Fm | 139| 1 | 0 | 0 | 0 | SIN | Sine | Fd := sin(Fm) | 140| 1 | 0 | 0 | 1 | COS | Cosine | Fd := cos(Fm) | 141| 1 | 0 | 1 | 0 | TAN | Tangent | Fd := tan(Fm) | 142| 1 | 0 | 1 | 1 | ASN | Arc Sine | Fd := arcsin(Fm) | 143| 1 | 1 | 0 | 0 | ACS | Arc Cosine | Fd := arccos(Fm) | 144| 1 | 1 | 0 | 1 | ATN | Arc Tangent | Fd := arctan(Fm) | 145| 1 | 1 | 1 | 0 | URD | Unnormalized round | Fd := int(Fm) | 146| 1 | 1 | 1 | 1 | NRM | Normalize | Fd := norm(Fm) | 147+---+---+---+---+----------+-----------------------+-----------------------+ 148Note: LOG, LGN, EXP, SIN, COS, TAN, ASN, ACS, ATN are deprecated, and are 149 available for backwards compatibility only. 150*/ 151 152/* 153TABLE 5 154+-------------------------+---+---+ 155| Rounding Precision | e | f | 156+-------------------------+---+---+ 157| IEEE Single precision | 0 ü 0 | 158| IEEE Double precision | 0 ü 1 | 159| IEEE Extended precision | 1 ü 0 | 160| undefined (trap) | 1 ü 1 | 161+-------------------------+---+---+ 162*/ 163 164/* 165TABLE 5 166+---------------------------------+---+---+ 167| Rounding Mode | g | h | 168+---------------------------------+---+---+ 169| Round to nearest (default) | 0 ü 0 | 170| Round toward plus infinity | 0 ü 1 | 171| Round toward negative infinity | 1 ü 0 | 172| Round toward zero | 1 ü 1 | 173+---------------------------------+---+---+ 174*/ 175 176/* 177=== 178=== Definitions for load and store instructions 179=== 180*/ 181 182/* bit masks */ 183#define BIT_PREINDEX 0x01000000 184#define BIT_UP 0x00800000 185#define BIT_WRITE_BACK 0x00200000 186#define BIT_LOAD 0x00100000 187 188/* masks for load/store */ 189#define MASK_CPDT 0x0c000000 /* data processing opcode */ 190#define MASK_OFFSET 0x000000ff 191#define MASK_TRANSFER_LENGTH 0x00408000 192#define MASK_REGISTER_COUNT MASK_TRANSFER_LENGTH 193#define MASK_COPROCESSOR 0x00000f00 194 195/* Tests for transfer length */ 196#define TRANSFER_SINGLE 0x00000000 197#define TRANSFER_DOUBLE 0x00008000 198#define TRANSFER_EXTENDED 0x00400000 199#define TRANSFER_PACKED MASK_TRANSFER_LENGTH 200 201/* Get the coprocessor number from the opcode. */ 202#define getCoprocessorNumber(opcode) ((opcode & MASK_COPROCESSOR) >> 8) 203 204/* Get the offset from the opcode. */ 205#define getOffset(opcode) (opcode & MASK_OFFSET) 206 207/* Tests for specific data transfer load/store opcodes. */ 208#define TEST_OPCODE(opcode,mask) (((opcode) & (mask)) == (mask)) 209 210#define LOAD_OP(opcode) TEST_OPCODE((opcode),MASK_CPDT | BIT_LOAD) 211#define STORE_OP(opcode) ((opcode & (MASK_CPDT | BIT_LOAD)) == MASK_CPDT) 212 213#define LDF_OP(opcode) (LOAD_OP(opcode) && (getCoprocessorNumber(opcode) == 1)) 214#define LFM_OP(opcode) (LOAD_OP(opcode) && (getCoprocessorNumber(opcode) == 2)) 215#define STF_OP(opcode) (STORE_OP(opcode) && (getCoprocessorNumber(opcode) == 1)) 216#define SFM_OP(opcode) (STORE_OP(opcode) && (getCoprocessorNumber(opcode) == 2)) 217 218#define PREINDEXED(opcode) ((opcode & BIT_PREINDEX) != 0) 219#define POSTINDEXED(opcode) ((opcode & BIT_PREINDEX) == 0) 220#define BIT_UP_SET(opcode) ((opcode & BIT_UP) != 0) 221#define BIT_UP_CLEAR(opcode) ((opcode & BIT_DOWN) == 0) 222#define WRITE_BACK(opcode) ((opcode & BIT_WRITE_BACK) != 0) 223#define LOAD(opcode) ((opcode & BIT_LOAD) != 0) 224#define STORE(opcode) ((opcode & BIT_LOAD) == 0) 225 226/* 227=== 228=== Definitions for arithmetic instructions 229=== 230*/ 231/* bit masks */ 232#define BIT_MONADIC 0x00008000 233#define BIT_CONSTANT 0x00000008 234 235#define CONSTANT_FM(opcode) ((opcode & BIT_CONSTANT) != 0) 236#define MONADIC_INSTRUCTION(opcode) ((opcode & BIT_MONADIC) != 0) 237 238/* instruction identification masks */ 239#define MASK_CPDO 0x0e000000 /* arithmetic opcode */ 240#define MASK_ARITHMETIC_OPCODE 0x00f08000 241#define MASK_DESTINATION_SIZE 0x00080080 242 243/* dyadic arithmetic opcodes. */ 244#define ADF_CODE 0x00000000 245#define MUF_CODE 0x00100000 246#define SUF_CODE 0x00200000 247#define RSF_CODE 0x00300000 248#define DVF_CODE 0x00400000 249#define RDF_CODE 0x00500000 250#define POW_CODE 0x00600000 251#define RPW_CODE 0x00700000 252#define RMF_CODE 0x00800000 253#define FML_CODE 0x00900000 254#define FDV_CODE 0x00a00000 255#define FRD_CODE 0x00b00000 256#define POL_CODE 0x00c00000 257/* 0x00d00000 is an invalid dyadic arithmetic opcode */ 258/* 0x00e00000 is an invalid dyadic arithmetic opcode */ 259/* 0x00f00000 is an invalid dyadic arithmetic opcode */ 260 261/* monadic arithmetic opcodes. */ 262#define MVF_CODE 0x00008000 263#define MNF_CODE 0x00108000 264#define ABS_CODE 0x00208000 265#define RND_CODE 0x00308000 266#define SQT_CODE 0x00408000 267#define LOG_CODE 0x00508000 268#define LGN_CODE 0x00608000 269#define EXP_CODE 0x00708000 270#define SIN_CODE 0x00808000 271#define COS_CODE 0x00908000 272#define TAN_CODE 0x00a08000 273#define ASN_CODE 0x00b08000 274#define ACS_CODE 0x00c08000 275#define ATN_CODE 0x00d08000 276#define URD_CODE 0x00e08000 277#define NRM_CODE 0x00f08000 278 279/* 280=== 281=== Definitions for register transfer and comparison instructions 282=== 283*/ 284 285#define MASK_CPRT 0x0e000010 /* register transfer opcode */ 286#define MASK_CPRT_CODE 0x00f00000 287#define FLT_CODE 0x00000000 288#define FIX_CODE 0x00100000 289#define WFS_CODE 0x00200000 290#define RFS_CODE 0x00300000 291#define WFC_CODE 0x00400000 292#define RFC_CODE 0x00500000 293#define CMF_CODE 0x00900000 294#define CNF_CODE 0x00b00000 295#define CMFE_CODE 0x00d00000 296#define CNFE_CODE 0x00f00000 297 298/* 299=== 300=== Common definitions 301=== 302*/ 303 304/* register masks */ 305#define MASK_Rd 0x0000f000 306#define MASK_Rn 0x000f0000 307#define MASK_Fd 0x00007000 308#define MASK_Fm 0x00000007 309#define MASK_Fn 0x00070000 310 311/* condition code masks */ 312#define CC_MASK 0xf0000000 313#define CC_NEGATIVE 0x80000000 314#define CC_ZERO 0x40000000 315#define CC_CARRY 0x20000000 316#define CC_OVERFLOW 0x10000000 317#define CC_EQ 0x00000000 318#define CC_NE 0x10000000 319#define CC_CS 0x20000000 320#define CC_HS CC_CS 321#define CC_CC 0x30000000 322#define CC_LO CC_CC 323#define CC_MI 0x40000000 324#define CC_PL 0x50000000 325#define CC_VS 0x60000000 326#define CC_VC 0x70000000 327#define CC_HI 0x80000000 328#define CC_LS 0x90000000 329#define CC_GE 0xa0000000 330#define CC_LT 0xb0000000 331#define CC_GT 0xc0000000 332#define CC_LE 0xd0000000 333#define CC_AL 0xe0000000 334#define CC_NV 0xf0000000 335 336/* rounding masks/values */ 337#define MASK_ROUNDING_MODE 0x00000060 338#define ROUND_TO_NEAREST 0x00000000 339#define ROUND_TO_PLUS_INFINITY 0x00000020 340#define ROUND_TO_MINUS_INFINITY 0x00000040 341#define ROUND_TO_ZERO 0x00000060 342 343#define MASK_ROUNDING_PRECISION 0x00080080 344#define ROUND_SINGLE 0x00000000 345#define ROUND_DOUBLE 0x00000080 346#define ROUND_EXTENDED 0x00080000 347 348/* Get the condition code from the opcode. */ 349#define getCondition(opcode) (opcode >> 28) 350 351/* Get the source register from the opcode. */ 352#define getRn(opcode) ((opcode & MASK_Rn) >> 16) 353 354/* Get the destination floating point register from the opcode. */ 355#define getFd(opcode) ((opcode & MASK_Fd) >> 12) 356 357/* Get the first source floating point register from the opcode. */ 358#define getFn(opcode) ((opcode & MASK_Fn) >> 16) 359 360/* Get the second source floating point register from the opcode. */ 361#define getFm(opcode) (opcode & MASK_Fm) 362 363/* Get the destination register from the opcode. */ 364#define getRd(opcode) ((opcode & MASK_Rd) >> 12) 365 366/* Get the rounding mode from the opcode. */ 367#define getRoundingMode(opcode) ((opcode & MASK_ROUNDING_MODE) >> 5) 368 369static inline floatx80 getExtendedConstant(const unsigned int nIndex) 370{ 371 extern const floatx80 floatx80Constant[]; 372 return floatx80Constant[nIndex]; 373} 374 375static inline float64 getDoubleConstant(const unsigned int nIndex) 376{ 377 extern const float64 float64Constant[]; 378 return float64Constant[nIndex]; 379} 380 381static inline float32 getSingleConstant(const unsigned int nIndex) 382{ 383 extern const float32 float32Constant[]; 384 return float32Constant[nIndex]; 385} 386 387extern unsigned int getRegisterCount(const unsigned int opcode); 388extern unsigned int getDestinationSize(const unsigned int opcode); 389 390#endif 391