qemu/bsd-user/qemu.h
<<
>>
Prefs
   1#ifndef QEMU_H
   2#define QEMU_H
   3
   4#include <signal.h>
   5#include <string.h>
   6
   7#include "cpu.h"
   8
   9#undef DEBUG_REMAP
  10#ifdef DEBUG_REMAP
  11#include <stdlib.h>
  12#endif /* DEBUG_REMAP */
  13
  14#include "qemu-types.h"
  15
  16enum BSDType {
  17    target_freebsd,
  18    target_netbsd,
  19    target_openbsd,
  20};
  21extern enum BSDType bsd_type;
  22
  23#include "syscall_defs.h"
  24#include "syscall.h"
  25#include "target_signal.h"
  26#include "gdbstub.h"
  27
  28#if defined(CONFIG_USE_NPTL)
  29#define THREAD __thread
  30#else
  31#define THREAD
  32#endif
  33
  34/* This struct is used to hold certain information about the image.
  35 * Basically, it replicates in user space what would be certain
  36 * task_struct fields in the kernel
  37 */
  38struct image_info {
  39    abi_ulong load_addr;
  40    abi_ulong start_code;
  41    abi_ulong end_code;
  42    abi_ulong start_data;
  43    abi_ulong end_data;
  44    abi_ulong start_brk;
  45    abi_ulong brk;
  46    abi_ulong start_mmap;
  47    abi_ulong mmap;
  48    abi_ulong rss;
  49    abi_ulong start_stack;
  50    abi_ulong entry;
  51    abi_ulong code_offset;
  52    abi_ulong data_offset;
  53    char      **host_argv;
  54    int       personality;
  55};
  56
  57#define MAX_SIGQUEUE_SIZE 1024
  58
  59struct sigqueue {
  60    struct sigqueue *next;
  61    //target_siginfo_t info;
  62};
  63
  64struct emulated_sigtable {
  65    int pending; /* true if signal is pending */
  66    struct sigqueue *first;
  67    struct sigqueue info; /* in order to always have memory for the
  68                             first signal, we put it here */
  69};
  70
  71/* NOTE: we force a big alignment so that the stack stored after is
  72   aligned too */
  73typedef struct TaskState {
  74    struct TaskState *next;
  75    int used; /* non zero if used */
  76    struct image_info *info;
  77
  78    struct emulated_sigtable sigtab[TARGET_NSIG];
  79    struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
  80    struct sigqueue *first_free; /* first free siginfo queue entry */
  81    int signal_pending; /* non zero if a signal may be pending */
  82
  83    uint8_t stack[0];
  84} __attribute__((aligned(16))) TaskState;
  85
  86void init_task_state(TaskState *ts);
  87extern const char *qemu_uname_release;
  88#if defined(CONFIG_USE_GUEST_BASE)
  89extern unsigned long mmap_min_addr;
  90#endif
  91
  92/* ??? See if we can avoid exposing so much of the loader internals.  */
  93/*
  94 * MAX_ARG_PAGES defines the number of pages allocated for arguments
  95 * and envelope for the new program. 32 should suffice, this gives
  96 * a maximum env+arg of 128kB w/4KB pages!
  97 */
  98#define MAX_ARG_PAGES 32
  99
 100/*
 101 * This structure is used to hold the arguments that are
 102 * used when loading binaries.
 103 */
 104struct linux_binprm {
 105        char buf[128];
 106        void *page[MAX_ARG_PAGES];
 107        abi_ulong p;
 108        int fd;
 109        int e_uid, e_gid;
 110        int argc, envc;
 111        char **argv;
 112        char **envp;
 113        char * filename;        /* Name of binary */
 114};
 115
 116void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
 117abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
 118                              abi_ulong stringp, int push_ptr);
 119int loader_exec(const char * filename, char ** argv, char ** envp,
 120             struct target_pt_regs * regs, struct image_info *infop);
 121
 122int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
 123                    struct image_info * info);
 124int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
 125                    struct image_info * info);
 126
 127abi_long memcpy_to_target(abi_ulong dest, const void *src,
 128                          unsigned long len);
 129void target_set_brk(abi_ulong new_brk);
 130abi_long do_brk(abi_ulong new_brk);
 131void syscall_init(void);
 132abi_long do_freebsd_syscall(void *cpu_env, int num, abi_long arg1,
 133                            abi_long arg2, abi_long arg3, abi_long arg4,
 134                            abi_long arg5, abi_long arg6, abi_long arg7,
 135                            abi_long arg8);
 136abi_long do_netbsd_syscall(void *cpu_env, int num, abi_long arg1,
 137                           abi_long arg2, abi_long arg3, abi_long arg4,
 138                           abi_long arg5, abi_long arg6);
 139abi_long do_openbsd_syscall(void *cpu_env, int num, abi_long arg1,
 140                            abi_long arg2, abi_long arg3, abi_long arg4,
 141                            abi_long arg5, abi_long arg6);
 142void gemu_log(const char *fmt, ...) __attribute__((format(printf,1,2)));
 143extern THREAD CPUState *thread_env;
 144void cpu_loop(CPUState *env);
 145char *target_strerror(int err);
 146int get_osversion(void);
 147void fork_start(void);
 148void fork_end(int child);
 149
 150#include "qemu-log.h"
 151
 152/* strace.c */
 153void
 154print_freebsd_syscall(int num,
 155                      abi_long arg1, abi_long arg2, abi_long arg3,
 156                      abi_long arg4, abi_long arg5, abi_long arg6);
 157void print_freebsd_syscall_ret(int num, abi_long ret);
 158void
 159print_netbsd_syscall(int num,
 160                     abi_long arg1, abi_long arg2, abi_long arg3,
 161                     abi_long arg4, abi_long arg5, abi_long arg6);
 162void print_netbsd_syscall_ret(int num, abi_long ret);
 163void
 164print_openbsd_syscall(int num,
 165                      abi_long arg1, abi_long arg2, abi_long arg3,
 166                      abi_long arg4, abi_long arg5, abi_long arg6);
 167void print_openbsd_syscall_ret(int num, abi_long ret);
 168extern int do_strace;
 169
 170/* signal.c */
 171void process_pending_signals(CPUState *cpu_env);
 172void signal_init(void);
 173//int queue_signal(CPUState *env, int sig, target_siginfo_t *info);
 174//void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
 175//void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
 176long do_sigreturn(CPUState *env);
 177long do_rt_sigreturn(CPUState *env);
 178abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
 179
 180/* mmap.c */
 181int target_mprotect(abi_ulong start, abi_ulong len, int prot);
 182abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
 183                     int flags, int fd, abi_ulong offset);
 184int target_munmap(abi_ulong start, abi_ulong len);
 185abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
 186                       abi_ulong new_size, unsigned long flags,
 187                       abi_ulong new_addr);
 188int target_msync(abi_ulong start, abi_ulong len, int flags);
 189extern unsigned long last_brk;
 190void mmap_lock(void);
 191void mmap_unlock(void);
 192void cpu_list_lock(void);
 193void cpu_list_unlock(void);
 194#if defined(CONFIG_USE_NPTL)
 195void mmap_fork_start(void);
 196void mmap_fork_end(int child);
 197#endif
 198
 199/* main.c */
 200extern unsigned long x86_stack_size;
 201
 202/* user access */
 203
 204#define VERIFY_READ 0
 205#define VERIFY_WRITE 1 /* implies read access */
 206
 207static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
 208{
 209    return page_check_range((target_ulong)addr, size,
 210                            (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
 211}
 212
 213/* NOTE __get_user and __put_user use host pointers and don't check access. */
 214/* These are usually used to access struct data members once the
 215 * struct has been locked - usually with lock_user_struct().
 216 */
 217#define __put_user(x, hptr)\
 218({\
 219    int size = sizeof(*hptr);\
 220    switch(size) {\
 221    case 1:\
 222        *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\
 223        break;\
 224    case 2:\
 225        *(uint16_t *)(hptr) = tswap16((typeof(*hptr))(x));\
 226        break;\
 227    case 4:\
 228        *(uint32_t *)(hptr) = tswap32((typeof(*hptr))(x));\
 229        break;\
 230    case 8:\
 231        *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\
 232        break;\
 233    default:\
 234        abort();\
 235    }\
 236    0;\
 237})
 238
 239#define __get_user(x, hptr) \
 240({\
 241    int size = sizeof(*hptr);\
 242    switch(size) {\
 243    case 1:\
 244        x = (typeof(*hptr))*(uint8_t *)(hptr);\
 245        break;\
 246    case 2:\
 247        x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\
 248        break;\
 249    case 4:\
 250        x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\
 251        break;\
 252    case 8:\
 253        x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\
 254        break;\
 255    default:\
 256        /* avoid warning */\
 257        x = 0;\
 258        abort();\
 259    }\
 260    0;\
 261})
 262
 263/* put_user()/get_user() take a guest address and check access */
 264/* These are usually used to access an atomic data type, such as an int,
 265 * that has been passed by address.  These internally perform locking
 266 * and unlocking on the data type.
 267 */
 268#define put_user(x, gaddr, target_type)                                 \
 269({                                                                      \
 270    abi_ulong __gaddr = (gaddr);                                        \
 271    target_type *__hptr;                                                \
 272    abi_long __ret;                                                     \
 273    if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
 274        __ret = __put_user((x), __hptr);                                \
 275        unlock_user(__hptr, __gaddr, sizeof(target_type));              \
 276    } else                                                              \
 277        __ret = -TARGET_EFAULT;                                         \
 278    __ret;                                                              \
 279})
 280
 281#define get_user(x, gaddr, target_type)                                 \
 282({                                                                      \
 283    abi_ulong __gaddr = (gaddr);                                        \
 284    target_type *__hptr;                                                \
 285    abi_long __ret;                                                     \
 286    if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
 287        __ret = __get_user((x), __hptr);                                \
 288        unlock_user(__hptr, __gaddr, 0);                                \
 289    } else {                                                            \
 290        /* avoid warning */                                             \
 291        (x) = 0;                                                        \
 292        __ret = -TARGET_EFAULT;                                         \
 293    }                                                                   \
 294    __ret;                                                              \
 295})
 296
 297#define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
 298#define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
 299#define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
 300#define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
 301#define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
 302#define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
 303#define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
 304#define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
 305#define put_user_u8(x, gaddr)  put_user((x), (gaddr), uint8_t)
 306#define put_user_s8(x, gaddr)  put_user((x), (gaddr), int8_t)
 307
 308#define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
 309#define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
 310#define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
 311#define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
 312#define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
 313#define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
 314#define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
 315#define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
 316#define get_user_u8(x, gaddr)  get_user((x), (gaddr), uint8_t)
 317#define get_user_s8(x, gaddr)  get_user((x), (gaddr), int8_t)
 318
 319/* copy_from_user() and copy_to_user() are usually used to copy data
 320 * buffers between the target and host.  These internally perform
 321 * locking/unlocking of the memory.
 322 */
 323abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
 324abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
 325
 326/* Functions for accessing guest memory.  The tget and tput functions
 327   read/write single values, byteswapping as neccessary.  The lock_user
 328   gets a pointer to a contiguous area of guest memory, but does not perform
 329   and byteswapping.  lock_user may return either a pointer to the guest
 330   memory, or a temporary buffer.  */
 331
 332/* Lock an area of guest memory into the host.  If copy is true then the
 333   host area will have the same contents as the guest.  */
 334static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
 335{
 336    if (!access_ok(type, guest_addr, len))
 337        return NULL;
 338#ifdef DEBUG_REMAP
 339    {
 340        void *addr;
 341        addr = malloc(len);
 342        if (copy)
 343            memcpy(addr, g2h(guest_addr), len);
 344        else
 345            memset(addr, 0, len);
 346        return addr;
 347    }
 348#else
 349    return g2h(guest_addr);
 350#endif
 351}
 352
 353/* Unlock an area of guest memory.  The first LEN bytes must be
 354   flushed back to guest memory. host_ptr = NULL is explicitly
 355   allowed and does nothing. */
 356static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
 357                               long len)
 358{
 359
 360#ifdef DEBUG_REMAP
 361    if (!host_ptr)
 362        return;
 363    if (host_ptr == g2h(guest_addr))
 364        return;
 365    if (len > 0)
 366        memcpy(g2h(guest_addr), host_ptr, len);
 367    free(host_ptr);
 368#endif
 369}
 370
 371/* Return the length of a string in target memory or -TARGET_EFAULT if
 372   access error. */
 373abi_long target_strlen(abi_ulong gaddr);
 374
 375/* Like lock_user but for null terminated strings.  */
 376static inline void *lock_user_string(abi_ulong guest_addr)
 377{
 378    abi_long len;
 379    len = target_strlen(guest_addr);
 380    if (len < 0)
 381        return NULL;
 382    return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
 383}
 384
 385/* Helper macros for locking/ulocking a target struct.  */
 386#define lock_user_struct(type, host_ptr, guest_addr, copy)      \
 387    (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
 388#define unlock_user_struct(host_ptr, guest_addr, copy)          \
 389    unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
 390
 391#if defined(CONFIG_USE_NPTL)
 392#include <pthread.h>
 393#endif
 394
 395#endif /* QEMU_H */
 396