qemu/hw/etraxfs_dma.c
<<
>>
Prefs
   1/*
   2 * QEMU ETRAX DMA Controller.
   3 *
   4 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24#include <stdio.h>
  25#include <sys/time.h>
  26#include "hw.h"
  27#include "qemu-common.h"
  28#include "sysemu.h"
  29
  30#include "etraxfs_dma.h"
  31
  32#define D(x)
  33
  34#define RW_DATA           (0x0 / 4)
  35#define RW_SAVED_DATA     (0x58 / 4)
  36#define RW_SAVED_DATA_BUF (0x5c / 4)
  37#define RW_GROUP          (0x60 / 4)
  38#define RW_GROUP_DOWN     (0x7c / 4)
  39#define RW_CMD            (0x80 / 4)
  40#define RW_CFG            (0x84 / 4)
  41#define RW_STAT           (0x88 / 4)
  42#define RW_INTR_MASK      (0x8c / 4)
  43#define RW_ACK_INTR       (0x90 / 4)
  44#define R_INTR            (0x94 / 4)
  45#define R_MASKED_INTR     (0x98 / 4)
  46#define RW_STREAM_CMD     (0x9c / 4)
  47
  48#define DMA_REG_MAX       (0x100 / 4)
  49
  50/* descriptors */
  51
  52// ------------------------------------------------------------ dma_descr_group
  53typedef struct dma_descr_group {
  54  uint32_t                      next;
  55  unsigned                      eol        : 1;
  56  unsigned                      tol        : 1;
  57  unsigned                      bol        : 1;
  58  unsigned                                 : 1;
  59  unsigned                      intr       : 1;
  60  unsigned                                 : 2;
  61  unsigned                      en         : 1;
  62  unsigned                                 : 7;
  63  unsigned                      dis        : 1;
  64  unsigned                      md         : 16;
  65  struct dma_descr_group       *up;
  66  union {
  67    struct dma_descr_context   *context;
  68    struct dma_descr_group     *group;
  69  }                             down;
  70} dma_descr_group;
  71
  72// ---------------------------------------------------------- dma_descr_context
  73typedef struct dma_descr_context {
  74  uint32_t                      next;
  75  unsigned                      eol        : 1;
  76  unsigned                                 : 3;
  77  unsigned                      intr       : 1;
  78  unsigned                                 : 1;
  79  unsigned                      store_mode : 1;
  80  unsigned                      en         : 1;
  81  unsigned                                 : 7;
  82  unsigned                      dis        : 1;
  83  unsigned                      md0        : 16;
  84  unsigned                      md1;
  85  unsigned                      md2;
  86  unsigned                      md3;
  87  unsigned                      md4;
  88  uint32_t                      saved_data;
  89  uint32_t                      saved_data_buf;
  90} dma_descr_context;
  91
  92// ------------------------------------------------------------- dma_descr_data
  93typedef struct dma_descr_data {
  94  uint32_t                      next;
  95  uint32_t                      buf;
  96  unsigned                      eol        : 1;
  97  unsigned                                 : 2;
  98  unsigned                      out_eop    : 1;
  99  unsigned                      intr       : 1;
 100  unsigned                      wait       : 1;
 101  unsigned                                 : 2;
 102  unsigned                                 : 3;
 103  unsigned                      in_eop     : 1;
 104  unsigned                                 : 4;
 105  unsigned                      md         : 16;
 106  uint32_t                      after;
 107} dma_descr_data;
 108
 109/* Constants */
 110enum {
 111  regk_dma_ack_pkt                         = 0x00000100,
 112  regk_dma_anytime                         = 0x00000001,
 113  regk_dma_array                           = 0x00000008,
 114  regk_dma_burst                           = 0x00000020,
 115  regk_dma_client                          = 0x00000002,
 116  regk_dma_copy_next                       = 0x00000010,
 117  regk_dma_copy_up                         = 0x00000020,
 118  regk_dma_data_at_eol                     = 0x00000001,
 119  regk_dma_dis_c                           = 0x00000010,
 120  regk_dma_dis_g                           = 0x00000020,
 121  regk_dma_idle                            = 0x00000001,
 122  regk_dma_intern                          = 0x00000004,
 123  regk_dma_load_c                          = 0x00000200,
 124  regk_dma_load_c_n                        = 0x00000280,
 125  regk_dma_load_c_next                     = 0x00000240,
 126  regk_dma_load_d                          = 0x00000140,
 127  regk_dma_load_g                          = 0x00000300,
 128  regk_dma_load_g_down                     = 0x000003c0,
 129  regk_dma_load_g_next                     = 0x00000340,
 130  regk_dma_load_g_up                       = 0x00000380,
 131  regk_dma_next_en                         = 0x00000010,
 132  regk_dma_next_pkt                        = 0x00000010,
 133  regk_dma_no                              = 0x00000000,
 134  regk_dma_only_at_wait                    = 0x00000000,
 135  regk_dma_restore                         = 0x00000020,
 136  regk_dma_rst                             = 0x00000001,
 137  regk_dma_running                         = 0x00000004,
 138  regk_dma_rw_cfg_default                  = 0x00000000,
 139  regk_dma_rw_cmd_default                  = 0x00000000,
 140  regk_dma_rw_intr_mask_default            = 0x00000000,
 141  regk_dma_rw_stat_default                 = 0x00000101,
 142  regk_dma_rw_stream_cmd_default           = 0x00000000,
 143  regk_dma_save_down                       = 0x00000020,
 144  regk_dma_save_up                         = 0x00000020,
 145  regk_dma_set_reg                         = 0x00000050,
 146  regk_dma_set_w_size1                     = 0x00000190,
 147  regk_dma_set_w_size2                     = 0x000001a0,
 148  regk_dma_set_w_size4                     = 0x000001c0,
 149  regk_dma_stopped                         = 0x00000002,
 150  regk_dma_store_c                         = 0x00000002,
 151  regk_dma_store_descr                     = 0x00000000,
 152  regk_dma_store_g                         = 0x00000004,
 153  regk_dma_store_md                        = 0x00000001,
 154  regk_dma_sw                              = 0x00000008,
 155  regk_dma_update_down                     = 0x00000020,
 156  regk_dma_yes                             = 0x00000001
 157};
 158
 159enum dma_ch_state
 160{
 161        RST = 1,
 162        STOPPED = 2,
 163        RUNNING = 4
 164};
 165
 166struct fs_dma_channel
 167{
 168        qemu_irq irq;
 169        struct etraxfs_dma_client *client;
 170
 171        /* Internal status.  */
 172        int stream_cmd_src;
 173        enum dma_ch_state state;
 174
 175        unsigned int input : 1;
 176        unsigned int eol : 1;
 177
 178        struct dma_descr_group current_g;
 179        struct dma_descr_context current_c;
 180        struct dma_descr_data current_d;
 181
 182        /* Controll registers.  */
 183        uint32_t regs[DMA_REG_MAX];
 184};
 185
 186struct fs_dma_ctrl
 187{
 188        int map;
 189        int nr_channels;
 190        struct fs_dma_channel *channels;
 191
 192        QEMUBH *bh;
 193};
 194
 195static void DMA_run(void *opaque);
 196static int channel_out_run(struct fs_dma_ctrl *ctrl, int c);
 197
 198static inline uint32_t channel_reg(struct fs_dma_ctrl *ctrl, int c, int reg)
 199{
 200        return ctrl->channels[c].regs[reg];
 201}
 202
 203static inline int channel_stopped(struct fs_dma_ctrl *ctrl, int c)
 204{
 205        return channel_reg(ctrl, c, RW_CFG) & 2;
 206}
 207
 208static inline int channel_en(struct fs_dma_ctrl *ctrl, int c)
 209{
 210        return (channel_reg(ctrl, c, RW_CFG) & 1)
 211                && ctrl->channels[c].client;
 212}
 213
 214static inline int fs_channel(target_phys_addr_t addr)
 215{
 216        /* Every channel has a 0x2000 ctrl register map.  */
 217        return addr >> 13;
 218}
 219
 220#ifdef USE_THIS_DEAD_CODE
 221static void channel_load_g(struct fs_dma_ctrl *ctrl, int c)
 222{
 223        target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP);
 224
 225        /* Load and decode. FIXME: handle endianness.  */
 226        cpu_physical_memory_read (addr, 
 227                                  (void *) &ctrl->channels[c].current_g, 
 228                                  sizeof ctrl->channels[c].current_g);
 229}
 230
 231static void dump_c(int ch, struct dma_descr_context *c)
 232{
 233        printf("%s ch=%d\n", __func__, ch);
 234        printf("next=%x\n", c->next);
 235        printf("saved_data=%x\n", c->saved_data);
 236        printf("saved_data_buf=%x\n", c->saved_data_buf);
 237        printf("eol=%x\n", (uint32_t) c->eol);
 238}
 239
 240static void dump_d(int ch, struct dma_descr_data *d)
 241{
 242        printf("%s ch=%d\n", __func__, ch);
 243        printf("next=%x\n", d->next);
 244        printf("buf=%x\n", d->buf);
 245        printf("after=%x\n", d->after);
 246        printf("intr=%x\n", (uint32_t) d->intr);
 247        printf("out_eop=%x\n", (uint32_t) d->out_eop);
 248        printf("in_eop=%x\n", (uint32_t) d->in_eop);
 249        printf("eol=%x\n", (uint32_t) d->eol);
 250}
 251#endif
 252
 253static void channel_load_c(struct fs_dma_ctrl *ctrl, int c)
 254{
 255        target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
 256
 257        /* Load and decode. FIXME: handle endianness.  */
 258        cpu_physical_memory_read (addr, 
 259                                  (void *) &ctrl->channels[c].current_c, 
 260                                  sizeof ctrl->channels[c].current_c);
 261
 262        D(dump_c(c, &ctrl->channels[c].current_c));
 263        /* I guess this should update the current pos.  */
 264        ctrl->channels[c].regs[RW_SAVED_DATA] =
 265                (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data;
 266        ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
 267                (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data_buf;
 268}
 269
 270static void channel_load_d(struct fs_dma_ctrl *ctrl, int c)
 271{
 272        target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
 273
 274        /* Load and decode. FIXME: handle endianness.  */
 275        D(printf("%s ch=%d addr=" TARGET_FMT_plx "\n", __func__, c, addr));
 276        cpu_physical_memory_read (addr,
 277                                  (void *) &ctrl->channels[c].current_d, 
 278                                  sizeof ctrl->channels[c].current_d);
 279
 280        D(dump_d(c, &ctrl->channels[c].current_d));
 281        ctrl->channels[c].regs[RW_DATA] = addr;
 282}
 283
 284static void channel_store_c(struct fs_dma_ctrl *ctrl, int c)
 285{
 286        target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
 287
 288        /* Encode and store. FIXME: handle endianness.  */
 289        D(printf("%s ch=%d addr=" TARGET_FMT_plx "\n", __func__, c, addr));
 290        D(dump_d(c, &ctrl->channels[c].current_d));
 291        cpu_physical_memory_write (addr,
 292                                  (void *) &ctrl->channels[c].current_c,
 293                                  sizeof ctrl->channels[c].current_c);
 294}
 295
 296static void channel_store_d(struct fs_dma_ctrl *ctrl, int c)
 297{
 298        target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
 299
 300        /* Encode and store. FIXME: handle endianness.  */
 301        D(printf("%s ch=%d addr=" TARGET_FMT_plx "\n", __func__, c, addr));
 302        cpu_physical_memory_write (addr,
 303                                  (void *) &ctrl->channels[c].current_d, 
 304                                  sizeof ctrl->channels[c].current_d);
 305}
 306
 307static inline void channel_stop(struct fs_dma_ctrl *ctrl, int c)
 308{
 309        /* FIXME:  */
 310}
 311
 312static inline void channel_start(struct fs_dma_ctrl *ctrl, int c)
 313{
 314        if (ctrl->channels[c].client)
 315        {
 316                ctrl->channels[c].eol = 0;
 317                ctrl->channels[c].state = RUNNING;
 318                if (!ctrl->channels[c].input)
 319                        channel_out_run(ctrl, c);
 320        } else
 321                printf("WARNING: starting DMA ch %d with no client\n", c);
 322
 323        qemu_bh_schedule_idle(ctrl->bh);
 324}
 325
 326static void channel_continue(struct fs_dma_ctrl *ctrl, int c)
 327{
 328        if (!channel_en(ctrl, c) 
 329            || channel_stopped(ctrl, c)
 330            || ctrl->channels[c].state != RUNNING
 331            /* Only reload the current data descriptor if it has eol set.  */
 332            || !ctrl->channels[c].current_d.eol) {
 333                D(printf("continue failed ch=%d state=%d stopped=%d en=%d eol=%d\n", 
 334                         c, ctrl->channels[c].state,
 335                         channel_stopped(ctrl, c),
 336                         channel_en(ctrl,c),
 337                         ctrl->channels[c].eol));
 338                D(dump_d(c, &ctrl->channels[c].current_d));
 339                return;
 340        }
 341
 342        /* Reload the current descriptor.  */
 343        channel_load_d(ctrl, c);
 344
 345        /* If the current descriptor cleared the eol flag and we had already
 346           reached eol state, do the continue.  */
 347        if (!ctrl->channels[c].current_d.eol && ctrl->channels[c].eol) {
 348                D(printf("continue %d ok %x\n", c,
 349                         ctrl->channels[c].current_d.next));
 350                ctrl->channels[c].regs[RW_SAVED_DATA] =
 351                        (uint32_t)(unsigned long)ctrl->channels[c].current_d.next;
 352                channel_load_d(ctrl, c);
 353                ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
 354                        (uint32_t)(unsigned long)ctrl->channels[c].current_d.buf;
 355
 356                channel_start(ctrl, c);
 357        }
 358        ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
 359                (uint32_t)(unsigned long)ctrl->channels[c].current_d.buf;
 360}
 361
 362static void channel_stream_cmd(struct fs_dma_ctrl *ctrl, int c, uint32_t v)
 363{
 364        unsigned int cmd = v & ((1 << 10) - 1);
 365
 366        D(printf("%s ch=%d cmd=%x\n",
 367                 __func__, c, cmd));
 368        if (cmd & regk_dma_load_d) {
 369                channel_load_d(ctrl, c);
 370                if (cmd & regk_dma_burst)
 371                        channel_start(ctrl, c);
 372        }
 373
 374        if (cmd & regk_dma_load_c) {
 375                channel_load_c(ctrl, c);
 376        }
 377}
 378
 379static void channel_update_irq(struct fs_dma_ctrl *ctrl, int c)
 380{
 381        D(printf("%s %d\n", __func__, c));
 382        ctrl->channels[c].regs[R_INTR] &=
 383                ~(ctrl->channels[c].regs[RW_ACK_INTR]);
 384
 385        ctrl->channels[c].regs[R_MASKED_INTR] =
 386                ctrl->channels[c].regs[R_INTR]
 387                & ctrl->channels[c].regs[RW_INTR_MASK];
 388
 389        D(printf("%s: chan=%d masked_intr=%x\n", __func__, 
 390                 c,
 391                 ctrl->channels[c].regs[R_MASKED_INTR]));
 392
 393        qemu_set_irq(ctrl->channels[c].irq,
 394                     !!ctrl->channels[c].regs[R_MASKED_INTR]);
 395}
 396
 397static int channel_out_run(struct fs_dma_ctrl *ctrl, int c)
 398{
 399        uint32_t len;
 400        uint32_t saved_data_buf;
 401        unsigned char buf[2 * 1024];
 402
 403        if (ctrl->channels[c].eol)
 404                return 0;
 405
 406        do {
 407                D(printf("ch=%d buf=%x after=%x\n",
 408                         c,
 409                         (uint32_t)ctrl->channels[c].current_d.buf,
 410                         (uint32_t)ctrl->channels[c].current_d.after));
 411
 412                channel_load_d(ctrl, c);
 413                saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
 414                len = (uint32_t)(unsigned long)
 415                        ctrl->channels[c].current_d.after;
 416                len -= saved_data_buf;
 417
 418                if (len > sizeof buf)
 419                        len = sizeof buf;
 420                cpu_physical_memory_read (saved_data_buf, buf, len);
 421
 422                D(printf("channel %d pushes %x %u bytes\n", c, 
 423                         saved_data_buf, len));
 424
 425                if (ctrl->channels[c].client->client.push)
 426                        ctrl->channels[c].client->client.push(
 427                                ctrl->channels[c].client->client.opaque,
 428                                buf, len);
 429                else
 430                        printf("WARNING: DMA ch%d dataloss,"
 431                               " no attached client.\n", c);
 432
 433                saved_data_buf += len;
 434
 435                if (saved_data_buf == (uint32_t)(unsigned long)
 436                                ctrl->channels[c].current_d.after) {
 437                        /* Done. Step to next.  */
 438                        if (ctrl->channels[c].current_d.out_eop) {
 439                                /* TODO: signal eop to the client.  */
 440                                D(printf("signal eop\n"));
 441                        }
 442                        if (ctrl->channels[c].current_d.intr) {
 443                                /* TODO: signal eop to the client.  */
 444                                /* data intr.  */
 445                                D(printf("signal intr %d eol=%d\n",
 446                                        len, ctrl->channels[c].current_d.eol));
 447                                ctrl->channels[c].regs[R_INTR] |= (1 << 2);
 448                                channel_update_irq(ctrl, c);
 449                        }
 450                        channel_store_d(ctrl, c);
 451                        if (ctrl->channels[c].current_d.eol) {
 452                                D(printf("channel %d EOL\n", c));
 453                                ctrl->channels[c].eol = 1;
 454
 455                                /* Mark the context as disabled.  */
 456                                ctrl->channels[c].current_c.dis = 1;
 457                                channel_store_c(ctrl, c);
 458
 459                                channel_stop(ctrl, c);
 460                        } else {
 461                                ctrl->channels[c].regs[RW_SAVED_DATA] =
 462                                        (uint32_t)(unsigned long)ctrl->
 463                                                channels[c].current_d.next;
 464                                /* Load new descriptor.  */
 465                                channel_load_d(ctrl, c);
 466                                saved_data_buf = (uint32_t)(unsigned long)
 467                                        ctrl->channels[c].current_d.buf;
 468                        }
 469
 470                        ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
 471                                                        saved_data_buf;
 472                        D(dump_d(c, &ctrl->channels[c].current_d));
 473                }
 474                ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
 475        } while (!ctrl->channels[c].eol);
 476        return 1;
 477}
 478
 479static int channel_in_process(struct fs_dma_ctrl *ctrl, int c, 
 480                              unsigned char *buf, int buflen, int eop)
 481{
 482        uint32_t len;
 483        uint32_t saved_data_buf;
 484
 485        if (ctrl->channels[c].eol == 1)
 486                return 0;
 487
 488        channel_load_d(ctrl, c);
 489        saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
 490        len = (uint32_t)(unsigned long)ctrl->channels[c].current_d.after;
 491        len -= saved_data_buf;
 492        
 493        if (len > buflen)
 494                len = buflen;
 495
 496        cpu_physical_memory_write (saved_data_buf, buf, len);
 497        saved_data_buf += len;
 498
 499        if (saved_data_buf ==
 500            (uint32_t)(unsigned long)ctrl->channels[c].current_d.after
 501            || eop) {
 502                uint32_t r_intr = ctrl->channels[c].regs[R_INTR];
 503
 504                D(printf("in dscr end len=%d\n", 
 505                         ctrl->channels[c].current_d.after
 506                         - ctrl->channels[c].current_d.buf));
 507                ctrl->channels[c].current_d.after = saved_data_buf;
 508
 509                /* Done. Step to next.  */
 510                if (ctrl->channels[c].current_d.intr) {
 511                        /* TODO: signal eop to the client.  */
 512                        /* data intr.  */
 513                        ctrl->channels[c].regs[R_INTR] |= 3;
 514                }
 515                if (eop) {
 516                        ctrl->channels[c].current_d.in_eop = 1;
 517                        ctrl->channels[c].regs[R_INTR] |= 8;
 518                }
 519                if (r_intr != ctrl->channels[c].regs[R_INTR])
 520                        channel_update_irq(ctrl, c);
 521
 522                channel_store_d(ctrl, c);
 523                D(dump_d(c, &ctrl->channels[c].current_d));
 524
 525                if (ctrl->channels[c].current_d.eol) {
 526                        D(printf("channel %d EOL\n", c));
 527                        ctrl->channels[c].eol = 1;
 528
 529                        /* Mark the context as disabled.  */
 530                        ctrl->channels[c].current_c.dis = 1;
 531                        channel_store_c(ctrl, c);
 532
 533                        channel_stop(ctrl, c);
 534                } else {
 535                        ctrl->channels[c].regs[RW_SAVED_DATA] =
 536                                (uint32_t)(unsigned long)ctrl->
 537                                        channels[c].current_d.next;
 538                        /* Load new descriptor.  */
 539                        channel_load_d(ctrl, c);
 540                        saved_data_buf = (uint32_t)(unsigned long)
 541                                ctrl->channels[c].current_d.buf;
 542                }
 543        }
 544
 545        ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
 546        return len;
 547}
 548
 549static inline int channel_in_run(struct fs_dma_ctrl *ctrl, int c)
 550{
 551        if (ctrl->channels[c].client->client.pull) {
 552                ctrl->channels[c].client->client.pull(
 553                        ctrl->channels[c].client->client.opaque);
 554                return 1;
 555        } else
 556                return 0;
 557}
 558
 559static uint32_t dma_rinvalid (void *opaque, target_phys_addr_t addr)
 560{
 561        hw_error("Unsupported short raccess. reg=" TARGET_FMT_plx "\n", addr);
 562        return 0;
 563}
 564
 565static uint32_t
 566dma_readl (void *opaque, target_phys_addr_t addr)
 567{
 568        struct fs_dma_ctrl *ctrl = opaque;
 569        int c;
 570        uint32_t r = 0;
 571
 572        /* Make addr relative to this channel and bounded to nr regs.  */
 573        c = fs_channel(addr);
 574        addr &= 0xff;
 575        addr >>= 2;
 576        switch (addr)
 577        {
 578                case RW_STAT:
 579                        r = ctrl->channels[c].state & 7;
 580                        r |= ctrl->channels[c].eol << 5;
 581                        r |= ctrl->channels[c].stream_cmd_src << 8;
 582                        break;
 583
 584                default:
 585                        r = ctrl->channels[c].regs[addr];
 586                        D(printf ("%s c=%d addr=" TARGET_FMT_plx "\n",
 587                                  __func__, c, addr));
 588                        break;
 589        }
 590        return r;
 591}
 592
 593static void
 594dma_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value)
 595{
 596        hw_error("Unsupported short waccess. reg=" TARGET_FMT_plx "\n", addr);
 597}
 598
 599static void
 600dma_update_state(struct fs_dma_ctrl *ctrl, int c)
 601{
 602        if ((ctrl->channels[c].regs[RW_CFG] & 1) != 3) {
 603                if (ctrl->channels[c].regs[RW_CFG] & 2)
 604                        ctrl->channels[c].state = STOPPED;
 605                if (!(ctrl->channels[c].regs[RW_CFG] & 1))
 606                        ctrl->channels[c].state = RST;
 607        }
 608}
 609
 610static void
 611dma_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
 612{
 613        struct fs_dma_ctrl *ctrl = opaque;
 614        int c;
 615
 616        /* Make addr relative to this channel and bounded to nr regs.  */
 617        c = fs_channel(addr);
 618        addr &= 0xff;
 619        addr >>= 2;
 620        switch (addr)
 621        {
 622                case RW_DATA:
 623                        ctrl->channels[c].regs[addr] = value;
 624                        break;
 625
 626                case RW_CFG:
 627                        ctrl->channels[c].regs[addr] = value;
 628                        dma_update_state(ctrl, c);
 629                        break;
 630                case RW_CMD:
 631                        /* continue.  */
 632                        if (value & ~1)
 633                                printf("Invalid store to ch=%d RW_CMD %x\n",
 634                                       c, value);
 635                        ctrl->channels[c].regs[addr] = value;
 636                        channel_continue(ctrl, c);
 637                        break;
 638
 639                case RW_SAVED_DATA:
 640                case RW_SAVED_DATA_BUF:
 641                case RW_GROUP:
 642                case RW_GROUP_DOWN:
 643                        ctrl->channels[c].regs[addr] = value;
 644                        break;
 645
 646                case RW_ACK_INTR:
 647                case RW_INTR_MASK:
 648                        ctrl->channels[c].regs[addr] = value;
 649                        channel_update_irq(ctrl, c);
 650                        if (addr == RW_ACK_INTR)
 651                                ctrl->channels[c].regs[RW_ACK_INTR] = 0;
 652                        break;
 653
 654                case RW_STREAM_CMD:
 655                        if (value & ~1023)
 656                                printf("Invalid store to ch=%d "
 657                                       "RW_STREAMCMD %x\n",
 658                                       c, value);
 659                        ctrl->channels[c].regs[addr] = value;
 660                        D(printf("stream_cmd ch=%d\n", c));
 661                        channel_stream_cmd(ctrl, c, value);
 662                        break;
 663
 664                default:
 665                        D(printf ("%s c=%d " TARGET_FMT_plx "\n",
 666                                __func__, c, addr));
 667                        break;
 668        }
 669}
 670
 671static CPUReadMemoryFunc * const dma_read[] = {
 672        &dma_rinvalid,
 673        &dma_rinvalid,
 674        &dma_readl,
 675};
 676
 677static CPUWriteMemoryFunc * const dma_write[] = {
 678        &dma_winvalid,
 679        &dma_winvalid,
 680        &dma_writel,
 681};
 682
 683static int etraxfs_dmac_run(void *opaque)
 684{
 685        struct fs_dma_ctrl *ctrl = opaque;
 686        int i;
 687        int p = 0;
 688
 689        for (i = 0; 
 690             i < ctrl->nr_channels;
 691             i++)
 692        {
 693                if (ctrl->channels[i].state == RUNNING)
 694                {
 695                        if (ctrl->channels[i].input) {
 696                                p += channel_in_run(ctrl, i);
 697                        } else {
 698                                p += channel_out_run(ctrl, i);
 699                        }
 700                }
 701        }
 702        return p;
 703}
 704
 705int etraxfs_dmac_input(struct etraxfs_dma_client *client, 
 706                       void *buf, int len, int eop)
 707{
 708        return channel_in_process(client->ctrl, client->channel, 
 709                                  buf, len, eop);
 710}
 711
 712/* Connect an IRQ line with a channel.  */
 713void etraxfs_dmac_connect(void *opaque, int c, qemu_irq *line, int input)
 714{
 715        struct fs_dma_ctrl *ctrl = opaque;
 716        ctrl->channels[c].irq = *line;
 717        ctrl->channels[c].input = input;
 718}
 719
 720void etraxfs_dmac_connect_client(void *opaque, int c, 
 721                                 struct etraxfs_dma_client *cl)
 722{
 723        struct fs_dma_ctrl *ctrl = opaque;
 724        cl->ctrl = ctrl;
 725        cl->channel = c;
 726        ctrl->channels[c].client = cl;
 727}
 728
 729
 730static void DMA_run(void *opaque)
 731{
 732    struct fs_dma_ctrl *etraxfs_dmac = opaque;
 733    int p = 1;
 734
 735    if (vm_running)
 736        p = etraxfs_dmac_run(etraxfs_dmac);
 737
 738    if (p)
 739        qemu_bh_schedule_idle(etraxfs_dmac->bh);
 740}
 741
 742void *etraxfs_dmac_init(target_phys_addr_t base, int nr_channels)
 743{
 744        struct fs_dma_ctrl *ctrl = NULL;
 745
 746        ctrl = qemu_mallocz(sizeof *ctrl);
 747
 748        ctrl->bh = qemu_bh_new(DMA_run, ctrl);
 749
 750        ctrl->nr_channels = nr_channels;
 751        ctrl->channels = qemu_mallocz(sizeof ctrl->channels[0] * nr_channels);
 752
 753        ctrl->map = cpu_register_io_memory(dma_read, dma_write, ctrl);
 754        cpu_register_physical_memory(base, nr_channels * 0x2000, ctrl->map);
 755        return ctrl;
 756}
 757