qemu/hw/omap1.c
<<
>>
Prefs
   1/*
   2 * TI OMAP processors emulation.
   3 *
   4 * Copyright (C) 2006-2008 Andrzej Zaborowski  <balrog@zabor.org>
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License as
   8 * published by the Free Software Foundation; either version 2 or
   9 * (at your option) version 3 of the License.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License along
  17 * with this program; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19#include "hw.h"
  20#include "arm-misc.h"
  21#include "omap.h"
  22#include "sysemu.h"
  23#include "qemu-timer.h"
  24#include "qemu-char.h"
  25#include "soc_dma.h"
  26/* We use pc-style serial ports.  */
  27#include "pc.h"
  28
  29/* Should signal the TCMI/GPMC */
  30uint32_t omap_badwidth_read8(void *opaque, target_phys_addr_t addr)
  31{
  32    uint8_t ret;
  33
  34    OMAP_8B_REG(addr);
  35    cpu_physical_memory_read(addr, (void *) &ret, 1);
  36    return ret;
  37}
  38
  39void omap_badwidth_write8(void *opaque, target_phys_addr_t addr,
  40                uint32_t value)
  41{
  42    uint8_t val8 = value;
  43
  44    OMAP_8B_REG(addr);
  45    cpu_physical_memory_write(addr, (void *) &val8, 1);
  46}
  47
  48uint32_t omap_badwidth_read16(void *opaque, target_phys_addr_t addr)
  49{
  50    uint16_t ret;
  51
  52    OMAP_16B_REG(addr);
  53    cpu_physical_memory_read(addr, (void *) &ret, 2);
  54    return ret;
  55}
  56
  57void omap_badwidth_write16(void *opaque, target_phys_addr_t addr,
  58                uint32_t value)
  59{
  60    uint16_t val16 = value;
  61
  62    OMAP_16B_REG(addr);
  63    cpu_physical_memory_write(addr, (void *) &val16, 2);
  64}
  65
  66uint32_t omap_badwidth_read32(void *opaque, target_phys_addr_t addr)
  67{
  68    uint32_t ret;
  69
  70    OMAP_32B_REG(addr);
  71    cpu_physical_memory_read(addr, (void *) &ret, 4);
  72    return ret;
  73}
  74
  75void omap_badwidth_write32(void *opaque, target_phys_addr_t addr,
  76                uint32_t value)
  77{
  78    OMAP_32B_REG(addr);
  79    cpu_physical_memory_write(addr, (void *) &value, 4);
  80}
  81
  82/* MPU OS timers */
  83struct omap_mpu_timer_s {
  84    qemu_irq irq;
  85    omap_clk clk;
  86    uint32_t val;
  87    int64_t time;
  88    QEMUTimer *timer;
  89    QEMUBH *tick;
  90    int64_t rate;
  91    int it_ena;
  92
  93    int enable;
  94    int ptv;
  95    int ar;
  96    int st;
  97    uint32_t reset_val;
  98};
  99
 100static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
 101{
 102    uint64_t distance = qemu_get_clock(vm_clock) - timer->time;
 103
 104    if (timer->st && timer->enable && timer->rate)
 105        return timer->val - muldiv64(distance >> (timer->ptv + 1),
 106                                     timer->rate, get_ticks_per_sec());
 107    else
 108        return timer->val;
 109}
 110
 111static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
 112{
 113    timer->val = omap_timer_read(timer);
 114    timer->time = qemu_get_clock(vm_clock);
 115}
 116
 117static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
 118{
 119    int64_t expires;
 120
 121    if (timer->enable && timer->st && timer->rate) {
 122        timer->val = timer->reset_val;  /* Should skip this on clk enable */
 123        expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
 124                           get_ticks_per_sec(), timer->rate);
 125
 126        /* If timer expiry would be sooner than in about 1 ms and
 127         * auto-reload isn't set, then fire immediately.  This is a hack
 128         * to make systems like PalmOS run in acceptable time.  PalmOS
 129         * sets the interval to a very low value and polls the status bit
 130         * in a busy loop when it wants to sleep just a couple of CPU
 131         * ticks.  */
 132        if (expires > (get_ticks_per_sec() >> 10) || timer->ar)
 133            qemu_mod_timer(timer->timer, timer->time + expires);
 134        else
 135            qemu_bh_schedule(timer->tick);
 136    } else
 137        qemu_del_timer(timer->timer);
 138}
 139
 140static void omap_timer_fire(void *opaque)
 141{
 142    struct omap_mpu_timer_s *timer = opaque;
 143
 144    if (!timer->ar) {
 145        timer->val = 0;
 146        timer->st = 0;
 147    }
 148
 149    if (timer->it_ena)
 150        /* Edge-triggered irq */
 151        qemu_irq_pulse(timer->irq);
 152}
 153
 154static void omap_timer_tick(void *opaque)
 155{
 156    struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
 157
 158    omap_timer_sync(timer);
 159    omap_timer_fire(timer);
 160    omap_timer_update(timer);
 161}
 162
 163static void omap_timer_clk_update(void *opaque, int line, int on)
 164{
 165    struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
 166
 167    omap_timer_sync(timer);
 168    timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
 169    omap_timer_update(timer);
 170}
 171
 172static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
 173{
 174    omap_clk_adduser(timer->clk,
 175                    qemu_allocate_irqs(omap_timer_clk_update, timer, 1)[0]);
 176    timer->rate = omap_clk_getrate(timer->clk);
 177}
 178
 179static uint32_t omap_mpu_timer_read(void *opaque, target_phys_addr_t addr)
 180{
 181    struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
 182
 183    switch (addr) {
 184    case 0x00:  /* CNTL_TIMER */
 185        return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
 186
 187    case 0x04:  /* LOAD_TIM */
 188        break;
 189
 190    case 0x08:  /* READ_TIM */
 191        return omap_timer_read(s);
 192    }
 193
 194    OMAP_BAD_REG(addr);
 195    return 0;
 196}
 197
 198static void omap_mpu_timer_write(void *opaque, target_phys_addr_t addr,
 199                uint32_t value)
 200{
 201    struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
 202
 203    switch (addr) {
 204    case 0x00:  /* CNTL_TIMER */
 205        omap_timer_sync(s);
 206        s->enable = (value >> 5) & 1;
 207        s->ptv = (value >> 2) & 7;
 208        s->ar = (value >> 1) & 1;
 209        s->st = value & 1;
 210        omap_timer_update(s);
 211        return;
 212
 213    case 0x04:  /* LOAD_TIM */
 214        s->reset_val = value;
 215        return;
 216
 217    case 0x08:  /* READ_TIM */
 218        OMAP_RO_REG(addr);
 219        break;
 220
 221    default:
 222        OMAP_BAD_REG(addr);
 223    }
 224}
 225
 226static CPUReadMemoryFunc * const omap_mpu_timer_readfn[] = {
 227    omap_badwidth_read32,
 228    omap_badwidth_read32,
 229    omap_mpu_timer_read,
 230};
 231
 232static CPUWriteMemoryFunc * const omap_mpu_timer_writefn[] = {
 233    omap_badwidth_write32,
 234    omap_badwidth_write32,
 235    omap_mpu_timer_write,
 236};
 237
 238static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
 239{
 240    qemu_del_timer(s->timer);
 241    s->enable = 0;
 242    s->reset_val = 31337;
 243    s->val = 0;
 244    s->ptv = 0;
 245    s->ar = 0;
 246    s->st = 0;
 247    s->it_ena = 1;
 248}
 249
 250static struct omap_mpu_timer_s *omap_mpu_timer_init(target_phys_addr_t base,
 251                qemu_irq irq, omap_clk clk)
 252{
 253    int iomemtype;
 254    struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *)
 255            qemu_mallocz(sizeof(struct omap_mpu_timer_s));
 256
 257    s->irq = irq;
 258    s->clk = clk;
 259    s->timer = qemu_new_timer(vm_clock, omap_timer_tick, s);
 260    s->tick = qemu_bh_new(omap_timer_fire, s);
 261    omap_mpu_timer_reset(s);
 262    omap_timer_clk_setup(s);
 263
 264    iomemtype = cpu_register_io_memory(omap_mpu_timer_readfn,
 265                    omap_mpu_timer_writefn, s);
 266    cpu_register_physical_memory(base, 0x100, iomemtype);
 267
 268    return s;
 269}
 270
 271/* Watchdog timer */
 272struct omap_watchdog_timer_s {
 273    struct omap_mpu_timer_s timer;
 274    uint8_t last_wr;
 275    int mode;
 276    int free;
 277    int reset;
 278};
 279
 280static uint32_t omap_wd_timer_read(void *opaque, target_phys_addr_t addr)
 281{
 282    struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
 283
 284    switch (addr) {
 285    case 0x00:  /* CNTL_TIMER */
 286        return (s->timer.ptv << 9) | (s->timer.ar << 8) |
 287                (s->timer.st << 7) | (s->free << 1);
 288
 289    case 0x04:  /* READ_TIMER */
 290        return omap_timer_read(&s->timer);
 291
 292    case 0x08:  /* TIMER_MODE */
 293        return s->mode << 15;
 294    }
 295
 296    OMAP_BAD_REG(addr);
 297    return 0;
 298}
 299
 300static void omap_wd_timer_write(void *opaque, target_phys_addr_t addr,
 301                uint32_t value)
 302{
 303    struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
 304
 305    switch (addr) {
 306    case 0x00:  /* CNTL_TIMER */
 307        omap_timer_sync(&s->timer);
 308        s->timer.ptv = (value >> 9) & 7;
 309        s->timer.ar = (value >> 8) & 1;
 310        s->timer.st = (value >> 7) & 1;
 311        s->free = (value >> 1) & 1;
 312        omap_timer_update(&s->timer);
 313        break;
 314
 315    case 0x04:  /* LOAD_TIMER */
 316        s->timer.reset_val = value & 0xffff;
 317        break;
 318
 319    case 0x08:  /* TIMER_MODE */
 320        if (!s->mode && ((value >> 15) & 1))
 321            omap_clk_get(s->timer.clk);
 322        s->mode |= (value >> 15) & 1;
 323        if (s->last_wr == 0xf5) {
 324            if ((value & 0xff) == 0xa0) {
 325                if (s->mode) {
 326                    s->mode = 0;
 327                    omap_clk_put(s->timer.clk);
 328                }
 329            } else {
 330                /* XXX: on T|E hardware somehow this has no effect,
 331                 * on Zire 71 it works as specified.  */
 332                s->reset = 1;
 333                qemu_system_reset_request();
 334            }
 335        }
 336        s->last_wr = value & 0xff;
 337        break;
 338
 339    default:
 340        OMAP_BAD_REG(addr);
 341    }
 342}
 343
 344static CPUReadMemoryFunc * const omap_wd_timer_readfn[] = {
 345    omap_badwidth_read16,
 346    omap_wd_timer_read,
 347    omap_badwidth_read16,
 348};
 349
 350static CPUWriteMemoryFunc * const omap_wd_timer_writefn[] = {
 351    omap_badwidth_write16,
 352    omap_wd_timer_write,
 353    omap_badwidth_write16,
 354};
 355
 356static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
 357{
 358    qemu_del_timer(s->timer.timer);
 359    if (!s->mode)
 360        omap_clk_get(s->timer.clk);
 361    s->mode = 1;
 362    s->free = 1;
 363    s->reset = 0;
 364    s->timer.enable = 1;
 365    s->timer.it_ena = 1;
 366    s->timer.reset_val = 0xffff;
 367    s->timer.val = 0;
 368    s->timer.st = 0;
 369    s->timer.ptv = 0;
 370    s->timer.ar = 0;
 371    omap_timer_update(&s->timer);
 372}
 373
 374static struct omap_watchdog_timer_s *omap_wd_timer_init(target_phys_addr_t base,
 375                qemu_irq irq, omap_clk clk)
 376{
 377    int iomemtype;
 378    struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *)
 379            qemu_mallocz(sizeof(struct omap_watchdog_timer_s));
 380
 381    s->timer.irq = irq;
 382    s->timer.clk = clk;
 383    s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
 384    omap_wd_timer_reset(s);
 385    omap_timer_clk_setup(&s->timer);
 386
 387    iomemtype = cpu_register_io_memory(omap_wd_timer_readfn,
 388                    omap_wd_timer_writefn, s);
 389    cpu_register_physical_memory(base, 0x100, iomemtype);
 390
 391    return s;
 392}
 393
 394/* 32-kHz timer */
 395struct omap_32khz_timer_s {
 396    struct omap_mpu_timer_s timer;
 397};
 398
 399static uint32_t omap_os_timer_read(void *opaque, target_phys_addr_t addr)
 400{
 401    struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
 402    int offset = addr & OMAP_MPUI_REG_MASK;
 403
 404    switch (offset) {
 405    case 0x00:  /* TVR */
 406        return s->timer.reset_val;
 407
 408    case 0x04:  /* TCR */
 409        return omap_timer_read(&s->timer);
 410
 411    case 0x08:  /* CR */
 412        return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
 413
 414    default:
 415        break;
 416    }
 417    OMAP_BAD_REG(addr);
 418    return 0;
 419}
 420
 421static void omap_os_timer_write(void *opaque, target_phys_addr_t addr,
 422                uint32_t value)
 423{
 424    struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
 425    int offset = addr & OMAP_MPUI_REG_MASK;
 426
 427    switch (offset) {
 428    case 0x00:  /* TVR */
 429        s->timer.reset_val = value & 0x00ffffff;
 430        break;
 431
 432    case 0x04:  /* TCR */
 433        OMAP_RO_REG(addr);
 434        break;
 435
 436    case 0x08:  /* CR */
 437        s->timer.ar = (value >> 3) & 1;
 438        s->timer.it_ena = (value >> 2) & 1;
 439        if (s->timer.st != (value & 1) || (value & 2)) {
 440            omap_timer_sync(&s->timer);
 441            s->timer.enable = value & 1;
 442            s->timer.st = value & 1;
 443            omap_timer_update(&s->timer);
 444        }
 445        break;
 446
 447    default:
 448        OMAP_BAD_REG(addr);
 449    }
 450}
 451
 452static CPUReadMemoryFunc * const omap_os_timer_readfn[] = {
 453    omap_badwidth_read32,
 454    omap_badwidth_read32,
 455    omap_os_timer_read,
 456};
 457
 458static CPUWriteMemoryFunc * const omap_os_timer_writefn[] = {
 459    omap_badwidth_write32,
 460    omap_badwidth_write32,
 461    omap_os_timer_write,
 462};
 463
 464static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
 465{
 466    qemu_del_timer(s->timer.timer);
 467    s->timer.enable = 0;
 468    s->timer.it_ena = 0;
 469    s->timer.reset_val = 0x00ffffff;
 470    s->timer.val = 0;
 471    s->timer.st = 0;
 472    s->timer.ptv = 0;
 473    s->timer.ar = 1;
 474}
 475
 476static struct omap_32khz_timer_s *omap_os_timer_init(target_phys_addr_t base,
 477                qemu_irq irq, omap_clk clk)
 478{
 479    int iomemtype;
 480    struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *)
 481            qemu_mallocz(sizeof(struct omap_32khz_timer_s));
 482
 483    s->timer.irq = irq;
 484    s->timer.clk = clk;
 485    s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
 486    omap_os_timer_reset(s);
 487    omap_timer_clk_setup(&s->timer);
 488
 489    iomemtype = cpu_register_io_memory(omap_os_timer_readfn,
 490                    omap_os_timer_writefn, s);
 491    cpu_register_physical_memory(base, 0x800, iomemtype);
 492
 493    return s;
 494}
 495
 496/* Ultra Low-Power Device Module */
 497static uint32_t omap_ulpd_pm_read(void *opaque, target_phys_addr_t addr)
 498{
 499    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
 500    uint16_t ret;
 501
 502    switch (addr) {
 503    case 0x14:  /* IT_STATUS */
 504        ret = s->ulpd_pm_regs[addr >> 2];
 505        s->ulpd_pm_regs[addr >> 2] = 0;
 506        qemu_irq_lower(s->irq[1][OMAP_INT_GAUGE_32K]);
 507        return ret;
 508
 509    case 0x18:  /* Reserved */
 510    case 0x1c:  /* Reserved */
 511    case 0x20:  /* Reserved */
 512    case 0x28:  /* Reserved */
 513    case 0x2c:  /* Reserved */
 514        OMAP_BAD_REG(addr);
 515    case 0x00:  /* COUNTER_32_LSB */
 516    case 0x04:  /* COUNTER_32_MSB */
 517    case 0x08:  /* COUNTER_HIGH_FREQ_LSB */
 518    case 0x0c:  /* COUNTER_HIGH_FREQ_MSB */
 519    case 0x10:  /* GAUGING_CTRL */
 520    case 0x24:  /* SETUP_ANALOG_CELL3_ULPD1 */
 521    case 0x30:  /* CLOCK_CTRL */
 522    case 0x34:  /* SOFT_REQ */
 523    case 0x38:  /* COUNTER_32_FIQ */
 524    case 0x3c:  /* DPLL_CTRL */
 525    case 0x40:  /* STATUS_REQ */
 526        /* XXX: check clk::usecount state for every clock */
 527    case 0x48:  /* LOCL_TIME */
 528    case 0x4c:  /* APLL_CTRL */
 529    case 0x50:  /* POWER_CTRL */
 530        return s->ulpd_pm_regs[addr >> 2];
 531    }
 532
 533    OMAP_BAD_REG(addr);
 534    return 0;
 535}
 536
 537static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
 538                uint16_t diff, uint16_t value)
 539{
 540    if (diff & (1 << 4))                                /* USB_MCLK_EN */
 541        omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
 542    if (diff & (1 << 5))                                /* DIS_USB_PVCI_CLK */
 543        omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
 544}
 545
 546static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
 547                uint16_t diff, uint16_t value)
 548{
 549    if (diff & (1 << 0))                                /* SOFT_DPLL_REQ */
 550        omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
 551    if (diff & (1 << 1))                                /* SOFT_COM_REQ */
 552        omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
 553    if (diff & (1 << 2))                                /* SOFT_SDW_REQ */
 554        omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
 555    if (diff & (1 << 3))                                /* SOFT_USB_REQ */
 556        omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
 557}
 558
 559static void omap_ulpd_pm_write(void *opaque, target_phys_addr_t addr,
 560                uint32_t value)
 561{
 562    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
 563    int64_t now, ticks;
 564    int div, mult;
 565    static const int bypass_div[4] = { 1, 2, 4, 4 };
 566    uint16_t diff;
 567
 568    switch (addr) {
 569    case 0x00:  /* COUNTER_32_LSB */
 570    case 0x04:  /* COUNTER_32_MSB */
 571    case 0x08:  /* COUNTER_HIGH_FREQ_LSB */
 572    case 0x0c:  /* COUNTER_HIGH_FREQ_MSB */
 573    case 0x14:  /* IT_STATUS */
 574    case 0x40:  /* STATUS_REQ */
 575        OMAP_RO_REG(addr);
 576        break;
 577
 578    case 0x10:  /* GAUGING_CTRL */
 579        /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
 580        if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
 581            now = qemu_get_clock(vm_clock);
 582
 583            if (value & 1)
 584                s->ulpd_gauge_start = now;
 585            else {
 586                now -= s->ulpd_gauge_start;
 587
 588                /* 32-kHz ticks */
 589                ticks = muldiv64(now, 32768, get_ticks_per_sec());
 590                s->ulpd_pm_regs[0x00 >> 2] = (ticks >>  0) & 0xffff;
 591                s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
 592                if (ticks >> 32)        /* OVERFLOW_32K */
 593                    s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
 594
 595                /* High frequency ticks */
 596                ticks = muldiv64(now, 12000000, get_ticks_per_sec());
 597                s->ulpd_pm_regs[0x08 >> 2] = (ticks >>  0) & 0xffff;
 598                s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
 599                if (ticks >> 32)        /* OVERFLOW_HI_FREQ */
 600                    s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
 601
 602                s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0;   /* IT_GAUGING */
 603                qemu_irq_raise(s->irq[1][OMAP_INT_GAUGE_32K]);
 604            }
 605        }
 606        s->ulpd_pm_regs[addr >> 2] = value;
 607        break;
 608
 609    case 0x18:  /* Reserved */
 610    case 0x1c:  /* Reserved */
 611    case 0x20:  /* Reserved */
 612    case 0x28:  /* Reserved */
 613    case 0x2c:  /* Reserved */
 614        OMAP_BAD_REG(addr);
 615    case 0x24:  /* SETUP_ANALOG_CELL3_ULPD1 */
 616    case 0x38:  /* COUNTER_32_FIQ */
 617    case 0x48:  /* LOCL_TIME */
 618    case 0x50:  /* POWER_CTRL */
 619        s->ulpd_pm_regs[addr >> 2] = value;
 620        break;
 621
 622    case 0x30:  /* CLOCK_CTRL */
 623        diff = s->ulpd_pm_regs[addr >> 2] ^ value;
 624        s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
 625        omap_ulpd_clk_update(s, diff, value);
 626        break;
 627
 628    case 0x34:  /* SOFT_REQ */
 629        diff = s->ulpd_pm_regs[addr >> 2] ^ value;
 630        s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
 631        omap_ulpd_req_update(s, diff, value);
 632        break;
 633
 634    case 0x3c:  /* DPLL_CTRL */
 635        /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
 636         * omitted altogether, probably a typo.  */
 637        /* This register has identical semantics with DPLL(1:3) control
 638         * registers, see omap_dpll_write() */
 639        diff = s->ulpd_pm_regs[addr >> 2] & value;
 640        s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
 641        if (diff & (0x3ff << 2)) {
 642            if (value & (1 << 4)) {                     /* PLL_ENABLE */
 643                div = ((value >> 5) & 3) + 1;           /* PLL_DIV */
 644                mult = MIN((value >> 7) & 0x1f, 1);     /* PLL_MULT */
 645            } else {
 646                div = bypass_div[((value >> 2) & 3)];   /* BYPASS_DIV */
 647                mult = 1;
 648            }
 649            omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
 650        }
 651
 652        /* Enter the desired mode.  */
 653        s->ulpd_pm_regs[addr >> 2] =
 654                (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
 655                ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
 656
 657        /* Act as if the lock is restored.  */
 658        s->ulpd_pm_regs[addr >> 2] |= 2;
 659        break;
 660
 661    case 0x4c:  /* APLL_CTRL */
 662        diff = s->ulpd_pm_regs[addr >> 2] & value;
 663        s->ulpd_pm_regs[addr >> 2] = value & 0xf;
 664        if (diff & (1 << 0))                            /* APLL_NDPLL_SWITCH */
 665            omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
 666                                    (value & (1 << 0)) ? "apll" : "dpll4"));
 667        break;
 668
 669    default:
 670        OMAP_BAD_REG(addr);
 671    }
 672}
 673
 674static CPUReadMemoryFunc * const omap_ulpd_pm_readfn[] = {
 675    omap_badwidth_read16,
 676    omap_ulpd_pm_read,
 677    omap_badwidth_read16,
 678};
 679
 680static CPUWriteMemoryFunc * const omap_ulpd_pm_writefn[] = {
 681    omap_badwidth_write16,
 682    omap_ulpd_pm_write,
 683    omap_badwidth_write16,
 684};
 685
 686static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
 687{
 688    mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
 689    mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
 690    mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
 691    mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
 692    mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
 693    mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
 694    mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
 695    mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
 696    mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
 697    mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
 698    mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
 699    omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
 700    mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
 701    omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
 702    mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
 703    mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
 704    mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
 705    mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
 706    mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
 707    mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
 708    mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
 709    omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
 710    omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
 711}
 712
 713static void omap_ulpd_pm_init(target_phys_addr_t base,
 714                struct omap_mpu_state_s *mpu)
 715{
 716    int iomemtype = cpu_register_io_memory(omap_ulpd_pm_readfn,
 717                    omap_ulpd_pm_writefn, mpu);
 718
 719    cpu_register_physical_memory(base, 0x800, iomemtype);
 720    omap_ulpd_pm_reset(mpu);
 721}
 722
 723/* OMAP Pin Configuration */
 724static uint32_t omap_pin_cfg_read(void *opaque, target_phys_addr_t addr)
 725{
 726    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
 727
 728    switch (addr) {
 729    case 0x00:  /* FUNC_MUX_CTRL_0 */
 730    case 0x04:  /* FUNC_MUX_CTRL_1 */
 731    case 0x08:  /* FUNC_MUX_CTRL_2 */
 732        return s->func_mux_ctrl[addr >> 2];
 733
 734    case 0x0c:  /* COMP_MODE_CTRL_0 */
 735        return s->comp_mode_ctrl[0];
 736
 737    case 0x10:  /* FUNC_MUX_CTRL_3 */
 738    case 0x14:  /* FUNC_MUX_CTRL_4 */
 739    case 0x18:  /* FUNC_MUX_CTRL_5 */
 740    case 0x1c:  /* FUNC_MUX_CTRL_6 */
 741    case 0x20:  /* FUNC_MUX_CTRL_7 */
 742    case 0x24:  /* FUNC_MUX_CTRL_8 */
 743    case 0x28:  /* FUNC_MUX_CTRL_9 */
 744    case 0x2c:  /* FUNC_MUX_CTRL_A */
 745    case 0x30:  /* FUNC_MUX_CTRL_B */
 746    case 0x34:  /* FUNC_MUX_CTRL_C */
 747    case 0x38:  /* FUNC_MUX_CTRL_D */
 748        return s->func_mux_ctrl[(addr >> 2) - 1];
 749
 750    case 0x40:  /* PULL_DWN_CTRL_0 */
 751    case 0x44:  /* PULL_DWN_CTRL_1 */
 752    case 0x48:  /* PULL_DWN_CTRL_2 */
 753    case 0x4c:  /* PULL_DWN_CTRL_3 */
 754        return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
 755
 756    case 0x50:  /* GATE_INH_CTRL_0 */
 757        return s->gate_inh_ctrl[0];
 758
 759    case 0x60:  /* VOLTAGE_CTRL_0 */
 760        return s->voltage_ctrl[0];
 761
 762    case 0x70:  /* TEST_DBG_CTRL_0 */
 763        return s->test_dbg_ctrl[0];
 764
 765    case 0x80:  /* MOD_CONF_CTRL_0 */
 766        return s->mod_conf_ctrl[0];
 767    }
 768
 769    OMAP_BAD_REG(addr);
 770    return 0;
 771}
 772
 773static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
 774                uint32_t diff, uint32_t value)
 775{
 776    if (s->compat1509) {
 777        if (diff & (1 << 9))                    /* BLUETOOTH */
 778            omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
 779                            (~value >> 9) & 1);
 780        if (diff & (1 << 7))                    /* USB.CLKO */
 781            omap_clk_onoff(omap_findclk(s, "usb.clko"),
 782                            (value >> 7) & 1);
 783    }
 784}
 785
 786static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
 787                uint32_t diff, uint32_t value)
 788{
 789    if (s->compat1509) {
 790        if (diff & (1 << 31))                   /* MCBSP3_CLK_HIZ_DI */
 791            omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"),
 792                            (value >> 31) & 1);
 793        if (diff & (1 << 1))                    /* CLK32K */
 794            omap_clk_onoff(omap_findclk(s, "clk32k_out"),
 795                            (~value >> 1) & 1);
 796    }
 797}
 798
 799static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
 800                uint32_t diff, uint32_t value)
 801{
 802    if (diff & (1 << 31))                       /* CONF_MOD_UART3_CLK_MODE_R */
 803         omap_clk_reparent(omap_findclk(s, "uart3_ck"),
 804                         omap_findclk(s, ((value >> 31) & 1) ?
 805                                 "ck_48m" : "armper_ck"));
 806    if (diff & (1 << 30))                       /* CONF_MOD_UART2_CLK_MODE_R */
 807         omap_clk_reparent(omap_findclk(s, "uart2_ck"),
 808                         omap_findclk(s, ((value >> 30) & 1) ?
 809                                 "ck_48m" : "armper_ck"));
 810    if (diff & (1 << 29))                       /* CONF_MOD_UART1_CLK_MODE_R */
 811         omap_clk_reparent(omap_findclk(s, "uart1_ck"),
 812                         omap_findclk(s, ((value >> 29) & 1) ?
 813                                 "ck_48m" : "armper_ck"));
 814    if (diff & (1 << 23))                       /* CONF_MOD_MMC_SD_CLK_REQ_R */
 815         omap_clk_reparent(omap_findclk(s, "mmc_ck"),
 816                         omap_findclk(s, ((value >> 23) & 1) ?
 817                                 "ck_48m" : "armper_ck"));
 818    if (diff & (1 << 12))                       /* CONF_MOD_COM_MCLK_12_48_S */
 819         omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
 820                         omap_findclk(s, ((value >> 12) & 1) ?
 821                                 "ck_48m" : "armper_ck"));
 822    if (diff & (1 << 9))                        /* CONF_MOD_USB_HOST_HHC_UHO */
 823         omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
 824}
 825
 826static void omap_pin_cfg_write(void *opaque, target_phys_addr_t addr,
 827                uint32_t value)
 828{
 829    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
 830    uint32_t diff;
 831
 832    switch (addr) {
 833    case 0x00:  /* FUNC_MUX_CTRL_0 */
 834        diff = s->func_mux_ctrl[addr >> 2] ^ value;
 835        s->func_mux_ctrl[addr >> 2] = value;
 836        omap_pin_funcmux0_update(s, diff, value);
 837        return;
 838
 839    case 0x04:  /* FUNC_MUX_CTRL_1 */
 840        diff = s->func_mux_ctrl[addr >> 2] ^ value;
 841        s->func_mux_ctrl[addr >> 2] = value;
 842        omap_pin_funcmux1_update(s, diff, value);
 843        return;
 844
 845    case 0x08:  /* FUNC_MUX_CTRL_2 */
 846        s->func_mux_ctrl[addr >> 2] = value;
 847        return;
 848
 849    case 0x0c:  /* COMP_MODE_CTRL_0 */
 850        s->comp_mode_ctrl[0] = value;
 851        s->compat1509 = (value != 0x0000eaef);
 852        omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
 853        omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
 854        return;
 855
 856    case 0x10:  /* FUNC_MUX_CTRL_3 */
 857    case 0x14:  /* FUNC_MUX_CTRL_4 */
 858    case 0x18:  /* FUNC_MUX_CTRL_5 */
 859    case 0x1c:  /* FUNC_MUX_CTRL_6 */
 860    case 0x20:  /* FUNC_MUX_CTRL_7 */
 861    case 0x24:  /* FUNC_MUX_CTRL_8 */
 862    case 0x28:  /* FUNC_MUX_CTRL_9 */
 863    case 0x2c:  /* FUNC_MUX_CTRL_A */
 864    case 0x30:  /* FUNC_MUX_CTRL_B */
 865    case 0x34:  /* FUNC_MUX_CTRL_C */
 866    case 0x38:  /* FUNC_MUX_CTRL_D */
 867        s->func_mux_ctrl[(addr >> 2) - 1] = value;
 868        return;
 869
 870    case 0x40:  /* PULL_DWN_CTRL_0 */
 871    case 0x44:  /* PULL_DWN_CTRL_1 */
 872    case 0x48:  /* PULL_DWN_CTRL_2 */
 873    case 0x4c:  /* PULL_DWN_CTRL_3 */
 874        s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
 875        return;
 876
 877    case 0x50:  /* GATE_INH_CTRL_0 */
 878        s->gate_inh_ctrl[0] = value;
 879        return;
 880
 881    case 0x60:  /* VOLTAGE_CTRL_0 */
 882        s->voltage_ctrl[0] = value;
 883        return;
 884
 885    case 0x70:  /* TEST_DBG_CTRL_0 */
 886        s->test_dbg_ctrl[0] = value;
 887        return;
 888
 889    case 0x80:  /* MOD_CONF_CTRL_0 */
 890        diff = s->mod_conf_ctrl[0] ^ value;
 891        s->mod_conf_ctrl[0] = value;
 892        omap_pin_modconf1_update(s, diff, value);
 893        return;
 894
 895    default:
 896        OMAP_BAD_REG(addr);
 897    }
 898}
 899
 900static CPUReadMemoryFunc * const omap_pin_cfg_readfn[] = {
 901    omap_badwidth_read32,
 902    omap_badwidth_read32,
 903    omap_pin_cfg_read,
 904};
 905
 906static CPUWriteMemoryFunc * const omap_pin_cfg_writefn[] = {
 907    omap_badwidth_write32,
 908    omap_badwidth_write32,
 909    omap_pin_cfg_write,
 910};
 911
 912static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
 913{
 914    /* Start in Compatibility Mode.  */
 915    mpu->compat1509 = 1;
 916    omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
 917    omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
 918    omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
 919    memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
 920    memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
 921    memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
 922    memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
 923    memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
 924    memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
 925    memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
 926}
 927
 928static void omap_pin_cfg_init(target_phys_addr_t base,
 929                struct omap_mpu_state_s *mpu)
 930{
 931    int iomemtype = cpu_register_io_memory(omap_pin_cfg_readfn,
 932                    omap_pin_cfg_writefn, mpu);
 933
 934    cpu_register_physical_memory(base, 0x800, iomemtype);
 935    omap_pin_cfg_reset(mpu);
 936}
 937
 938/* Device Identification, Die Identification */
 939static uint32_t omap_id_read(void *opaque, target_phys_addr_t addr)
 940{
 941    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
 942
 943    switch (addr) {
 944    case 0xfffe1800:    /* DIE_ID_LSB */
 945        return 0xc9581f0e;
 946    case 0xfffe1804:    /* DIE_ID_MSB */
 947        return 0xa8858bfa;
 948
 949    case 0xfffe2000:    /* PRODUCT_ID_LSB */
 950        return 0x00aaaafc;
 951    case 0xfffe2004:    /* PRODUCT_ID_MSB */
 952        return 0xcafeb574;
 953
 954    case 0xfffed400:    /* JTAG_ID_LSB */
 955        switch (s->mpu_model) {
 956        case omap310:
 957            return 0x03310315;
 958        case omap1510:
 959            return 0x03310115;
 960        default:
 961            hw_error("%s: bad mpu model\n", __FUNCTION__);
 962        }
 963        break;
 964
 965    case 0xfffed404:    /* JTAG_ID_MSB */
 966        switch (s->mpu_model) {
 967        case omap310:
 968            return 0xfb57402f;
 969        case omap1510:
 970            return 0xfb47002f;
 971        default:
 972            hw_error("%s: bad mpu model\n", __FUNCTION__);
 973        }
 974        break;
 975    }
 976
 977    OMAP_BAD_REG(addr);
 978    return 0;
 979}
 980
 981static void omap_id_write(void *opaque, target_phys_addr_t addr,
 982                uint32_t value)
 983{
 984    OMAP_BAD_REG(addr);
 985}
 986
 987static CPUReadMemoryFunc * const omap_id_readfn[] = {
 988    omap_badwidth_read32,
 989    omap_badwidth_read32,
 990    omap_id_read,
 991};
 992
 993static CPUWriteMemoryFunc * const omap_id_writefn[] = {
 994    omap_badwidth_write32,
 995    omap_badwidth_write32,
 996    omap_id_write,
 997};
 998
 999static void omap_id_init(struct omap_mpu_state_s *mpu)
1000{
1001    int iomemtype = cpu_register_io_memory(omap_id_readfn,
1002                    omap_id_writefn, mpu);
1003    cpu_register_physical_memory_offset(0xfffe1800, 0x800, iomemtype, 0xfffe1800);
1004    cpu_register_physical_memory_offset(0xfffed400, 0x100, iomemtype, 0xfffed400);
1005    if (!cpu_is_omap15xx(mpu))
1006        cpu_register_physical_memory_offset(0xfffe2000, 0x800, iomemtype, 0xfffe2000);
1007}
1008
1009/* MPUI Control (Dummy) */
1010static uint32_t omap_mpui_read(void *opaque, target_phys_addr_t addr)
1011{
1012    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1013
1014    switch (addr) {
1015    case 0x00:  /* CTRL */
1016        return s->mpui_ctrl;
1017    case 0x04:  /* DEBUG_ADDR */
1018        return 0x01ffffff;
1019    case 0x08:  /* DEBUG_DATA */
1020        return 0xffffffff;
1021    case 0x0c:  /* DEBUG_FLAG */
1022        return 0x00000800;
1023    case 0x10:  /* STATUS */
1024        return 0x00000000;
1025
1026    /* Not in OMAP310 */
1027    case 0x14:  /* DSP_STATUS */
1028    case 0x18:  /* DSP_BOOT_CONFIG */
1029        return 0x00000000;
1030    case 0x1c:  /* DSP_MPUI_CONFIG */
1031        return 0x0000ffff;
1032    }
1033
1034    OMAP_BAD_REG(addr);
1035    return 0;
1036}
1037
1038static void omap_mpui_write(void *opaque, target_phys_addr_t addr,
1039                uint32_t value)
1040{
1041    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1042
1043    switch (addr) {
1044    case 0x00:  /* CTRL */
1045        s->mpui_ctrl = value & 0x007fffff;
1046        break;
1047
1048    case 0x04:  /* DEBUG_ADDR */
1049    case 0x08:  /* DEBUG_DATA */
1050    case 0x0c:  /* DEBUG_FLAG */
1051    case 0x10:  /* STATUS */
1052    /* Not in OMAP310 */
1053    case 0x14:  /* DSP_STATUS */
1054        OMAP_RO_REG(addr);
1055    case 0x18:  /* DSP_BOOT_CONFIG */
1056    case 0x1c:  /* DSP_MPUI_CONFIG */
1057        break;
1058
1059    default:
1060        OMAP_BAD_REG(addr);
1061    }
1062}
1063
1064static CPUReadMemoryFunc * const omap_mpui_readfn[] = {
1065    omap_badwidth_read32,
1066    omap_badwidth_read32,
1067    omap_mpui_read,
1068};
1069
1070static CPUWriteMemoryFunc * const omap_mpui_writefn[] = {
1071    omap_badwidth_write32,
1072    omap_badwidth_write32,
1073    omap_mpui_write,
1074};
1075
1076static void omap_mpui_reset(struct omap_mpu_state_s *s)
1077{
1078    s->mpui_ctrl = 0x0003ff1b;
1079}
1080
1081static void omap_mpui_init(target_phys_addr_t base,
1082                struct omap_mpu_state_s *mpu)
1083{
1084    int iomemtype = cpu_register_io_memory(omap_mpui_readfn,
1085                    omap_mpui_writefn, mpu);
1086
1087    cpu_register_physical_memory(base, 0x100, iomemtype);
1088
1089    omap_mpui_reset(mpu);
1090}
1091
1092/* TIPB Bridges */
1093struct omap_tipb_bridge_s {
1094    qemu_irq abort;
1095
1096    int width_intr;
1097    uint16_t control;
1098    uint16_t alloc;
1099    uint16_t buffer;
1100    uint16_t enh_control;
1101};
1102
1103static uint32_t omap_tipb_bridge_read(void *opaque, target_phys_addr_t addr)
1104{
1105    struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1106
1107    switch (addr) {
1108    case 0x00:  /* TIPB_CNTL */
1109        return s->control;
1110    case 0x04:  /* TIPB_BUS_ALLOC */
1111        return s->alloc;
1112    case 0x08:  /* MPU_TIPB_CNTL */
1113        return s->buffer;
1114    case 0x0c:  /* ENHANCED_TIPB_CNTL */
1115        return s->enh_control;
1116    case 0x10:  /* ADDRESS_DBG */
1117    case 0x14:  /* DATA_DEBUG_LOW */
1118    case 0x18:  /* DATA_DEBUG_HIGH */
1119        return 0xffff;
1120    case 0x1c:  /* DEBUG_CNTR_SIG */
1121        return 0x00f8;
1122    }
1123
1124    OMAP_BAD_REG(addr);
1125    return 0;
1126}
1127
1128static void omap_tipb_bridge_write(void *opaque, target_phys_addr_t addr,
1129                uint32_t value)
1130{
1131    struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1132
1133    switch (addr) {
1134    case 0x00:  /* TIPB_CNTL */
1135        s->control = value & 0xffff;
1136        break;
1137
1138    case 0x04:  /* TIPB_BUS_ALLOC */
1139        s->alloc = value & 0x003f;
1140        break;
1141
1142    case 0x08:  /* MPU_TIPB_CNTL */
1143        s->buffer = value & 0x0003;
1144        break;
1145
1146    case 0x0c:  /* ENHANCED_TIPB_CNTL */
1147        s->width_intr = !(value & 2);
1148        s->enh_control = value & 0x000f;
1149        break;
1150
1151    case 0x10:  /* ADDRESS_DBG */
1152    case 0x14:  /* DATA_DEBUG_LOW */
1153    case 0x18:  /* DATA_DEBUG_HIGH */
1154    case 0x1c:  /* DEBUG_CNTR_SIG */
1155        OMAP_RO_REG(addr);
1156        break;
1157
1158    default:
1159        OMAP_BAD_REG(addr);
1160    }
1161}
1162
1163static CPUReadMemoryFunc * const omap_tipb_bridge_readfn[] = {
1164    omap_badwidth_read16,
1165    omap_tipb_bridge_read,
1166    omap_tipb_bridge_read,
1167};
1168
1169static CPUWriteMemoryFunc * const omap_tipb_bridge_writefn[] = {
1170    omap_badwidth_write16,
1171    omap_tipb_bridge_write,
1172    omap_tipb_bridge_write,
1173};
1174
1175static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1176{
1177    s->control = 0xffff;
1178    s->alloc = 0x0009;
1179    s->buffer = 0x0000;
1180    s->enh_control = 0x000f;
1181}
1182
1183static struct omap_tipb_bridge_s *omap_tipb_bridge_init(target_phys_addr_t base,
1184                qemu_irq abort_irq, omap_clk clk)
1185{
1186    int iomemtype;
1187    struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *)
1188            qemu_mallocz(sizeof(struct omap_tipb_bridge_s));
1189
1190    s->abort = abort_irq;
1191    omap_tipb_bridge_reset(s);
1192
1193    iomemtype = cpu_register_io_memory(omap_tipb_bridge_readfn,
1194                    omap_tipb_bridge_writefn, s);
1195    cpu_register_physical_memory(base, 0x100, iomemtype);
1196
1197    return s;
1198}
1199
1200/* Dummy Traffic Controller's Memory Interface */
1201static uint32_t omap_tcmi_read(void *opaque, target_phys_addr_t addr)
1202{
1203    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1204    uint32_t ret;
1205
1206    switch (addr) {
1207    case 0x00:  /* IMIF_PRIO */
1208    case 0x04:  /* EMIFS_PRIO */
1209    case 0x08:  /* EMIFF_PRIO */
1210    case 0x0c:  /* EMIFS_CONFIG */
1211    case 0x10:  /* EMIFS_CS0_CONFIG */
1212    case 0x14:  /* EMIFS_CS1_CONFIG */
1213    case 0x18:  /* EMIFS_CS2_CONFIG */
1214    case 0x1c:  /* EMIFS_CS3_CONFIG */
1215    case 0x24:  /* EMIFF_MRS */
1216    case 0x28:  /* TIMEOUT1 */
1217    case 0x2c:  /* TIMEOUT2 */
1218    case 0x30:  /* TIMEOUT3 */
1219    case 0x3c:  /* EMIFF_SDRAM_CONFIG_2 */
1220    case 0x40:  /* EMIFS_CFG_DYN_WAIT */
1221        return s->tcmi_regs[addr >> 2];
1222
1223    case 0x20:  /* EMIFF_SDRAM_CONFIG */
1224        ret = s->tcmi_regs[addr >> 2];
1225        s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1226        /* XXX: We can try using the VGA_DIRTY flag for this */
1227        return ret;
1228    }
1229
1230    OMAP_BAD_REG(addr);
1231    return 0;
1232}
1233
1234static void omap_tcmi_write(void *opaque, target_phys_addr_t addr,
1235                uint32_t value)
1236{
1237    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1238
1239    switch (addr) {
1240    case 0x00:  /* IMIF_PRIO */
1241    case 0x04:  /* EMIFS_PRIO */
1242    case 0x08:  /* EMIFF_PRIO */
1243    case 0x10:  /* EMIFS_CS0_CONFIG */
1244    case 0x14:  /* EMIFS_CS1_CONFIG */
1245    case 0x18:  /* EMIFS_CS2_CONFIG */
1246    case 0x1c:  /* EMIFS_CS3_CONFIG */
1247    case 0x20:  /* EMIFF_SDRAM_CONFIG */
1248    case 0x24:  /* EMIFF_MRS */
1249    case 0x28:  /* TIMEOUT1 */
1250    case 0x2c:  /* TIMEOUT2 */
1251    case 0x30:  /* TIMEOUT3 */
1252    case 0x3c:  /* EMIFF_SDRAM_CONFIG_2 */
1253    case 0x40:  /* EMIFS_CFG_DYN_WAIT */
1254        s->tcmi_regs[addr >> 2] = value;
1255        break;
1256    case 0x0c:  /* EMIFS_CONFIG */
1257        s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1258        break;
1259
1260    default:
1261        OMAP_BAD_REG(addr);
1262    }
1263}
1264
1265static CPUReadMemoryFunc * const omap_tcmi_readfn[] = {
1266    omap_badwidth_read32,
1267    omap_badwidth_read32,
1268    omap_tcmi_read,
1269};
1270
1271static CPUWriteMemoryFunc * const omap_tcmi_writefn[] = {
1272    omap_badwidth_write32,
1273    omap_badwidth_write32,
1274    omap_tcmi_write,
1275};
1276
1277static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1278{
1279    mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1280    mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1281    mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1282    mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1283    mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1284    mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1285    mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1286    mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1287    mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1288    mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1289    mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1290    mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1291    mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1292    mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1293    mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1294}
1295
1296static void omap_tcmi_init(target_phys_addr_t base,
1297                struct omap_mpu_state_s *mpu)
1298{
1299    int iomemtype = cpu_register_io_memory(omap_tcmi_readfn,
1300                    omap_tcmi_writefn, mpu);
1301
1302    cpu_register_physical_memory(base, 0x100, iomemtype);
1303    omap_tcmi_reset(mpu);
1304}
1305
1306/* Digital phase-locked loops control */
1307static uint32_t omap_dpll_read(void *opaque, target_phys_addr_t addr)
1308{
1309    struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1310
1311    if (addr == 0x00)   /* CTL_REG */
1312        return s->mode;
1313
1314    OMAP_BAD_REG(addr);
1315    return 0;
1316}
1317
1318static void omap_dpll_write(void *opaque, target_phys_addr_t addr,
1319                uint32_t value)
1320{
1321    struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1322    uint16_t diff;
1323    static const int bypass_div[4] = { 1, 2, 4, 4 };
1324    int div, mult;
1325
1326    if (addr == 0x00) { /* CTL_REG */
1327        /* See omap_ulpd_pm_write() too */
1328        diff = s->mode & value;
1329        s->mode = value & 0x2fff;
1330        if (diff & (0x3ff << 2)) {
1331            if (value & (1 << 4)) {                     /* PLL_ENABLE */
1332                div = ((value >> 5) & 3) + 1;           /* PLL_DIV */
1333                mult = MIN((value >> 7) & 0x1f, 1);     /* PLL_MULT */
1334            } else {
1335                div = bypass_div[((value >> 2) & 3)];   /* BYPASS_DIV */
1336                mult = 1;
1337            }
1338            omap_clk_setrate(s->dpll, div, mult);
1339        }
1340
1341        /* Enter the desired mode.  */
1342        s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1343
1344        /* Act as if the lock is restored.  */
1345        s->mode |= 2;
1346    } else {
1347        OMAP_BAD_REG(addr);
1348    }
1349}
1350
1351static CPUReadMemoryFunc * const omap_dpll_readfn[] = {
1352    omap_badwidth_read16,
1353    omap_dpll_read,
1354    omap_badwidth_read16,
1355};
1356
1357static CPUWriteMemoryFunc * const omap_dpll_writefn[] = {
1358    omap_badwidth_write16,
1359    omap_dpll_write,
1360    omap_badwidth_write16,
1361};
1362
1363static void omap_dpll_reset(struct dpll_ctl_s *s)
1364{
1365    s->mode = 0x2002;
1366    omap_clk_setrate(s->dpll, 1, 1);
1367}
1368
1369static void omap_dpll_init(struct dpll_ctl_s *s, target_phys_addr_t base,
1370                omap_clk clk)
1371{
1372    int iomemtype = cpu_register_io_memory(omap_dpll_readfn,
1373                    omap_dpll_writefn, s);
1374
1375    s->dpll = clk;
1376    omap_dpll_reset(s);
1377
1378    cpu_register_physical_memory(base, 0x100, iomemtype);
1379}
1380
1381/* MPU Clock/Reset/Power Mode Control */
1382static uint32_t omap_clkm_read(void *opaque, target_phys_addr_t addr)
1383{
1384    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1385
1386    switch (addr) {
1387    case 0x00:  /* ARM_CKCTL */
1388        return s->clkm.arm_ckctl;
1389
1390    case 0x04:  /* ARM_IDLECT1 */
1391        return s->clkm.arm_idlect1;
1392
1393    case 0x08:  /* ARM_IDLECT2 */
1394        return s->clkm.arm_idlect2;
1395
1396    case 0x0c:  /* ARM_EWUPCT */
1397        return s->clkm.arm_ewupct;
1398
1399    case 0x10:  /* ARM_RSTCT1 */
1400        return s->clkm.arm_rstct1;
1401
1402    case 0x14:  /* ARM_RSTCT2 */
1403        return s->clkm.arm_rstct2;
1404
1405    case 0x18:  /* ARM_SYSST */
1406        return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1407
1408    case 0x1c:  /* ARM_CKOUT1 */
1409        return s->clkm.arm_ckout1;
1410
1411    case 0x20:  /* ARM_CKOUT2 */
1412        break;
1413    }
1414
1415    OMAP_BAD_REG(addr);
1416    return 0;
1417}
1418
1419static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1420                uint16_t diff, uint16_t value)
1421{
1422    omap_clk clk;
1423
1424    if (diff & (1 << 14)) {                             /* ARM_INTHCK_SEL */
1425        if (value & (1 << 14))
1426            /* Reserved */;
1427        else {
1428            clk = omap_findclk(s, "arminth_ck");
1429            omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1430        }
1431    }
1432    if (diff & (1 << 12)) {                             /* ARM_TIMXO */
1433        clk = omap_findclk(s, "armtim_ck");
1434        if (value & (1 << 12))
1435            omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1436        else
1437            omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1438    }
1439    /* XXX: en_dspck */
1440    if (diff & (3 << 10)) {                             /* DSPMMUDIV */
1441        clk = omap_findclk(s, "dspmmu_ck");
1442        omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1443    }
1444    if (diff & (3 << 8)) {                              /* TCDIV */
1445        clk = omap_findclk(s, "tc_ck");
1446        omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1447    }
1448    if (diff & (3 << 6)) {                              /* DSPDIV */
1449        clk = omap_findclk(s, "dsp_ck");
1450        omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1451    }
1452    if (diff & (3 << 4)) {                              /* ARMDIV */
1453        clk = omap_findclk(s, "arm_ck");
1454        omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1455    }
1456    if (diff & (3 << 2)) {                              /* LCDDIV */
1457        clk = omap_findclk(s, "lcd_ck");
1458        omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1459    }
1460    if (diff & (3 << 0)) {                              /* PERDIV */
1461        clk = omap_findclk(s, "armper_ck");
1462        omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1463    }
1464}
1465
1466static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1467                uint16_t diff, uint16_t value)
1468{
1469    omap_clk clk;
1470
1471    if (value & (1 << 11))                              /* SETARM_IDLE */
1472        cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
1473    if (!(value & (1 << 10)))                           /* WKUP_MODE */
1474        qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
1475
1476#define SET_CANIDLE(clock, bit)                         \
1477    if (diff & (1 << bit)) {                            \
1478        clk = omap_findclk(s, clock);                   \
1479        omap_clk_canidle(clk, (value >> bit) & 1);      \
1480    }
1481    SET_CANIDLE("mpuwd_ck", 0)                          /* IDLWDT_ARM */
1482    SET_CANIDLE("armxor_ck", 1)                         /* IDLXORP_ARM */
1483    SET_CANIDLE("mpuper_ck", 2)                         /* IDLPER_ARM */
1484    SET_CANIDLE("lcd_ck", 3)                            /* IDLLCD_ARM */
1485    SET_CANIDLE("lb_ck", 4)                             /* IDLLB_ARM */
1486    SET_CANIDLE("hsab_ck", 5)                           /* IDLHSAB_ARM */
1487    SET_CANIDLE("tipb_ck", 6)                           /* IDLIF_ARM */
1488    SET_CANIDLE("dma_ck", 6)                            /* IDLIF_ARM */
1489    SET_CANIDLE("tc_ck", 6)                             /* IDLIF_ARM */
1490    SET_CANIDLE("dpll1", 7)                             /* IDLDPLL_ARM */
1491    SET_CANIDLE("dpll2", 7)                             /* IDLDPLL_ARM */
1492    SET_CANIDLE("dpll3", 7)                             /* IDLDPLL_ARM */
1493    SET_CANIDLE("mpui_ck", 8)                           /* IDLAPI_ARM */
1494    SET_CANIDLE("armtim_ck", 9)                         /* IDLTIM_ARM */
1495}
1496
1497static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1498                uint16_t diff, uint16_t value)
1499{
1500    omap_clk clk;
1501
1502#define SET_ONOFF(clock, bit)                           \
1503    if (diff & (1 << bit)) {                            \
1504        clk = omap_findclk(s, clock);                   \
1505        omap_clk_onoff(clk, (value >> bit) & 1);        \
1506    }
1507    SET_ONOFF("mpuwd_ck", 0)                            /* EN_WDTCK */
1508    SET_ONOFF("armxor_ck", 1)                           /* EN_XORPCK */
1509    SET_ONOFF("mpuper_ck", 2)                           /* EN_PERCK */
1510    SET_ONOFF("lcd_ck", 3)                              /* EN_LCDCK */
1511    SET_ONOFF("lb_ck", 4)                               /* EN_LBCK */
1512    SET_ONOFF("hsab_ck", 5)                             /* EN_HSABCK */
1513    SET_ONOFF("mpui_ck", 6)                             /* EN_APICK */
1514    SET_ONOFF("armtim_ck", 7)                           /* EN_TIMCK */
1515    SET_CANIDLE("dma_ck", 8)                            /* DMACK_REQ */
1516    SET_ONOFF("arm_gpio_ck", 9)                         /* EN_GPIOCK */
1517    SET_ONOFF("lbfree_ck", 10)                          /* EN_LBFREECK */
1518}
1519
1520static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1521                uint16_t diff, uint16_t value)
1522{
1523    omap_clk clk;
1524
1525    if (diff & (3 << 4)) {                              /* TCLKOUT */
1526        clk = omap_findclk(s, "tclk_out");
1527        switch ((value >> 4) & 3) {
1528        case 1:
1529            omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1530            omap_clk_onoff(clk, 1);
1531            break;
1532        case 2:
1533            omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1534            omap_clk_onoff(clk, 1);
1535            break;
1536        default:
1537            omap_clk_onoff(clk, 0);
1538        }
1539    }
1540    if (diff & (3 << 2)) {                              /* DCLKOUT */
1541        clk = omap_findclk(s, "dclk_out");
1542        switch ((value >> 2) & 3) {
1543        case 0:
1544            omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1545            break;
1546        case 1:
1547            omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1548            break;
1549        case 2:
1550            omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1551            break;
1552        case 3:
1553            omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1554            break;
1555        }
1556    }
1557    if (diff & (3 << 0)) {                              /* ACLKOUT */
1558        clk = omap_findclk(s, "aclk_out");
1559        switch ((value >> 0) & 3) {
1560        case 1:
1561            omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1562            omap_clk_onoff(clk, 1);
1563            break;
1564        case 2:
1565            omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1566            omap_clk_onoff(clk, 1);
1567            break;
1568        case 3:
1569            omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1570            omap_clk_onoff(clk, 1);
1571            break;
1572        default:
1573            omap_clk_onoff(clk, 0);
1574        }
1575    }
1576}
1577
1578static void omap_clkm_write(void *opaque, target_phys_addr_t addr,
1579                uint32_t value)
1580{
1581    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1582    uint16_t diff;
1583    omap_clk clk;
1584    static const char *clkschemename[8] = {
1585        "fully synchronous", "fully asynchronous", "synchronous scalable",
1586        "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1587    };
1588
1589    switch (addr) {
1590    case 0x00:  /* ARM_CKCTL */
1591        diff = s->clkm.arm_ckctl ^ value;
1592        s->clkm.arm_ckctl = value & 0x7fff;
1593        omap_clkm_ckctl_update(s, diff, value);
1594        return;
1595
1596    case 0x04:  /* ARM_IDLECT1 */
1597        diff = s->clkm.arm_idlect1 ^ value;
1598        s->clkm.arm_idlect1 = value & 0x0fff;
1599        omap_clkm_idlect1_update(s, diff, value);
1600        return;
1601
1602    case 0x08:  /* ARM_IDLECT2 */
1603        diff = s->clkm.arm_idlect2 ^ value;
1604        s->clkm.arm_idlect2 = value & 0x07ff;
1605        omap_clkm_idlect2_update(s, diff, value);
1606        return;
1607
1608    case 0x0c:  /* ARM_EWUPCT */
1609        s->clkm.arm_ewupct = value & 0x003f;
1610        return;
1611
1612    case 0x10:  /* ARM_RSTCT1 */
1613        diff = s->clkm.arm_rstct1 ^ value;
1614        s->clkm.arm_rstct1 = value & 0x0007;
1615        if (value & 9) {
1616            qemu_system_reset_request();
1617            s->clkm.cold_start = 0xa;
1618        }
1619        if (diff & ~value & 4) {                                /* DSP_RST */
1620            omap_mpui_reset(s);
1621            omap_tipb_bridge_reset(s->private_tipb);
1622            omap_tipb_bridge_reset(s->public_tipb);
1623        }
1624        if (diff & 2) {                                         /* DSP_EN */
1625            clk = omap_findclk(s, "dsp_ck");
1626            omap_clk_canidle(clk, (~value >> 1) & 1);
1627        }
1628        return;
1629
1630    case 0x14:  /* ARM_RSTCT2 */
1631        s->clkm.arm_rstct2 = value & 0x0001;
1632        return;
1633
1634    case 0x18:  /* ARM_SYSST */
1635        if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1636            s->clkm.clocking_scheme = (value >> 11) & 7;
1637            printf("%s: clocking scheme set to %s\n", __FUNCTION__,
1638                            clkschemename[s->clkm.clocking_scheme]);
1639        }
1640        s->clkm.cold_start &= value & 0x3f;
1641        return;
1642
1643    case 0x1c:  /* ARM_CKOUT1 */
1644        diff = s->clkm.arm_ckout1 ^ value;
1645        s->clkm.arm_ckout1 = value & 0x003f;
1646        omap_clkm_ckout1_update(s, diff, value);
1647        return;
1648
1649    case 0x20:  /* ARM_CKOUT2 */
1650    default:
1651        OMAP_BAD_REG(addr);
1652    }
1653}
1654
1655static CPUReadMemoryFunc * const omap_clkm_readfn[] = {
1656    omap_badwidth_read16,
1657    omap_clkm_read,
1658    omap_badwidth_read16,
1659};
1660
1661static CPUWriteMemoryFunc * const omap_clkm_writefn[] = {
1662    omap_badwidth_write16,
1663    omap_clkm_write,
1664    omap_badwidth_write16,
1665};
1666
1667static uint32_t omap_clkdsp_read(void *opaque, target_phys_addr_t addr)
1668{
1669    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1670
1671    switch (addr) {
1672    case 0x04:  /* DSP_IDLECT1 */
1673        return s->clkm.dsp_idlect1;
1674
1675    case 0x08:  /* DSP_IDLECT2 */
1676        return s->clkm.dsp_idlect2;
1677
1678    case 0x14:  /* DSP_RSTCT2 */
1679        return s->clkm.dsp_rstct2;
1680
1681    case 0x18:  /* DSP_SYSST */
1682        return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1683                (s->env->halted << 6);  /* Quite useless... */
1684    }
1685
1686    OMAP_BAD_REG(addr);
1687    return 0;
1688}
1689
1690static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1691                uint16_t diff, uint16_t value)
1692{
1693    omap_clk clk;
1694
1695    SET_CANIDLE("dspxor_ck", 1);                        /* IDLXORP_DSP */
1696}
1697
1698static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1699                uint16_t diff, uint16_t value)
1700{
1701    omap_clk clk;
1702
1703    SET_ONOFF("dspxor_ck", 1);                          /* EN_XORPCK */
1704}
1705
1706static void omap_clkdsp_write(void *opaque, target_phys_addr_t addr,
1707                uint32_t value)
1708{
1709    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1710    uint16_t diff;
1711
1712    switch (addr) {
1713    case 0x04:  /* DSP_IDLECT1 */
1714        diff = s->clkm.dsp_idlect1 ^ value;
1715        s->clkm.dsp_idlect1 = value & 0x01f7;
1716        omap_clkdsp_idlect1_update(s, diff, value);
1717        break;
1718
1719    case 0x08:  /* DSP_IDLECT2 */
1720        s->clkm.dsp_idlect2 = value & 0x0037;
1721        diff = s->clkm.dsp_idlect1 ^ value;
1722        omap_clkdsp_idlect2_update(s, diff, value);
1723        break;
1724
1725    case 0x14:  /* DSP_RSTCT2 */
1726        s->clkm.dsp_rstct2 = value & 0x0001;
1727        break;
1728
1729    case 0x18:  /* DSP_SYSST */
1730        s->clkm.cold_start &= value & 0x3f;
1731        break;
1732
1733    default:
1734        OMAP_BAD_REG(addr);
1735    }
1736}
1737
1738static CPUReadMemoryFunc * const omap_clkdsp_readfn[] = {
1739    omap_badwidth_read16,
1740    omap_clkdsp_read,
1741    omap_badwidth_read16,
1742};
1743
1744static CPUWriteMemoryFunc * const omap_clkdsp_writefn[] = {
1745    omap_badwidth_write16,
1746    omap_clkdsp_write,
1747    omap_badwidth_write16,
1748};
1749
1750static void omap_clkm_reset(struct omap_mpu_state_s *s)
1751{
1752    if (s->wdt && s->wdt->reset)
1753        s->clkm.cold_start = 0x6;
1754    s->clkm.clocking_scheme = 0;
1755    omap_clkm_ckctl_update(s, ~0, 0x3000);
1756    s->clkm.arm_ckctl = 0x3000;
1757    omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1758    s->clkm.arm_idlect1 = 0x0400;
1759    omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1760    s->clkm.arm_idlect2 = 0x0100;
1761    s->clkm.arm_ewupct = 0x003f;
1762    s->clkm.arm_rstct1 = 0x0000;
1763    s->clkm.arm_rstct2 = 0x0000;
1764    s->clkm.arm_ckout1 = 0x0015;
1765    s->clkm.dpll1_mode = 0x2002;
1766    omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1767    s->clkm.dsp_idlect1 = 0x0040;
1768    omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1769    s->clkm.dsp_idlect2 = 0x0000;
1770    s->clkm.dsp_rstct2 = 0x0000;
1771}
1772
1773static void omap_clkm_init(target_phys_addr_t mpu_base,
1774                target_phys_addr_t dsp_base, struct omap_mpu_state_s *s)
1775{
1776    int iomemtype[2] = {
1777        cpu_register_io_memory(omap_clkm_readfn, omap_clkm_writefn, s),
1778        cpu_register_io_memory(omap_clkdsp_readfn, omap_clkdsp_writefn, s),
1779    };
1780
1781    s->clkm.arm_idlect1 = 0x03ff;
1782    s->clkm.arm_idlect2 = 0x0100;
1783    s->clkm.dsp_idlect1 = 0x0002;
1784    omap_clkm_reset(s);
1785    s->clkm.cold_start = 0x3a;
1786
1787    cpu_register_physical_memory(mpu_base, 0x100, iomemtype[0]);
1788    cpu_register_physical_memory(dsp_base, 0x1000, iomemtype[1]);
1789}
1790
1791/* MPU I/O */
1792struct omap_mpuio_s {
1793    qemu_irq irq;
1794    qemu_irq kbd_irq;
1795    qemu_irq *in;
1796    qemu_irq handler[16];
1797    qemu_irq wakeup;
1798
1799    uint16_t inputs;
1800    uint16_t outputs;
1801    uint16_t dir;
1802    uint16_t edge;
1803    uint16_t mask;
1804    uint16_t ints;
1805
1806    uint16_t debounce;
1807    uint16_t latch;
1808    uint8_t event;
1809
1810    uint8_t buttons[5];
1811    uint8_t row_latch;
1812    uint8_t cols;
1813    int kbd_mask;
1814    int clk;
1815};
1816
1817static void omap_mpuio_set(void *opaque, int line, int level)
1818{
1819    struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1820    uint16_t prev = s->inputs;
1821
1822    if (level)
1823        s->inputs |= 1 << line;
1824    else
1825        s->inputs &= ~(1 << line);
1826
1827    if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1828        if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1829            s->ints |= 1 << line;
1830            qemu_irq_raise(s->irq);
1831            /* TODO: wakeup */
1832        }
1833        if ((s->event & (1 << 0)) &&            /* SET_GPIO_EVENT_MODE */
1834                (s->event >> 1) == line)        /* PIN_SELECT */
1835            s->latch = s->inputs;
1836    }
1837}
1838
1839static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1840{
1841    int i;
1842    uint8_t *row, rows = 0, cols = ~s->cols;
1843
1844    for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1845        if (*row & cols)
1846            rows |= i;
1847
1848    qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1849    s->row_latch = ~rows;
1850}
1851
1852static uint32_t omap_mpuio_read(void *opaque, target_phys_addr_t addr)
1853{
1854    struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1855    int offset = addr & OMAP_MPUI_REG_MASK;
1856    uint16_t ret;
1857
1858    switch (offset) {
1859    case 0x00:  /* INPUT_LATCH */
1860        return s->inputs;
1861
1862    case 0x04:  /* OUTPUT_REG */
1863        return s->outputs;
1864
1865    case 0x08:  /* IO_CNTL */
1866        return s->dir;
1867
1868    case 0x10:  /* KBR_LATCH */
1869        return s->row_latch;
1870
1871    case 0x14:  /* KBC_REG */
1872        return s->cols;
1873
1874    case 0x18:  /* GPIO_EVENT_MODE_REG */
1875        return s->event;
1876
1877    case 0x1c:  /* GPIO_INT_EDGE_REG */
1878        return s->edge;
1879
1880    case 0x20:  /* KBD_INT */
1881        return (~s->row_latch & 0x1f) && !s->kbd_mask;
1882
1883    case 0x24:  /* GPIO_INT */
1884        ret = s->ints;
1885        s->ints &= s->mask;
1886        if (ret)
1887            qemu_irq_lower(s->irq);
1888        return ret;
1889
1890    case 0x28:  /* KBD_MASKIT */
1891        return s->kbd_mask;
1892
1893    case 0x2c:  /* GPIO_MASKIT */
1894        return s->mask;
1895
1896    case 0x30:  /* GPIO_DEBOUNCING_REG */
1897        return s->debounce;
1898
1899    case 0x34:  /* GPIO_LATCH_REG */
1900        return s->latch;
1901    }
1902
1903    OMAP_BAD_REG(addr);
1904    return 0;
1905}
1906
1907static void omap_mpuio_write(void *opaque, target_phys_addr_t addr,
1908                uint32_t value)
1909{
1910    struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1911    int offset = addr & OMAP_MPUI_REG_MASK;
1912    uint16_t diff;
1913    int ln;
1914
1915    switch (offset) {
1916    case 0x04:  /* OUTPUT_REG */
1917        diff = (s->outputs ^ value) & ~s->dir;
1918        s->outputs = value;
1919        while ((ln = ffs(diff))) {
1920            ln --;
1921            if (s->handler[ln])
1922                qemu_set_irq(s->handler[ln], (value >> ln) & 1);
1923            diff &= ~(1 << ln);
1924        }
1925        break;
1926
1927    case 0x08:  /* IO_CNTL */
1928        diff = s->outputs & (s->dir ^ value);
1929        s->dir = value;
1930
1931        value = s->outputs & ~s->dir;
1932        while ((ln = ffs(diff))) {
1933            ln --;
1934            if (s->handler[ln])
1935                qemu_set_irq(s->handler[ln], (value >> ln) & 1);
1936            diff &= ~(1 << ln);
1937        }
1938        break;
1939
1940    case 0x14:  /* KBC_REG */
1941        s->cols = value;
1942        omap_mpuio_kbd_update(s);
1943        break;
1944
1945    case 0x18:  /* GPIO_EVENT_MODE_REG */
1946        s->event = value & 0x1f;
1947        break;
1948
1949    case 0x1c:  /* GPIO_INT_EDGE_REG */
1950        s->edge = value;
1951        break;
1952
1953    case 0x28:  /* KBD_MASKIT */
1954        s->kbd_mask = value & 1;
1955        omap_mpuio_kbd_update(s);
1956        break;
1957
1958    case 0x2c:  /* GPIO_MASKIT */
1959        s->mask = value;
1960        break;
1961
1962    case 0x30:  /* GPIO_DEBOUNCING_REG */
1963        s->debounce = value & 0x1ff;
1964        break;
1965
1966    case 0x00:  /* INPUT_LATCH */
1967    case 0x10:  /* KBR_LATCH */
1968    case 0x20:  /* KBD_INT */
1969    case 0x24:  /* GPIO_INT */
1970    case 0x34:  /* GPIO_LATCH_REG */
1971        OMAP_RO_REG(addr);
1972        return;
1973
1974    default:
1975        OMAP_BAD_REG(addr);
1976        return;
1977    }
1978}
1979
1980static CPUReadMemoryFunc * const omap_mpuio_readfn[] = {
1981    omap_badwidth_read16,
1982    omap_mpuio_read,
1983    omap_badwidth_read16,
1984};
1985
1986static CPUWriteMemoryFunc * const omap_mpuio_writefn[] = {
1987    omap_badwidth_write16,
1988    omap_mpuio_write,
1989    omap_badwidth_write16,
1990};
1991
1992static void omap_mpuio_reset(struct omap_mpuio_s *s)
1993{
1994    s->inputs = 0;
1995    s->outputs = 0;
1996    s->dir = ~0;
1997    s->event = 0;
1998    s->edge = 0;
1999    s->kbd_mask = 0;
2000    s->mask = 0;
2001    s->debounce = 0;
2002    s->latch = 0;
2003    s->ints = 0;
2004    s->row_latch = 0x1f;
2005    s->clk = 1;
2006}
2007
2008static void omap_mpuio_onoff(void *opaque, int line, int on)
2009{
2010    struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2011
2012    s->clk = on;
2013    if (on)
2014        omap_mpuio_kbd_update(s);
2015}
2016
2017struct omap_mpuio_s *omap_mpuio_init(target_phys_addr_t base,
2018                qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2019                omap_clk clk)
2020{
2021    int iomemtype;
2022    struct omap_mpuio_s *s = (struct omap_mpuio_s *)
2023            qemu_mallocz(sizeof(struct omap_mpuio_s));
2024
2025    s->irq = gpio_int;
2026    s->kbd_irq = kbd_int;
2027    s->wakeup = wakeup;
2028    s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2029    omap_mpuio_reset(s);
2030
2031    iomemtype = cpu_register_io_memory(omap_mpuio_readfn,
2032                    omap_mpuio_writefn, s);
2033    cpu_register_physical_memory(base, 0x800, iomemtype);
2034
2035    omap_clk_adduser(clk, qemu_allocate_irqs(omap_mpuio_onoff, s, 1)[0]);
2036
2037    return s;
2038}
2039
2040qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2041{
2042    return s->in;
2043}
2044
2045void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2046{
2047    if (line >= 16 || line < 0)
2048        hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
2049    s->handler[line] = handler;
2050}
2051
2052void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2053{
2054    if (row >= 5 || row < 0)
2055        hw_error("%s: No key %i-%i\n", __FUNCTION__, col, row);
2056
2057    if (down)
2058        s->buttons[row] |= 1 << col;
2059    else
2060        s->buttons[row] &= ~(1 << col);
2061
2062    omap_mpuio_kbd_update(s);
2063}
2064
2065/* MicroWire Interface */
2066struct omap_uwire_s {
2067    qemu_irq txirq;
2068    qemu_irq rxirq;
2069    qemu_irq txdrq;
2070
2071    uint16_t txbuf;
2072    uint16_t rxbuf;
2073    uint16_t control;
2074    uint16_t setup[5];
2075
2076    uWireSlave *chip[4];
2077};
2078
2079static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2080{
2081    int chipselect = (s->control >> 10) & 3;            /* INDEX */
2082    uWireSlave *slave = s->chip[chipselect];
2083
2084    if ((s->control >> 5) & 0x1f) {                     /* NB_BITS_WR */
2085        if (s->control & (1 << 12))                     /* CS_CMD */
2086            if (slave && slave->send)
2087                slave->send(slave->opaque,
2088                                s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2089        s->control &= ~(1 << 14);                       /* CSRB */
2090        /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2091         * a DRQ.  When is the level IRQ supposed to be reset?  */
2092    }
2093
2094    if ((s->control >> 0) & 0x1f) {                     /* NB_BITS_RD */
2095        if (s->control & (1 << 12))                     /* CS_CMD */
2096            if (slave && slave->receive)
2097                s->rxbuf = slave->receive(slave->opaque);
2098        s->control |= 1 << 15;                          /* RDRB */
2099        /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2100         * a DRQ.  When is the level IRQ supposed to be reset?  */
2101    }
2102}
2103
2104static uint32_t omap_uwire_read(void *opaque, target_phys_addr_t addr)
2105{
2106    struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2107    int offset = addr & OMAP_MPUI_REG_MASK;
2108
2109    switch (offset) {
2110    case 0x00:  /* RDR */
2111        s->control &= ~(1 << 15);                       /* RDRB */
2112        return s->rxbuf;
2113
2114    case 0x04:  /* CSR */
2115        return s->control;
2116
2117    case 0x08:  /* SR1 */
2118        return s->setup[0];
2119    case 0x0c:  /* SR2 */
2120        return s->setup[1];
2121    case 0x10:  /* SR3 */
2122        return s->setup[2];
2123    case 0x14:  /* SR4 */
2124        return s->setup[3];
2125    case 0x18:  /* SR5 */
2126        return s->setup[4];
2127    }
2128
2129    OMAP_BAD_REG(addr);
2130    return 0;
2131}
2132
2133static void omap_uwire_write(void *opaque, target_phys_addr_t addr,
2134                uint32_t value)
2135{
2136    struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2137    int offset = addr & OMAP_MPUI_REG_MASK;
2138
2139    switch (offset) {
2140    case 0x00:  /* TDR */
2141        s->txbuf = value;                               /* TD */
2142        if ((s->setup[4] & (1 << 2)) &&                 /* AUTO_TX_EN */
2143                        ((s->setup[4] & (1 << 3)) ||    /* CS_TOGGLE_TX_EN */
2144                         (s->control & (1 << 12)))) {   /* CS_CMD */
2145            s->control |= 1 << 14;                      /* CSRB */
2146            omap_uwire_transfer_start(s);
2147        }
2148        break;
2149
2150    case 0x04:  /* CSR */
2151        s->control = value & 0x1fff;
2152        if (value & (1 << 13))                          /* START */
2153            omap_uwire_transfer_start(s);
2154        break;
2155
2156    case 0x08:  /* SR1 */
2157        s->setup[0] = value & 0x003f;
2158        break;
2159
2160    case 0x0c:  /* SR2 */
2161        s->setup[1] = value & 0x0fc0;
2162        break;
2163
2164    case 0x10:  /* SR3 */
2165        s->setup[2] = value & 0x0003;
2166        break;
2167
2168    case 0x14:  /* SR4 */
2169        s->setup[3] = value & 0x0001;
2170        break;
2171
2172    case 0x18:  /* SR5 */
2173        s->setup[4] = value & 0x000f;
2174        break;
2175
2176    default:
2177        OMAP_BAD_REG(addr);
2178        return;
2179    }
2180}
2181
2182static CPUReadMemoryFunc * const omap_uwire_readfn[] = {
2183    omap_badwidth_read16,
2184    omap_uwire_read,
2185    omap_badwidth_read16,
2186};
2187
2188static CPUWriteMemoryFunc * const omap_uwire_writefn[] = {
2189    omap_badwidth_write16,
2190    omap_uwire_write,
2191    omap_badwidth_write16,
2192};
2193
2194static void omap_uwire_reset(struct omap_uwire_s *s)
2195{
2196    s->control = 0;
2197    s->setup[0] = 0;
2198    s->setup[1] = 0;
2199    s->setup[2] = 0;
2200    s->setup[3] = 0;
2201    s->setup[4] = 0;
2202}
2203
2204struct omap_uwire_s *omap_uwire_init(target_phys_addr_t base,
2205                qemu_irq *irq, qemu_irq dma, omap_clk clk)
2206{
2207    int iomemtype;
2208    struct omap_uwire_s *s = (struct omap_uwire_s *)
2209            qemu_mallocz(sizeof(struct omap_uwire_s));
2210
2211    s->txirq = irq[0];
2212    s->rxirq = irq[1];
2213    s->txdrq = dma;
2214    omap_uwire_reset(s);
2215
2216    iomemtype = cpu_register_io_memory(omap_uwire_readfn,
2217                    omap_uwire_writefn, s);
2218    cpu_register_physical_memory(base, 0x800, iomemtype);
2219
2220    return s;
2221}
2222
2223void omap_uwire_attach(struct omap_uwire_s *s,
2224                uWireSlave *slave, int chipselect)
2225{
2226    if (chipselect < 0 || chipselect > 3) {
2227        fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
2228        exit(-1);
2229    }
2230
2231    s->chip[chipselect] = slave;
2232}
2233
2234/* Pseudonoise Pulse-Width Light Modulator */
2235static void omap_pwl_update(struct omap_mpu_state_s *s)
2236{
2237    int output = (s->pwl.clk && s->pwl.enable) ? s->pwl.level : 0;
2238
2239    if (output != s->pwl.output) {
2240        s->pwl.output = output;
2241        printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
2242    }
2243}
2244
2245static uint32_t omap_pwl_read(void *opaque, target_phys_addr_t addr)
2246{
2247    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2248    int offset = addr & OMAP_MPUI_REG_MASK;
2249
2250    switch (offset) {
2251    case 0x00:  /* PWL_LEVEL */
2252        return s->pwl.level;
2253    case 0x04:  /* PWL_CTRL */
2254        return s->pwl.enable;
2255    }
2256    OMAP_BAD_REG(addr);
2257    return 0;
2258}
2259
2260static void omap_pwl_write(void *opaque, target_phys_addr_t addr,
2261                uint32_t value)
2262{
2263    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2264    int offset = addr & OMAP_MPUI_REG_MASK;
2265
2266    switch (offset) {
2267    case 0x00:  /* PWL_LEVEL */
2268        s->pwl.level = value;
2269        omap_pwl_update(s);
2270        break;
2271    case 0x04:  /* PWL_CTRL */
2272        s->pwl.enable = value & 1;
2273        omap_pwl_update(s);
2274        break;
2275    default:
2276        OMAP_BAD_REG(addr);
2277        return;
2278    }
2279}
2280
2281static CPUReadMemoryFunc * const omap_pwl_readfn[] = {
2282    omap_pwl_read,
2283    omap_badwidth_read8,
2284    omap_badwidth_read8,
2285};
2286
2287static CPUWriteMemoryFunc * const omap_pwl_writefn[] = {
2288    omap_pwl_write,
2289    omap_badwidth_write8,
2290    omap_badwidth_write8,
2291};
2292
2293static void omap_pwl_reset(struct omap_mpu_state_s *s)
2294{
2295    s->pwl.output = 0;
2296    s->pwl.level = 0;
2297    s->pwl.enable = 0;
2298    s->pwl.clk = 1;
2299    omap_pwl_update(s);
2300}
2301
2302static void omap_pwl_clk_update(void *opaque, int line, int on)
2303{
2304    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2305
2306    s->pwl.clk = on;
2307    omap_pwl_update(s);
2308}
2309
2310static void omap_pwl_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
2311                omap_clk clk)
2312{
2313    int iomemtype;
2314
2315    omap_pwl_reset(s);
2316
2317    iomemtype = cpu_register_io_memory(omap_pwl_readfn,
2318                    omap_pwl_writefn, s);
2319    cpu_register_physical_memory(base, 0x800, iomemtype);
2320
2321    omap_clk_adduser(clk, qemu_allocate_irqs(omap_pwl_clk_update, s, 1)[0]);
2322}
2323
2324/* Pulse-Width Tone module */
2325static uint32_t omap_pwt_read(void *opaque, target_phys_addr_t addr)
2326{
2327    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2328    int offset = addr & OMAP_MPUI_REG_MASK;
2329
2330    switch (offset) {
2331    case 0x00:  /* FRC */
2332        return s->pwt.frc;
2333    case 0x04:  /* VCR */
2334        return s->pwt.vrc;
2335    case 0x08:  /* GCR */
2336        return s->pwt.gcr;
2337    }
2338    OMAP_BAD_REG(addr);
2339    return 0;
2340}
2341
2342static void omap_pwt_write(void *opaque, target_phys_addr_t addr,
2343                uint32_t value)
2344{
2345    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2346    int offset = addr & OMAP_MPUI_REG_MASK;
2347
2348    switch (offset) {
2349    case 0x00:  /* FRC */
2350        s->pwt.frc = value & 0x3f;
2351        break;
2352    case 0x04:  /* VRC */
2353        if ((value ^ s->pwt.vrc) & 1) {
2354            if (value & 1)
2355                printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
2356                                /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2357                                ((omap_clk_getrate(s->pwt.clk) >> 3) /
2358                                 /* Pre-multiplexer divider */
2359                                 ((s->pwt.gcr & 2) ? 1 : 154) /
2360                                 /* Octave multiplexer */
2361                                 (2 << (value & 3)) *
2362                                 /* 101/107 divider */
2363                                 ((value & (1 << 2)) ? 101 : 107) *
2364                                 /*  49/55 divider */
2365                                 ((value & (1 << 3)) ?  49 : 55) *
2366                                 /*  50/63 divider */
2367                                 ((value & (1 << 4)) ?  50 : 63) *
2368                                 /*  80/127 divider */
2369                                 ((value & (1 << 5)) ?  80 : 127) /
2370                                 (107 * 55 * 63 * 127)));
2371            else
2372                printf("%s: silence!\n", __FUNCTION__);
2373        }
2374        s->pwt.vrc = value & 0x7f;
2375        break;
2376    case 0x08:  /* GCR */
2377        s->pwt.gcr = value & 3;
2378        break;
2379    default:
2380        OMAP_BAD_REG(addr);
2381        return;
2382    }
2383}
2384
2385static CPUReadMemoryFunc * const omap_pwt_readfn[] = {
2386    omap_pwt_read,
2387    omap_badwidth_read8,
2388    omap_badwidth_read8,
2389};
2390
2391static CPUWriteMemoryFunc * const omap_pwt_writefn[] = {
2392    omap_pwt_write,
2393    omap_badwidth_write8,
2394    omap_badwidth_write8,
2395};
2396
2397static void omap_pwt_reset(struct omap_mpu_state_s *s)
2398{
2399    s->pwt.frc = 0;
2400    s->pwt.vrc = 0;
2401    s->pwt.gcr = 0;
2402}
2403
2404static void omap_pwt_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
2405                omap_clk clk)
2406{
2407    int iomemtype;
2408
2409    s->pwt.clk = clk;
2410    omap_pwt_reset(s);
2411
2412    iomemtype = cpu_register_io_memory(omap_pwt_readfn,
2413                    omap_pwt_writefn, s);
2414    cpu_register_physical_memory(base, 0x800, iomemtype);
2415}
2416
2417/* Real-time Clock module */
2418struct omap_rtc_s {
2419    qemu_irq irq;
2420    qemu_irq alarm;
2421    QEMUTimer *clk;
2422
2423    uint8_t interrupts;
2424    uint8_t status;
2425    int16_t comp_reg;
2426    int running;
2427    int pm_am;
2428    int auto_comp;
2429    int round;
2430    struct tm alarm_tm;
2431    time_t alarm_ti;
2432
2433    struct tm current_tm;
2434    time_t ti;
2435    uint64_t tick;
2436};
2437
2438static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2439{
2440    /* s->alarm is level-triggered */
2441    qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2442}
2443
2444static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2445{
2446    s->alarm_ti = mktimegm(&s->alarm_tm);
2447    if (s->alarm_ti == -1)
2448        printf("%s: conversion failed\n", __FUNCTION__);
2449}
2450
2451static uint32_t omap_rtc_read(void *opaque, target_phys_addr_t addr)
2452{
2453    struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2454    int offset = addr & OMAP_MPUI_REG_MASK;
2455    uint8_t i;
2456
2457    switch (offset) {
2458    case 0x00:  /* SECONDS_REG */
2459        return to_bcd(s->current_tm.tm_sec);
2460
2461    case 0x04:  /* MINUTES_REG */
2462        return to_bcd(s->current_tm.tm_min);
2463
2464    case 0x08:  /* HOURS_REG */
2465        if (s->pm_am)
2466            return ((s->current_tm.tm_hour > 11) << 7) |
2467                    to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2468        else
2469            return to_bcd(s->current_tm.tm_hour);
2470
2471    case 0x0c:  /* DAYS_REG */
2472        return to_bcd(s->current_tm.tm_mday);
2473
2474    case 0x10:  /* MONTHS_REG */
2475        return to_bcd(s->current_tm.tm_mon + 1);
2476
2477    case 0x14:  /* YEARS_REG */
2478        return to_bcd(s->current_tm.tm_year % 100);
2479
2480    case 0x18:  /* WEEK_REG */
2481        return s->current_tm.tm_wday;
2482
2483    case 0x20:  /* ALARM_SECONDS_REG */
2484        return to_bcd(s->alarm_tm.tm_sec);
2485
2486    case 0x24:  /* ALARM_MINUTES_REG */
2487        return to_bcd(s->alarm_tm.tm_min);
2488
2489    case 0x28:  /* ALARM_HOURS_REG */
2490        if (s->pm_am)
2491            return ((s->alarm_tm.tm_hour > 11) << 7) |
2492                    to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2493        else
2494            return to_bcd(s->alarm_tm.tm_hour);
2495
2496    case 0x2c:  /* ALARM_DAYS_REG */
2497        return to_bcd(s->alarm_tm.tm_mday);
2498
2499    case 0x30:  /* ALARM_MONTHS_REG */
2500        return to_bcd(s->alarm_tm.tm_mon + 1);
2501
2502    case 0x34:  /* ALARM_YEARS_REG */
2503        return to_bcd(s->alarm_tm.tm_year % 100);
2504
2505    case 0x40:  /* RTC_CTRL_REG */
2506        return (s->pm_am << 3) | (s->auto_comp << 2) |
2507                (s->round << 1) | s->running;
2508
2509    case 0x44:  /* RTC_STATUS_REG */
2510        i = s->status;
2511        s->status &= ~0x3d;
2512        return i;
2513
2514    case 0x48:  /* RTC_INTERRUPTS_REG */
2515        return s->interrupts;
2516
2517    case 0x4c:  /* RTC_COMP_LSB_REG */
2518        return ((uint16_t) s->comp_reg) & 0xff;
2519
2520    case 0x50:  /* RTC_COMP_MSB_REG */
2521        return ((uint16_t) s->comp_reg) >> 8;
2522    }
2523
2524    OMAP_BAD_REG(addr);
2525    return 0;
2526}
2527
2528static void omap_rtc_write(void *opaque, target_phys_addr_t addr,
2529                uint32_t value)
2530{
2531    struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2532    int offset = addr & OMAP_MPUI_REG_MASK;
2533    struct tm new_tm;
2534    time_t ti[2];
2535
2536    switch (offset) {
2537    case 0x00:  /* SECONDS_REG */
2538#ifdef ALMDEBUG
2539        printf("RTC SEC_REG <-- %02x\n", value);
2540#endif
2541        s->ti -= s->current_tm.tm_sec;
2542        s->ti += from_bcd(value);
2543        return;
2544
2545    case 0x04:  /* MINUTES_REG */
2546#ifdef ALMDEBUG
2547        printf("RTC MIN_REG <-- %02x\n", value);
2548#endif
2549        s->ti -= s->current_tm.tm_min * 60;
2550        s->ti += from_bcd(value) * 60;
2551        return;
2552
2553    case 0x08:  /* HOURS_REG */
2554#ifdef ALMDEBUG
2555        printf("RTC HRS_REG <-- %02x\n", value);
2556#endif
2557        s->ti -= s->current_tm.tm_hour * 3600;
2558        if (s->pm_am) {
2559            s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2560            s->ti += ((value >> 7) & 1) * 43200;
2561        } else
2562            s->ti += from_bcd(value & 0x3f) * 3600;
2563        return;
2564
2565    case 0x0c:  /* DAYS_REG */
2566#ifdef ALMDEBUG
2567        printf("RTC DAY_REG <-- %02x\n", value);
2568#endif
2569        s->ti -= s->current_tm.tm_mday * 86400;
2570        s->ti += from_bcd(value) * 86400;
2571        return;
2572
2573    case 0x10:  /* MONTHS_REG */
2574#ifdef ALMDEBUG
2575        printf("RTC MTH_REG <-- %02x\n", value);
2576#endif
2577        memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2578        new_tm.tm_mon = from_bcd(value);
2579        ti[0] = mktimegm(&s->current_tm);
2580        ti[1] = mktimegm(&new_tm);
2581
2582        if (ti[0] != -1 && ti[1] != -1) {
2583            s->ti -= ti[0];
2584            s->ti += ti[1];
2585        } else {
2586            /* A less accurate version */
2587            s->ti -= s->current_tm.tm_mon * 2592000;
2588            s->ti += from_bcd(value) * 2592000;
2589        }
2590        return;
2591
2592    case 0x14:  /* YEARS_REG */
2593#ifdef ALMDEBUG
2594        printf("RTC YRS_REG <-- %02x\n", value);
2595#endif
2596        memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2597        new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2598        ti[0] = mktimegm(&s->current_tm);
2599        ti[1] = mktimegm(&new_tm);
2600
2601        if (ti[0] != -1 && ti[1] != -1) {
2602            s->ti -= ti[0];
2603            s->ti += ti[1];
2604        } else {
2605            /* A less accurate version */
2606            s->ti -= (s->current_tm.tm_year % 100) * 31536000;
2607            s->ti += from_bcd(value) * 31536000;
2608        }
2609        return;
2610
2611    case 0x18:  /* WEEK_REG */
2612        return; /* Ignored */
2613
2614    case 0x20:  /* ALARM_SECONDS_REG */
2615#ifdef ALMDEBUG
2616        printf("ALM SEC_REG <-- %02x\n", value);
2617#endif
2618        s->alarm_tm.tm_sec = from_bcd(value);
2619        omap_rtc_alarm_update(s);
2620        return;
2621
2622    case 0x24:  /* ALARM_MINUTES_REG */
2623#ifdef ALMDEBUG
2624        printf("ALM MIN_REG <-- %02x\n", value);
2625#endif
2626        s->alarm_tm.tm_min = from_bcd(value);
2627        omap_rtc_alarm_update(s);
2628        return;
2629
2630    case 0x28:  /* ALARM_HOURS_REG */
2631#ifdef ALMDEBUG
2632        printf("ALM HRS_REG <-- %02x\n", value);
2633#endif
2634        if (s->pm_am)
2635            s->alarm_tm.tm_hour =
2636                    ((from_bcd(value & 0x3f)) % 12) +
2637                    ((value >> 7) & 1) * 12;
2638        else
2639            s->alarm_tm.tm_hour = from_bcd(value);
2640        omap_rtc_alarm_update(s);
2641        return;
2642
2643    case 0x2c:  /* ALARM_DAYS_REG */
2644#ifdef ALMDEBUG
2645        printf("ALM DAY_REG <-- %02x\n", value);
2646#endif
2647        s->alarm_tm.tm_mday = from_bcd(value);
2648        omap_rtc_alarm_update(s);
2649        return;
2650
2651    case 0x30:  /* ALARM_MONTHS_REG */
2652#ifdef ALMDEBUG
2653        printf("ALM MON_REG <-- %02x\n", value);
2654#endif
2655        s->alarm_tm.tm_mon = from_bcd(value);
2656        omap_rtc_alarm_update(s);
2657        return;
2658
2659    case 0x34:  /* ALARM_YEARS_REG */
2660#ifdef ALMDEBUG
2661        printf("ALM YRS_REG <-- %02x\n", value);
2662#endif
2663        s->alarm_tm.tm_year = from_bcd(value);
2664        omap_rtc_alarm_update(s);
2665        return;
2666
2667    case 0x40:  /* RTC_CTRL_REG */
2668#ifdef ALMDEBUG
2669        printf("RTC CONTROL <-- %02x\n", value);
2670#endif
2671        s->pm_am = (value >> 3) & 1;
2672        s->auto_comp = (value >> 2) & 1;
2673        s->round = (value >> 1) & 1;
2674        s->running = value & 1;
2675        s->status &= 0xfd;
2676        s->status |= s->running << 1;
2677        return;
2678
2679    case 0x44:  /* RTC_STATUS_REG */
2680#ifdef ALMDEBUG
2681        printf("RTC STATUSL <-- %02x\n", value);
2682#endif
2683        s->status &= ~((value & 0xc0) ^ 0x80);
2684        omap_rtc_interrupts_update(s);
2685        return;
2686
2687    case 0x48:  /* RTC_INTERRUPTS_REG */
2688#ifdef ALMDEBUG
2689        printf("RTC INTRS <-- %02x\n", value);
2690#endif
2691        s->interrupts = value;
2692        return;
2693
2694    case 0x4c:  /* RTC_COMP_LSB_REG */
2695#ifdef ALMDEBUG
2696        printf("RTC COMPLSB <-- %02x\n", value);
2697#endif
2698        s->comp_reg &= 0xff00;
2699        s->comp_reg |= 0x00ff & value;
2700        return;
2701
2702    case 0x50:  /* RTC_COMP_MSB_REG */
2703#ifdef ALMDEBUG
2704        printf("RTC COMPMSB <-- %02x\n", value);
2705#endif
2706        s->comp_reg &= 0x00ff;
2707        s->comp_reg |= 0xff00 & (value << 8);
2708        return;
2709
2710    default:
2711        OMAP_BAD_REG(addr);
2712        return;
2713    }
2714}
2715
2716static CPUReadMemoryFunc * const omap_rtc_readfn[] = {
2717    omap_rtc_read,
2718    omap_badwidth_read8,
2719    omap_badwidth_read8,
2720};
2721
2722static CPUWriteMemoryFunc * const omap_rtc_writefn[] = {
2723    omap_rtc_write,
2724    omap_badwidth_write8,
2725    omap_badwidth_write8,
2726};
2727
2728static void omap_rtc_tick(void *opaque)
2729{
2730    struct omap_rtc_s *s = opaque;
2731
2732    if (s->round) {
2733        /* Round to nearest full minute.  */
2734        if (s->current_tm.tm_sec < 30)
2735            s->ti -= s->current_tm.tm_sec;
2736        else
2737            s->ti += 60 - s->current_tm.tm_sec;
2738
2739        s->round = 0;
2740    }
2741
2742    memcpy(&s->current_tm, localtime(&s->ti), sizeof(s->current_tm));
2743
2744    if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2745        s->status |= 0x40;
2746        omap_rtc_interrupts_update(s);
2747    }
2748
2749    if (s->interrupts & 0x04)
2750        switch (s->interrupts & 3) {
2751        case 0:
2752            s->status |= 0x04;
2753            qemu_irq_pulse(s->irq);
2754            break;
2755        case 1:
2756            if (s->current_tm.tm_sec)
2757                break;
2758            s->status |= 0x08;
2759            qemu_irq_pulse(s->irq);
2760            break;
2761        case 2:
2762            if (s->current_tm.tm_sec || s->current_tm.tm_min)
2763                break;
2764            s->status |= 0x10;
2765            qemu_irq_pulse(s->irq);
2766            break;
2767        case 3:
2768            if (s->current_tm.tm_sec ||
2769                            s->current_tm.tm_min || s->current_tm.tm_hour)
2770                break;
2771            s->status |= 0x20;
2772            qemu_irq_pulse(s->irq);
2773            break;
2774        }
2775
2776    /* Move on */
2777    if (s->running)
2778        s->ti ++;
2779    s->tick += 1000;
2780
2781    /*
2782     * Every full hour add a rough approximation of the compensation
2783     * register to the 32kHz Timer (which drives the RTC) value. 
2784     */
2785    if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2786        s->tick += s->comp_reg * 1000 / 32768;
2787
2788    qemu_mod_timer(s->clk, s->tick);
2789}
2790
2791static void omap_rtc_reset(struct omap_rtc_s *s)
2792{
2793    struct tm tm;
2794
2795    s->interrupts = 0;
2796    s->comp_reg = 0;
2797    s->running = 0;
2798    s->pm_am = 0;
2799    s->auto_comp = 0;
2800    s->round = 0;
2801    s->tick = qemu_get_clock(rt_clock);
2802    memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2803    s->alarm_tm.tm_mday = 0x01;
2804    s->status = 1 << 7;
2805    qemu_get_timedate(&tm, 0);
2806    s->ti = mktimegm(&tm);
2807
2808    omap_rtc_alarm_update(s);
2809    omap_rtc_tick(s);
2810}
2811
2812static struct omap_rtc_s *omap_rtc_init(target_phys_addr_t base,
2813                qemu_irq *irq, omap_clk clk)
2814{
2815    int iomemtype;
2816    struct omap_rtc_s *s = (struct omap_rtc_s *)
2817            qemu_mallocz(sizeof(struct omap_rtc_s));
2818
2819    s->irq = irq[0];
2820    s->alarm = irq[1];
2821    s->clk = qemu_new_timer(rt_clock, omap_rtc_tick, s);
2822
2823    omap_rtc_reset(s);
2824
2825    iomemtype = cpu_register_io_memory(omap_rtc_readfn,
2826                    omap_rtc_writefn, s);
2827    cpu_register_physical_memory(base, 0x800, iomemtype);
2828
2829    return s;
2830}
2831
2832/* Multi-channel Buffered Serial Port interfaces */
2833struct omap_mcbsp_s {
2834    qemu_irq txirq;
2835    qemu_irq rxirq;
2836    qemu_irq txdrq;
2837    qemu_irq rxdrq;
2838
2839    uint16_t spcr[2];
2840    uint16_t rcr[2];
2841    uint16_t xcr[2];
2842    uint16_t srgr[2];
2843    uint16_t mcr[2];
2844    uint16_t pcr;
2845    uint16_t rcer[8];
2846    uint16_t xcer[8];
2847    int tx_rate;
2848    int rx_rate;
2849    int tx_req;
2850    int rx_req;
2851
2852    I2SCodec *codec;
2853    QEMUTimer *source_timer;
2854    QEMUTimer *sink_timer;
2855};
2856
2857static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2858{
2859    int irq;
2860
2861    switch ((s->spcr[0] >> 4) & 3) {                    /* RINTM */
2862    case 0:
2863        irq = (s->spcr[0] >> 1) & 1;                    /* RRDY */
2864        break;
2865    case 3:
2866        irq = (s->spcr[0] >> 3) & 1;                    /* RSYNCERR */
2867        break;
2868    default:
2869        irq = 0;
2870        break;
2871    }
2872
2873    if (irq)
2874        qemu_irq_pulse(s->rxirq);
2875
2876    switch ((s->spcr[1] >> 4) & 3) {                    /* XINTM */
2877    case 0:
2878        irq = (s->spcr[1] >> 1) & 1;                    /* XRDY */
2879        break;
2880    case 3:
2881        irq = (s->spcr[1] >> 3) & 1;                    /* XSYNCERR */
2882        break;
2883    default:
2884        irq = 0;
2885        break;
2886    }
2887
2888    if (irq)
2889        qemu_irq_pulse(s->txirq);
2890}
2891
2892static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
2893{
2894    if ((s->spcr[0] >> 1) & 1)                          /* RRDY */
2895        s->spcr[0] |= 1 << 2;                           /* RFULL */
2896    s->spcr[0] |= 1 << 1;                               /* RRDY */
2897    qemu_irq_raise(s->rxdrq);
2898    omap_mcbsp_intr_update(s);
2899}
2900
2901static void omap_mcbsp_source_tick(void *opaque)
2902{
2903    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
2904    static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
2905
2906    if (!s->rx_rate)
2907        return;
2908    if (s->rx_req)
2909        printf("%s: Rx FIFO overrun\n", __FUNCTION__);
2910
2911    s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
2912
2913    omap_mcbsp_rx_newdata(s);
2914    qemu_mod_timer(s->source_timer, qemu_get_clock(vm_clock) +
2915                   get_ticks_per_sec());
2916}
2917
2918static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
2919{
2920    if (!s->codec || !s->codec->rts)
2921        omap_mcbsp_source_tick(s);
2922    else if (s->codec->in.len) {
2923        s->rx_req = s->codec->in.len;
2924        omap_mcbsp_rx_newdata(s);
2925    }
2926}
2927
2928static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
2929{
2930    qemu_del_timer(s->source_timer);
2931}
2932
2933static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
2934{
2935    s->spcr[0] &= ~(1 << 1);                            /* RRDY */
2936    qemu_irq_lower(s->rxdrq);
2937    omap_mcbsp_intr_update(s);
2938}
2939
2940static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
2941{
2942    s->spcr[1] |= 1 << 1;                               /* XRDY */
2943    qemu_irq_raise(s->txdrq);
2944    omap_mcbsp_intr_update(s);
2945}
2946
2947static void omap_mcbsp_sink_tick(void *opaque)
2948{
2949    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
2950    static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
2951
2952    if (!s->tx_rate)
2953        return;
2954    if (s->tx_req)
2955        printf("%s: Tx FIFO underrun\n", __FUNCTION__);
2956
2957    s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
2958
2959    omap_mcbsp_tx_newdata(s);
2960    qemu_mod_timer(s->sink_timer, qemu_get_clock(vm_clock) +
2961                   get_ticks_per_sec());
2962}
2963
2964static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
2965{
2966    if (!s->codec || !s->codec->cts)
2967        omap_mcbsp_sink_tick(s);
2968    else if (s->codec->out.size) {
2969        s->tx_req = s->codec->out.size;
2970        omap_mcbsp_tx_newdata(s);
2971    }
2972}
2973
2974static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
2975{
2976    s->spcr[1] &= ~(1 << 1);                            /* XRDY */
2977    qemu_irq_lower(s->txdrq);
2978    omap_mcbsp_intr_update(s);
2979    if (s->codec && s->codec->cts)
2980        s->codec->tx_swallow(s->codec->opaque);
2981}
2982
2983static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
2984{
2985    s->tx_req = 0;
2986    omap_mcbsp_tx_done(s);
2987    qemu_del_timer(s->sink_timer);
2988}
2989
2990static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
2991{
2992    int prev_rx_rate, prev_tx_rate;
2993    int rx_rate = 0, tx_rate = 0;
2994    int cpu_rate = 1500000;     /* XXX */
2995
2996    /* TODO: check CLKSTP bit */
2997    if (s->spcr[1] & (1 << 6)) {                        /* GRST */
2998        if (s->spcr[0] & (1 << 0)) {                    /* RRST */
2999            if ((s->srgr[1] & (1 << 13)) &&             /* CLKSM */
3000                            (s->pcr & (1 << 8))) {      /* CLKRM */
3001                if (~s->pcr & (1 << 7))                 /* SCLKME */
3002                    rx_rate = cpu_rate /
3003                            ((s->srgr[0] & 0xff) + 1);  /* CLKGDV */
3004            } else
3005                if (s->codec)
3006                    rx_rate = s->codec->rx_rate;
3007        }
3008
3009        if (s->spcr[1] & (1 << 0)) {                    /* XRST */
3010            if ((s->srgr[1] & (1 << 13)) &&             /* CLKSM */
3011                            (s->pcr & (1 << 9))) {      /* CLKXM */
3012                if (~s->pcr & (1 << 7))                 /* SCLKME */
3013                    tx_rate = cpu_rate /
3014                            ((s->srgr[0] & 0xff) + 1);  /* CLKGDV */
3015            } else
3016                if (s->codec)
3017                    tx_rate = s->codec->tx_rate;
3018        }
3019    }
3020    prev_tx_rate = s->tx_rate;
3021    prev_rx_rate = s->rx_rate;
3022    s->tx_rate = tx_rate;
3023    s->rx_rate = rx_rate;
3024
3025    if (s->codec)
3026        s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3027
3028    if (!prev_tx_rate && tx_rate)
3029        omap_mcbsp_tx_start(s);
3030    else if (s->tx_rate && !tx_rate)
3031        omap_mcbsp_tx_stop(s);
3032
3033    if (!prev_rx_rate && rx_rate)
3034        omap_mcbsp_rx_start(s);
3035    else if (prev_tx_rate && !tx_rate)
3036        omap_mcbsp_rx_stop(s);
3037}
3038
3039static uint32_t omap_mcbsp_read(void *opaque, target_phys_addr_t addr)
3040{
3041    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3042    int offset = addr & OMAP_MPUI_REG_MASK;
3043    uint16_t ret;
3044
3045    switch (offset) {
3046    case 0x00:  /* DRR2 */
3047        if (((s->rcr[0] >> 5) & 7) < 3)                 /* RWDLEN1 */
3048            return 0x0000;
3049        /* Fall through.  */
3050    case 0x02:  /* DRR1 */
3051        if (s->rx_req < 2) {
3052            printf("%s: Rx FIFO underrun\n", __FUNCTION__);
3053            omap_mcbsp_rx_done(s);
3054        } else {
3055            s->tx_req -= 2;
3056            if (s->codec && s->codec->in.len >= 2) {
3057                ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3058                ret |= s->codec->in.fifo[s->codec->in.start ++];
3059                s->codec->in.len -= 2;
3060            } else
3061                ret = 0x0000;
3062            if (!s->tx_req)
3063                omap_mcbsp_rx_done(s);
3064            return ret;
3065        }
3066        return 0x0000;
3067
3068    case 0x04:  /* DXR2 */
3069    case 0x06:  /* DXR1 */
3070        return 0x0000;
3071
3072    case 0x08:  /* SPCR2 */
3073        return s->spcr[1];
3074    case 0x0a:  /* SPCR1 */
3075        return s->spcr[0];
3076    case 0x0c:  /* RCR2 */
3077        return s->rcr[1];
3078    case 0x0e:  /* RCR1 */
3079        return s->rcr[0];
3080    case 0x10:  /* XCR2 */
3081        return s->xcr[1];
3082    case 0x12:  /* XCR1 */
3083        return s->xcr[0];
3084    case 0x14:  /* SRGR2 */
3085        return s->srgr[1];
3086    case 0x16:  /* SRGR1 */
3087        return s->srgr[0];
3088    case 0x18:  /* MCR2 */
3089        return s->mcr[1];
3090    case 0x1a:  /* MCR1 */
3091        return s->mcr[0];
3092    case 0x1c:  /* RCERA */
3093        return s->rcer[0];
3094    case 0x1e:  /* RCERB */
3095        return s->rcer[1];
3096    case 0x20:  /* XCERA */
3097        return s->xcer[0];
3098    case 0x22:  /* XCERB */
3099        return s->xcer[1];
3100    case 0x24:  /* PCR0 */
3101        return s->pcr;
3102    case 0x26:  /* RCERC */
3103        return s->rcer[2];
3104    case 0x28:  /* RCERD */
3105        return s->rcer[3];
3106    case 0x2a:  /* XCERC */
3107        return s->xcer[2];
3108    case 0x2c:  /* XCERD */
3109        return s->xcer[3];
3110    case 0x2e:  /* RCERE */
3111        return s->rcer[4];
3112    case 0x30:  /* RCERF */
3113        return s->rcer[5];
3114    case 0x32:  /* XCERE */
3115        return s->xcer[4];
3116    case 0x34:  /* XCERF */
3117        return s->xcer[5];
3118    case 0x36:  /* RCERG */
3119        return s->rcer[6];
3120    case 0x38:  /* RCERH */
3121        return s->rcer[7];
3122    case 0x3a:  /* XCERG */
3123        return s->xcer[6];
3124    case 0x3c:  /* XCERH */
3125        return s->xcer[7];
3126    }
3127
3128    OMAP_BAD_REG(addr);
3129    return 0;
3130}
3131
3132static void omap_mcbsp_writeh(void *opaque, target_phys_addr_t addr,
3133                uint32_t value)
3134{
3135    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3136    int offset = addr & OMAP_MPUI_REG_MASK;
3137
3138    switch (offset) {
3139    case 0x00:  /* DRR2 */
3140    case 0x02:  /* DRR1 */
3141        OMAP_RO_REG(addr);
3142        return;
3143
3144    case 0x04:  /* DXR2 */
3145        if (((s->xcr[0] >> 5) & 7) < 3)                 /* XWDLEN1 */
3146            return;
3147        /* Fall through.  */
3148    case 0x06:  /* DXR1 */
3149        if (s->tx_req > 1) {
3150            s->tx_req -= 2;
3151            if (s->codec && s->codec->cts) {
3152                s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3153                s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3154            }
3155            if (s->tx_req < 2)
3156                omap_mcbsp_tx_done(s);
3157        } else
3158            printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3159        return;
3160
3161    case 0x08:  /* SPCR2 */
3162        s->spcr[1] &= 0x0002;
3163        s->spcr[1] |= 0x03f9 & value;
3164        s->spcr[1] |= 0x0004 & (value << 2);            /* XEMPTY := XRST */
3165        if (~value & 1)                                 /* XRST */
3166            s->spcr[1] &= ~6;
3167        omap_mcbsp_req_update(s);
3168        return;
3169    case 0x0a:  /* SPCR1 */
3170        s->spcr[0] &= 0x0006;
3171        s->spcr[0] |= 0xf8f9 & value;
3172        if (value & (1 << 15))                          /* DLB */
3173            printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
3174        if (~value & 1) {                               /* RRST */
3175            s->spcr[0] &= ~6;
3176            s->rx_req = 0;
3177            omap_mcbsp_rx_done(s);
3178        }
3179        omap_mcbsp_req_update(s);
3180        return;
3181
3182    case 0x0c:  /* RCR2 */
3183        s->rcr[1] = value & 0xffff;
3184        return;
3185    case 0x0e:  /* RCR1 */
3186        s->rcr[0] = value & 0x7fe0;
3187        return;
3188    case 0x10:  /* XCR2 */
3189        s->xcr[1] = value & 0xffff;
3190        return;
3191    case 0x12:  /* XCR1 */
3192        s->xcr[0] = value & 0x7fe0;
3193        return;
3194    case 0x14:  /* SRGR2 */
3195        s->srgr[1] = value & 0xffff;
3196        omap_mcbsp_req_update(s);
3197        return;
3198    case 0x16:  /* SRGR1 */
3199        s->srgr[0] = value & 0xffff;
3200        omap_mcbsp_req_update(s);
3201        return;
3202    case 0x18:  /* MCR2 */
3203        s->mcr[1] = value & 0x03e3;
3204        if (value & 3)                                  /* XMCM */
3205            printf("%s: Tx channel selection mode enable attempt\n",
3206                            __FUNCTION__);
3207        return;
3208    case 0x1a:  /* MCR1 */
3209        s->mcr[0] = value & 0x03e1;
3210        if (value & 1)                                  /* RMCM */
3211            printf("%s: Rx channel selection mode enable attempt\n",
3212                            __FUNCTION__);
3213        return;
3214    case 0x1c:  /* RCERA */
3215        s->rcer[0] = value & 0xffff;
3216        return;
3217    case 0x1e:  /* RCERB */
3218        s->rcer[1] = value & 0xffff;
3219        return;
3220    case 0x20:  /* XCERA */
3221        s->xcer[0] = value & 0xffff;
3222        return;
3223    case 0x22:  /* XCERB */
3224        s->xcer[1] = value & 0xffff;
3225        return;
3226    case 0x24:  /* PCR0 */
3227        s->pcr = value & 0x7faf;
3228        return;
3229    case 0x26:  /* RCERC */
3230        s->rcer[2] = value & 0xffff;
3231        return;
3232    case 0x28:  /* RCERD */
3233        s->rcer[3] = value & 0xffff;
3234        return;
3235    case 0x2a:  /* XCERC */
3236        s->xcer[2] = value & 0xffff;
3237        return;
3238    case 0x2c:  /* XCERD */
3239        s->xcer[3] = value & 0xffff;
3240        return;
3241    case 0x2e:  /* RCERE */
3242        s->rcer[4] = value & 0xffff;
3243        return;
3244    case 0x30:  /* RCERF */
3245        s->rcer[5] = value & 0xffff;
3246        return;
3247    case 0x32:  /* XCERE */
3248        s->xcer[4] = value & 0xffff;
3249        return;
3250    case 0x34:  /* XCERF */
3251        s->xcer[5] = value & 0xffff;
3252        return;
3253    case 0x36:  /* RCERG */
3254        s->rcer[6] = value & 0xffff;
3255        return;
3256    case 0x38:  /* RCERH */
3257        s->rcer[7] = value & 0xffff;
3258        return;
3259    case 0x3a:  /* XCERG */
3260        s->xcer[6] = value & 0xffff;
3261        return;
3262    case 0x3c:  /* XCERH */
3263        s->xcer[7] = value & 0xffff;
3264        return;
3265    }
3266
3267    OMAP_BAD_REG(addr);
3268}
3269
3270static void omap_mcbsp_writew(void *opaque, target_phys_addr_t addr,
3271                uint32_t value)
3272{
3273    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3274    int offset = addr & OMAP_MPUI_REG_MASK;
3275
3276    if (offset == 0x04) {                               /* DXR */
3277        if (((s->xcr[0] >> 5) & 7) < 3)                 /* XWDLEN1 */
3278            return;
3279        if (s->tx_req > 3) {
3280            s->tx_req -= 4;
3281            if (s->codec && s->codec->cts) {
3282                s->codec->out.fifo[s->codec->out.len ++] =
3283                        (value >> 24) & 0xff;
3284                s->codec->out.fifo[s->codec->out.len ++] =
3285                        (value >> 16) & 0xff;
3286                s->codec->out.fifo[s->codec->out.len ++] =
3287                        (value >> 8) & 0xff;
3288                s->codec->out.fifo[s->codec->out.len ++] =
3289                        (value >> 0) & 0xff;
3290            }
3291            if (s->tx_req < 4)
3292                omap_mcbsp_tx_done(s);
3293        } else
3294            printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3295        return;
3296    }
3297
3298    omap_badwidth_write16(opaque, addr, value);
3299}
3300
3301static CPUReadMemoryFunc * const omap_mcbsp_readfn[] = {
3302    omap_badwidth_read16,
3303    omap_mcbsp_read,
3304    omap_badwidth_read16,
3305};
3306
3307static CPUWriteMemoryFunc * const omap_mcbsp_writefn[] = {
3308    omap_badwidth_write16,
3309    omap_mcbsp_writeh,
3310    omap_mcbsp_writew,
3311};
3312
3313static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3314{
3315    memset(&s->spcr, 0, sizeof(s->spcr));
3316    memset(&s->rcr, 0, sizeof(s->rcr));
3317    memset(&s->xcr, 0, sizeof(s->xcr));
3318    s->srgr[0] = 0x0001;
3319    s->srgr[1] = 0x2000;
3320    memset(&s->mcr, 0, sizeof(s->mcr));
3321    memset(&s->pcr, 0, sizeof(s->pcr));
3322    memset(&s->rcer, 0, sizeof(s->rcer));
3323    memset(&s->xcer, 0, sizeof(s->xcer));
3324    s->tx_req = 0;
3325    s->rx_req = 0;
3326    s->tx_rate = 0;
3327    s->rx_rate = 0;
3328    qemu_del_timer(s->source_timer);
3329    qemu_del_timer(s->sink_timer);
3330}
3331
3332struct omap_mcbsp_s *omap_mcbsp_init(target_phys_addr_t base,
3333                qemu_irq *irq, qemu_irq *dma, omap_clk clk)
3334{
3335    int iomemtype;
3336    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *)
3337            qemu_mallocz(sizeof(struct omap_mcbsp_s));
3338
3339    s->txirq = irq[0];
3340    s->rxirq = irq[1];
3341    s->txdrq = dma[0];
3342    s->rxdrq = dma[1];
3343    s->sink_timer = qemu_new_timer(vm_clock, omap_mcbsp_sink_tick, s);
3344    s->source_timer = qemu_new_timer(vm_clock, omap_mcbsp_source_tick, s);
3345    omap_mcbsp_reset(s);
3346
3347    iomemtype = cpu_register_io_memory(omap_mcbsp_readfn,
3348                    omap_mcbsp_writefn, s);
3349    cpu_register_physical_memory(base, 0x800, iomemtype);
3350
3351    return s;
3352}
3353
3354static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3355{
3356    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3357
3358    if (s->rx_rate) {
3359        s->rx_req = s->codec->in.len;
3360        omap_mcbsp_rx_newdata(s);
3361    }
3362}
3363
3364static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3365{
3366    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3367
3368    if (s->tx_rate) {
3369        s->tx_req = s->codec->out.size;
3370        omap_mcbsp_tx_newdata(s);
3371    }
3372}
3373
3374void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3375{
3376    s->codec = slave;
3377    slave->rx_swallow = qemu_allocate_irqs(omap_mcbsp_i2s_swallow, s, 1)[0];
3378    slave->tx_start = qemu_allocate_irqs(omap_mcbsp_i2s_start, s, 1)[0];
3379}
3380
3381/* LED Pulse Generators */
3382struct omap_lpg_s {
3383    QEMUTimer *tm;
3384
3385    uint8_t control;
3386    uint8_t power;
3387    int64_t on;
3388    int64_t period;
3389    int clk;
3390    int cycle;
3391};
3392
3393static void omap_lpg_tick(void *opaque)
3394{
3395    struct omap_lpg_s *s = opaque;
3396
3397    if (s->cycle)
3398        qemu_mod_timer(s->tm, qemu_get_clock(rt_clock) + s->period - s->on);
3399    else
3400        qemu_mod_timer(s->tm, qemu_get_clock(rt_clock) + s->on);
3401
3402    s->cycle = !s->cycle;
3403    printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
3404}
3405
3406static void omap_lpg_update(struct omap_lpg_s *s)
3407{
3408    int64_t on, period = 1, ticks = 1000;
3409    static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3410
3411    if (~s->control & (1 << 6))                                 /* LPGRES */
3412        on = 0;
3413    else if (s->control & (1 << 7))                             /* PERM_ON */
3414        on = period;
3415    else {
3416        period = muldiv64(ticks, per[s->control & 7],           /* PERCTRL */
3417                        256 / 32);
3418        on = (s->clk && s->power) ? muldiv64(ticks,
3419                        per[(s->control >> 3) & 7], 256) : 0;   /* ONCTRL */
3420    }
3421
3422    qemu_del_timer(s->tm);
3423    if (on == period && s->on < s->period)
3424        printf("%s: LED is on\n", __FUNCTION__);
3425    else if (on == 0 && s->on)
3426        printf("%s: LED is off\n", __FUNCTION__);
3427    else if (on && (on != s->on || period != s->period)) {
3428        s->cycle = 0;
3429        s->on = on;
3430        s->period = period;
3431        omap_lpg_tick(s);
3432        return;
3433    }
3434
3435    s->on = on;
3436    s->period = period;
3437}
3438
3439static void omap_lpg_reset(struct omap_lpg_s *s)
3440{
3441    s->control = 0x00;
3442    s->power = 0x00;
3443    s->clk = 1;
3444    omap_lpg_update(s);
3445}
3446
3447static uint32_t omap_lpg_read(void *opaque, target_phys_addr_t addr)
3448{
3449    struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3450    int offset = addr & OMAP_MPUI_REG_MASK;
3451
3452    switch (offset) {
3453    case 0x00:  /* LCR */
3454        return s->control;
3455
3456    case 0x04:  /* PMR */
3457        return s->power;
3458    }
3459
3460    OMAP_BAD_REG(addr);
3461    return 0;
3462}
3463
3464static void omap_lpg_write(void *opaque, target_phys_addr_t addr,
3465                uint32_t value)
3466{
3467    struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3468    int offset = addr & OMAP_MPUI_REG_MASK;
3469
3470    switch (offset) {
3471    case 0x00:  /* LCR */
3472        if (~value & (1 << 6))                                  /* LPGRES */
3473            omap_lpg_reset(s);
3474        s->control = value & 0xff;
3475        omap_lpg_update(s);
3476        return;
3477
3478    case 0x04:  /* PMR */
3479        s->power = value & 0x01;
3480        omap_lpg_update(s);
3481        return;
3482
3483    default:
3484        OMAP_BAD_REG(addr);
3485        return;
3486    }
3487}
3488
3489static CPUReadMemoryFunc * const omap_lpg_readfn[] = {
3490    omap_lpg_read,
3491    omap_badwidth_read8,
3492    omap_badwidth_read8,
3493};
3494
3495static CPUWriteMemoryFunc * const omap_lpg_writefn[] = {
3496    omap_lpg_write,
3497    omap_badwidth_write8,
3498    omap_badwidth_write8,
3499};
3500
3501static void omap_lpg_clk_update(void *opaque, int line, int on)
3502{
3503    struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3504
3505    s->clk = on;
3506    omap_lpg_update(s);
3507}
3508
3509static struct omap_lpg_s *omap_lpg_init(target_phys_addr_t base, omap_clk clk)
3510{
3511    int iomemtype;
3512    struct omap_lpg_s *s = (struct omap_lpg_s *)
3513            qemu_mallocz(sizeof(struct omap_lpg_s));
3514
3515    s->tm = qemu_new_timer(rt_clock, omap_lpg_tick, s);
3516
3517    omap_lpg_reset(s);
3518
3519    iomemtype = cpu_register_io_memory(omap_lpg_readfn,
3520                    omap_lpg_writefn, s);
3521    cpu_register_physical_memory(base, 0x800, iomemtype);
3522
3523    omap_clk_adduser(clk, qemu_allocate_irqs(omap_lpg_clk_update, s, 1)[0]);
3524
3525    return s;
3526}
3527
3528/* MPUI Peripheral Bridge configuration */
3529static uint32_t omap_mpui_io_read(void *opaque, target_phys_addr_t addr)
3530{
3531    if (addr == OMAP_MPUI_BASE) /* CMR */
3532        return 0xfe4d;
3533
3534    OMAP_BAD_REG(addr);
3535    return 0;
3536}
3537
3538static CPUReadMemoryFunc * const omap_mpui_io_readfn[] = {
3539    omap_badwidth_read16,
3540    omap_mpui_io_read,
3541    omap_badwidth_read16,
3542};
3543
3544static CPUWriteMemoryFunc * const omap_mpui_io_writefn[] = {
3545    omap_badwidth_write16,
3546    omap_badwidth_write16,
3547    omap_badwidth_write16,
3548};
3549
3550static void omap_setup_mpui_io(struct omap_mpu_state_s *mpu)
3551{
3552    int iomemtype = cpu_register_io_memory(omap_mpui_io_readfn,
3553                    omap_mpui_io_writefn, mpu);
3554    cpu_register_physical_memory(OMAP_MPUI_BASE, 0x7fff, iomemtype);
3555}
3556
3557/* General chip reset */
3558static void omap1_mpu_reset(void *opaque)
3559{
3560    struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3561
3562    omap_inth_reset(mpu->ih[0]);
3563    omap_inth_reset(mpu->ih[1]);
3564    omap_dma_reset(mpu->dma);
3565    omap_mpu_timer_reset(mpu->timer[0]);
3566    omap_mpu_timer_reset(mpu->timer[1]);
3567    omap_mpu_timer_reset(mpu->timer[2]);
3568    omap_wd_timer_reset(mpu->wdt);
3569    omap_os_timer_reset(mpu->os_timer);
3570    omap_lcdc_reset(mpu->lcd);
3571    omap_ulpd_pm_reset(mpu);
3572    omap_pin_cfg_reset(mpu);
3573    omap_mpui_reset(mpu);
3574    omap_tipb_bridge_reset(mpu->private_tipb);
3575    omap_tipb_bridge_reset(mpu->public_tipb);
3576    omap_dpll_reset(&mpu->dpll[0]);
3577    omap_dpll_reset(&mpu->dpll[1]);
3578    omap_dpll_reset(&mpu->dpll[2]);
3579    omap_uart_reset(mpu->uart[0]);
3580    omap_uart_reset(mpu->uart[1]);
3581    omap_uart_reset(mpu->uart[2]);
3582    omap_mmc_reset(mpu->mmc);
3583    omap_mpuio_reset(mpu->mpuio);
3584    omap_gpio_reset(mpu->gpio);
3585    omap_uwire_reset(mpu->microwire);
3586    omap_pwl_reset(mpu);
3587    omap_pwt_reset(mpu);
3588    omap_i2c_reset(mpu->i2c[0]);
3589    omap_rtc_reset(mpu->rtc);
3590    omap_mcbsp_reset(mpu->mcbsp1);
3591    omap_mcbsp_reset(mpu->mcbsp2);
3592    omap_mcbsp_reset(mpu->mcbsp3);
3593    omap_lpg_reset(mpu->led[0]);
3594    omap_lpg_reset(mpu->led[1]);
3595    omap_clkm_reset(mpu);
3596    cpu_reset(mpu->env);
3597}
3598
3599static const struct omap_map_s {
3600    target_phys_addr_t phys_dsp;
3601    target_phys_addr_t phys_mpu;
3602    uint32_t size;
3603    const char *name;
3604} omap15xx_dsp_mm[] = {
3605    /* Strobe 0 */
3606    { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" },              /* CS0 */
3607    { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" },             /* CS1 */
3608    { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" },          /* CS3 */
3609    { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" },   /* CS4 */
3610    { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" },        /* CS5 */
3611    { 0xe1013000, 0xfffb3000, 0x800, "uWire" },                 /* CS6 */
3612    { 0xe1013800, 0xfffb3800, 0x800, "I^2C" },                  /* CS7 */
3613    { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" },              /* CS8 */
3614    { 0xe1014800, 0xfffb4800, 0x800, "RTC" },                   /* CS9 */
3615    { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" },                 /* CS10 */
3616    { 0xe1015800, 0xfffb5800, 0x800, "PWL" },                   /* CS11 */
3617    { 0xe1016000, 0xfffb6000, 0x800, "PWT" },                   /* CS12 */
3618    { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" },                /* CS14 */
3619    { 0xe1017800, 0xfffb7800, 0x800, "MMC" },                   /* CS15 */
3620    { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" },          /* CS18 */
3621    { 0xe1019800, 0xfffb9800, 0x800, "UART3" },                 /* CS19 */
3622    { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" },         /* CS25 */
3623    /* Strobe 1 */
3624    { 0xe101e000, 0xfffce000, 0x800, "GPIOs" },                 /* CS28 */
3625
3626    { 0 }
3627};
3628
3629static void omap_setup_dsp_mapping(const struct omap_map_s *map)
3630{
3631    int io;
3632
3633    for (; map->phys_dsp; map ++) {
3634        io = cpu_get_physical_page_desc(map->phys_mpu);
3635
3636        cpu_register_physical_memory(map->phys_dsp, map->size, io);
3637    }
3638}
3639
3640void omap_mpu_wakeup(void *opaque, int irq, int req)
3641{
3642    struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3643
3644    if (mpu->env->halted)
3645        cpu_interrupt(mpu->env, CPU_INTERRUPT_EXITTB);
3646}
3647
3648static const struct dma_irq_map omap1_dma_irq_map[] = {
3649    { 0, OMAP_INT_DMA_CH0_6 },
3650    { 0, OMAP_INT_DMA_CH1_7 },
3651    { 0, OMAP_INT_DMA_CH2_8 },
3652    { 0, OMAP_INT_DMA_CH3 },
3653    { 0, OMAP_INT_DMA_CH4 },
3654    { 0, OMAP_INT_DMA_CH5 },
3655    { 1, OMAP_INT_1610_DMA_CH6 },
3656    { 1, OMAP_INT_1610_DMA_CH7 },
3657    { 1, OMAP_INT_1610_DMA_CH8 },
3658    { 1, OMAP_INT_1610_DMA_CH9 },
3659    { 1, OMAP_INT_1610_DMA_CH10 },
3660    { 1, OMAP_INT_1610_DMA_CH11 },
3661    { 1, OMAP_INT_1610_DMA_CH12 },
3662    { 1, OMAP_INT_1610_DMA_CH13 },
3663    { 1, OMAP_INT_1610_DMA_CH14 },
3664    { 1, OMAP_INT_1610_DMA_CH15 }
3665};
3666
3667/* DMA ports for OMAP1 */
3668static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3669                target_phys_addr_t addr)
3670{
3671    return addr >= OMAP_EMIFF_BASE && addr < OMAP_EMIFF_BASE + s->sdram_size;
3672}
3673
3674static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3675                target_phys_addr_t addr)
3676{
3677    return addr >= OMAP_EMIFS_BASE && addr < OMAP_EMIFF_BASE;
3678}
3679
3680static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3681                target_phys_addr_t addr)
3682{
3683    return addr >= OMAP_IMIF_BASE && addr < OMAP_IMIF_BASE + s->sram_size;
3684}
3685
3686static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3687                target_phys_addr_t addr)
3688{
3689    return addr >= 0xfffb0000 && addr < 0xffff0000;
3690}
3691
3692static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3693                target_phys_addr_t addr)
3694{
3695    return addr >= OMAP_LOCALBUS_BASE && addr < OMAP_LOCALBUS_BASE + 0x1000000;
3696}
3697
3698static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3699                target_phys_addr_t addr)
3700{
3701    return addr >= 0xe1010000 && addr < 0xe1020004;
3702}
3703
3704struct omap_mpu_state_s *omap310_mpu_init(unsigned long sdram_size,
3705                const char *core)
3706{
3707    int i;
3708    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *)
3709            qemu_mallocz(sizeof(struct omap_mpu_state_s));
3710    ram_addr_t imif_base, emiff_base;
3711    qemu_irq *cpu_irq;
3712    qemu_irq dma_irqs[6];
3713    DriveInfo *dinfo;
3714
3715    if (!core)
3716        core = "ti925t";
3717
3718    /* Core */
3719    s->mpu_model = omap310;
3720    s->env = cpu_init(core);
3721    if (!s->env) {
3722        fprintf(stderr, "Unable to find CPU definition\n");
3723        exit(1);
3724    }
3725    s->sdram_size = sdram_size;
3726    s->sram_size = OMAP15XX_SRAM_SIZE;
3727
3728    s->wakeup = qemu_allocate_irqs(omap_mpu_wakeup, s, 1)[0];
3729
3730    /* Clocks */
3731    omap_clk_init(s);
3732
3733    /* Memory-mapped stuff */
3734    cpu_register_physical_memory(OMAP_EMIFF_BASE, s->sdram_size,
3735                    (emiff_base = qemu_ram_alloc(NULL, "omap1.dram",
3736                                                 s->sdram_size)) | IO_MEM_RAM);
3737    cpu_register_physical_memory(OMAP_IMIF_BASE, s->sram_size,
3738                    (imif_base = qemu_ram_alloc(NULL, "omap1.sram",
3739                                                s->sram_size)) | IO_MEM_RAM);
3740
3741    omap_clkm_init(0xfffece00, 0xe1008000, s);
3742
3743    cpu_irq = arm_pic_init_cpu(s->env);
3744    s->ih[0] = omap_inth_init(0xfffecb00, 0x100, 1, &s->irq[0],
3745                    cpu_irq[ARM_PIC_CPU_IRQ], cpu_irq[ARM_PIC_CPU_FIQ],
3746                    omap_findclk(s, "arminth_ck"));
3747    s->ih[1] = omap_inth_init(0xfffe0000, 0x800, 1, &s->irq[1],
3748                    omap_inth_get_pin(s->ih[0], OMAP_INT_15XX_IH2_IRQ),
3749                    NULL, omap_findclk(s, "arminth_ck"));
3750
3751    for (i = 0; i < 6; i ++)
3752        dma_irqs[i] =
3753                s->irq[omap1_dma_irq_map[i].ih][omap1_dma_irq_map[i].intr];
3754    s->dma = omap_dma_init(0xfffed800, dma_irqs, s->irq[0][OMAP_INT_DMA_LCD],
3755                           s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3756
3757    s->port[emiff    ].addr_valid = omap_validate_emiff_addr;
3758    s->port[emifs    ].addr_valid = omap_validate_emifs_addr;
3759    s->port[imif     ].addr_valid = omap_validate_imif_addr;
3760    s->port[tipb     ].addr_valid = omap_validate_tipb_addr;
3761    s->port[local    ].addr_valid = omap_validate_local_addr;
3762    s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3763
3764    /* Register SDRAM and SRAM DMA ports for fast transfers.  */
3765    soc_dma_port_add_mem_ram(s->dma,
3766                    emiff_base, OMAP_EMIFF_BASE, s->sdram_size);
3767    soc_dma_port_add_mem_ram(s->dma,
3768                    imif_base, OMAP_IMIF_BASE, s->sram_size);
3769
3770    s->timer[0] = omap_mpu_timer_init(0xfffec500,
3771                    s->irq[0][OMAP_INT_TIMER1],
3772                    omap_findclk(s, "mputim_ck"));
3773    s->timer[1] = omap_mpu_timer_init(0xfffec600,
3774                    s->irq[0][OMAP_INT_TIMER2],
3775                    omap_findclk(s, "mputim_ck"));
3776    s->timer[2] = omap_mpu_timer_init(0xfffec700,
3777                    s->irq[0][OMAP_INT_TIMER3],
3778                    omap_findclk(s, "mputim_ck"));
3779
3780    s->wdt = omap_wd_timer_init(0xfffec800,
3781                    s->irq[0][OMAP_INT_WD_TIMER],
3782                    omap_findclk(s, "armwdt_ck"));
3783
3784    s->os_timer = omap_os_timer_init(0xfffb9000,
3785                    s->irq[1][OMAP_INT_OS_TIMER],
3786                    omap_findclk(s, "clk32-kHz"));
3787
3788    s->lcd = omap_lcdc_init(0xfffec000, s->irq[0][OMAP_INT_LCD_CTRL],
3789                    omap_dma_get_lcdch(s->dma), imif_base, emiff_base,
3790                    omap_findclk(s, "lcd_ck"));
3791
3792    omap_ulpd_pm_init(0xfffe0800, s);
3793    omap_pin_cfg_init(0xfffe1000, s);
3794    omap_id_init(s);
3795
3796    omap_mpui_init(0xfffec900, s);
3797
3798    s->private_tipb = omap_tipb_bridge_init(0xfffeca00,
3799                    s->irq[0][OMAP_INT_BRIDGE_PRIV],
3800                    omap_findclk(s, "tipb_ck"));
3801    s->public_tipb = omap_tipb_bridge_init(0xfffed300,
3802                    s->irq[0][OMAP_INT_BRIDGE_PUB],
3803                    omap_findclk(s, "tipb_ck"));
3804
3805    omap_tcmi_init(0xfffecc00, s);
3806
3807    s->uart[0] = omap_uart_init(0xfffb0000, s->irq[1][OMAP_INT_UART1],
3808                    omap_findclk(s, "uart1_ck"),
3809                    omap_findclk(s, "uart1_ck"),
3810                    s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3811                    serial_hds[0]);
3812    s->uart[1] = omap_uart_init(0xfffb0800, s->irq[1][OMAP_INT_UART2],
3813                    omap_findclk(s, "uart2_ck"),
3814                    omap_findclk(s, "uart2_ck"),
3815                    s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3816                    serial_hds[0] ? serial_hds[1] : NULL);
3817    s->uart[2] = omap_uart_init(0xfffb9800, s->irq[0][OMAP_INT_UART3],
3818                    omap_findclk(s, "uart3_ck"),
3819                    omap_findclk(s, "uart3_ck"),
3820                    s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3821                    serial_hds[0] && serial_hds[1] ? serial_hds[2] : NULL);
3822
3823    omap_dpll_init(&s->dpll[0], 0xfffecf00, omap_findclk(s, "dpll1"));
3824    omap_dpll_init(&s->dpll[1], 0xfffed000, omap_findclk(s, "dpll2"));
3825    omap_dpll_init(&s->dpll[2], 0xfffed100, omap_findclk(s, "dpll3"));
3826
3827    dinfo = drive_get(IF_SD, 0, 0);
3828    if (!dinfo) {
3829        fprintf(stderr, "qemu: missing SecureDigital device\n");
3830        exit(1);
3831    }
3832    s->mmc = omap_mmc_init(0xfffb7800, dinfo->bdrv,
3833                    s->irq[1][OMAP_INT_OQN], &s->drq[OMAP_DMA_MMC_TX],
3834                    omap_findclk(s, "mmc_ck"));
3835
3836    s->mpuio = omap_mpuio_init(0xfffb5000,
3837                    s->irq[1][OMAP_INT_KEYBOARD], s->irq[1][OMAP_INT_MPUIO],
3838                    s->wakeup, omap_findclk(s, "clk32-kHz"));
3839
3840    s->gpio = omap_gpio_init(0xfffce000, s->irq[0][OMAP_INT_GPIO_BANK1],
3841                    omap_findclk(s, "arm_gpio_ck"));
3842
3843    s->microwire = omap_uwire_init(0xfffb3000, &s->irq[1][OMAP_INT_uWireTX],
3844                    s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
3845
3846    omap_pwl_init(0xfffb5800, s, omap_findclk(s, "armxor_ck"));
3847    omap_pwt_init(0xfffb6000, s, omap_findclk(s, "armxor_ck"));
3848
3849    s->i2c[0] = omap_i2c_init(0xfffb3800, s->irq[1][OMAP_INT_I2C],
3850                    &s->drq[OMAP_DMA_I2C_RX], omap_findclk(s, "mpuper_ck"));
3851
3852    s->rtc = omap_rtc_init(0xfffb4800, &s->irq[1][OMAP_INT_RTC_TIMER],
3853                    omap_findclk(s, "clk32-kHz"));
3854
3855    s->mcbsp1 = omap_mcbsp_init(0xfffb1800, &s->irq[1][OMAP_INT_McBSP1TX],
3856                    &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
3857    s->mcbsp2 = omap_mcbsp_init(0xfffb1000, &s->irq[0][OMAP_INT_310_McBSP2_TX],
3858                    &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
3859    s->mcbsp3 = omap_mcbsp_init(0xfffb7000, &s->irq[1][OMAP_INT_McBSP3TX],
3860                    &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
3861
3862    s->led[0] = omap_lpg_init(0xfffbd000, omap_findclk(s, "clk32-kHz"));
3863    s->led[1] = omap_lpg_init(0xfffbd800, omap_findclk(s, "clk32-kHz"));
3864
3865    /* Register mappings not currenlty implemented:
3866     * MCSI2 Comm       fffb2000 - fffb27ff (not mapped on OMAP310)
3867     * MCSI1 Bluetooth  fffb2800 - fffb2fff (not mapped on OMAP310)
3868     * USB W2FC         fffb4000 - fffb47ff
3869     * Camera Interface fffb6800 - fffb6fff
3870     * USB Host         fffba000 - fffba7ff
3871     * FAC              fffba800 - fffbafff
3872     * HDQ/1-Wire       fffbc000 - fffbc7ff
3873     * TIPB switches    fffbc800 - fffbcfff
3874     * Mailbox          fffcf000 - fffcf7ff
3875     * Local bus IF     fffec100 - fffec1ff
3876     * Local bus MMU    fffec200 - fffec2ff
3877     * DSP MMU          fffed200 - fffed2ff
3878     */
3879
3880    omap_setup_dsp_mapping(omap15xx_dsp_mm);
3881    omap_setup_mpui_io(s);
3882
3883    qemu_register_reset(omap1_mpu_reset, s);
3884
3885    return s;
3886}
3887