qemu/hw/wdt_i6300esb.c
<<
>>
Prefs
   1/*
   2 * Virtual hardware watchdog.
   3 *
   4 * Copyright (C) 2009 Red Hat Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version 2
   9 * of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
  18 *
  19 * By Richard W.M. Jones (rjones@redhat.com).
  20 */
  21
  22#include <inttypes.h>
  23
  24#include "qemu-common.h"
  25#include "qemu-timer.h"
  26#include "watchdog.h"
  27#include "hw.h"
  28#include "pci.h"
  29
  30/*#define I6300ESB_DEBUG 1*/
  31
  32#ifdef I6300ESB_DEBUG
  33#define i6300esb_debug(fs,...) \
  34    fprintf(stderr,"i6300esb: %s: "fs,__func__,##__VA_ARGS__)
  35#else
  36#define i6300esb_debug(fs,...)
  37#endif
  38
  39/* PCI configuration registers */
  40#define ESB_CONFIG_REG  0x60            /* Config register                   */
  41#define ESB_LOCK_REG    0x68            /* WDT lock register                 */
  42
  43/* Memory mapped registers (offset from base address) */
  44#define ESB_TIMER1_REG  0x00            /* Timer1 value after each reset     */
  45#define ESB_TIMER2_REG  0x04            /* Timer2 value after each reset     */
  46#define ESB_GINTSR_REG  0x08            /* General Interrupt Status Register */
  47#define ESB_RELOAD_REG  0x0c            /* Reload register                   */
  48
  49/* Lock register bits */
  50#define ESB_WDT_FUNC    (0x01 << 2)   /* Watchdog functionality            */
  51#define ESB_WDT_ENABLE  (0x01 << 1)   /* Enable WDT                        */
  52#define ESB_WDT_LOCK    (0x01 << 0)   /* Lock (nowayout)                   */
  53
  54/* Config register bits */
  55#define ESB_WDT_REBOOT  (0x01 << 5)   /* Enable reboot on timeout          */
  56#define ESB_WDT_FREQ    (0x01 << 2)   /* Decrement frequency               */
  57#define ESB_WDT_INTTYPE (0x11 << 0)   /* Interrupt type on timer1 timeout  */
  58
  59/* Reload register bits */
  60#define ESB_WDT_RELOAD  (0x01 << 8)    /* prevent timeout                   */
  61
  62/* Magic constants */
  63#define ESB_UNLOCK1     0x80            /* Step 1 to unlock reset registers  */
  64#define ESB_UNLOCK2     0x86            /* Step 2 to unlock reset registers  */
  65
  66/* Device state. */
  67struct I6300State {
  68    PCIDevice dev;
  69
  70    int reboot_enabled;         /* "Reboot" on timer expiry.  The real action
  71                                 * performed depends on the -watchdog-action
  72                                 * param passed on QEMU command line.
  73                                 */
  74    int clock_scale;            /* Clock scale. */
  75#define CLOCK_SCALE_1KHZ 0
  76#define CLOCK_SCALE_1MHZ 1
  77
  78    int int_type;               /* Interrupt type generated. */
  79#define INT_TYPE_IRQ 0          /* APIC 1, INT 10 */
  80#define INT_TYPE_SMI 2
  81#define INT_TYPE_DISABLED 3
  82
  83    int free_run;               /* If true, reload timer on expiry. */
  84    int locked;                 /* If true, enabled field cannot be changed. */
  85    int enabled;                /* If true, watchdog is enabled. */
  86
  87    QEMUTimer *timer;           /* The actual watchdog timer. */
  88
  89    uint32_t timer1_preload;    /* Values preloaded into timer1, timer2. */
  90    uint32_t timer2_preload;
  91    int stage;                  /* Stage (1 or 2). */
  92
  93    int unlock_state;           /* Guest writes 0x80, 0x86 to unlock the
  94                                 * registers, and we transition through
  95                                 * states 0 -> 1 -> 2 when this happens.
  96                                 */
  97
  98    int previous_reboot_flag;   /* If the watchdog caused the previous
  99                                 * reboot, this flag will be set.
 100                                 */
 101};
 102
 103typedef struct I6300State I6300State;
 104
 105/* This function is called when the watchdog has either been enabled
 106 * (hence it starts counting down) or has been keep-alived.
 107 */
 108static void i6300esb_restart_timer(I6300State *d, int stage)
 109{
 110    int64_t timeout;
 111
 112    if (!d->enabled)
 113        return;
 114
 115    d->stage = stage;
 116
 117    if (d->stage <= 1)
 118        timeout = d->timer1_preload;
 119    else
 120        timeout = d->timer2_preload;
 121
 122    if (d->clock_scale == CLOCK_SCALE_1KHZ)
 123        timeout <<= 15;
 124    else
 125        timeout <<= 5;
 126
 127    /* Get the timeout in units of ticks_per_sec. */
 128    timeout = get_ticks_per_sec() * timeout / 33000000;
 129
 130    i6300esb_debug("stage %d, timeout %" PRIi64 "\n", d->stage, timeout);
 131
 132    qemu_mod_timer(d->timer, qemu_get_clock(vm_clock) + timeout);
 133}
 134
 135/* This is called when the guest disables the watchdog. */
 136static void i6300esb_disable_timer(I6300State *d)
 137{
 138    i6300esb_debug("timer disabled\n");
 139
 140    qemu_del_timer(d->timer);
 141}
 142
 143static void i6300esb_reset(I6300State *d)
 144{
 145    /* XXX We should probably reset other parts of the state here,
 146     * but we should also reset our state on general machine reset
 147     * too.  For now just disable the timer so it doesn't fire
 148     * again after the reboot.
 149     */
 150    i6300esb_disable_timer(d);
 151}
 152
 153/* This function is called when the watchdog expires.  Note that
 154 * the hardware has two timers, and so expiry happens in two stages.
 155 * If d->stage == 1 then we perform the first stage action (usually,
 156 * sending an interrupt) and then restart the timer again for the
 157 * second stage.  If the second stage expires then the watchdog
 158 * really has run out.
 159 */
 160static void i6300esb_timer_expired(void *vp)
 161{
 162    I6300State *d = vp;
 163
 164    i6300esb_debug("stage %d\n", d->stage);
 165
 166    if (d->stage == 1) {
 167        /* What to do at the end of stage 1? */
 168        switch (d->int_type) {
 169        case INT_TYPE_IRQ:
 170            fprintf(stderr, "i6300esb_timer_expired: I would send APIC 1 INT 10 here if I knew how (XXX)\n");
 171            break;
 172        case INT_TYPE_SMI:
 173            fprintf(stderr, "i6300esb_timer_expired: I would send SMI here if I knew how (XXX)\n");
 174            break;
 175        }
 176
 177        /* Start the second stage. */
 178        i6300esb_restart_timer(d, 2);
 179    } else {
 180        /* Second stage expired, reboot for real. */
 181        if (d->reboot_enabled) {
 182            d->previous_reboot_flag = 1;
 183            watchdog_perform_action(); /* This reboots, exits, etc */
 184            i6300esb_reset(d);
 185        }
 186
 187        /* In "free running mode" we start stage 1 again. */
 188        if (d->free_run)
 189            i6300esb_restart_timer(d, 1);
 190    }
 191}
 192
 193static void i6300esb_config_write(PCIDevice *dev, uint32_t addr,
 194                                  uint32_t data, int len)
 195{
 196    I6300State *d = DO_UPCAST(I6300State, dev, dev);
 197    int old;
 198
 199    i6300esb_debug("addr = %x, data = %x, len = %d\n", addr, data, len);
 200
 201    if (addr == ESB_CONFIG_REG && len == 2) {
 202        d->reboot_enabled = (data & ESB_WDT_REBOOT) == 0;
 203        d->clock_scale =
 204            (data & ESB_WDT_FREQ) != 0 ? CLOCK_SCALE_1MHZ : CLOCK_SCALE_1KHZ;
 205        d->int_type = (data & ESB_WDT_INTTYPE);
 206    } else if (addr == ESB_LOCK_REG && len == 1) {
 207        if (!d->locked) {
 208            d->locked = (data & ESB_WDT_LOCK) != 0;
 209            d->free_run = (data & ESB_WDT_FUNC) != 0;
 210            old = d->enabled;
 211            d->enabled = (data & ESB_WDT_ENABLE) != 0;
 212            if (!old && d->enabled) /* Enabled transitioned from 0 -> 1 */
 213                i6300esb_restart_timer(d, 1);
 214            else if (!d->enabled)
 215                i6300esb_disable_timer(d);
 216        }
 217    } else {
 218        pci_default_write_config(dev, addr, data, len);
 219    }
 220}
 221
 222static uint32_t i6300esb_config_read(PCIDevice *dev, uint32_t addr, int len)
 223{
 224    I6300State *d = DO_UPCAST(I6300State, dev, dev);
 225    uint32_t data;
 226
 227    i6300esb_debug ("addr = %x, len = %d\n", addr, len);
 228
 229    if (addr == ESB_CONFIG_REG && len == 2) {
 230        data =
 231            (d->reboot_enabled ? 0 : ESB_WDT_REBOOT) |
 232            (d->clock_scale == CLOCK_SCALE_1MHZ ? ESB_WDT_FREQ : 0) |
 233            d->int_type;
 234        return data;
 235    } else if (addr == ESB_LOCK_REG && len == 1) {
 236        data =
 237            (d->free_run ? ESB_WDT_FUNC : 0) |
 238            (d->locked ? ESB_WDT_LOCK : 0) |
 239            (d->enabled ? ESB_WDT_ENABLE : 0);
 240        return data;
 241    } else {
 242        return pci_default_read_config(dev, addr, len);
 243    }
 244}
 245
 246static uint32_t i6300esb_mem_readb(void *vp, target_phys_addr_t addr)
 247{
 248    i6300esb_debug ("addr = %x\n", (int) addr);
 249
 250    return 0;
 251}
 252
 253static uint32_t i6300esb_mem_readw(void *vp, target_phys_addr_t addr)
 254{
 255    uint32_t data = 0;
 256    I6300State *d = vp;
 257
 258    i6300esb_debug("addr = %x\n", (int) addr);
 259
 260    if (addr == 0xc) {
 261        /* The previous reboot flag is really bit 9, but there is
 262         * a bug in the Linux driver where it thinks it's bit 12.
 263         * Set both.
 264         */
 265        data = d->previous_reboot_flag ? 0x1200 : 0;
 266    }
 267
 268    return data;
 269}
 270
 271static uint32_t i6300esb_mem_readl(void *vp, target_phys_addr_t addr)
 272{
 273    i6300esb_debug("addr = %x\n", (int) addr);
 274
 275    return 0;
 276}
 277
 278static void i6300esb_mem_writeb(void *vp, target_phys_addr_t addr, uint32_t val)
 279{
 280    I6300State *d = vp;
 281
 282    i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
 283
 284    if (addr == 0xc && val == 0x80)
 285        d->unlock_state = 1;
 286    else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
 287        d->unlock_state = 2;
 288}
 289
 290static void i6300esb_mem_writew(void *vp, target_phys_addr_t addr, uint32_t val)
 291{
 292    I6300State *d = vp;
 293
 294    i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
 295
 296    if (addr == 0xc && val == 0x80)
 297        d->unlock_state = 1;
 298    else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
 299        d->unlock_state = 2;
 300    else {
 301        if (d->unlock_state == 2) {
 302            if (addr == 0xc) {
 303                if ((val & 0x100) != 0)
 304                    /* This is the "ping" from the userspace watchdog in
 305                     * the guest ...
 306                     */
 307                    i6300esb_restart_timer(d, 1);
 308
 309                /* Setting bit 9 resets the previous reboot flag.
 310                 * There's a bug in the Linux driver where it sets
 311                 * bit 12 instead.
 312                 */
 313                if ((val & 0x200) != 0 || (val & 0x1000) != 0) {
 314                    d->previous_reboot_flag = 0;
 315                }
 316            }
 317
 318            d->unlock_state = 0;
 319        }
 320    }
 321}
 322
 323static void i6300esb_mem_writel(void *vp, target_phys_addr_t addr, uint32_t val)
 324{
 325    I6300State *d = vp;
 326
 327    i6300esb_debug ("addr = %x, val = %x\n", (int) addr, val);
 328
 329    if (addr == 0xc && val == 0x80)
 330        d->unlock_state = 1;
 331    else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
 332        d->unlock_state = 2;
 333    else {
 334        if (d->unlock_state == 2) {
 335            if (addr == 0)
 336                d->timer1_preload = val & 0xfffff;
 337            else if (addr == 4)
 338                d->timer2_preload = val & 0xfffff;
 339
 340            d->unlock_state = 0;
 341        }
 342    }
 343}
 344
 345static void i6300esb_map(PCIDevice *dev, int region_num,
 346                         pcibus_t addr, pcibus_t size, int type)
 347{
 348    static CPUReadMemoryFunc * const mem_read[3] = {
 349        i6300esb_mem_readb,
 350        i6300esb_mem_readw,
 351        i6300esb_mem_readl,
 352    };
 353    static CPUWriteMemoryFunc * const mem_write[3] = {
 354        i6300esb_mem_writeb,
 355        i6300esb_mem_writew,
 356        i6300esb_mem_writel,
 357    };
 358    I6300State *d = DO_UPCAST(I6300State, dev, dev);
 359    int io_mem;
 360
 361    i6300esb_debug("addr = %"FMT_PCIBUS", size = %"FMT_PCIBUS", type = %d\n",
 362                   addr, size, type);
 363
 364    io_mem = cpu_register_io_memory(mem_read, mem_write, d);
 365    cpu_register_physical_memory (addr, 0x10, io_mem);
 366    /* qemu_register_coalesced_mmio (addr, 0x10); ? */
 367}
 368
 369static const VMStateDescription vmstate_i6300esb = {
 370    .name = "i6300esb_wdt",
 371    .version_id = sizeof(I6300State),
 372    .minimum_version_id = sizeof(I6300State),
 373    .minimum_version_id_old = sizeof(I6300State),
 374    .fields      = (VMStateField []) {
 375        VMSTATE_PCI_DEVICE(dev, I6300State),
 376        VMSTATE_INT32(reboot_enabled, I6300State),
 377        VMSTATE_INT32(clock_scale, I6300State),
 378        VMSTATE_INT32(int_type, I6300State),
 379        VMSTATE_INT32(free_run, I6300State),
 380        VMSTATE_INT32(locked, I6300State),
 381        VMSTATE_INT32(enabled, I6300State),
 382        VMSTATE_TIMER(timer, I6300State),
 383        VMSTATE_UINT32(timer1_preload, I6300State),
 384        VMSTATE_UINT32(timer2_preload, I6300State),
 385        VMSTATE_INT32(stage, I6300State),
 386        VMSTATE_INT32(unlock_state, I6300State),
 387        VMSTATE_INT32(previous_reboot_flag, I6300State),
 388        VMSTATE_END_OF_LIST()
 389    }
 390};
 391
 392static int i6300esb_init(PCIDevice *dev)
 393{
 394    I6300State *d = DO_UPCAST(I6300State, dev, dev);
 395    uint8_t *pci_conf;
 396
 397    d->reboot_enabled = 1;
 398    d->clock_scale = CLOCK_SCALE_1KHZ;
 399    d->int_type = INT_TYPE_IRQ;
 400    d->free_run = 0;
 401    d->locked = 0;
 402    d->enabled = 0;
 403    d->timer = qemu_new_timer(vm_clock, i6300esb_timer_expired, d);
 404    d->timer1_preload = 0xfffff;
 405    d->timer2_preload = 0xfffff;
 406    d->stage = 1;
 407    d->unlock_state = 0;
 408    d->previous_reboot_flag = 0;
 409
 410    pci_conf = d->dev.config;
 411    pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
 412    pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_ESB_9);
 413    pci_config_set_class(pci_conf, PCI_CLASS_SYSTEM_OTHER);
 414
 415    pci_register_bar(&d->dev, 0, 0x10,
 416                            PCI_BASE_ADDRESS_SPACE_MEMORY, i6300esb_map);
 417
 418    return 0;
 419}
 420
 421static WatchdogTimerModel model = {
 422    .wdt_name = "i6300esb",
 423    .wdt_description = "Intel 6300ESB",
 424};
 425
 426static PCIDeviceInfo i6300esb_info = {
 427    .qdev.name    = "i6300esb",
 428    .qdev.size    = sizeof(I6300State),
 429    .qdev.vmsd    = &vmstate_i6300esb,
 430    .config_read  = i6300esb_config_read,
 431    .config_write = i6300esb_config_write,
 432    .init         = i6300esb_init,
 433};
 434
 435static void i6300esb_register_devices(void)
 436{
 437    watchdog_add_model(&model);
 438    pci_qdev_register(&i6300esb_info);
 439}
 440
 441device_init(i6300esb_register_devices);
 442